treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / amd / display / dc / dcn10 / dcn10_optc.c
bloba9a43b397db999b8a8252a295588ba7bb604b7a8
1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: AMD
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
31 #define REG(reg)\
32 optc1->tg_regs->reg
34 #define CTX \
35 optc1->base.ctx
37 #undef FN
38 #define FN(reg_name, field_name) \
39 optc1->tg_shift->field_name, optc1->tg_mask->field_name
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
43 /**
44 * apply_front_porch_workaround TODO FPGA still need?
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
51 if (timing->flags.INTERLACE == 1) {
52 if (timing->v_front_porch < 2)
53 timing->v_front_porch = 2;
54 } else {
55 if (timing->v_front_porch < 1)
56 timing->v_front_porch = 1;
60 void optc1_program_global_sync(
61 struct timing_generator *optc,
62 int vready_offset,
63 int vstartup_start,
64 int vupdate_offset,
65 int vupdate_width)
67 struct optc *optc1 = DCN10TG_FROM_TG(optc);
69 optc1->vready_offset = vready_offset;
70 optc1->vstartup_start = vstartup_start;
71 optc1->vupdate_offset = vupdate_offset;
72 optc1->vupdate_width = vupdate_width;
74 if (optc1->vstartup_start == 0) {
75 BREAK_TO_DEBUGGER();
76 return;
79 REG_SET(OTG_VSTARTUP_PARAM, 0,
80 VSTARTUP_START, optc1->vstartup_start);
82 REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 VUPDATE_OFFSET, optc1->vupdate_offset,
84 VUPDATE_WIDTH, optc1->vupdate_width);
86 REG_SET(OTG_VREADY_PARAM, 0,
87 VREADY_OFFSET, optc1->vready_offset);
90 static void optc1_disable_stereo(struct timing_generator *optc)
92 struct optc *optc1 = DCN10TG_FROM_TG(optc);
94 REG_SET(OTG_STEREO_CONTROL, 0,
95 OTG_STEREO_EN, 0);
97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 OTG_3D_STRUCTURE_EN, 0,
99 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
102 void optc1_setup_vertical_interrupt0(
103 struct timing_generator *optc,
104 uint32_t start_line,
105 uint32_t end_line)
107 struct optc *optc1 = DCN10TG_FROM_TG(optc);
109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
114 void optc1_setup_vertical_interrupt1(
115 struct timing_generator *optc,
116 uint32_t start_line)
118 struct optc *optc1 = DCN10TG_FROM_TG(optc);
120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
124 void optc1_setup_vertical_interrupt2(
125 struct timing_generator *optc,
126 uint32_t start_line)
128 struct optc *optc1 = DCN10TG_FROM_TG(optc);
130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
135 * program_timing_generator used by mode timing set
136 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137 * Including SYNC. Call BIOS command table to program Timings.
139 void optc1_program_timing(
140 struct timing_generator *optc,
141 const struct dc_crtc_timing *dc_crtc_timing,
142 int vready_offset,
143 int vstartup_start,
144 int vupdate_offset,
145 int vupdate_width,
146 const enum signal_type signal,
147 bool use_vbios)
149 struct dc_crtc_timing patched_crtc_timing;
150 uint32_t asic_blank_end;
151 uint32_t asic_blank_start;
152 uint32_t v_total;
153 uint32_t v_sync_end;
154 uint32_t h_sync_polarity, v_sync_polarity;
155 uint32_t start_point = 0;
156 uint32_t field_num = 0;
157 enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
159 struct optc *optc1 = DCN10TG_FROM_TG(optc);
161 optc1->signal = signal;
162 optc1->vready_offset = vready_offset;
163 optc1->vstartup_start = vstartup_start;
164 optc1->vupdate_offset = vupdate_offset;
165 optc1->vupdate_width = vupdate_width;
166 patched_crtc_timing = *dc_crtc_timing;
167 apply_front_porch_workaround(&patched_crtc_timing);
169 /* Load horizontal timing */
171 /* CRTC_H_TOTAL = vesa.h_total - 1 */
172 REG_SET(OTG_H_TOTAL, 0,
173 OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
175 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
176 REG_UPDATE_2(OTG_H_SYNC_A,
177 OTG_H_SYNC_A_START, 0,
178 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
180 /* blank_start = line end - front porch */
181 asic_blank_start = patched_crtc_timing.h_total -
182 patched_crtc_timing.h_front_porch;
184 /* blank_end = blank_start - active */
185 asic_blank_end = asic_blank_start -
186 patched_crtc_timing.h_border_right -
187 patched_crtc_timing.h_addressable -
188 patched_crtc_timing.h_border_left;
190 REG_UPDATE_2(OTG_H_BLANK_START_END,
191 OTG_H_BLANK_START, asic_blank_start,
192 OTG_H_BLANK_END, asic_blank_end);
194 /* h_sync polarity */
195 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
196 0 : 1;
198 REG_UPDATE(OTG_H_SYNC_A_CNTL,
199 OTG_H_SYNC_A_POL, h_sync_polarity);
201 v_total = patched_crtc_timing.v_total - 1;
203 REG_SET(OTG_V_TOTAL, 0,
204 OTG_V_TOTAL, v_total);
206 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
207 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
209 REG_SET(OTG_V_TOTAL_MAX, 0,
210 OTG_V_TOTAL_MAX, v_total);
211 REG_SET(OTG_V_TOTAL_MIN, 0,
212 OTG_V_TOTAL_MIN, v_total);
214 /* v_sync_start = 0, v_sync_end = v_sync_width */
215 v_sync_end = patched_crtc_timing.v_sync_width;
217 REG_UPDATE_2(OTG_V_SYNC_A,
218 OTG_V_SYNC_A_START, 0,
219 OTG_V_SYNC_A_END, v_sync_end);
221 /* blank_start = frame end - front porch */
222 asic_blank_start = patched_crtc_timing.v_total -
223 patched_crtc_timing.v_front_porch;
225 /* blank_end = blank_start - active */
226 asic_blank_end = asic_blank_start -
227 patched_crtc_timing.v_border_bottom -
228 patched_crtc_timing.v_addressable -
229 patched_crtc_timing.v_border_top;
231 REG_UPDATE_2(OTG_V_BLANK_START_END,
232 OTG_V_BLANK_START, asic_blank_start,
233 OTG_V_BLANK_END, asic_blank_end);
235 /* v_sync polarity */
236 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
237 0 : 1;
239 REG_UPDATE(OTG_V_SYNC_A_CNTL,
240 OTG_V_SYNC_A_POL, v_sync_polarity);
242 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
243 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
244 optc1->signal == SIGNAL_TYPE_EDP) {
245 start_point = 1;
246 if (patched_crtc_timing.flags.INTERLACE == 1)
247 field_num = 1;
250 /* Interlace */
251 if (REG(OTG_INTERLACE_CONTROL)) {
252 if (patched_crtc_timing.flags.INTERLACE == 1)
253 REG_UPDATE(OTG_INTERLACE_CONTROL,
254 OTG_INTERLACE_ENABLE, 1);
255 else
256 REG_UPDATE(OTG_INTERLACE_CONTROL,
257 OTG_INTERLACE_ENABLE, 0);
260 /* VTG enable set to 0 first VInit */
261 REG_UPDATE(CONTROL,
262 VTG0_ENABLE, 0);
264 /* original code is using VTG offset to address OTG reg, seems wrong */
265 REG_UPDATE_2(OTG_CONTROL,
266 OTG_START_POINT_CNTL, start_point,
267 OTG_FIELD_NUMBER_CNTL, field_num);
269 optc->funcs->program_global_sync(optc,
270 vready_offset,
271 vstartup_start,
272 vupdate_offset,
273 vupdate_width);
275 optc->funcs->set_vtg_params(optc, dc_crtc_timing);
277 /* TODO
278 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
279 * program_horz_count_by_2
280 * for DVI 30bpp mode, 0 otherwise
281 * program_horz_count_by_2(optc, &patched_crtc_timing);
284 /* Enable stereo - only when we need to pack 3D frame. Other types
285 * of stereo handled in explicit call
288 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
289 h_div = H_TIMING_DIV_BY2;
291 REG_UPDATE(OTG_H_TIMING_CNTL,
292 OTG_H_TIMING_DIV_BY2, h_div);
295 void optc1_set_vtg_params(struct timing_generator *optc,
296 const struct dc_crtc_timing *dc_crtc_timing)
298 struct dc_crtc_timing patched_crtc_timing;
299 uint32_t asic_blank_end;
300 uint32_t v_init;
301 uint32_t v_fp2 = 0;
302 int32_t vertical_line_start;
304 struct optc *optc1 = DCN10TG_FROM_TG(optc);
306 patched_crtc_timing = *dc_crtc_timing;
307 apply_front_porch_workaround(&patched_crtc_timing);
309 /* VCOUNT_INIT is the start of blank */
310 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
312 /* end of blank = v_init - active */
313 asic_blank_end = v_init -
314 patched_crtc_timing.v_border_bottom -
315 patched_crtc_timing.v_addressable -
316 patched_crtc_timing.v_border_top;
318 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
319 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
320 if (vertical_line_start < 0)
321 v_fp2 = -vertical_line_start;
323 /* Interlace */
324 if (REG(OTG_INTERLACE_CONTROL)) {
325 if (patched_crtc_timing.flags.INTERLACE == 1) {
326 v_init = v_init / 2;
327 if ((optc1->vstartup_start/2)*2 > asic_blank_end)
328 v_fp2 = v_fp2 / 2;
332 REG_UPDATE_2(CONTROL,
333 VTG0_FP2, v_fp2,
334 VTG0_VCOUNT_INIT, v_init);
337 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
339 struct optc *optc1 = DCN10TG_FROM_TG(optc);
341 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
343 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
344 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
348 * unblank_crtc
349 * Call ASIC Control Object to UnBlank CRTC.
351 static void optc1_unblank_crtc(struct timing_generator *optc)
353 struct optc *optc1 = DCN10TG_FROM_TG(optc);
355 REG_UPDATE_2(OTG_BLANK_CONTROL,
356 OTG_BLANK_DATA_EN, 0,
357 OTG_BLANK_DE_MODE, 0);
359 /* W/A for automated testing
360 * Automated testing will fail underflow test as there
361 * sporadic underflows which occur during the optc blank
362 * sequence. As a w/a, clear underflow on unblank.
363 * This prevents the failure, but will not mask actual
364 * underflow that affect real use cases.
366 optc1_clear_optc_underflow(optc);
370 * blank_crtc
371 * Call ASIC Control Object to Blank CRTC.
374 static void optc1_blank_crtc(struct timing_generator *optc)
376 struct optc *optc1 = DCN10TG_FROM_TG(optc);
378 REG_UPDATE_2(OTG_BLANK_CONTROL,
379 OTG_BLANK_DATA_EN, 1,
380 OTG_BLANK_DE_MODE, 0);
382 optc1_set_blank_data_double_buffer(optc, false);
385 void optc1_set_blank(struct timing_generator *optc,
386 bool enable_blanking)
388 if (enable_blanking)
389 optc1_blank_crtc(optc);
390 else
391 optc1_unblank_crtc(optc);
394 bool optc1_is_blanked(struct timing_generator *optc)
396 struct optc *optc1 = DCN10TG_FROM_TG(optc);
397 uint32_t blank_en;
398 uint32_t blank_state;
400 REG_GET_2(OTG_BLANK_CONTROL,
401 OTG_BLANK_DATA_EN, &blank_en,
402 OTG_CURRENT_BLANK_STATE, &blank_state);
404 return blank_en && blank_state;
407 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
409 struct optc *optc1 = DCN10TG_FROM_TG(optc);
411 if (enable) {
412 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
413 OPTC_INPUT_CLK_EN, 1,
414 OPTC_INPUT_CLK_GATE_DIS, 1);
416 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
417 OPTC_INPUT_CLK_ON, 1,
418 1, 1000);
420 /* Enable clock */
421 REG_UPDATE_2(OTG_CLOCK_CONTROL,
422 OTG_CLOCK_EN, 1,
423 OTG_CLOCK_GATE_DIS, 1);
424 REG_WAIT(OTG_CLOCK_CONTROL,
425 OTG_CLOCK_ON, 1,
426 1, 1000);
427 } else {
428 REG_UPDATE_2(OTG_CLOCK_CONTROL,
429 OTG_CLOCK_GATE_DIS, 0,
430 OTG_CLOCK_EN, 0);
432 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
433 OPTC_INPUT_CLK_GATE_DIS, 0,
434 OPTC_INPUT_CLK_EN, 0);
439 * Enable CRTC
440 * Enable CRTC - call ASIC Control Object to enable Timing generator.
442 static bool optc1_enable_crtc(struct timing_generator *optc)
444 /* TODO FPGA wait for answer
445 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
446 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
448 struct optc *optc1 = DCN10TG_FROM_TG(optc);
450 /* opp instance for OTG. For DCN1.0, ODM is remoed.
451 * OPP and OPTC should 1:1 mapping
453 REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
454 OPTC_SRC_SEL, optc->inst);
456 /* VTG enable first is for HW workaround */
457 REG_UPDATE(CONTROL,
458 VTG0_ENABLE, 1);
460 REG_SEQ_START();
462 /* Enable CRTC */
463 REG_UPDATE_2(OTG_CONTROL,
464 OTG_DISABLE_POINT_CNTL, 3,
465 OTG_MASTER_EN, 1);
467 REG_SEQ_SUBMIT();
468 REG_SEQ_WAIT_DONE();
470 return true;
473 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
474 bool optc1_disable_crtc(struct timing_generator *optc)
476 struct optc *optc1 = DCN10TG_FROM_TG(optc);
478 /* disable otg request until end of the first line
479 * in the vertical blank region
481 REG_UPDATE_2(OTG_CONTROL,
482 OTG_DISABLE_POINT_CNTL, 3,
483 OTG_MASTER_EN, 0);
485 REG_UPDATE(CONTROL,
486 VTG0_ENABLE, 0);
488 /* CRTC disabled, so disable clock. */
489 REG_WAIT(OTG_CLOCK_CONTROL,
490 OTG_BUSY, 0,
491 1, 100000);
493 return true;
497 void optc1_program_blank_color(
498 struct timing_generator *optc,
499 const struct tg_color *black_color)
501 struct optc *optc1 = DCN10TG_FROM_TG(optc);
503 REG_SET_3(OTG_BLACK_COLOR, 0,
504 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
505 OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
506 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
509 bool optc1_validate_timing(
510 struct timing_generator *optc,
511 const struct dc_crtc_timing *timing)
513 uint32_t v_blank;
514 uint32_t h_blank;
515 uint32_t min_v_blank;
516 struct optc *optc1 = DCN10TG_FROM_TG(optc);
518 ASSERT(timing != NULL);
520 v_blank = (timing->v_total - timing->v_addressable -
521 timing->v_border_top - timing->v_border_bottom);
523 h_blank = (timing->h_total - timing->h_addressable -
524 timing->h_border_right -
525 timing->h_border_left);
527 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
528 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
529 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
530 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
531 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
532 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
533 return false;
535 /* Temporarily blocking interlacing mode until it's supported */
536 if (timing->flags.INTERLACE == 1)
537 return false;
539 /* Check maximum number of pixels supported by Timing Generator
540 * (Currently will never fail, in order to fail needs display which
541 * needs more than 8192 horizontal and
542 * more than 8192 vertical total pixels)
544 if (timing->h_total > optc1->max_h_total ||
545 timing->v_total > optc1->max_v_total)
546 return false;
549 if (h_blank < optc1->min_h_blank)
550 return false;
552 if (timing->h_sync_width < optc1->min_h_sync_width ||
553 timing->v_sync_width < optc1->min_v_sync_width)
554 return false;
556 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
558 if (v_blank < min_v_blank)
559 return false;
561 return true;
566 * get_vblank_counter
568 * @brief
569 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
570 * holds the counter of frames.
572 * @param
573 * struct timing_generator *optc - [in] timing generator which controls the
574 * desired CRTC
576 * @return
577 * Counter of frames, which should equal to number of vblanks.
579 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
581 struct optc *optc1 = DCN10TG_FROM_TG(optc);
582 uint32_t frame_count;
584 REG_GET(OTG_STATUS_FRAME_COUNT,
585 OTG_FRAME_COUNT, &frame_count);
587 return frame_count;
590 void optc1_lock(struct timing_generator *optc)
592 struct optc *optc1 = DCN10TG_FROM_TG(optc);
593 uint32_t regval = 0;
595 regval = REG_READ(OTG_CONTROL);
597 /* otg is not running, do not need to be locked */
598 if ((regval & 0x1) == 0x0)
599 return;
601 REG_SET(OTG_GLOBAL_CONTROL0, 0,
602 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
603 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
604 OTG_MASTER_UPDATE_LOCK, 1);
606 /* Should be fast, status does not update on maximus */
607 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
609 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
610 UPDATE_LOCK_STATUS, 1,
611 1, 10);
615 void optc1_unlock(struct timing_generator *optc)
617 struct optc *optc1 = DCN10TG_FROM_TG(optc);
619 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
620 OTG_MASTER_UPDATE_LOCK, 0);
623 void optc1_get_position(struct timing_generator *optc,
624 struct crtc_position *position)
626 struct optc *optc1 = DCN10TG_FROM_TG(optc);
628 REG_GET_2(OTG_STATUS_POSITION,
629 OTG_HORZ_COUNT, &position->horizontal_count,
630 OTG_VERT_COUNT, &position->vertical_count);
632 REG_GET(OTG_NOM_VERT_POSITION,
633 OTG_VERT_COUNT_NOM, &position->nominal_vcount);
636 bool optc1_is_counter_moving(struct timing_generator *optc)
638 struct crtc_position position1, position2;
640 optc->funcs->get_position(optc, &position1);
641 optc->funcs->get_position(optc, &position2);
643 if (position1.horizontal_count == position2.horizontal_count &&
644 position1.vertical_count == position2.vertical_count)
645 return false;
646 else
647 return true;
650 bool optc1_did_triggered_reset_occur(
651 struct timing_generator *optc)
653 struct optc *optc1 = DCN10TG_FROM_TG(optc);
654 uint32_t occurred_force, occurred_vsync;
656 REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
657 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
659 REG_GET(OTG_VERT_SYNC_CONTROL,
660 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
662 return occurred_vsync != 0 || occurred_force != 0;
665 void optc1_disable_reset_trigger(struct timing_generator *optc)
667 struct optc *optc1 = DCN10TG_FROM_TG(optc);
669 REG_WRITE(OTG_TRIGA_CNTL, 0);
671 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
672 OTG_FORCE_COUNT_NOW_CLEAR, 1);
674 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
675 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
678 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
680 struct optc *optc1 = DCN10TG_FROM_TG(optc);
681 uint32_t falling_edge;
683 REG_GET(OTG_V_SYNC_A_CNTL,
684 OTG_V_SYNC_A_POL, &falling_edge);
686 if (falling_edge)
687 REG_SET_3(OTG_TRIGA_CNTL, 0,
688 /* vsync signal from selected OTG pipe based
689 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
691 OTG_TRIGA_SOURCE_SELECT, 20,
692 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
693 /* always detect falling edge */
694 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
695 else
696 REG_SET_3(OTG_TRIGA_CNTL, 0,
697 /* vsync signal from selected OTG pipe based
698 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
700 OTG_TRIGA_SOURCE_SELECT, 20,
701 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
702 /* always detect rising edge */
703 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
705 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
706 /* force H count to H_TOTAL and V count to V_TOTAL in
707 * progressive mode and V_TOTAL-1 in interlaced mode
709 OTG_FORCE_COUNT_NOW_MODE, 2);
712 void optc1_enable_crtc_reset(
713 struct timing_generator *optc,
714 int source_tg_inst,
715 struct crtc_trigger_info *crtc_tp)
717 struct optc *optc1 = DCN10TG_FROM_TG(optc);
718 uint32_t falling_edge = 0;
719 uint32_t rising_edge = 0;
721 switch (crtc_tp->event) {
723 case CRTC_EVENT_VSYNC_RISING:
724 rising_edge = 1;
725 break;
727 case CRTC_EVENT_VSYNC_FALLING:
728 falling_edge = 1;
729 break;
732 REG_SET_4(OTG_TRIGA_CNTL, 0,
733 /* vsync signal from selected OTG pipe based
734 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
736 OTG_TRIGA_SOURCE_SELECT, 20,
737 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
738 /* always detect falling edge */
739 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
740 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
742 switch (crtc_tp->delay) {
743 case TRIGGER_DELAY_NEXT_LINE:
744 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
745 OTG_AUTO_FORCE_VSYNC_MODE, 1);
746 break;
747 case TRIGGER_DELAY_NEXT_PIXEL:
748 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
749 /* force H count to H_TOTAL and V count to V_TOTAL in
750 * progressive mode and V_TOTAL-1 in interlaced mode
752 OTG_FORCE_COUNT_NOW_MODE, 2);
753 break;
757 void optc1_wait_for_state(struct timing_generator *optc,
758 enum crtc_state state)
760 struct optc *optc1 = DCN10TG_FROM_TG(optc);
762 switch (state) {
763 case CRTC_STATE_VBLANK:
764 REG_WAIT(OTG_STATUS,
765 OTG_V_BLANK, 1,
766 1, 100000); /* 1 vupdate at 10hz */
767 break;
769 case CRTC_STATE_VACTIVE:
770 REG_WAIT(OTG_STATUS,
771 OTG_V_ACTIVE_DISP, 1,
772 1, 100000); /* 1 vupdate at 10hz */
773 break;
775 default:
776 break;
780 void optc1_set_early_control(
781 struct timing_generator *optc,
782 uint32_t early_cntl)
784 /* asic design change, do not need this control
785 * empty for share caller logic
790 void optc1_set_static_screen_control(
791 struct timing_generator *optc,
792 uint32_t event_triggers,
793 uint32_t num_frames)
795 struct optc *optc1 = DCN10TG_FROM_TG(optc);
797 // By register spec, it only takes 8 bit value
798 if (num_frames > 0xFF)
799 num_frames = 0xFF;
801 /* Bit 8 is no longer applicable in RV for PSR case,
802 * set bit 8 to 0 if given
804 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
805 != 0)
806 event_triggers = event_triggers &
807 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
809 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
810 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
811 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
814 void optc1_setup_manual_trigger(struct timing_generator *optc)
816 struct optc *optc1 = DCN10TG_FROM_TG(optc);
818 REG_SET(OTG_GLOBAL_CONTROL2, 0,
819 MANUAL_FLOW_CONTROL_SEL, optc->inst);
821 REG_SET_8(OTG_TRIGA_CNTL, 0,
822 OTG_TRIGA_SOURCE_SELECT, 22,
823 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
824 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
825 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
826 OTG_TRIGA_POLARITY_SELECT, 0,
827 OTG_TRIGA_FREQUENCY_SELECT, 0,
828 OTG_TRIGA_DELAY, 0,
829 OTG_TRIGA_CLEAR, 1);
832 void optc1_program_manual_trigger(struct timing_generator *optc)
834 struct optc *optc1 = DCN10TG_FROM_TG(optc);
836 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
837 MANUAL_FLOW_CONTROL, 1);
839 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
840 MANUAL_FLOW_CONTROL, 0);
845 *****************************************************************************
846 * Function: set_drr
848 * @brief
849 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
851 *****************************************************************************
853 void optc1_set_drr(
854 struct timing_generator *optc,
855 const struct drr_params *params)
857 struct optc *optc1 = DCN10TG_FROM_TG(optc);
859 if (params != NULL &&
860 params->vertical_total_max > 0 &&
861 params->vertical_total_min > 0) {
863 if (params->vertical_total_mid != 0) {
865 REG_SET(OTG_V_TOTAL_MID, 0,
866 OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
868 REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
869 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
870 OTG_VTOTAL_MID_FRAME_NUM,
871 (uint8_t)params->vertical_total_mid_frame_num);
875 REG_SET(OTG_V_TOTAL_MAX, 0,
876 OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
878 REG_SET(OTG_V_TOTAL_MIN, 0,
879 OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
881 REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
882 OTG_V_TOTAL_MIN_SEL, 1,
883 OTG_V_TOTAL_MAX_SEL, 1,
884 OTG_FORCE_LOCK_ON_EVENT, 0,
885 OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
886 OTG_SET_V_TOTAL_MIN_MASK, 0);
888 // Setup manual flow control for EOF via TRIG_A
889 optc->funcs->setup_manual_trigger(optc);
891 } else {
892 REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
893 OTG_SET_V_TOTAL_MIN_MASK, 0,
894 OTG_V_TOTAL_MIN_SEL, 0,
895 OTG_V_TOTAL_MAX_SEL, 0,
896 OTG_FORCE_LOCK_ON_EVENT, 0);
898 REG_SET(OTG_V_TOTAL_MIN, 0,
899 OTG_V_TOTAL_MIN, 0);
901 REG_SET(OTG_V_TOTAL_MAX, 0,
902 OTG_V_TOTAL_MAX, 0);
906 static void optc1_set_test_pattern(
907 struct timing_generator *optc,
908 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
909 * because this is not DP-specific (which is probably somewhere in DP
910 * encoder) */
911 enum controller_dp_test_pattern test_pattern,
912 enum dc_color_depth color_depth)
914 struct optc *optc1 = DCN10TG_FROM_TG(optc);
915 enum test_pattern_color_format bit_depth;
916 enum test_pattern_dyn_range dyn_range;
917 enum test_pattern_mode mode;
918 uint32_t pattern_mask;
919 uint32_t pattern_data;
920 /* color ramp generator mixes 16-bits color */
921 uint32_t src_bpc = 16;
922 /* requested bpc */
923 uint32_t dst_bpc;
924 uint32_t index;
925 /* RGB values of the color bars.
926 * Produce two RGB colors: RGB0 - white (all Fs)
927 * and RGB1 - black (all 0s)
928 * (three RGB components for two colors)
930 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
931 0x0000, 0x0000};
932 /* dest color (converted to the specified color format) */
933 uint16_t dst_color[6];
934 uint32_t inc_base;
936 /* translate to bit depth */
937 switch (color_depth) {
938 case COLOR_DEPTH_666:
939 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
940 break;
941 case COLOR_DEPTH_888:
942 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
943 break;
944 case COLOR_DEPTH_101010:
945 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
946 break;
947 case COLOR_DEPTH_121212:
948 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
949 break;
950 default:
951 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
952 break;
955 switch (test_pattern) {
956 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
957 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
959 dyn_range = (test_pattern ==
960 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
961 TEST_PATTERN_DYN_RANGE_CEA :
962 TEST_PATTERN_DYN_RANGE_VESA);
963 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
965 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
966 OTG_TEST_PATTERN_VRES, 6,
967 OTG_TEST_PATTERN_HRES, 6);
969 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
970 OTG_TEST_PATTERN_EN, 1,
971 OTG_TEST_PATTERN_MODE, mode,
972 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
973 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
975 break;
977 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
978 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
980 mode = (test_pattern ==
981 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
982 TEST_PATTERN_MODE_VERTICALBARS :
983 TEST_PATTERN_MODE_HORIZONTALBARS);
985 switch (bit_depth) {
986 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
987 dst_bpc = 6;
988 break;
989 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
990 dst_bpc = 8;
991 break;
992 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
993 dst_bpc = 10;
994 break;
995 default:
996 dst_bpc = 8;
997 break;
1000 /* adjust color to the required colorFormat */
1001 for (index = 0; index < 6; index++) {
1002 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1003 * (srcBpc - dstBpc);
1005 dst_color[index] =
1006 src_color[index] >> (src_bpc - dst_bpc);
1007 /* CRTC_TEST_PATTERN_DATA has 16 bits,
1008 * lowest 6 are hardwired to ZERO
1009 * color bits should be left aligned aligned to MSB
1010 * XXXXXXXXXX000000 for 10 bit,
1011 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1013 dst_color[index] <<= (16 - dst_bpc);
1016 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1018 /* We have to write the mask before data, similar to pipeline.
1019 * For example, for 8 bpc, if we want RGB0 to be magenta,
1020 * and RGB1 to be cyan,
1021 * we need to make 7 writes:
1022 * MASK DATA
1023 * 000001 00000000 00000000 set mask to R0
1024 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
1025 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
1026 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
1027 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
1028 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
1029 * 100000 11111111 00000000 B1 255, 0xFF00
1031 * we will make a loop of 6 in which we prepare the mask,
1032 * then write, then prepare the color for next write.
1033 * first iteration will write mask only,
1034 * but each next iteration color prepared in
1035 * previous iteration will be written within new mask,
1036 * the last component will written separately,
1037 * mask is not changing between 6th and 7th write
1038 * and color will be prepared by last iteration
1041 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1042 * is B1, G1, R1, B0, G0, R0
1044 pattern_data = 0;
1045 for (index = 0; index < 6; index++) {
1046 /* prepare color mask, first write PATTERN_DATA
1047 * will have all zeros
1049 pattern_mask = (1 << index);
1051 /* write color component */
1052 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1053 OTG_TEST_PATTERN_MASK, pattern_mask,
1054 OTG_TEST_PATTERN_DATA, pattern_data);
1056 /* prepare next color component,
1057 * will be written in the next iteration
1059 pattern_data = dst_color[index];
1061 /* write last color component,
1062 * it's been already prepared in the loop
1064 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1065 OTG_TEST_PATTERN_MASK, pattern_mask,
1066 OTG_TEST_PATTERN_DATA, pattern_data);
1068 /* enable test pattern */
1069 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1070 OTG_TEST_PATTERN_EN, 1,
1071 OTG_TEST_PATTERN_MODE, mode,
1072 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1073 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1075 break;
1077 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1079 mode = (bit_depth ==
1080 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1081 TEST_PATTERN_MODE_DUALRAMP_RGB :
1082 TEST_PATTERN_MODE_SINGLERAMP_RGB);
1084 switch (bit_depth) {
1085 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1086 dst_bpc = 6;
1087 break;
1088 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1089 dst_bpc = 8;
1090 break;
1091 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1092 dst_bpc = 10;
1093 break;
1094 default:
1095 dst_bpc = 8;
1096 break;
1099 /* increment for the first ramp for one color gradation
1100 * 1 gradation for 6-bit color is 2^10
1101 * gradations in 16-bit color
1103 inc_base = (src_bpc - dst_bpc);
1105 switch (bit_depth) {
1106 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1108 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1109 OTG_TEST_PATTERN_INC0, inc_base,
1110 OTG_TEST_PATTERN_INC1, 0,
1111 OTG_TEST_PATTERN_HRES, 6,
1112 OTG_TEST_PATTERN_VRES, 6,
1113 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1115 break;
1116 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1118 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1119 OTG_TEST_PATTERN_INC0, inc_base,
1120 OTG_TEST_PATTERN_INC1, 0,
1121 OTG_TEST_PATTERN_HRES, 8,
1122 OTG_TEST_PATTERN_VRES, 6,
1123 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1125 break;
1126 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1128 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1129 OTG_TEST_PATTERN_INC0, inc_base,
1130 OTG_TEST_PATTERN_INC1, inc_base + 2,
1131 OTG_TEST_PATTERN_HRES, 8,
1132 OTG_TEST_PATTERN_VRES, 5,
1133 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1135 break;
1136 default:
1137 break;
1140 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1142 /* enable test pattern */
1143 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1145 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1146 OTG_TEST_PATTERN_EN, 1,
1147 OTG_TEST_PATTERN_MODE, mode,
1148 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1149 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1151 break;
1152 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1154 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1155 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1156 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1158 break;
1159 default:
1160 break;
1165 void optc1_get_crtc_scanoutpos(
1166 struct timing_generator *optc,
1167 uint32_t *v_blank_start,
1168 uint32_t *v_blank_end,
1169 uint32_t *h_position,
1170 uint32_t *v_position)
1172 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1173 struct crtc_position position;
1175 REG_GET_2(OTG_V_BLANK_START_END,
1176 OTG_V_BLANK_START, v_blank_start,
1177 OTG_V_BLANK_END, v_blank_end);
1179 optc1_get_position(optc, &position);
1181 *h_position = position.horizontal_count;
1182 *v_position = position.vertical_count;
1185 static void optc1_enable_stereo(struct timing_generator *optc,
1186 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1188 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1190 if (flags) {
1191 uint32_t stereo_en;
1192 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1194 if (flags->PROGRAM_STEREO)
1195 REG_UPDATE_3(OTG_STEREO_CONTROL,
1196 OTG_STEREO_EN, stereo_en,
1197 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1198 OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1200 if (flags->PROGRAM_POLARITY)
1201 REG_UPDATE(OTG_STEREO_CONTROL,
1202 OTG_STEREO_EYE_FLAG_POLARITY,
1203 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1205 if (flags->DISABLE_STEREO_DP_SYNC)
1206 REG_UPDATE(OTG_STEREO_CONTROL,
1207 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1209 if (flags->PROGRAM_STEREO)
1210 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1211 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1212 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1217 void optc1_program_stereo(struct timing_generator *optc,
1218 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1220 if (flags->PROGRAM_STEREO)
1221 optc1_enable_stereo(optc, timing, flags);
1222 else
1223 optc1_disable_stereo(optc);
1227 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1229 bool ret = false;
1230 uint32_t left_eye = 0;
1231 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1233 REG_GET(OTG_STEREO_STATUS,
1234 OTG_STEREO_CURRENT_EYE, &left_eye);
1235 if (left_eye == 1)
1236 ret = true;
1237 else
1238 ret = false;
1240 return ret;
1243 bool optc1_get_hw_timing(struct timing_generator *tg,
1244 struct dc_crtc_timing *hw_crtc_timing)
1246 struct dcn_otg_state s = {0};
1248 if (tg == NULL || hw_crtc_timing == NULL)
1249 return false;
1251 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1253 hw_crtc_timing->h_total = s.h_total + 1;
1254 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1255 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1256 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1258 hw_crtc_timing->v_total = s.v_total + 1;
1259 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1260 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1261 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1263 return true;
1267 void optc1_read_otg_state(struct optc *optc1,
1268 struct dcn_otg_state *s)
1270 REG_GET(OTG_CONTROL,
1271 OTG_MASTER_EN, &s->otg_enabled);
1273 REG_GET_2(OTG_V_BLANK_START_END,
1274 OTG_V_BLANK_START, &s->v_blank_start,
1275 OTG_V_BLANK_END, &s->v_blank_end);
1277 REG_GET(OTG_V_SYNC_A_CNTL,
1278 OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1280 REG_GET(OTG_V_TOTAL,
1281 OTG_V_TOTAL, &s->v_total);
1283 REG_GET(OTG_V_TOTAL_MAX,
1284 OTG_V_TOTAL_MAX, &s->v_total_max);
1286 REG_GET(OTG_V_TOTAL_MIN,
1287 OTG_V_TOTAL_MIN, &s->v_total_min);
1289 REG_GET(OTG_V_TOTAL_CONTROL,
1290 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1292 REG_GET(OTG_V_TOTAL_CONTROL,
1293 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1295 REG_GET_2(OTG_V_SYNC_A,
1296 OTG_V_SYNC_A_START, &s->v_sync_a_start,
1297 OTG_V_SYNC_A_END, &s->v_sync_a_end);
1299 REG_GET_2(OTG_H_BLANK_START_END,
1300 OTG_H_BLANK_START, &s->h_blank_start,
1301 OTG_H_BLANK_END, &s->h_blank_end);
1303 REG_GET_2(OTG_H_SYNC_A,
1304 OTG_H_SYNC_A_START, &s->h_sync_a_start,
1305 OTG_H_SYNC_A_END, &s->h_sync_a_end);
1307 REG_GET(OTG_H_SYNC_A_CNTL,
1308 OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1310 REG_GET(OTG_H_TOTAL,
1311 OTG_H_TOTAL, &s->h_total);
1313 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1314 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1317 bool optc1_get_otg_active_size(struct timing_generator *optc,
1318 uint32_t *otg_active_width,
1319 uint32_t *otg_active_height)
1321 uint32_t otg_enabled;
1322 uint32_t v_blank_start;
1323 uint32_t v_blank_end;
1324 uint32_t h_blank_start;
1325 uint32_t h_blank_end;
1326 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1329 REG_GET(OTG_CONTROL,
1330 OTG_MASTER_EN, &otg_enabled);
1332 if (otg_enabled == 0)
1333 return false;
1335 REG_GET_2(OTG_V_BLANK_START_END,
1336 OTG_V_BLANK_START, &v_blank_start,
1337 OTG_V_BLANK_END, &v_blank_end);
1339 REG_GET_2(OTG_H_BLANK_START_END,
1340 OTG_H_BLANK_START, &h_blank_start,
1341 OTG_H_BLANK_END, &h_blank_end);
1343 *otg_active_width = v_blank_start - v_blank_end;
1344 *otg_active_height = h_blank_start - h_blank_end;
1345 return true;
1348 void optc1_clear_optc_underflow(struct timing_generator *optc)
1350 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1352 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1355 void optc1_tg_init(struct timing_generator *optc)
1357 optc1_set_blank_data_double_buffer(optc, true);
1358 optc1_clear_optc_underflow(optc);
1361 bool optc1_is_tg_enabled(struct timing_generator *optc)
1363 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1364 uint32_t otg_enabled = 0;
1366 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1368 return (otg_enabled != 0);
1372 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1374 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1375 uint32_t underflow_occurred = 0;
1377 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1378 OPTC_UNDERFLOW_OCCURRED_STATUS,
1379 &underflow_occurred);
1381 return (underflow_occurred == 1);
1384 bool optc1_configure_crc(struct timing_generator *optc,
1385 const struct crc_params *params)
1387 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1389 /* Cannot configure crc on a CRTC that is disabled */
1390 if (!optc1_is_tg_enabled(optc))
1391 return false;
1393 REG_WRITE(OTG_CRC_CNTL, 0);
1395 if (!params->enable)
1396 return true;
1398 /* Program frame boundaries */
1399 /* Window A x axis start and end. */
1400 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1401 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1402 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1404 /* Window A y axis start and end. */
1405 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1406 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1407 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1409 /* Window B x axis start and end. */
1410 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1411 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1412 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1414 /* Window B y axis start and end. */
1415 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1416 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1417 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1419 /* Set crc mode and selection, and enable. Only using CRC0*/
1420 REG_UPDATE_3(OTG_CRC_CNTL,
1421 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1422 OTG_CRC0_SELECT, params->selection,
1423 OTG_CRC_EN, 1);
1425 return true;
1428 bool optc1_get_crc(struct timing_generator *optc,
1429 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1431 uint32_t field = 0;
1432 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1434 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1436 /* Early return if CRC is not enabled for this CRTC */
1437 if (!field)
1438 return false;
1440 REG_GET_2(OTG_CRC0_DATA_RG,
1441 CRC0_R_CR, r_cr,
1442 CRC0_G_Y, g_y);
1444 REG_GET(OTG_CRC0_DATA_B,
1445 CRC0_B_CB, b_cb);
1447 return true;
1450 static const struct timing_generator_funcs dcn10_tg_funcs = {
1451 .validate_timing = optc1_validate_timing,
1452 .program_timing = optc1_program_timing,
1453 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1454 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1455 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1456 .program_global_sync = optc1_program_global_sync,
1457 .enable_crtc = optc1_enable_crtc,
1458 .disable_crtc = optc1_disable_crtc,
1459 /* used by enable_timing_synchronization. Not need for FPGA */
1460 .is_counter_moving = optc1_is_counter_moving,
1461 .get_position = optc1_get_position,
1462 .get_frame_count = optc1_get_vblank_counter,
1463 .get_scanoutpos = optc1_get_crtc_scanoutpos,
1464 .get_otg_active_size = optc1_get_otg_active_size,
1465 .set_early_control = optc1_set_early_control,
1466 /* used by enable_timing_synchronization. Not need for FPGA */
1467 .wait_for_state = optc1_wait_for_state,
1468 .set_blank = optc1_set_blank,
1469 .is_blanked = optc1_is_blanked,
1470 .set_blank_color = optc1_program_blank_color,
1471 .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1472 .enable_reset_trigger = optc1_enable_reset_trigger,
1473 .enable_crtc_reset = optc1_enable_crtc_reset,
1474 .disable_reset_trigger = optc1_disable_reset_trigger,
1475 .lock = optc1_lock,
1476 .unlock = optc1_unlock,
1477 .enable_optc_clock = optc1_enable_optc_clock,
1478 .set_drr = optc1_set_drr,
1479 .set_static_screen_control = optc1_set_static_screen_control,
1480 .set_test_pattern = optc1_set_test_pattern,
1481 .program_stereo = optc1_program_stereo,
1482 .is_stereo_left_eye = optc1_is_stereo_left_eye,
1483 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1484 .tg_init = optc1_tg_init,
1485 .is_tg_enabled = optc1_is_tg_enabled,
1486 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1487 .clear_optc_underflow = optc1_clear_optc_underflow,
1488 .get_crc = optc1_get_crc,
1489 .configure_crc = optc1_configure_crc,
1490 .set_vtg_params = optc1_set_vtg_params,
1491 .program_manual_trigger = optc1_program_manual_trigger,
1492 .setup_manual_trigger = optc1_setup_manual_trigger,
1493 .get_hw_timing = optc1_get_hw_timing,
1496 void dcn10_timing_generator_init(struct optc *optc1)
1498 optc1->base.funcs = &dcn10_tg_funcs;
1500 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1501 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1503 optc1->min_h_blank = 32;
1504 optc1->min_v_blank = 3;
1505 optc1->min_v_blank_interlace = 5;
1506 optc1->min_h_sync_width = 8;
1507 optc1->min_v_sync_width = 1;
1510 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1512 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1513 * containter rate.
1515 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1516 * halved to maintain the correct pixel rate.
1518 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1519 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1522 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1524 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1526 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1527 && !timing->dsc_cfg.ycbcr422_simple);
1528 return two_pix;