treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / x86 / kernel / machine_kexec_64.c
blobad5cdd6a5f2380fa1c5d0d8e4bb5d9919694f198
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
7 #define pr_fmt(fmt) "kexec: " fmt
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
31 #ifdef CONFIG_ACPI
33 * Used while adding mapping for ACPI tables.
34 * Can be reused when other iomem regions need be mapped
36 struct init_pgtable_data {
37 struct x86_mapping_info *info;
38 pgd_t *level4p;
41 static int mem_region_callback(struct resource *res, void *arg)
43 struct init_pgtable_data *data = arg;
44 unsigned long mstart, mend;
46 mstart = res->start;
47 mend = mstart + resource_size(res) - 1;
49 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
52 static int
53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
55 struct init_pgtable_data data;
56 unsigned long flags;
57 int ret;
59 data.info = info;
60 data.level4p = level4p;
61 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
63 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
64 &data, mem_region_callback);
65 if (ret && ret != -EINVAL)
66 return ret;
68 /* ACPI tables could be located in ACPI Non-volatile Storage region */
69 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
70 &data, mem_region_callback);
71 if (ret && ret != -EINVAL)
72 return ret;
74 return 0;
76 #else
77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
78 #endif
80 #ifdef CONFIG_KEXEC_FILE
81 const struct kexec_file_ops * const kexec_file_loaders[] = {
82 &kexec_bzImage64_ops,
83 NULL
85 #endif
87 static int
88 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
90 #ifdef CONFIG_EFI
91 unsigned long mstart, mend;
93 if (!efi_enabled(EFI_BOOT))
94 return 0;
96 mstart = (boot_params.efi_info.efi_systab |
97 ((u64)boot_params.efi_info.efi_systab_hi<<32));
99 if (efi_enabled(EFI_64BIT))
100 mend = mstart + sizeof(efi_system_table_64_t);
101 else
102 mend = mstart + sizeof(efi_system_table_32_t);
104 if (!mstart)
105 return 0;
107 return kernel_ident_mapping_init(info, level4p, mstart, mend);
108 #endif
109 return 0;
112 static void free_transition_pgtable(struct kimage *image)
114 free_page((unsigned long)image->arch.p4d);
115 image->arch.p4d = NULL;
116 free_page((unsigned long)image->arch.pud);
117 image->arch.pud = NULL;
118 free_page((unsigned long)image->arch.pmd);
119 image->arch.pmd = NULL;
120 free_page((unsigned long)image->arch.pte);
121 image->arch.pte = NULL;
124 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
126 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127 unsigned long vaddr, paddr;
128 int result = -ENOMEM;
129 p4d_t *p4d;
130 pud_t *pud;
131 pmd_t *pmd;
132 pte_t *pte;
134 vaddr = (unsigned long)relocate_kernel;
135 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136 pgd += pgd_index(vaddr);
137 if (!pgd_present(*pgd)) {
138 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139 if (!p4d)
140 goto err;
141 image->arch.p4d = p4d;
142 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
144 p4d = p4d_offset(pgd, vaddr);
145 if (!p4d_present(*p4d)) {
146 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147 if (!pud)
148 goto err;
149 image->arch.pud = pud;
150 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
152 pud = pud_offset(p4d, vaddr);
153 if (!pud_present(*pud)) {
154 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155 if (!pmd)
156 goto err;
157 image->arch.pmd = pmd;
158 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
160 pmd = pmd_offset(pud, vaddr);
161 if (!pmd_present(*pmd)) {
162 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163 if (!pte)
164 goto err;
165 image->arch.pte = pte;
166 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
168 pte = pte_offset_kernel(pmd, vaddr);
170 if (sev_active())
171 prot = PAGE_KERNEL_EXEC;
173 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174 return 0;
175 err:
176 return result;
179 static void *alloc_pgt_page(void *data)
181 struct kimage *image = (struct kimage *)data;
182 struct page *page;
183 void *p = NULL;
185 page = kimage_alloc_control_pages(image, 0);
186 if (page) {
187 p = page_address(page);
188 clear_page(p);
191 return p;
194 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
196 struct x86_mapping_info info = {
197 .alloc_pgt_page = alloc_pgt_page,
198 .context = image,
199 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
200 .kernpg_flag = _KERNPG_TABLE_NOENC,
202 unsigned long mstart, mend;
203 pgd_t *level4p;
204 int result;
205 int i;
207 level4p = (pgd_t *)__va(start_pgtable);
208 clear_page(level4p);
210 if (sev_active()) {
211 info.page_flag |= _PAGE_ENC;
212 info.kernpg_flag |= _PAGE_ENC;
215 if (direct_gbpages)
216 info.direct_gbpages = true;
218 for (i = 0; i < nr_pfn_mapped; i++) {
219 mstart = pfn_mapped[i].start << PAGE_SHIFT;
220 mend = pfn_mapped[i].end << PAGE_SHIFT;
222 result = kernel_ident_mapping_init(&info,
223 level4p, mstart, mend);
224 if (result)
225 return result;
229 * segments's mem ranges could be outside 0 ~ max_pfn,
230 * for example when jump back to original kernel from kexeced kernel.
231 * or first kernel is booted with user mem map, and second kernel
232 * could be loaded out of that range.
234 for (i = 0; i < image->nr_segments; i++) {
235 mstart = image->segment[i].mem;
236 mend = mstart + image->segment[i].memsz;
238 result = kernel_ident_mapping_init(&info,
239 level4p, mstart, mend);
241 if (result)
242 return result;
246 * Prepare EFI systab and ACPI tables for kexec kernel since they are
247 * not covered by pfn_mapped.
249 result = map_efi_systab(&info, level4p);
250 if (result)
251 return result;
253 result = map_acpi_tables(&info, level4p);
254 if (result)
255 return result;
257 return init_transition_pgtable(image, level4p);
260 static void set_idt(void *newidt, u16 limit)
262 struct desc_ptr curidt;
264 /* x86-64 supports unaliged loads & stores */
265 curidt.size = limit;
266 curidt.address = (unsigned long)newidt;
268 __asm__ __volatile__ (
269 "lidtq %0\n"
270 : : "m" (curidt)
275 static void set_gdt(void *newgdt, u16 limit)
277 struct desc_ptr curgdt;
279 /* x86-64 supports unaligned loads & stores */
280 curgdt.size = limit;
281 curgdt.address = (unsigned long)newgdt;
283 __asm__ __volatile__ (
284 "lgdtq %0\n"
285 : : "m" (curgdt)
289 static void load_segments(void)
291 __asm__ __volatile__ (
292 "\tmovl %0,%%ds\n"
293 "\tmovl %0,%%es\n"
294 "\tmovl %0,%%ss\n"
295 "\tmovl %0,%%fs\n"
296 "\tmovl %0,%%gs\n"
297 : : "a" (__KERNEL_DS) : "memory"
301 int machine_kexec_prepare(struct kimage *image)
303 unsigned long start_pgtable;
304 int result;
306 /* Calculate the offsets */
307 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
309 /* Setup the identity mapped 64bit page table */
310 result = init_pgtable(image, start_pgtable);
311 if (result)
312 return result;
314 return 0;
317 void machine_kexec_cleanup(struct kimage *image)
319 free_transition_pgtable(image);
323 * Do not allocate memory (or fail in any way) in machine_kexec().
324 * We are past the point of no return, committed to rebooting now.
326 void machine_kexec(struct kimage *image)
328 unsigned long page_list[PAGES_NR];
329 void *control_page;
330 int save_ftrace_enabled;
332 #ifdef CONFIG_KEXEC_JUMP
333 if (image->preserve_context)
334 save_processor_state();
335 #endif
337 save_ftrace_enabled = __ftrace_enabled_save();
339 /* Interrupts aren't acceptable while we reboot */
340 local_irq_disable();
341 hw_breakpoint_disable();
343 if (image->preserve_context) {
344 #ifdef CONFIG_X86_IO_APIC
346 * We need to put APICs in legacy mode so that we can
347 * get timer interrupts in second kernel. kexec/kdump
348 * paths already have calls to restore_boot_irq_mode()
349 * in one form or other. kexec jump path also need one.
351 clear_IO_APIC();
352 restore_boot_irq_mode();
353 #endif
356 control_page = page_address(image->control_code_page) + PAGE_SIZE;
357 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
359 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
360 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
361 page_list[PA_TABLE_PAGE] =
362 (unsigned long)__pa(page_address(image->control_code_page));
364 if (image->type == KEXEC_TYPE_DEFAULT)
365 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
366 << PAGE_SHIFT);
369 * The segment registers are funny things, they have both a
370 * visible and an invisible part. Whenever the visible part is
371 * set to a specific selector, the invisible part is loaded
372 * with from a table in memory. At no other time is the
373 * descriptor table in memory accessed.
375 * I take advantage of this here by force loading the
376 * segments, before I zap the gdt with an invalid value.
378 load_segments();
380 * The gdt & idt are now invalid.
381 * If you want to load them you must set up your own idt & gdt.
383 set_gdt(phys_to_virt(0), 0);
384 set_idt(phys_to_virt(0), 0);
386 /* now call it */
387 image->start = relocate_kernel((unsigned long)image->head,
388 (unsigned long)page_list,
389 image->start,
390 image->preserve_context,
391 sme_active());
393 #ifdef CONFIG_KEXEC_JUMP
394 if (image->preserve_context)
395 restore_processor_state();
396 #endif
398 __ftrace_enabled_restore(save_ftrace_enabled);
401 /* arch-dependent functionality related to kexec file-based syscall */
403 #ifdef CONFIG_KEXEC_FILE
404 void *arch_kexec_kernel_image_load(struct kimage *image)
406 vfree(image->arch.elf_headers);
407 image->arch.elf_headers = NULL;
409 if (!image->fops || !image->fops->load)
410 return ERR_PTR(-ENOEXEC);
412 return image->fops->load(image, image->kernel_buf,
413 image->kernel_buf_len, image->initrd_buf,
414 image->initrd_buf_len, image->cmdline_buf,
415 image->cmdline_buf_len);
419 * Apply purgatory relocations.
421 * @pi: Purgatory to be relocated.
422 * @section: Section relocations applying to.
423 * @relsec: Section containing RELAs.
424 * @symtabsec: Corresponding symtab.
426 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
428 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
429 Elf_Shdr *section, const Elf_Shdr *relsec,
430 const Elf_Shdr *symtabsec)
432 unsigned int i;
433 Elf64_Rela *rel;
434 Elf64_Sym *sym;
435 void *location;
436 unsigned long address, sec_base, value;
437 const char *strtab, *name, *shstrtab;
438 const Elf_Shdr *sechdrs;
440 /* String & section header string table */
441 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
442 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
443 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
445 rel = (void *)pi->ehdr + relsec->sh_offset;
447 pr_debug("Applying relocate section %s to %u\n",
448 shstrtab + relsec->sh_name, relsec->sh_info);
450 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
453 * rel[i].r_offset contains byte offset from beginning
454 * of section to the storage unit affected.
456 * This is location to update. This is temporary buffer
457 * where section is currently loaded. This will finally be
458 * loaded to a different address later, pointed to by
459 * ->sh_addr. kexec takes care of moving it
460 * (kexec_load_segment()).
462 location = pi->purgatory_buf;
463 location += section->sh_offset;
464 location += rel[i].r_offset;
466 /* Final address of the location */
467 address = section->sh_addr + rel[i].r_offset;
470 * rel[i].r_info contains information about symbol table index
471 * w.r.t which relocation must be made and type of relocation
472 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
473 * these respectively.
475 sym = (void *)pi->ehdr + symtabsec->sh_offset;
476 sym += ELF64_R_SYM(rel[i].r_info);
478 if (sym->st_name)
479 name = strtab + sym->st_name;
480 else
481 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
483 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
484 name, sym->st_info, sym->st_shndx, sym->st_value,
485 sym->st_size);
487 if (sym->st_shndx == SHN_UNDEF) {
488 pr_err("Undefined symbol: %s\n", name);
489 return -ENOEXEC;
492 if (sym->st_shndx == SHN_COMMON) {
493 pr_err("symbol '%s' in common section\n", name);
494 return -ENOEXEC;
497 if (sym->st_shndx == SHN_ABS)
498 sec_base = 0;
499 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
500 pr_err("Invalid section %d for symbol %s\n",
501 sym->st_shndx, name);
502 return -ENOEXEC;
503 } else
504 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
506 value = sym->st_value;
507 value += sec_base;
508 value += rel[i].r_addend;
510 switch (ELF64_R_TYPE(rel[i].r_info)) {
511 case R_X86_64_NONE:
512 break;
513 case R_X86_64_64:
514 *(u64 *)location = value;
515 break;
516 case R_X86_64_32:
517 *(u32 *)location = value;
518 if (value != *(u32 *)location)
519 goto overflow;
520 break;
521 case R_X86_64_32S:
522 *(s32 *)location = value;
523 if ((s64)value != *(s32 *)location)
524 goto overflow;
525 break;
526 case R_X86_64_PC32:
527 case R_X86_64_PLT32:
528 value -= (u64)address;
529 *(u32 *)location = value;
530 break;
531 default:
532 pr_err("Unknown rela relocation: %llu\n",
533 ELF64_R_TYPE(rel[i].r_info));
534 return -ENOEXEC;
537 return 0;
539 overflow:
540 pr_err("Overflow in relocation type %d value 0x%lx\n",
541 (int)ELF64_R_TYPE(rel[i].r_info), value);
542 return -ENOEXEC;
544 #endif /* CONFIG_KEXEC_FILE */
546 static int
547 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
549 struct page *page;
550 unsigned int nr_pages;
553 * For physical range: [start, end]. We must skip the unassigned
554 * crashk resource with zero-valued "end" member.
556 if (!end || start > end)
557 return 0;
559 page = pfn_to_page(start >> PAGE_SHIFT);
560 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
561 if (protect)
562 return set_pages_ro(page, nr_pages);
563 else
564 return set_pages_rw(page, nr_pages);
567 static void kexec_mark_crashkres(bool protect)
569 unsigned long control;
571 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
573 /* Don't touch the control code page used in crash_kexec().*/
574 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
575 /* Control code page is located in the 2nd page. */
576 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
577 control += KEXEC_CONTROL_PAGE_SIZE;
578 kexec_mark_range(control, crashk_res.end, protect);
581 void arch_kexec_protect_crashkres(void)
583 kexec_mark_crashkres(true);
586 void arch_kexec_unprotect_crashkres(void)
588 kexec_mark_crashkres(false);
592 * During a traditional boot under SME, SME will encrypt the kernel,
593 * so the SME kexec kernel also needs to be un-encrypted in order to
594 * replicate a normal SME boot.
596 * During a traditional boot under SEV, the kernel has already been
597 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
598 * order to replicate a normal SEV boot.
600 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
602 if (sev_active())
603 return 0;
606 * If SME is active we need to be sure that kexec pages are
607 * not encrypted because when we boot to the new kernel the
608 * pages won't be accessed encrypted (initially).
610 return set_memory_decrypted((unsigned long)vaddr, pages);
613 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
615 if (sev_active())
616 return;
619 * If SME is active we need to reset the pages back to being
620 * an encrypted mapping before freeing them.
622 set_memory_encrypted((unsigned long)vaddr, pages);