treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / block / zram / zram_drv.c
blob1bdb5793842bd94a0b1f0e61fbc0f17bd2565779
1 /*
2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
37 #include "zram_drv.h"
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
43 static int zram_major;
44 static const char *default_compressor = "lzo-rle";
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
52 static size_t huge_class_size;
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 u32 index, int offset, struct bio *bio);
59 static int zram_slot_trylock(struct zram *zram, u32 index)
61 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
64 static void zram_slot_lock(struct zram *zram, u32 index)
66 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
69 static void zram_slot_unlock(struct zram *zram, u32 index)
71 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
74 static inline bool init_done(struct zram *zram)
76 return zram->disksize;
79 static inline struct zram *dev_to_zram(struct device *dev)
81 return (struct zram *)dev_to_disk(dev)->private_data;
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
86 return zram->table[index].handle;
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91 zram->table[index].handle = handle;
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 enum zram_pageflags flag)
98 return zram->table[index].flags & BIT(flag);
101 static void zram_set_flag(struct zram *zram, u32 index,
102 enum zram_pageflags flag)
104 zram->table[index].flags |= BIT(flag);
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 enum zram_pageflags flag)
110 zram->table[index].flags &= ~BIT(flag);
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 unsigned long element)
116 zram->table[index].element = element;
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
121 return zram->table[index].element;
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
126 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
129 static void zram_set_obj_size(struct zram *zram,
130 u32 index, size_t size)
132 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
137 static inline bool zram_allocated(struct zram *zram, u32 index)
139 return zram_get_obj_size(zram, index) ||
140 zram_test_flag(zram, index, ZRAM_SAME) ||
141 zram_test_flag(zram, index, ZRAM_WB);
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
147 return bvec->bv_len != PAGE_SIZE;
149 #else
150 static inline bool is_partial_io(struct bio_vec *bvec)
152 return false;
154 #endif
157 * Check if request is within bounds and aligned on zram logical blocks.
159 static inline bool valid_io_request(struct zram *zram,
160 sector_t start, unsigned int size)
162 u64 end, bound;
164 /* unaligned request */
165 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 return false;
167 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 return false;
170 end = start + (size >> SECTOR_SHIFT);
171 bound = zram->disksize >> SECTOR_SHIFT;
172 /* out of range range */
173 if (unlikely(start >= bound || end > bound || start > end))
174 return false;
176 /* I/O request is valid */
177 return true;
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
182 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
183 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
186 static inline void update_used_max(struct zram *zram,
187 const unsigned long pages)
189 unsigned long old_max, cur_max;
191 old_max = atomic_long_read(&zram->stats.max_used_pages);
193 do {
194 cur_max = old_max;
195 if (pages > cur_max)
196 old_max = atomic_long_cmpxchg(
197 &zram->stats.max_used_pages, cur_max, pages);
198 } while (old_max != cur_max);
201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 unsigned long value)
204 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 memset_l(ptr, value, len / sizeof(unsigned long));
208 static bool page_same_filled(void *ptr, unsigned long *element)
210 unsigned long *page;
211 unsigned long val;
212 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
214 page = (unsigned long *)ptr;
215 val = page[0];
217 if (val != page[last_pos])
218 return false;
220 for (pos = 1; pos < last_pos; pos++) {
221 if (val != page[pos])
222 return false;
225 *element = val;
227 return true;
230 static ssize_t initstate_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
233 u32 val;
234 struct zram *zram = dev_to_zram(dev);
236 down_read(&zram->init_lock);
237 val = init_done(zram);
238 up_read(&zram->init_lock);
240 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
243 static ssize_t disksize_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
246 struct zram *zram = dev_to_zram(dev);
248 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
251 static ssize_t mem_limit_store(struct device *dev,
252 struct device_attribute *attr, const char *buf, size_t len)
254 u64 limit;
255 char *tmp;
256 struct zram *zram = dev_to_zram(dev);
258 limit = memparse(buf, &tmp);
259 if (buf == tmp) /* no chars parsed, invalid input */
260 return -EINVAL;
262 down_write(&zram->init_lock);
263 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
264 up_write(&zram->init_lock);
266 return len;
269 static ssize_t mem_used_max_store(struct device *dev,
270 struct device_attribute *attr, const char *buf, size_t len)
272 int err;
273 unsigned long val;
274 struct zram *zram = dev_to_zram(dev);
276 err = kstrtoul(buf, 10, &val);
277 if (err || val != 0)
278 return -EINVAL;
280 down_read(&zram->init_lock);
281 if (init_done(zram)) {
282 atomic_long_set(&zram->stats.max_used_pages,
283 zs_get_total_pages(zram->mem_pool));
285 up_read(&zram->init_lock);
287 return len;
290 static ssize_t idle_store(struct device *dev,
291 struct device_attribute *attr, const char *buf, size_t len)
293 struct zram *zram = dev_to_zram(dev);
294 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
295 int index;
297 if (!sysfs_streq(buf, "all"))
298 return -EINVAL;
300 down_read(&zram->init_lock);
301 if (!init_done(zram)) {
302 up_read(&zram->init_lock);
303 return -EINVAL;
306 for (index = 0; index < nr_pages; index++) {
308 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
309 * See the comment in writeback_store.
311 zram_slot_lock(zram, index);
312 if (zram_allocated(zram, index) &&
313 !zram_test_flag(zram, index, ZRAM_UNDER_WB))
314 zram_set_flag(zram, index, ZRAM_IDLE);
315 zram_slot_unlock(zram, index);
318 up_read(&zram->init_lock);
320 return len;
323 #ifdef CONFIG_ZRAM_WRITEBACK
324 static ssize_t writeback_limit_enable_store(struct device *dev,
325 struct device_attribute *attr, const char *buf, size_t len)
327 struct zram *zram = dev_to_zram(dev);
328 u64 val;
329 ssize_t ret = -EINVAL;
331 if (kstrtoull(buf, 10, &val))
332 return ret;
334 down_read(&zram->init_lock);
335 spin_lock(&zram->wb_limit_lock);
336 zram->wb_limit_enable = val;
337 spin_unlock(&zram->wb_limit_lock);
338 up_read(&zram->init_lock);
339 ret = len;
341 return ret;
344 static ssize_t writeback_limit_enable_show(struct device *dev,
345 struct device_attribute *attr, char *buf)
347 bool val;
348 struct zram *zram = dev_to_zram(dev);
350 down_read(&zram->init_lock);
351 spin_lock(&zram->wb_limit_lock);
352 val = zram->wb_limit_enable;
353 spin_unlock(&zram->wb_limit_lock);
354 up_read(&zram->init_lock);
356 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
359 static ssize_t writeback_limit_store(struct device *dev,
360 struct device_attribute *attr, const char *buf, size_t len)
362 struct zram *zram = dev_to_zram(dev);
363 u64 val;
364 ssize_t ret = -EINVAL;
366 if (kstrtoull(buf, 10, &val))
367 return ret;
369 down_read(&zram->init_lock);
370 spin_lock(&zram->wb_limit_lock);
371 zram->bd_wb_limit = val;
372 spin_unlock(&zram->wb_limit_lock);
373 up_read(&zram->init_lock);
374 ret = len;
376 return ret;
379 static ssize_t writeback_limit_show(struct device *dev,
380 struct device_attribute *attr, char *buf)
382 u64 val;
383 struct zram *zram = dev_to_zram(dev);
385 down_read(&zram->init_lock);
386 spin_lock(&zram->wb_limit_lock);
387 val = zram->bd_wb_limit;
388 spin_unlock(&zram->wb_limit_lock);
389 up_read(&zram->init_lock);
391 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
394 static void reset_bdev(struct zram *zram)
396 struct block_device *bdev;
398 if (!zram->backing_dev)
399 return;
401 bdev = zram->bdev;
402 if (zram->old_block_size)
403 set_blocksize(bdev, zram->old_block_size);
404 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
405 /* hope filp_close flush all of IO */
406 filp_close(zram->backing_dev, NULL);
407 zram->backing_dev = NULL;
408 zram->old_block_size = 0;
409 zram->bdev = NULL;
410 zram->disk->queue->backing_dev_info->capabilities |=
411 BDI_CAP_SYNCHRONOUS_IO;
412 kvfree(zram->bitmap);
413 zram->bitmap = NULL;
416 static ssize_t backing_dev_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
419 struct file *file;
420 struct zram *zram = dev_to_zram(dev);
421 char *p;
422 ssize_t ret;
424 down_read(&zram->init_lock);
425 file = zram->backing_dev;
426 if (!file) {
427 memcpy(buf, "none\n", 5);
428 up_read(&zram->init_lock);
429 return 5;
432 p = file_path(file, buf, PAGE_SIZE - 1);
433 if (IS_ERR(p)) {
434 ret = PTR_ERR(p);
435 goto out;
438 ret = strlen(p);
439 memmove(buf, p, ret);
440 buf[ret++] = '\n';
441 out:
442 up_read(&zram->init_lock);
443 return ret;
446 static ssize_t backing_dev_store(struct device *dev,
447 struct device_attribute *attr, const char *buf, size_t len)
449 char *file_name;
450 size_t sz;
451 struct file *backing_dev = NULL;
452 struct inode *inode;
453 struct address_space *mapping;
454 unsigned int bitmap_sz, old_block_size = 0;
455 unsigned long nr_pages, *bitmap = NULL;
456 struct block_device *bdev = NULL;
457 int err;
458 struct zram *zram = dev_to_zram(dev);
460 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
461 if (!file_name)
462 return -ENOMEM;
464 down_write(&zram->init_lock);
465 if (init_done(zram)) {
466 pr_info("Can't setup backing device for initialized device\n");
467 err = -EBUSY;
468 goto out;
471 strlcpy(file_name, buf, PATH_MAX);
472 /* ignore trailing newline */
473 sz = strlen(file_name);
474 if (sz > 0 && file_name[sz - 1] == '\n')
475 file_name[sz - 1] = 0x00;
477 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
478 if (IS_ERR(backing_dev)) {
479 err = PTR_ERR(backing_dev);
480 backing_dev = NULL;
481 goto out;
484 mapping = backing_dev->f_mapping;
485 inode = mapping->host;
487 /* Support only block device in this moment */
488 if (!S_ISBLK(inode->i_mode)) {
489 err = -ENOTBLK;
490 goto out;
493 bdev = bdgrab(I_BDEV(inode));
494 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
495 if (err < 0) {
496 bdev = NULL;
497 goto out;
500 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
501 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
502 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
503 if (!bitmap) {
504 err = -ENOMEM;
505 goto out;
508 old_block_size = block_size(bdev);
509 err = set_blocksize(bdev, PAGE_SIZE);
510 if (err)
511 goto out;
513 reset_bdev(zram);
515 zram->old_block_size = old_block_size;
516 zram->bdev = bdev;
517 zram->backing_dev = backing_dev;
518 zram->bitmap = bitmap;
519 zram->nr_pages = nr_pages;
521 * With writeback feature, zram does asynchronous IO so it's no longer
522 * synchronous device so let's remove synchronous io flag. Othewise,
523 * upper layer(e.g., swap) could wait IO completion rather than
524 * (submit and return), which will cause system sluggish.
525 * Furthermore, when the IO function returns(e.g., swap_readpage),
526 * upper layer expects IO was done so it could deallocate the page
527 * freely but in fact, IO is going on so finally could cause
528 * use-after-free when the IO is really done.
530 zram->disk->queue->backing_dev_info->capabilities &=
531 ~BDI_CAP_SYNCHRONOUS_IO;
532 up_write(&zram->init_lock);
534 pr_info("setup backing device %s\n", file_name);
535 kfree(file_name);
537 return len;
538 out:
539 if (bitmap)
540 kvfree(bitmap);
542 if (bdev)
543 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
545 if (backing_dev)
546 filp_close(backing_dev, NULL);
548 up_write(&zram->init_lock);
550 kfree(file_name);
552 return err;
555 static unsigned long alloc_block_bdev(struct zram *zram)
557 unsigned long blk_idx = 1;
558 retry:
559 /* skip 0 bit to confuse zram.handle = 0 */
560 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
561 if (blk_idx == zram->nr_pages)
562 return 0;
564 if (test_and_set_bit(blk_idx, zram->bitmap))
565 goto retry;
567 atomic64_inc(&zram->stats.bd_count);
568 return blk_idx;
571 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
573 int was_set;
575 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
576 WARN_ON_ONCE(!was_set);
577 atomic64_dec(&zram->stats.bd_count);
580 static void zram_page_end_io(struct bio *bio)
582 struct page *page = bio_first_page_all(bio);
584 page_endio(page, op_is_write(bio_op(bio)),
585 blk_status_to_errno(bio->bi_status));
586 bio_put(bio);
590 * Returns 1 if the submission is successful.
592 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
593 unsigned long entry, struct bio *parent)
595 struct bio *bio;
597 bio = bio_alloc(GFP_ATOMIC, 1);
598 if (!bio)
599 return -ENOMEM;
601 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
602 bio_set_dev(bio, zram->bdev);
603 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
604 bio_put(bio);
605 return -EIO;
608 if (!parent) {
609 bio->bi_opf = REQ_OP_READ;
610 bio->bi_end_io = zram_page_end_io;
611 } else {
612 bio->bi_opf = parent->bi_opf;
613 bio_chain(bio, parent);
616 submit_bio(bio);
617 return 1;
620 #define HUGE_WRITEBACK 1
621 #define IDLE_WRITEBACK 2
623 static ssize_t writeback_store(struct device *dev,
624 struct device_attribute *attr, const char *buf, size_t len)
626 struct zram *zram = dev_to_zram(dev);
627 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
628 unsigned long index;
629 struct bio bio;
630 struct bio_vec bio_vec;
631 struct page *page;
632 ssize_t ret = len;
633 int mode;
634 unsigned long blk_idx = 0;
636 if (sysfs_streq(buf, "idle"))
637 mode = IDLE_WRITEBACK;
638 else if (sysfs_streq(buf, "huge"))
639 mode = HUGE_WRITEBACK;
640 else
641 return -EINVAL;
643 down_read(&zram->init_lock);
644 if (!init_done(zram)) {
645 ret = -EINVAL;
646 goto release_init_lock;
649 if (!zram->backing_dev) {
650 ret = -ENODEV;
651 goto release_init_lock;
654 page = alloc_page(GFP_KERNEL);
655 if (!page) {
656 ret = -ENOMEM;
657 goto release_init_lock;
660 for (index = 0; index < nr_pages; index++) {
661 struct bio_vec bvec;
663 bvec.bv_page = page;
664 bvec.bv_len = PAGE_SIZE;
665 bvec.bv_offset = 0;
667 spin_lock(&zram->wb_limit_lock);
668 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
669 spin_unlock(&zram->wb_limit_lock);
670 ret = -EIO;
671 break;
673 spin_unlock(&zram->wb_limit_lock);
675 if (!blk_idx) {
676 blk_idx = alloc_block_bdev(zram);
677 if (!blk_idx) {
678 ret = -ENOSPC;
679 break;
683 zram_slot_lock(zram, index);
684 if (!zram_allocated(zram, index))
685 goto next;
687 if (zram_test_flag(zram, index, ZRAM_WB) ||
688 zram_test_flag(zram, index, ZRAM_SAME) ||
689 zram_test_flag(zram, index, ZRAM_UNDER_WB))
690 goto next;
692 if (mode == IDLE_WRITEBACK &&
693 !zram_test_flag(zram, index, ZRAM_IDLE))
694 goto next;
695 if (mode == HUGE_WRITEBACK &&
696 !zram_test_flag(zram, index, ZRAM_HUGE))
697 goto next;
699 * Clearing ZRAM_UNDER_WB is duty of caller.
700 * IOW, zram_free_page never clear it.
702 zram_set_flag(zram, index, ZRAM_UNDER_WB);
703 /* Need for hugepage writeback racing */
704 zram_set_flag(zram, index, ZRAM_IDLE);
705 zram_slot_unlock(zram, index);
706 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
707 zram_slot_lock(zram, index);
708 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
709 zram_clear_flag(zram, index, ZRAM_IDLE);
710 zram_slot_unlock(zram, index);
711 continue;
714 bio_init(&bio, &bio_vec, 1);
715 bio_set_dev(&bio, zram->bdev);
716 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
717 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
719 bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
720 bvec.bv_offset);
722 * XXX: A single page IO would be inefficient for write
723 * but it would be not bad as starter.
725 ret = submit_bio_wait(&bio);
726 if (ret) {
727 zram_slot_lock(zram, index);
728 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
729 zram_clear_flag(zram, index, ZRAM_IDLE);
730 zram_slot_unlock(zram, index);
731 continue;
734 atomic64_inc(&zram->stats.bd_writes);
736 * We released zram_slot_lock so need to check if the slot was
737 * changed. If there is freeing for the slot, we can catch it
738 * easily by zram_allocated.
739 * A subtle case is the slot is freed/reallocated/marked as
740 * ZRAM_IDLE again. To close the race, idle_store doesn't
741 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
742 * Thus, we could close the race by checking ZRAM_IDLE bit.
744 zram_slot_lock(zram, index);
745 if (!zram_allocated(zram, index) ||
746 !zram_test_flag(zram, index, ZRAM_IDLE)) {
747 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
748 zram_clear_flag(zram, index, ZRAM_IDLE);
749 goto next;
752 zram_free_page(zram, index);
753 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
754 zram_set_flag(zram, index, ZRAM_WB);
755 zram_set_element(zram, index, blk_idx);
756 blk_idx = 0;
757 atomic64_inc(&zram->stats.pages_stored);
758 spin_lock(&zram->wb_limit_lock);
759 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
760 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
761 spin_unlock(&zram->wb_limit_lock);
762 next:
763 zram_slot_unlock(zram, index);
766 if (blk_idx)
767 free_block_bdev(zram, blk_idx);
768 __free_page(page);
769 release_init_lock:
770 up_read(&zram->init_lock);
772 return ret;
775 struct zram_work {
776 struct work_struct work;
777 struct zram *zram;
778 unsigned long entry;
779 struct bio *bio;
780 struct bio_vec bvec;
783 #if PAGE_SIZE != 4096
784 static void zram_sync_read(struct work_struct *work)
786 struct zram_work *zw = container_of(work, struct zram_work, work);
787 struct zram *zram = zw->zram;
788 unsigned long entry = zw->entry;
789 struct bio *bio = zw->bio;
791 read_from_bdev_async(zram, &zw->bvec, entry, bio);
795 * Block layer want one ->make_request_fn to be active at a time
796 * so if we use chained IO with parent IO in same context,
797 * it's a deadlock. To avoid, it, it uses worker thread context.
799 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
800 unsigned long entry, struct bio *bio)
802 struct zram_work work;
804 work.bvec = *bvec;
805 work.zram = zram;
806 work.entry = entry;
807 work.bio = bio;
809 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
810 queue_work(system_unbound_wq, &work.work);
811 flush_work(&work.work);
812 destroy_work_on_stack(&work.work);
814 return 1;
816 #else
817 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
818 unsigned long entry, struct bio *bio)
820 WARN_ON(1);
821 return -EIO;
823 #endif
825 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
826 unsigned long entry, struct bio *parent, bool sync)
828 atomic64_inc(&zram->stats.bd_reads);
829 if (sync)
830 return read_from_bdev_sync(zram, bvec, entry, parent);
831 else
832 return read_from_bdev_async(zram, bvec, entry, parent);
834 #else
835 static inline void reset_bdev(struct zram *zram) {};
836 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
837 unsigned long entry, struct bio *parent, bool sync)
839 return -EIO;
842 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
843 #endif
845 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
847 static struct dentry *zram_debugfs_root;
849 static void zram_debugfs_create(void)
851 zram_debugfs_root = debugfs_create_dir("zram", NULL);
854 static void zram_debugfs_destroy(void)
856 debugfs_remove_recursive(zram_debugfs_root);
859 static void zram_accessed(struct zram *zram, u32 index)
861 zram_clear_flag(zram, index, ZRAM_IDLE);
862 zram->table[index].ac_time = ktime_get_boottime();
865 static ssize_t read_block_state(struct file *file, char __user *buf,
866 size_t count, loff_t *ppos)
868 char *kbuf;
869 ssize_t index, written = 0;
870 struct zram *zram = file->private_data;
871 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
872 struct timespec64 ts;
874 kbuf = kvmalloc(count, GFP_KERNEL);
875 if (!kbuf)
876 return -ENOMEM;
878 down_read(&zram->init_lock);
879 if (!init_done(zram)) {
880 up_read(&zram->init_lock);
881 kvfree(kbuf);
882 return -EINVAL;
885 for (index = *ppos; index < nr_pages; index++) {
886 int copied;
888 zram_slot_lock(zram, index);
889 if (!zram_allocated(zram, index))
890 goto next;
892 ts = ktime_to_timespec64(zram->table[index].ac_time);
893 copied = snprintf(kbuf + written, count,
894 "%12zd %12lld.%06lu %c%c%c%c\n",
895 index, (s64)ts.tv_sec,
896 ts.tv_nsec / NSEC_PER_USEC,
897 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
898 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
899 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
900 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
902 if (count < copied) {
903 zram_slot_unlock(zram, index);
904 break;
906 written += copied;
907 count -= copied;
908 next:
909 zram_slot_unlock(zram, index);
910 *ppos += 1;
913 up_read(&zram->init_lock);
914 if (copy_to_user(buf, kbuf, written))
915 written = -EFAULT;
916 kvfree(kbuf);
918 return written;
921 static const struct file_operations proc_zram_block_state_op = {
922 .open = simple_open,
923 .read = read_block_state,
924 .llseek = default_llseek,
927 static void zram_debugfs_register(struct zram *zram)
929 if (!zram_debugfs_root)
930 return;
932 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
933 zram_debugfs_root);
934 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
935 zram, &proc_zram_block_state_op);
938 static void zram_debugfs_unregister(struct zram *zram)
940 debugfs_remove_recursive(zram->debugfs_dir);
942 #else
943 static void zram_debugfs_create(void) {};
944 static void zram_debugfs_destroy(void) {};
945 static void zram_accessed(struct zram *zram, u32 index)
947 zram_clear_flag(zram, index, ZRAM_IDLE);
949 static void zram_debugfs_register(struct zram *zram) {};
950 static void zram_debugfs_unregister(struct zram *zram) {};
951 #endif
954 * We switched to per-cpu streams and this attr is not needed anymore.
955 * However, we will keep it around for some time, because:
956 * a) we may revert per-cpu streams in the future
957 * b) it's visible to user space and we need to follow our 2 years
958 * retirement rule; but we already have a number of 'soon to be
959 * altered' attrs, so max_comp_streams need to wait for the next
960 * layoff cycle.
962 static ssize_t max_comp_streams_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
965 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
968 static ssize_t max_comp_streams_store(struct device *dev,
969 struct device_attribute *attr, const char *buf, size_t len)
971 return len;
974 static ssize_t comp_algorithm_show(struct device *dev,
975 struct device_attribute *attr, char *buf)
977 size_t sz;
978 struct zram *zram = dev_to_zram(dev);
980 down_read(&zram->init_lock);
981 sz = zcomp_available_show(zram->compressor, buf);
982 up_read(&zram->init_lock);
984 return sz;
987 static ssize_t comp_algorithm_store(struct device *dev,
988 struct device_attribute *attr, const char *buf, size_t len)
990 struct zram *zram = dev_to_zram(dev);
991 char compressor[ARRAY_SIZE(zram->compressor)];
992 size_t sz;
994 strlcpy(compressor, buf, sizeof(compressor));
995 /* ignore trailing newline */
996 sz = strlen(compressor);
997 if (sz > 0 && compressor[sz - 1] == '\n')
998 compressor[sz - 1] = 0x00;
1000 if (!zcomp_available_algorithm(compressor))
1001 return -EINVAL;
1003 down_write(&zram->init_lock);
1004 if (init_done(zram)) {
1005 up_write(&zram->init_lock);
1006 pr_info("Can't change algorithm for initialized device\n");
1007 return -EBUSY;
1010 strcpy(zram->compressor, compressor);
1011 up_write(&zram->init_lock);
1012 return len;
1015 static ssize_t compact_store(struct device *dev,
1016 struct device_attribute *attr, const char *buf, size_t len)
1018 struct zram *zram = dev_to_zram(dev);
1020 down_read(&zram->init_lock);
1021 if (!init_done(zram)) {
1022 up_read(&zram->init_lock);
1023 return -EINVAL;
1026 zs_compact(zram->mem_pool);
1027 up_read(&zram->init_lock);
1029 return len;
1032 static ssize_t io_stat_show(struct device *dev,
1033 struct device_attribute *attr, char *buf)
1035 struct zram *zram = dev_to_zram(dev);
1036 ssize_t ret;
1038 down_read(&zram->init_lock);
1039 ret = scnprintf(buf, PAGE_SIZE,
1040 "%8llu %8llu %8llu %8llu\n",
1041 (u64)atomic64_read(&zram->stats.failed_reads),
1042 (u64)atomic64_read(&zram->stats.failed_writes),
1043 (u64)atomic64_read(&zram->stats.invalid_io),
1044 (u64)atomic64_read(&zram->stats.notify_free));
1045 up_read(&zram->init_lock);
1047 return ret;
1050 static ssize_t mm_stat_show(struct device *dev,
1051 struct device_attribute *attr, char *buf)
1053 struct zram *zram = dev_to_zram(dev);
1054 struct zs_pool_stats pool_stats;
1055 u64 orig_size, mem_used = 0;
1056 long max_used;
1057 ssize_t ret;
1059 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1061 down_read(&zram->init_lock);
1062 if (init_done(zram)) {
1063 mem_used = zs_get_total_pages(zram->mem_pool);
1064 zs_pool_stats(zram->mem_pool, &pool_stats);
1067 orig_size = atomic64_read(&zram->stats.pages_stored);
1068 max_used = atomic_long_read(&zram->stats.max_used_pages);
1070 ret = scnprintf(buf, PAGE_SIZE,
1071 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1072 orig_size << PAGE_SHIFT,
1073 (u64)atomic64_read(&zram->stats.compr_data_size),
1074 mem_used << PAGE_SHIFT,
1075 zram->limit_pages << PAGE_SHIFT,
1076 max_used << PAGE_SHIFT,
1077 (u64)atomic64_read(&zram->stats.same_pages),
1078 pool_stats.pages_compacted,
1079 (u64)atomic64_read(&zram->stats.huge_pages));
1080 up_read(&zram->init_lock);
1082 return ret;
1085 #ifdef CONFIG_ZRAM_WRITEBACK
1086 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1087 static ssize_t bd_stat_show(struct device *dev,
1088 struct device_attribute *attr, char *buf)
1090 struct zram *zram = dev_to_zram(dev);
1091 ssize_t ret;
1093 down_read(&zram->init_lock);
1094 ret = scnprintf(buf, PAGE_SIZE,
1095 "%8llu %8llu %8llu\n",
1096 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1097 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1098 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1099 up_read(&zram->init_lock);
1101 return ret;
1103 #endif
1105 static ssize_t debug_stat_show(struct device *dev,
1106 struct device_attribute *attr, char *buf)
1108 int version = 1;
1109 struct zram *zram = dev_to_zram(dev);
1110 ssize_t ret;
1112 down_read(&zram->init_lock);
1113 ret = scnprintf(buf, PAGE_SIZE,
1114 "version: %d\n%8llu %8llu\n",
1115 version,
1116 (u64)atomic64_read(&zram->stats.writestall),
1117 (u64)atomic64_read(&zram->stats.miss_free));
1118 up_read(&zram->init_lock);
1120 return ret;
1123 static DEVICE_ATTR_RO(io_stat);
1124 static DEVICE_ATTR_RO(mm_stat);
1125 #ifdef CONFIG_ZRAM_WRITEBACK
1126 static DEVICE_ATTR_RO(bd_stat);
1127 #endif
1128 static DEVICE_ATTR_RO(debug_stat);
1130 static void zram_meta_free(struct zram *zram, u64 disksize)
1132 size_t num_pages = disksize >> PAGE_SHIFT;
1133 size_t index;
1135 /* Free all pages that are still in this zram device */
1136 for (index = 0; index < num_pages; index++)
1137 zram_free_page(zram, index);
1139 zs_destroy_pool(zram->mem_pool);
1140 vfree(zram->table);
1143 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1145 size_t num_pages;
1147 num_pages = disksize >> PAGE_SHIFT;
1148 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1149 if (!zram->table)
1150 return false;
1152 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1153 if (!zram->mem_pool) {
1154 vfree(zram->table);
1155 return false;
1158 if (!huge_class_size)
1159 huge_class_size = zs_huge_class_size(zram->mem_pool);
1160 return true;
1164 * To protect concurrent access to the same index entry,
1165 * caller should hold this table index entry's bit_spinlock to
1166 * indicate this index entry is accessing.
1168 static void zram_free_page(struct zram *zram, size_t index)
1170 unsigned long handle;
1172 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1173 zram->table[index].ac_time = 0;
1174 #endif
1175 if (zram_test_flag(zram, index, ZRAM_IDLE))
1176 zram_clear_flag(zram, index, ZRAM_IDLE);
1178 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1179 zram_clear_flag(zram, index, ZRAM_HUGE);
1180 atomic64_dec(&zram->stats.huge_pages);
1183 if (zram_test_flag(zram, index, ZRAM_WB)) {
1184 zram_clear_flag(zram, index, ZRAM_WB);
1185 free_block_bdev(zram, zram_get_element(zram, index));
1186 goto out;
1190 * No memory is allocated for same element filled pages.
1191 * Simply clear same page flag.
1193 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1194 zram_clear_flag(zram, index, ZRAM_SAME);
1195 atomic64_dec(&zram->stats.same_pages);
1196 goto out;
1199 handle = zram_get_handle(zram, index);
1200 if (!handle)
1201 return;
1203 zs_free(zram->mem_pool, handle);
1205 atomic64_sub(zram_get_obj_size(zram, index),
1206 &zram->stats.compr_data_size);
1207 out:
1208 atomic64_dec(&zram->stats.pages_stored);
1209 zram_set_handle(zram, index, 0);
1210 zram_set_obj_size(zram, index, 0);
1211 WARN_ON_ONCE(zram->table[index].flags &
1212 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1215 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1216 struct bio *bio, bool partial_io)
1218 int ret;
1219 unsigned long handle;
1220 unsigned int size;
1221 void *src, *dst;
1223 zram_slot_lock(zram, index);
1224 if (zram_test_flag(zram, index, ZRAM_WB)) {
1225 struct bio_vec bvec;
1227 zram_slot_unlock(zram, index);
1229 bvec.bv_page = page;
1230 bvec.bv_len = PAGE_SIZE;
1231 bvec.bv_offset = 0;
1232 return read_from_bdev(zram, &bvec,
1233 zram_get_element(zram, index),
1234 bio, partial_io);
1237 handle = zram_get_handle(zram, index);
1238 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1239 unsigned long value;
1240 void *mem;
1242 value = handle ? zram_get_element(zram, index) : 0;
1243 mem = kmap_atomic(page);
1244 zram_fill_page(mem, PAGE_SIZE, value);
1245 kunmap_atomic(mem);
1246 zram_slot_unlock(zram, index);
1247 return 0;
1250 size = zram_get_obj_size(zram, index);
1252 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1253 if (size == PAGE_SIZE) {
1254 dst = kmap_atomic(page);
1255 memcpy(dst, src, PAGE_SIZE);
1256 kunmap_atomic(dst);
1257 ret = 0;
1258 } else {
1259 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1261 dst = kmap_atomic(page);
1262 ret = zcomp_decompress(zstrm, src, size, dst);
1263 kunmap_atomic(dst);
1264 zcomp_stream_put(zram->comp);
1266 zs_unmap_object(zram->mem_pool, handle);
1267 zram_slot_unlock(zram, index);
1269 /* Should NEVER happen. Return bio error if it does. */
1270 if (unlikely(ret))
1271 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1273 return ret;
1276 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1277 u32 index, int offset, struct bio *bio)
1279 int ret;
1280 struct page *page;
1282 page = bvec->bv_page;
1283 if (is_partial_io(bvec)) {
1284 /* Use a temporary buffer to decompress the page */
1285 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1286 if (!page)
1287 return -ENOMEM;
1290 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1291 if (unlikely(ret))
1292 goto out;
1294 if (is_partial_io(bvec)) {
1295 void *dst = kmap_atomic(bvec->bv_page);
1296 void *src = kmap_atomic(page);
1298 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1299 kunmap_atomic(src);
1300 kunmap_atomic(dst);
1302 out:
1303 if (is_partial_io(bvec))
1304 __free_page(page);
1306 return ret;
1309 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1310 u32 index, struct bio *bio)
1312 int ret = 0;
1313 unsigned long alloced_pages;
1314 unsigned long handle = 0;
1315 unsigned int comp_len = 0;
1316 void *src, *dst, *mem;
1317 struct zcomp_strm *zstrm;
1318 struct page *page = bvec->bv_page;
1319 unsigned long element = 0;
1320 enum zram_pageflags flags = 0;
1322 mem = kmap_atomic(page);
1323 if (page_same_filled(mem, &element)) {
1324 kunmap_atomic(mem);
1325 /* Free memory associated with this sector now. */
1326 flags = ZRAM_SAME;
1327 atomic64_inc(&zram->stats.same_pages);
1328 goto out;
1330 kunmap_atomic(mem);
1332 compress_again:
1333 zstrm = zcomp_stream_get(zram->comp);
1334 src = kmap_atomic(page);
1335 ret = zcomp_compress(zstrm, src, &comp_len);
1336 kunmap_atomic(src);
1338 if (unlikely(ret)) {
1339 zcomp_stream_put(zram->comp);
1340 pr_err("Compression failed! err=%d\n", ret);
1341 zs_free(zram->mem_pool, handle);
1342 return ret;
1345 if (comp_len >= huge_class_size)
1346 comp_len = PAGE_SIZE;
1348 * handle allocation has 2 paths:
1349 * a) fast path is executed with preemption disabled (for
1350 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1351 * since we can't sleep;
1352 * b) slow path enables preemption and attempts to allocate
1353 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1354 * put per-cpu compression stream and, thus, to re-do
1355 * the compression once handle is allocated.
1357 * if we have a 'non-null' handle here then we are coming
1358 * from the slow path and handle has already been allocated.
1360 if (!handle)
1361 handle = zs_malloc(zram->mem_pool, comp_len,
1362 __GFP_KSWAPD_RECLAIM |
1363 __GFP_NOWARN |
1364 __GFP_HIGHMEM |
1365 __GFP_MOVABLE);
1366 if (!handle) {
1367 zcomp_stream_put(zram->comp);
1368 atomic64_inc(&zram->stats.writestall);
1369 handle = zs_malloc(zram->mem_pool, comp_len,
1370 GFP_NOIO | __GFP_HIGHMEM |
1371 __GFP_MOVABLE);
1372 if (handle)
1373 goto compress_again;
1374 return -ENOMEM;
1377 alloced_pages = zs_get_total_pages(zram->mem_pool);
1378 update_used_max(zram, alloced_pages);
1380 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1381 zcomp_stream_put(zram->comp);
1382 zs_free(zram->mem_pool, handle);
1383 return -ENOMEM;
1386 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1388 src = zstrm->buffer;
1389 if (comp_len == PAGE_SIZE)
1390 src = kmap_atomic(page);
1391 memcpy(dst, src, comp_len);
1392 if (comp_len == PAGE_SIZE)
1393 kunmap_atomic(src);
1395 zcomp_stream_put(zram->comp);
1396 zs_unmap_object(zram->mem_pool, handle);
1397 atomic64_add(comp_len, &zram->stats.compr_data_size);
1398 out:
1400 * Free memory associated with this sector
1401 * before overwriting unused sectors.
1403 zram_slot_lock(zram, index);
1404 zram_free_page(zram, index);
1406 if (comp_len == PAGE_SIZE) {
1407 zram_set_flag(zram, index, ZRAM_HUGE);
1408 atomic64_inc(&zram->stats.huge_pages);
1411 if (flags) {
1412 zram_set_flag(zram, index, flags);
1413 zram_set_element(zram, index, element);
1414 } else {
1415 zram_set_handle(zram, index, handle);
1416 zram_set_obj_size(zram, index, comp_len);
1418 zram_slot_unlock(zram, index);
1420 /* Update stats */
1421 atomic64_inc(&zram->stats.pages_stored);
1422 return ret;
1425 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1426 u32 index, int offset, struct bio *bio)
1428 int ret;
1429 struct page *page = NULL;
1430 void *src;
1431 struct bio_vec vec;
1433 vec = *bvec;
1434 if (is_partial_io(bvec)) {
1435 void *dst;
1437 * This is a partial IO. We need to read the full page
1438 * before to write the changes.
1440 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1441 if (!page)
1442 return -ENOMEM;
1444 ret = __zram_bvec_read(zram, page, index, bio, true);
1445 if (ret)
1446 goto out;
1448 src = kmap_atomic(bvec->bv_page);
1449 dst = kmap_atomic(page);
1450 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1451 kunmap_atomic(dst);
1452 kunmap_atomic(src);
1454 vec.bv_page = page;
1455 vec.bv_len = PAGE_SIZE;
1456 vec.bv_offset = 0;
1459 ret = __zram_bvec_write(zram, &vec, index, bio);
1460 out:
1461 if (is_partial_io(bvec))
1462 __free_page(page);
1463 return ret;
1467 * zram_bio_discard - handler on discard request
1468 * @index: physical block index in PAGE_SIZE units
1469 * @offset: byte offset within physical block
1471 static void zram_bio_discard(struct zram *zram, u32 index,
1472 int offset, struct bio *bio)
1474 size_t n = bio->bi_iter.bi_size;
1477 * zram manages data in physical block size units. Because logical block
1478 * size isn't identical with physical block size on some arch, we
1479 * could get a discard request pointing to a specific offset within a
1480 * certain physical block. Although we can handle this request by
1481 * reading that physiclal block and decompressing and partially zeroing
1482 * and re-compressing and then re-storing it, this isn't reasonable
1483 * because our intent with a discard request is to save memory. So
1484 * skipping this logical block is appropriate here.
1486 if (offset) {
1487 if (n <= (PAGE_SIZE - offset))
1488 return;
1490 n -= (PAGE_SIZE - offset);
1491 index++;
1494 while (n >= PAGE_SIZE) {
1495 zram_slot_lock(zram, index);
1496 zram_free_page(zram, index);
1497 zram_slot_unlock(zram, index);
1498 atomic64_inc(&zram->stats.notify_free);
1499 index++;
1500 n -= PAGE_SIZE;
1505 * Returns errno if it has some problem. Otherwise return 0 or 1.
1506 * Returns 0 if IO request was done synchronously
1507 * Returns 1 if IO request was successfully submitted.
1509 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1510 int offset, unsigned int op, struct bio *bio)
1512 unsigned long start_time = jiffies;
1513 struct request_queue *q = zram->disk->queue;
1514 int ret;
1516 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1517 &zram->disk->part0);
1519 if (!op_is_write(op)) {
1520 atomic64_inc(&zram->stats.num_reads);
1521 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1522 flush_dcache_page(bvec->bv_page);
1523 } else {
1524 atomic64_inc(&zram->stats.num_writes);
1525 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1528 generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1530 zram_slot_lock(zram, index);
1531 zram_accessed(zram, index);
1532 zram_slot_unlock(zram, index);
1534 if (unlikely(ret < 0)) {
1535 if (!op_is_write(op))
1536 atomic64_inc(&zram->stats.failed_reads);
1537 else
1538 atomic64_inc(&zram->stats.failed_writes);
1541 return ret;
1544 static void __zram_make_request(struct zram *zram, struct bio *bio)
1546 int offset;
1547 u32 index;
1548 struct bio_vec bvec;
1549 struct bvec_iter iter;
1551 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1552 offset = (bio->bi_iter.bi_sector &
1553 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1555 switch (bio_op(bio)) {
1556 case REQ_OP_DISCARD:
1557 case REQ_OP_WRITE_ZEROES:
1558 zram_bio_discard(zram, index, offset, bio);
1559 bio_endio(bio);
1560 return;
1561 default:
1562 break;
1565 bio_for_each_segment(bvec, bio, iter) {
1566 struct bio_vec bv = bvec;
1567 unsigned int unwritten = bvec.bv_len;
1569 do {
1570 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1571 unwritten);
1572 if (zram_bvec_rw(zram, &bv, index, offset,
1573 bio_op(bio), bio) < 0)
1574 goto out;
1576 bv.bv_offset += bv.bv_len;
1577 unwritten -= bv.bv_len;
1579 update_position(&index, &offset, &bv);
1580 } while (unwritten);
1583 bio_endio(bio);
1584 return;
1586 out:
1587 bio_io_error(bio);
1591 * Handler function for all zram I/O requests.
1593 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1595 struct zram *zram = queue->queuedata;
1597 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1598 bio->bi_iter.bi_size)) {
1599 atomic64_inc(&zram->stats.invalid_io);
1600 goto error;
1603 __zram_make_request(zram, bio);
1604 return BLK_QC_T_NONE;
1606 error:
1607 bio_io_error(bio);
1608 return BLK_QC_T_NONE;
1611 static void zram_slot_free_notify(struct block_device *bdev,
1612 unsigned long index)
1614 struct zram *zram;
1616 zram = bdev->bd_disk->private_data;
1618 atomic64_inc(&zram->stats.notify_free);
1619 if (!zram_slot_trylock(zram, index)) {
1620 atomic64_inc(&zram->stats.miss_free);
1621 return;
1624 zram_free_page(zram, index);
1625 zram_slot_unlock(zram, index);
1628 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1629 struct page *page, unsigned int op)
1631 int offset, ret;
1632 u32 index;
1633 struct zram *zram;
1634 struct bio_vec bv;
1636 if (PageTransHuge(page))
1637 return -ENOTSUPP;
1638 zram = bdev->bd_disk->private_data;
1640 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1641 atomic64_inc(&zram->stats.invalid_io);
1642 ret = -EINVAL;
1643 goto out;
1646 index = sector >> SECTORS_PER_PAGE_SHIFT;
1647 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1649 bv.bv_page = page;
1650 bv.bv_len = PAGE_SIZE;
1651 bv.bv_offset = 0;
1653 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1654 out:
1656 * If I/O fails, just return error(ie, non-zero) without
1657 * calling page_endio.
1658 * It causes resubmit the I/O with bio request by upper functions
1659 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1660 * bio->bi_end_io does things to handle the error
1661 * (e.g., SetPageError, set_page_dirty and extra works).
1663 if (unlikely(ret < 0))
1664 return ret;
1666 switch (ret) {
1667 case 0:
1668 page_endio(page, op_is_write(op), 0);
1669 break;
1670 case 1:
1671 ret = 0;
1672 break;
1673 default:
1674 WARN_ON(1);
1676 return ret;
1679 static void zram_reset_device(struct zram *zram)
1681 struct zcomp *comp;
1682 u64 disksize;
1684 down_write(&zram->init_lock);
1686 zram->limit_pages = 0;
1688 if (!init_done(zram)) {
1689 up_write(&zram->init_lock);
1690 return;
1693 comp = zram->comp;
1694 disksize = zram->disksize;
1695 zram->disksize = 0;
1697 set_capacity(zram->disk, 0);
1698 part_stat_set_all(&zram->disk->part0, 0);
1700 up_write(&zram->init_lock);
1701 /* I/O operation under all of CPU are done so let's free */
1702 zram_meta_free(zram, disksize);
1703 memset(&zram->stats, 0, sizeof(zram->stats));
1704 zcomp_destroy(comp);
1705 reset_bdev(zram);
1708 static ssize_t disksize_store(struct device *dev,
1709 struct device_attribute *attr, const char *buf, size_t len)
1711 u64 disksize;
1712 struct zcomp *comp;
1713 struct zram *zram = dev_to_zram(dev);
1714 int err;
1716 disksize = memparse(buf, NULL);
1717 if (!disksize)
1718 return -EINVAL;
1720 down_write(&zram->init_lock);
1721 if (init_done(zram)) {
1722 pr_info("Cannot change disksize for initialized device\n");
1723 err = -EBUSY;
1724 goto out_unlock;
1727 disksize = PAGE_ALIGN(disksize);
1728 if (!zram_meta_alloc(zram, disksize)) {
1729 err = -ENOMEM;
1730 goto out_unlock;
1733 comp = zcomp_create(zram->compressor);
1734 if (IS_ERR(comp)) {
1735 pr_err("Cannot initialise %s compressing backend\n",
1736 zram->compressor);
1737 err = PTR_ERR(comp);
1738 goto out_free_meta;
1741 zram->comp = comp;
1742 zram->disksize = disksize;
1743 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1745 revalidate_disk(zram->disk);
1746 up_write(&zram->init_lock);
1748 return len;
1750 out_free_meta:
1751 zram_meta_free(zram, disksize);
1752 out_unlock:
1753 up_write(&zram->init_lock);
1754 return err;
1757 static ssize_t reset_store(struct device *dev,
1758 struct device_attribute *attr, const char *buf, size_t len)
1760 int ret;
1761 unsigned short do_reset;
1762 struct zram *zram;
1763 struct block_device *bdev;
1765 ret = kstrtou16(buf, 10, &do_reset);
1766 if (ret)
1767 return ret;
1769 if (!do_reset)
1770 return -EINVAL;
1772 zram = dev_to_zram(dev);
1773 bdev = bdget_disk(zram->disk, 0);
1774 if (!bdev)
1775 return -ENOMEM;
1777 mutex_lock(&bdev->bd_mutex);
1778 /* Do not reset an active device or claimed device */
1779 if (bdev->bd_openers || zram->claim) {
1780 mutex_unlock(&bdev->bd_mutex);
1781 bdput(bdev);
1782 return -EBUSY;
1785 /* From now on, anyone can't open /dev/zram[0-9] */
1786 zram->claim = true;
1787 mutex_unlock(&bdev->bd_mutex);
1789 /* Make sure all the pending I/O are finished */
1790 fsync_bdev(bdev);
1791 zram_reset_device(zram);
1792 revalidate_disk(zram->disk);
1793 bdput(bdev);
1795 mutex_lock(&bdev->bd_mutex);
1796 zram->claim = false;
1797 mutex_unlock(&bdev->bd_mutex);
1799 return len;
1802 static int zram_open(struct block_device *bdev, fmode_t mode)
1804 int ret = 0;
1805 struct zram *zram;
1807 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1809 zram = bdev->bd_disk->private_data;
1810 /* zram was claimed to reset so open request fails */
1811 if (zram->claim)
1812 ret = -EBUSY;
1814 return ret;
1817 static const struct block_device_operations zram_devops = {
1818 .open = zram_open,
1819 .swap_slot_free_notify = zram_slot_free_notify,
1820 .rw_page = zram_rw_page,
1821 .owner = THIS_MODULE
1824 static DEVICE_ATTR_WO(compact);
1825 static DEVICE_ATTR_RW(disksize);
1826 static DEVICE_ATTR_RO(initstate);
1827 static DEVICE_ATTR_WO(reset);
1828 static DEVICE_ATTR_WO(mem_limit);
1829 static DEVICE_ATTR_WO(mem_used_max);
1830 static DEVICE_ATTR_WO(idle);
1831 static DEVICE_ATTR_RW(max_comp_streams);
1832 static DEVICE_ATTR_RW(comp_algorithm);
1833 #ifdef CONFIG_ZRAM_WRITEBACK
1834 static DEVICE_ATTR_RW(backing_dev);
1835 static DEVICE_ATTR_WO(writeback);
1836 static DEVICE_ATTR_RW(writeback_limit);
1837 static DEVICE_ATTR_RW(writeback_limit_enable);
1838 #endif
1840 static struct attribute *zram_disk_attrs[] = {
1841 &dev_attr_disksize.attr,
1842 &dev_attr_initstate.attr,
1843 &dev_attr_reset.attr,
1844 &dev_attr_compact.attr,
1845 &dev_attr_mem_limit.attr,
1846 &dev_attr_mem_used_max.attr,
1847 &dev_attr_idle.attr,
1848 &dev_attr_max_comp_streams.attr,
1849 &dev_attr_comp_algorithm.attr,
1850 #ifdef CONFIG_ZRAM_WRITEBACK
1851 &dev_attr_backing_dev.attr,
1852 &dev_attr_writeback.attr,
1853 &dev_attr_writeback_limit.attr,
1854 &dev_attr_writeback_limit_enable.attr,
1855 #endif
1856 &dev_attr_io_stat.attr,
1857 &dev_attr_mm_stat.attr,
1858 #ifdef CONFIG_ZRAM_WRITEBACK
1859 &dev_attr_bd_stat.attr,
1860 #endif
1861 &dev_attr_debug_stat.attr,
1862 NULL,
1865 static const struct attribute_group zram_disk_attr_group = {
1866 .attrs = zram_disk_attrs,
1869 static const struct attribute_group *zram_disk_attr_groups[] = {
1870 &zram_disk_attr_group,
1871 NULL,
1875 * Allocate and initialize new zram device. the function returns
1876 * '>= 0' device_id upon success, and negative value otherwise.
1878 static int zram_add(void)
1880 struct zram *zram;
1881 struct request_queue *queue;
1882 int ret, device_id;
1884 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1885 if (!zram)
1886 return -ENOMEM;
1888 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1889 if (ret < 0)
1890 goto out_free_dev;
1891 device_id = ret;
1893 init_rwsem(&zram->init_lock);
1894 #ifdef CONFIG_ZRAM_WRITEBACK
1895 spin_lock_init(&zram->wb_limit_lock);
1896 #endif
1897 queue = blk_alloc_queue(GFP_KERNEL);
1898 if (!queue) {
1899 pr_err("Error allocating disk queue for device %d\n",
1900 device_id);
1901 ret = -ENOMEM;
1902 goto out_free_idr;
1905 blk_queue_make_request(queue, zram_make_request);
1907 /* gendisk structure */
1908 zram->disk = alloc_disk(1);
1909 if (!zram->disk) {
1910 pr_err("Error allocating disk structure for device %d\n",
1911 device_id);
1912 ret = -ENOMEM;
1913 goto out_free_queue;
1916 zram->disk->major = zram_major;
1917 zram->disk->first_minor = device_id;
1918 zram->disk->fops = &zram_devops;
1919 zram->disk->queue = queue;
1920 zram->disk->queue->queuedata = zram;
1921 zram->disk->private_data = zram;
1922 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1924 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1925 set_capacity(zram->disk, 0);
1926 /* zram devices sort of resembles non-rotational disks */
1927 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1928 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1931 * To ensure that we always get PAGE_SIZE aligned
1932 * and n*PAGE_SIZED sized I/O requests.
1934 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1935 blk_queue_logical_block_size(zram->disk->queue,
1936 ZRAM_LOGICAL_BLOCK_SIZE);
1937 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1938 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1939 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1940 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1941 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1944 * zram_bio_discard() will clear all logical blocks if logical block
1945 * size is identical with physical block size(PAGE_SIZE). But if it is
1946 * different, we will skip discarding some parts of logical blocks in
1947 * the part of the request range which isn't aligned to physical block
1948 * size. So we can't ensure that all discarded logical blocks are
1949 * zeroed.
1951 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1952 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1954 zram->disk->queue->backing_dev_info->capabilities |=
1955 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1956 device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1958 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1960 zram_debugfs_register(zram);
1961 pr_info("Added device: %s\n", zram->disk->disk_name);
1962 return device_id;
1964 out_free_queue:
1965 blk_cleanup_queue(queue);
1966 out_free_idr:
1967 idr_remove(&zram_index_idr, device_id);
1968 out_free_dev:
1969 kfree(zram);
1970 return ret;
1973 static int zram_remove(struct zram *zram)
1975 struct block_device *bdev;
1977 bdev = bdget_disk(zram->disk, 0);
1978 if (!bdev)
1979 return -ENOMEM;
1981 mutex_lock(&bdev->bd_mutex);
1982 if (bdev->bd_openers || zram->claim) {
1983 mutex_unlock(&bdev->bd_mutex);
1984 bdput(bdev);
1985 return -EBUSY;
1988 zram->claim = true;
1989 mutex_unlock(&bdev->bd_mutex);
1991 zram_debugfs_unregister(zram);
1993 /* Make sure all the pending I/O are finished */
1994 fsync_bdev(bdev);
1995 zram_reset_device(zram);
1996 bdput(bdev);
1998 pr_info("Removed device: %s\n", zram->disk->disk_name);
2000 del_gendisk(zram->disk);
2001 blk_cleanup_queue(zram->disk->queue);
2002 put_disk(zram->disk);
2003 kfree(zram);
2004 return 0;
2007 /* zram-control sysfs attributes */
2010 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2011 * sense that reading from this file does alter the state of your system -- it
2012 * creates a new un-initialized zram device and returns back this device's
2013 * device_id (or an error code if it fails to create a new device).
2015 static ssize_t hot_add_show(struct class *class,
2016 struct class_attribute *attr,
2017 char *buf)
2019 int ret;
2021 mutex_lock(&zram_index_mutex);
2022 ret = zram_add();
2023 mutex_unlock(&zram_index_mutex);
2025 if (ret < 0)
2026 return ret;
2027 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2029 static CLASS_ATTR_RO(hot_add);
2031 static ssize_t hot_remove_store(struct class *class,
2032 struct class_attribute *attr,
2033 const char *buf,
2034 size_t count)
2036 struct zram *zram;
2037 int ret, dev_id;
2039 /* dev_id is gendisk->first_minor, which is `int' */
2040 ret = kstrtoint(buf, 10, &dev_id);
2041 if (ret)
2042 return ret;
2043 if (dev_id < 0)
2044 return -EINVAL;
2046 mutex_lock(&zram_index_mutex);
2048 zram = idr_find(&zram_index_idr, dev_id);
2049 if (zram) {
2050 ret = zram_remove(zram);
2051 if (!ret)
2052 idr_remove(&zram_index_idr, dev_id);
2053 } else {
2054 ret = -ENODEV;
2057 mutex_unlock(&zram_index_mutex);
2058 return ret ? ret : count;
2060 static CLASS_ATTR_WO(hot_remove);
2062 static struct attribute *zram_control_class_attrs[] = {
2063 &class_attr_hot_add.attr,
2064 &class_attr_hot_remove.attr,
2065 NULL,
2067 ATTRIBUTE_GROUPS(zram_control_class);
2069 static struct class zram_control_class = {
2070 .name = "zram-control",
2071 .owner = THIS_MODULE,
2072 .class_groups = zram_control_class_groups,
2075 static int zram_remove_cb(int id, void *ptr, void *data)
2077 zram_remove(ptr);
2078 return 0;
2081 static void destroy_devices(void)
2083 class_unregister(&zram_control_class);
2084 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2085 zram_debugfs_destroy();
2086 idr_destroy(&zram_index_idr);
2087 unregister_blkdev(zram_major, "zram");
2088 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2091 static int __init zram_init(void)
2093 int ret;
2095 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2096 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2097 if (ret < 0)
2098 return ret;
2100 ret = class_register(&zram_control_class);
2101 if (ret) {
2102 pr_err("Unable to register zram-control class\n");
2103 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2104 return ret;
2107 zram_debugfs_create();
2108 zram_major = register_blkdev(0, "zram");
2109 if (zram_major <= 0) {
2110 pr_err("Unable to get major number\n");
2111 class_unregister(&zram_control_class);
2112 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2113 return -EBUSY;
2116 while (num_devices != 0) {
2117 mutex_lock(&zram_index_mutex);
2118 ret = zram_add();
2119 mutex_unlock(&zram_index_mutex);
2120 if (ret < 0)
2121 goto out_error;
2122 num_devices--;
2125 return 0;
2127 out_error:
2128 destroy_devices();
2129 return ret;
2132 static void __exit zram_exit(void)
2134 destroy_devices();
2137 module_init(zram_init);
2138 module_exit(zram_exit);
2140 module_param(num_devices, uint, 0);
2141 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2143 MODULE_LICENSE("Dual BSD/GPL");
2144 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2145 MODULE_DESCRIPTION("Compressed RAM Block Device");