2 * Copyright 2012-15 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
38 #define FN(reg_name, field_name) \
39 optc1->tg_shift->field_name, optc1->tg_mask->field_name
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
44 * apply_front_porch_workaround TODO FPGA still need?
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
49 static void apply_front_porch_workaround(struct dc_crtc_timing
*timing
)
51 if (timing
->flags
.INTERLACE
== 1) {
52 if (timing
->v_front_porch
< 2)
53 timing
->v_front_porch
= 2;
55 if (timing
->v_front_porch
< 1)
56 timing
->v_front_porch
= 1;
60 void optc1_program_global_sync(
61 struct timing_generator
*optc
,
67 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
69 optc1
->vready_offset
= vready_offset
;
70 optc1
->vstartup_start
= vstartup_start
;
71 optc1
->vupdate_offset
= vupdate_offset
;
72 optc1
->vupdate_width
= vupdate_width
;
74 if (optc1
->vstartup_start
== 0) {
79 REG_SET(OTG_VSTARTUP_PARAM
, 0,
80 VSTARTUP_START
, optc1
->vstartup_start
);
82 REG_SET_2(OTG_VUPDATE_PARAM
, 0,
83 VUPDATE_OFFSET
, optc1
->vupdate_offset
,
84 VUPDATE_WIDTH
, optc1
->vupdate_width
);
86 REG_SET(OTG_VREADY_PARAM
, 0,
87 VREADY_OFFSET
, optc1
->vready_offset
);
90 static void optc1_disable_stereo(struct timing_generator
*optc
)
92 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
94 REG_SET(OTG_STEREO_CONTROL
, 0,
97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL
, 0,
98 OTG_3D_STRUCTURE_EN
, 0,
99 OTG_3D_STRUCTURE_STEREO_SEL_OVR
, 0);
102 void optc1_setup_vertical_interrupt0(
103 struct timing_generator
*optc
,
107 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION
, 0,
110 OTG_VERTICAL_INTERRUPT0_LINE_START
, start_line
,
111 OTG_VERTICAL_INTERRUPT0_LINE_END
, end_line
);
114 void optc1_setup_vertical_interrupt1(
115 struct timing_generator
*optc
,
118 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION
, 0,
121 OTG_VERTICAL_INTERRUPT1_LINE_START
, start_line
);
124 void optc1_setup_vertical_interrupt2(
125 struct timing_generator
*optc
,
128 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION
, 0,
131 OTG_VERTICAL_INTERRUPT2_LINE_START
, start_line
);
135 * program_timing_generator used by mode timing set
136 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
137 * Including SYNC. Call BIOS command table to program Timings.
139 void optc1_program_timing(
140 struct timing_generator
*optc
,
141 const struct dc_crtc_timing
*dc_crtc_timing
,
146 const enum signal_type signal
,
149 struct dc_crtc_timing patched_crtc_timing
;
150 uint32_t asic_blank_end
;
151 uint32_t asic_blank_start
;
154 uint32_t h_sync_polarity
, v_sync_polarity
;
155 uint32_t start_point
= 0;
156 uint32_t field_num
= 0;
157 enum h_timing_div_mode h_div
= H_TIMING_NO_DIV
;
159 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
161 optc1
->signal
= signal
;
162 optc1
->vready_offset
= vready_offset
;
163 optc1
->vstartup_start
= vstartup_start
;
164 optc1
->vupdate_offset
= vupdate_offset
;
165 optc1
->vupdate_width
= vupdate_width
;
166 patched_crtc_timing
= *dc_crtc_timing
;
167 apply_front_porch_workaround(&patched_crtc_timing
);
169 /* Load horizontal timing */
171 /* CRTC_H_TOTAL = vesa.h_total - 1 */
172 REG_SET(OTG_H_TOTAL
, 0,
173 OTG_H_TOTAL
, patched_crtc_timing
.h_total
- 1);
175 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
176 REG_UPDATE_2(OTG_H_SYNC_A
,
177 OTG_H_SYNC_A_START
, 0,
178 OTG_H_SYNC_A_END
, patched_crtc_timing
.h_sync_width
);
180 /* blank_start = line end - front porch */
181 asic_blank_start
= patched_crtc_timing
.h_total
-
182 patched_crtc_timing
.h_front_porch
;
184 /* blank_end = blank_start - active */
185 asic_blank_end
= asic_blank_start
-
186 patched_crtc_timing
.h_border_right
-
187 patched_crtc_timing
.h_addressable
-
188 patched_crtc_timing
.h_border_left
;
190 REG_UPDATE_2(OTG_H_BLANK_START_END
,
191 OTG_H_BLANK_START
, asic_blank_start
,
192 OTG_H_BLANK_END
, asic_blank_end
);
194 /* h_sync polarity */
195 h_sync_polarity
= patched_crtc_timing
.flags
.HSYNC_POSITIVE_POLARITY
?
198 REG_UPDATE(OTG_H_SYNC_A_CNTL
,
199 OTG_H_SYNC_A_POL
, h_sync_polarity
);
201 v_total
= patched_crtc_timing
.v_total
- 1;
203 REG_SET(OTG_V_TOTAL
, 0,
204 OTG_V_TOTAL
, v_total
);
206 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
207 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
209 REG_SET(OTG_V_TOTAL_MAX
, 0,
210 OTG_V_TOTAL_MAX
, v_total
);
211 REG_SET(OTG_V_TOTAL_MIN
, 0,
212 OTG_V_TOTAL_MIN
, v_total
);
214 /* v_sync_start = 0, v_sync_end = v_sync_width */
215 v_sync_end
= patched_crtc_timing
.v_sync_width
;
217 REG_UPDATE_2(OTG_V_SYNC_A
,
218 OTG_V_SYNC_A_START
, 0,
219 OTG_V_SYNC_A_END
, v_sync_end
);
221 /* blank_start = frame end - front porch */
222 asic_blank_start
= patched_crtc_timing
.v_total
-
223 patched_crtc_timing
.v_front_porch
;
225 /* blank_end = blank_start - active */
226 asic_blank_end
= asic_blank_start
-
227 patched_crtc_timing
.v_border_bottom
-
228 patched_crtc_timing
.v_addressable
-
229 patched_crtc_timing
.v_border_top
;
231 REG_UPDATE_2(OTG_V_BLANK_START_END
,
232 OTG_V_BLANK_START
, asic_blank_start
,
233 OTG_V_BLANK_END
, asic_blank_end
);
235 /* v_sync polarity */
236 v_sync_polarity
= patched_crtc_timing
.flags
.VSYNC_POSITIVE_POLARITY
?
239 REG_UPDATE(OTG_V_SYNC_A_CNTL
,
240 OTG_V_SYNC_A_POL
, v_sync_polarity
);
242 if (optc1
->signal
== SIGNAL_TYPE_DISPLAY_PORT
||
243 optc1
->signal
== SIGNAL_TYPE_DISPLAY_PORT_MST
||
244 optc1
->signal
== SIGNAL_TYPE_EDP
) {
246 if (patched_crtc_timing
.flags
.INTERLACE
== 1)
251 if (REG(OTG_INTERLACE_CONTROL
)) {
252 if (patched_crtc_timing
.flags
.INTERLACE
== 1)
253 REG_UPDATE(OTG_INTERLACE_CONTROL
,
254 OTG_INTERLACE_ENABLE
, 1);
256 REG_UPDATE(OTG_INTERLACE_CONTROL
,
257 OTG_INTERLACE_ENABLE
, 0);
260 /* VTG enable set to 0 first VInit */
264 /* original code is using VTG offset to address OTG reg, seems wrong */
265 REG_UPDATE_2(OTG_CONTROL
,
266 OTG_START_POINT_CNTL
, start_point
,
267 OTG_FIELD_NUMBER_CNTL
, field_num
);
269 optc
->funcs
->program_global_sync(optc
,
275 optc
->funcs
->set_vtg_params(optc
, dc_crtc_timing
);
278 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
279 * program_horz_count_by_2
280 * for DVI 30bpp mode, 0 otherwise
281 * program_horz_count_by_2(optc, &patched_crtc_timing);
284 /* Enable stereo - only when we need to pack 3D frame. Other types
285 * of stereo handled in explicit call
288 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing
) || optc1
->opp_count
== 2)
289 h_div
= H_TIMING_DIV_BY2
;
291 REG_UPDATE(OTG_H_TIMING_CNTL
,
292 OTG_H_TIMING_DIV_BY2
, h_div
);
295 void optc1_set_vtg_params(struct timing_generator
*optc
,
296 const struct dc_crtc_timing
*dc_crtc_timing
)
298 struct dc_crtc_timing patched_crtc_timing
;
299 uint32_t asic_blank_end
;
302 int32_t vertical_line_start
;
304 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
306 patched_crtc_timing
= *dc_crtc_timing
;
307 apply_front_porch_workaround(&patched_crtc_timing
);
309 /* VCOUNT_INIT is the start of blank */
310 v_init
= patched_crtc_timing
.v_total
- patched_crtc_timing
.v_front_porch
;
312 /* end of blank = v_init - active */
313 asic_blank_end
= v_init
-
314 patched_crtc_timing
.v_border_bottom
-
315 patched_crtc_timing
.v_addressable
-
316 patched_crtc_timing
.v_border_top
;
318 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
319 vertical_line_start
= asic_blank_end
- optc1
->vstartup_start
+ 1;
320 if (vertical_line_start
< 0)
321 v_fp2
= -vertical_line_start
;
324 if (REG(OTG_INTERLACE_CONTROL
)) {
325 if (patched_crtc_timing
.flags
.INTERLACE
== 1) {
327 if ((optc1
->vstartup_start
/2)*2 > asic_blank_end
)
332 REG_UPDATE_2(CONTROL
,
334 VTG0_VCOUNT_INIT
, v_init
);
337 void optc1_set_blank_data_double_buffer(struct timing_generator
*optc
, bool enable
)
339 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
341 uint32_t blank_data_double_buffer_enable
= enable
? 1 : 0;
343 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL
,
344 OTG_BLANK_DATA_DOUBLE_BUFFER_EN
, blank_data_double_buffer_enable
);
349 * Call ASIC Control Object to UnBlank CRTC.
351 static void optc1_unblank_crtc(struct timing_generator
*optc
)
353 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
355 REG_UPDATE_2(OTG_BLANK_CONTROL
,
356 OTG_BLANK_DATA_EN
, 0,
357 OTG_BLANK_DE_MODE
, 0);
359 /* W/A for automated testing
360 * Automated testing will fail underflow test as there
361 * sporadic underflows which occur during the optc blank
362 * sequence. As a w/a, clear underflow on unblank.
363 * This prevents the failure, but will not mask actual
364 * underflow that affect real use cases.
366 optc1_clear_optc_underflow(optc
);
371 * Call ASIC Control Object to Blank CRTC.
374 static void optc1_blank_crtc(struct timing_generator
*optc
)
376 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
378 REG_UPDATE_2(OTG_BLANK_CONTROL
,
379 OTG_BLANK_DATA_EN
, 1,
380 OTG_BLANK_DE_MODE
, 0);
382 optc1_set_blank_data_double_buffer(optc
, false);
385 void optc1_set_blank(struct timing_generator
*optc
,
386 bool enable_blanking
)
389 optc1_blank_crtc(optc
);
391 optc1_unblank_crtc(optc
);
394 bool optc1_is_blanked(struct timing_generator
*optc
)
396 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
398 uint32_t blank_state
;
400 REG_GET_2(OTG_BLANK_CONTROL
,
401 OTG_BLANK_DATA_EN
, &blank_en
,
402 OTG_CURRENT_BLANK_STATE
, &blank_state
);
404 return blank_en
&& blank_state
;
407 void optc1_enable_optc_clock(struct timing_generator
*optc
, bool enable
)
409 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
412 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL
,
413 OPTC_INPUT_CLK_EN
, 1,
414 OPTC_INPUT_CLK_GATE_DIS
, 1);
416 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL
,
417 OPTC_INPUT_CLK_ON
, 1,
421 REG_UPDATE_2(OTG_CLOCK_CONTROL
,
423 OTG_CLOCK_GATE_DIS
, 1);
424 REG_WAIT(OTG_CLOCK_CONTROL
,
428 REG_UPDATE_2(OTG_CLOCK_CONTROL
,
429 OTG_CLOCK_GATE_DIS
, 0,
432 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL
,
433 OPTC_INPUT_CLK_GATE_DIS
, 0,
434 OPTC_INPUT_CLK_EN
, 0);
440 * Enable CRTC - call ASIC Control Object to enable Timing generator.
442 static bool optc1_enable_crtc(struct timing_generator
*optc
)
444 /* TODO FPGA wait for answer
445 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
446 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
448 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
450 /* opp instance for OTG. For DCN1.0, ODM is remoed.
451 * OPP and OPTC should 1:1 mapping
453 REG_UPDATE(OPTC_DATA_SOURCE_SELECT
,
454 OPTC_SRC_SEL
, optc
->inst
);
456 /* VTG enable first is for HW workaround */
463 REG_UPDATE_2(OTG_CONTROL
,
464 OTG_DISABLE_POINT_CNTL
, 3,
473 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
474 bool optc1_disable_crtc(struct timing_generator
*optc
)
476 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
478 /* disable otg request until end of the first line
479 * in the vertical blank region
481 REG_UPDATE_2(OTG_CONTROL
,
482 OTG_DISABLE_POINT_CNTL
, 3,
488 /* CRTC disabled, so disable clock. */
489 REG_WAIT(OTG_CLOCK_CONTROL
,
497 void optc1_program_blank_color(
498 struct timing_generator
*optc
,
499 const struct tg_color
*black_color
)
501 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
503 REG_SET_3(OTG_BLACK_COLOR
, 0,
504 OTG_BLACK_COLOR_B_CB
, black_color
->color_b_cb
,
505 OTG_BLACK_COLOR_G_Y
, black_color
->color_g_y
,
506 OTG_BLACK_COLOR_R_CR
, black_color
->color_r_cr
);
509 bool optc1_validate_timing(
510 struct timing_generator
*optc
,
511 const struct dc_crtc_timing
*timing
)
515 uint32_t min_v_blank
;
516 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
518 ASSERT(timing
!= NULL
);
520 v_blank
= (timing
->v_total
- timing
->v_addressable
-
521 timing
->v_border_top
- timing
->v_border_bottom
);
523 h_blank
= (timing
->h_total
- timing
->h_addressable
-
524 timing
->h_border_right
-
525 timing
->h_border_left
);
527 if (timing
->timing_3d_format
!= TIMING_3D_FORMAT_NONE
&&
528 timing
->timing_3d_format
!= TIMING_3D_FORMAT_HW_FRAME_PACKING
&&
529 timing
->timing_3d_format
!= TIMING_3D_FORMAT_TOP_AND_BOTTOM
&&
530 timing
->timing_3d_format
!= TIMING_3D_FORMAT_SIDE_BY_SIDE
&&
531 timing
->timing_3d_format
!= TIMING_3D_FORMAT_FRAME_ALTERNATE
&&
532 timing
->timing_3d_format
!= TIMING_3D_FORMAT_INBAND_FA
)
535 /* Temporarily blocking interlacing mode until it's supported */
536 if (timing
->flags
.INTERLACE
== 1)
539 /* Check maximum number of pixels supported by Timing Generator
540 * (Currently will never fail, in order to fail needs display which
541 * needs more than 8192 horizontal and
542 * more than 8192 vertical total pixels)
544 if (timing
->h_total
> optc1
->max_h_total
||
545 timing
->v_total
> optc1
->max_v_total
)
549 if (h_blank
< optc1
->min_h_blank
)
552 if (timing
->h_sync_width
< optc1
->min_h_sync_width
||
553 timing
->v_sync_width
< optc1
->min_v_sync_width
)
556 min_v_blank
= timing
->flags
.INTERLACE
?optc1
->min_v_blank_interlace
:optc1
->min_v_blank
;
558 if (v_blank
< min_v_blank
)
569 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
570 * holds the counter of frames.
573 * struct timing_generator *optc - [in] timing generator which controls the
577 * Counter of frames, which should equal to number of vblanks.
579 uint32_t optc1_get_vblank_counter(struct timing_generator
*optc
)
581 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
582 uint32_t frame_count
;
584 REG_GET(OTG_STATUS_FRAME_COUNT
,
585 OTG_FRAME_COUNT
, &frame_count
);
590 void optc1_lock(struct timing_generator
*optc
)
592 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
595 regval
= REG_READ(OTG_CONTROL
);
597 /* otg is not running, do not need to be locked */
598 if ((regval
& 0x1) == 0x0)
601 REG_SET(OTG_GLOBAL_CONTROL0
, 0,
602 OTG_MASTER_UPDATE_LOCK_SEL
, optc
->inst
);
603 REG_SET(OTG_MASTER_UPDATE_LOCK
, 0,
604 OTG_MASTER_UPDATE_LOCK
, 1);
606 /* Should be fast, status does not update on maximus */
607 if (optc
->ctx
->dce_environment
!= DCE_ENV_FPGA_MAXIMUS
) {
609 REG_WAIT(OTG_MASTER_UPDATE_LOCK
,
610 UPDATE_LOCK_STATUS
, 1,
615 void optc1_unlock(struct timing_generator
*optc
)
617 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
619 REG_SET(OTG_MASTER_UPDATE_LOCK
, 0,
620 OTG_MASTER_UPDATE_LOCK
, 0);
623 void optc1_get_position(struct timing_generator
*optc
,
624 struct crtc_position
*position
)
626 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
628 REG_GET_2(OTG_STATUS_POSITION
,
629 OTG_HORZ_COUNT
, &position
->horizontal_count
,
630 OTG_VERT_COUNT
, &position
->vertical_count
);
632 REG_GET(OTG_NOM_VERT_POSITION
,
633 OTG_VERT_COUNT_NOM
, &position
->nominal_vcount
);
636 bool optc1_is_counter_moving(struct timing_generator
*optc
)
638 struct crtc_position position1
, position2
;
640 optc
->funcs
->get_position(optc
, &position1
);
641 optc
->funcs
->get_position(optc
, &position2
);
643 if (position1
.horizontal_count
== position2
.horizontal_count
&&
644 position1
.vertical_count
== position2
.vertical_count
)
650 bool optc1_did_triggered_reset_occur(
651 struct timing_generator
*optc
)
653 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
654 uint32_t occurred_force
, occurred_vsync
;
656 REG_GET(OTG_FORCE_COUNT_NOW_CNTL
,
657 OTG_FORCE_COUNT_NOW_OCCURRED
, &occurred_force
);
659 REG_GET(OTG_VERT_SYNC_CONTROL
,
660 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED
, &occurred_vsync
);
662 return occurred_vsync
!= 0 || occurred_force
!= 0;
665 void optc1_disable_reset_trigger(struct timing_generator
*optc
)
667 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
669 REG_WRITE(OTG_TRIGA_CNTL
, 0);
671 REG_SET(OTG_FORCE_COUNT_NOW_CNTL
, 0,
672 OTG_FORCE_COUNT_NOW_CLEAR
, 1);
674 REG_SET(OTG_VERT_SYNC_CONTROL
, 0,
675 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR
, 1);
678 void optc1_enable_reset_trigger(struct timing_generator
*optc
, int source_tg_inst
)
680 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
681 uint32_t falling_edge
;
683 REG_GET(OTG_V_SYNC_A_CNTL
,
684 OTG_V_SYNC_A_POL
, &falling_edge
);
687 REG_SET_3(OTG_TRIGA_CNTL
, 0,
688 /* vsync signal from selected OTG pipe based
689 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
691 OTG_TRIGA_SOURCE_SELECT
, 20,
692 OTG_TRIGA_SOURCE_PIPE_SELECT
, source_tg_inst
,
693 /* always detect falling edge */
694 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL
, 1);
696 REG_SET_3(OTG_TRIGA_CNTL
, 0,
697 /* vsync signal from selected OTG pipe based
698 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
700 OTG_TRIGA_SOURCE_SELECT
, 20,
701 OTG_TRIGA_SOURCE_PIPE_SELECT
, source_tg_inst
,
702 /* always detect rising edge */
703 OTG_TRIGA_RISING_EDGE_DETECT_CNTL
, 1);
705 REG_SET(OTG_FORCE_COUNT_NOW_CNTL
, 0,
706 /* force H count to H_TOTAL and V count to V_TOTAL in
707 * progressive mode and V_TOTAL-1 in interlaced mode
709 OTG_FORCE_COUNT_NOW_MODE
, 2);
712 void optc1_enable_crtc_reset(
713 struct timing_generator
*optc
,
715 struct crtc_trigger_info
*crtc_tp
)
717 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
718 uint32_t falling_edge
= 0;
719 uint32_t rising_edge
= 0;
721 switch (crtc_tp
->event
) {
723 case CRTC_EVENT_VSYNC_RISING
:
727 case CRTC_EVENT_VSYNC_FALLING
:
732 REG_SET_4(OTG_TRIGA_CNTL
, 0,
733 /* vsync signal from selected OTG pipe based
734 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
736 OTG_TRIGA_SOURCE_SELECT
, 20,
737 OTG_TRIGA_SOURCE_PIPE_SELECT
, source_tg_inst
,
738 /* always detect falling edge */
739 OTG_TRIGA_RISING_EDGE_DETECT_CNTL
, rising_edge
,
740 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL
, falling_edge
);
742 switch (crtc_tp
->delay
) {
743 case TRIGGER_DELAY_NEXT_LINE
:
744 REG_SET(OTG_VERT_SYNC_CONTROL
, 0,
745 OTG_AUTO_FORCE_VSYNC_MODE
, 1);
747 case TRIGGER_DELAY_NEXT_PIXEL
:
748 REG_SET(OTG_FORCE_COUNT_NOW_CNTL
, 0,
749 /* force H count to H_TOTAL and V count to V_TOTAL in
750 * progressive mode and V_TOTAL-1 in interlaced mode
752 OTG_FORCE_COUNT_NOW_MODE
, 2);
757 void optc1_wait_for_state(struct timing_generator
*optc
,
758 enum crtc_state state
)
760 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
763 case CRTC_STATE_VBLANK
:
766 1, 100000); /* 1 vupdate at 10hz */
769 case CRTC_STATE_VACTIVE
:
771 OTG_V_ACTIVE_DISP
, 1,
772 1, 100000); /* 1 vupdate at 10hz */
780 void optc1_set_early_control(
781 struct timing_generator
*optc
,
784 /* asic design change, do not need this control
785 * empty for share caller logic
790 void optc1_set_static_screen_control(
791 struct timing_generator
*optc
,
792 uint32_t event_triggers
,
795 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
797 // By register spec, it only takes 8 bit value
798 if (num_frames
> 0xFF)
801 /* Bit 8 is no longer applicable in RV for PSR case,
802 * set bit 8 to 0 if given
804 if ((event_triggers
& STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN
)
806 event_triggers
= event_triggers
&
807 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN
;
809 REG_SET_2(OTG_STATIC_SCREEN_CONTROL
, 0,
810 OTG_STATIC_SCREEN_EVENT_MASK
, event_triggers
,
811 OTG_STATIC_SCREEN_FRAME_COUNT
, num_frames
);
814 void optc1_setup_manual_trigger(struct timing_generator
*optc
)
816 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
818 REG_SET(OTG_GLOBAL_CONTROL2
, 0,
819 MANUAL_FLOW_CONTROL_SEL
, optc
->inst
);
821 REG_SET_8(OTG_TRIGA_CNTL
, 0,
822 OTG_TRIGA_SOURCE_SELECT
, 22,
823 OTG_TRIGA_SOURCE_PIPE_SELECT
, optc
->inst
,
824 OTG_TRIGA_RISING_EDGE_DETECT_CNTL
, 1,
825 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL
, 0,
826 OTG_TRIGA_POLARITY_SELECT
, 0,
827 OTG_TRIGA_FREQUENCY_SELECT
, 0,
832 void optc1_program_manual_trigger(struct timing_generator
*optc
)
834 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
836 REG_SET(OTG_MANUAL_FLOW_CONTROL
, 0,
837 MANUAL_FLOW_CONTROL
, 1);
839 REG_SET(OTG_MANUAL_FLOW_CONTROL
, 0,
840 MANUAL_FLOW_CONTROL
, 0);
845 *****************************************************************************
849 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
851 *****************************************************************************
854 struct timing_generator
*optc
,
855 const struct drr_params
*params
)
857 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
859 if (params
!= NULL
&&
860 params
->vertical_total_max
> 0 &&
861 params
->vertical_total_min
> 0) {
863 if (params
->vertical_total_mid
!= 0) {
865 REG_SET(OTG_V_TOTAL_MID
, 0,
866 OTG_V_TOTAL_MID
, params
->vertical_total_mid
- 1);
868 REG_UPDATE_2(OTG_V_TOTAL_CONTROL
,
869 OTG_VTOTAL_MID_REPLACING_MAX_EN
, 1,
870 OTG_VTOTAL_MID_FRAME_NUM
,
871 (uint8_t)params
->vertical_total_mid_frame_num
);
875 REG_SET(OTG_V_TOTAL_MAX
, 0,
876 OTG_V_TOTAL_MAX
, params
->vertical_total_max
- 1);
878 REG_SET(OTG_V_TOTAL_MIN
, 0,
879 OTG_V_TOTAL_MIN
, params
->vertical_total_min
- 1);
881 REG_UPDATE_5(OTG_V_TOTAL_CONTROL
,
882 OTG_V_TOTAL_MIN_SEL
, 1,
883 OTG_V_TOTAL_MAX_SEL
, 1,
884 OTG_FORCE_LOCK_ON_EVENT
, 0,
885 OTG_SET_V_TOTAL_MIN_MASK_EN
, 0,
886 OTG_SET_V_TOTAL_MIN_MASK
, 0);
888 // Setup manual flow control for EOF via TRIG_A
889 optc
->funcs
->setup_manual_trigger(optc
);
892 REG_UPDATE_4(OTG_V_TOTAL_CONTROL
,
893 OTG_SET_V_TOTAL_MIN_MASK
, 0,
894 OTG_V_TOTAL_MIN_SEL
, 0,
895 OTG_V_TOTAL_MAX_SEL
, 0,
896 OTG_FORCE_LOCK_ON_EVENT
, 0);
898 REG_SET(OTG_V_TOTAL_MIN
, 0,
901 REG_SET(OTG_V_TOTAL_MAX
, 0,
906 static void optc1_set_test_pattern(
907 struct timing_generator
*optc
,
908 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
909 * because this is not DP-specific (which is probably somewhere in DP
911 enum controller_dp_test_pattern test_pattern
,
912 enum dc_color_depth color_depth
)
914 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
915 enum test_pattern_color_format bit_depth
;
916 enum test_pattern_dyn_range dyn_range
;
917 enum test_pattern_mode mode
;
918 uint32_t pattern_mask
;
919 uint32_t pattern_data
;
920 /* color ramp generator mixes 16-bits color */
921 uint32_t src_bpc
= 16;
925 /* RGB values of the color bars.
926 * Produce two RGB colors: RGB0 - white (all Fs)
927 * and RGB1 - black (all 0s)
928 * (three RGB components for two colors)
930 uint16_t src_color
[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
932 /* dest color (converted to the specified color format) */
933 uint16_t dst_color
[6];
936 /* translate to bit depth */
937 switch (color_depth
) {
938 case COLOR_DEPTH_666
:
939 bit_depth
= TEST_PATTERN_COLOR_FORMAT_BPC_6
;
941 case COLOR_DEPTH_888
:
942 bit_depth
= TEST_PATTERN_COLOR_FORMAT_BPC_8
;
944 case COLOR_DEPTH_101010
:
945 bit_depth
= TEST_PATTERN_COLOR_FORMAT_BPC_10
;
947 case COLOR_DEPTH_121212
:
948 bit_depth
= TEST_PATTERN_COLOR_FORMAT_BPC_12
;
951 bit_depth
= TEST_PATTERN_COLOR_FORMAT_BPC_8
;
955 switch (test_pattern
) {
956 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES
:
957 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA
:
959 dyn_range
= (test_pattern
==
960 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA
?
961 TEST_PATTERN_DYN_RANGE_CEA
:
962 TEST_PATTERN_DYN_RANGE_VESA
);
963 mode
= TEST_PATTERN_MODE_COLORSQUARES_RGB
;
965 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS
,
966 OTG_TEST_PATTERN_VRES
, 6,
967 OTG_TEST_PATTERN_HRES
, 6);
969 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL
,
970 OTG_TEST_PATTERN_EN
, 1,
971 OTG_TEST_PATTERN_MODE
, mode
,
972 OTG_TEST_PATTERN_DYNAMIC_RANGE
, dyn_range
,
973 OTG_TEST_PATTERN_COLOR_FORMAT
, bit_depth
);
977 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS
:
978 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS
:
980 mode
= (test_pattern
==
981 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS
?
982 TEST_PATTERN_MODE_VERTICALBARS
:
983 TEST_PATTERN_MODE_HORIZONTALBARS
);
986 case TEST_PATTERN_COLOR_FORMAT_BPC_6
:
989 case TEST_PATTERN_COLOR_FORMAT_BPC_8
:
992 case TEST_PATTERN_COLOR_FORMAT_BPC_10
:
1000 /* adjust color to the required colorFormat */
1001 for (index
= 0; index
< 6; index
++) {
1002 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1003 * (srcBpc - dstBpc);
1006 src_color
[index
] >> (src_bpc
- dst_bpc
);
1007 /* CRTC_TEST_PATTERN_DATA has 16 bits,
1008 * lowest 6 are hardwired to ZERO
1009 * color bits should be left aligned aligned to MSB
1010 * XXXXXXXXXX000000 for 10 bit,
1011 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1013 dst_color
[index
] <<= (16 - dst_bpc
);
1016 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS
, 0);
1018 /* We have to write the mask before data, similar to pipeline.
1019 * For example, for 8 bpc, if we want RGB0 to be magenta,
1020 * and RGB1 to be cyan,
1021 * we need to make 7 writes:
1023 * 000001 00000000 00000000 set mask to R0
1024 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
1025 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
1026 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
1027 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
1028 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
1029 * 100000 11111111 00000000 B1 255, 0xFF00
1031 * we will make a loop of 6 in which we prepare the mask,
1032 * then write, then prepare the color for next write.
1033 * first iteration will write mask only,
1034 * but each next iteration color prepared in
1035 * previous iteration will be written within new mask,
1036 * the last component will written separately,
1037 * mask is not changing between 6th and 7th write
1038 * and color will be prepared by last iteration
1041 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1042 * is B1, G1, R1, B0, G0, R0
1045 for (index
= 0; index
< 6; index
++) {
1046 /* prepare color mask, first write PATTERN_DATA
1047 * will have all zeros
1049 pattern_mask
= (1 << index
);
1051 /* write color component */
1052 REG_SET_2(OTG_TEST_PATTERN_COLOR
, 0,
1053 OTG_TEST_PATTERN_MASK
, pattern_mask
,
1054 OTG_TEST_PATTERN_DATA
, pattern_data
);
1056 /* prepare next color component,
1057 * will be written in the next iteration
1059 pattern_data
= dst_color
[index
];
1061 /* write last color component,
1062 * it's been already prepared in the loop
1064 REG_SET_2(OTG_TEST_PATTERN_COLOR
, 0,
1065 OTG_TEST_PATTERN_MASK
, pattern_mask
,
1066 OTG_TEST_PATTERN_DATA
, pattern_data
);
1068 /* enable test pattern */
1069 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL
,
1070 OTG_TEST_PATTERN_EN
, 1,
1071 OTG_TEST_PATTERN_MODE
, mode
,
1072 OTG_TEST_PATTERN_DYNAMIC_RANGE
, 0,
1073 OTG_TEST_PATTERN_COLOR_FORMAT
, bit_depth
);
1077 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP
:
1079 mode
= (bit_depth
==
1080 TEST_PATTERN_COLOR_FORMAT_BPC_10
?
1081 TEST_PATTERN_MODE_DUALRAMP_RGB
:
1082 TEST_PATTERN_MODE_SINGLERAMP_RGB
);
1084 switch (bit_depth
) {
1085 case TEST_PATTERN_COLOR_FORMAT_BPC_6
:
1088 case TEST_PATTERN_COLOR_FORMAT_BPC_8
:
1091 case TEST_PATTERN_COLOR_FORMAT_BPC_10
:
1099 /* increment for the first ramp for one color gradation
1100 * 1 gradation for 6-bit color is 2^10
1101 * gradations in 16-bit color
1103 inc_base
= (src_bpc
- dst_bpc
);
1105 switch (bit_depth
) {
1106 case TEST_PATTERN_COLOR_FORMAT_BPC_6
:
1108 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS
,
1109 OTG_TEST_PATTERN_INC0
, inc_base
,
1110 OTG_TEST_PATTERN_INC1
, 0,
1111 OTG_TEST_PATTERN_HRES
, 6,
1112 OTG_TEST_PATTERN_VRES
, 6,
1113 OTG_TEST_PATTERN_RAMP0_OFFSET
, 0);
1116 case TEST_PATTERN_COLOR_FORMAT_BPC_8
:
1118 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS
,
1119 OTG_TEST_PATTERN_INC0
, inc_base
,
1120 OTG_TEST_PATTERN_INC1
, 0,
1121 OTG_TEST_PATTERN_HRES
, 8,
1122 OTG_TEST_PATTERN_VRES
, 6,
1123 OTG_TEST_PATTERN_RAMP0_OFFSET
, 0);
1126 case TEST_PATTERN_COLOR_FORMAT_BPC_10
:
1128 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS
,
1129 OTG_TEST_PATTERN_INC0
, inc_base
,
1130 OTG_TEST_PATTERN_INC1
, inc_base
+ 2,
1131 OTG_TEST_PATTERN_HRES
, 8,
1132 OTG_TEST_PATTERN_VRES
, 5,
1133 OTG_TEST_PATTERN_RAMP0_OFFSET
, 384 << 6);
1140 REG_WRITE(OTG_TEST_PATTERN_COLOR
, 0);
1142 /* enable test pattern */
1143 REG_WRITE(OTG_TEST_PATTERN_CONTROL
, 0);
1145 REG_SET_4(OTG_TEST_PATTERN_CONTROL
, 0,
1146 OTG_TEST_PATTERN_EN
, 1,
1147 OTG_TEST_PATTERN_MODE
, mode
,
1148 OTG_TEST_PATTERN_DYNAMIC_RANGE
, 0,
1149 OTG_TEST_PATTERN_COLOR_FORMAT
, bit_depth
);
1152 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE
:
1154 REG_WRITE(OTG_TEST_PATTERN_CONTROL
, 0);
1155 REG_WRITE(OTG_TEST_PATTERN_COLOR
, 0);
1156 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS
, 0);
1165 void optc1_get_crtc_scanoutpos(
1166 struct timing_generator
*optc
,
1167 uint32_t *v_blank_start
,
1168 uint32_t *v_blank_end
,
1169 uint32_t *h_position
,
1170 uint32_t *v_position
)
1172 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1173 struct crtc_position position
;
1175 REG_GET_2(OTG_V_BLANK_START_END
,
1176 OTG_V_BLANK_START
, v_blank_start
,
1177 OTG_V_BLANK_END
, v_blank_end
);
1179 optc1_get_position(optc
, &position
);
1181 *h_position
= position
.horizontal_count
;
1182 *v_position
= position
.vertical_count
;
1185 static void optc1_enable_stereo(struct timing_generator
*optc
,
1186 const struct dc_crtc_timing
*timing
, struct crtc_stereo_flags
*flags
)
1188 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1192 stereo_en
= flags
->FRAME_PACKED
== 0 ? 1 : 0;
1194 if (flags
->PROGRAM_STEREO
)
1195 REG_UPDATE_3(OTG_STEREO_CONTROL
,
1196 OTG_STEREO_EN
, stereo_en
,
1197 OTG_STEREO_SYNC_OUTPUT_LINE_NUM
, 0,
1198 OTG_STEREO_SYNC_OUTPUT_POLARITY
, 0);
1200 if (flags
->PROGRAM_POLARITY
)
1201 REG_UPDATE(OTG_STEREO_CONTROL
,
1202 OTG_STEREO_EYE_FLAG_POLARITY
,
1203 flags
->RIGHT_EYE_POLARITY
== 0 ? 0 : 1);
1205 if (flags
->DISABLE_STEREO_DP_SYNC
)
1206 REG_UPDATE(OTG_STEREO_CONTROL
,
1207 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP
, 1);
1209 if (flags
->PROGRAM_STEREO
)
1210 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL
,
1211 OTG_3D_STRUCTURE_EN
, flags
->FRAME_PACKED
,
1212 OTG_3D_STRUCTURE_STEREO_SEL_OVR
, flags
->FRAME_PACKED
);
1217 void optc1_program_stereo(struct timing_generator
*optc
,
1218 const struct dc_crtc_timing
*timing
, struct crtc_stereo_flags
*flags
)
1220 if (flags
->PROGRAM_STEREO
)
1221 optc1_enable_stereo(optc
, timing
, flags
);
1223 optc1_disable_stereo(optc
);
1227 bool optc1_is_stereo_left_eye(struct timing_generator
*optc
)
1230 uint32_t left_eye
= 0;
1231 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1233 REG_GET(OTG_STEREO_STATUS
,
1234 OTG_STEREO_CURRENT_EYE
, &left_eye
);
1243 bool optc1_get_hw_timing(struct timing_generator
*tg
,
1244 struct dc_crtc_timing
*hw_crtc_timing
)
1246 struct dcn_otg_state s
= {0};
1248 if (tg
== NULL
|| hw_crtc_timing
== NULL
)
1251 optc1_read_otg_state(DCN10TG_FROM_TG(tg
), &s
);
1253 hw_crtc_timing
->h_total
= s
.h_total
+ 1;
1254 hw_crtc_timing
->h_addressable
= s
.h_total
- ((s
.h_total
- s
.h_blank_start
) + s
.h_blank_end
);
1255 hw_crtc_timing
->h_front_porch
= s
.h_total
+ 1 - s
.h_blank_start
;
1256 hw_crtc_timing
->h_sync_width
= s
.h_sync_a_end
- s
.h_sync_a_start
;
1258 hw_crtc_timing
->v_total
= s
.v_total
+ 1;
1259 hw_crtc_timing
->v_addressable
= s
.v_total
- ((s
.v_total
- s
.v_blank_start
) + s
.v_blank_end
);
1260 hw_crtc_timing
->v_front_porch
= s
.v_total
+ 1 - s
.v_blank_start
;
1261 hw_crtc_timing
->v_sync_width
= s
.v_sync_a_end
- s
.v_sync_a_start
;
1267 void optc1_read_otg_state(struct optc
*optc1
,
1268 struct dcn_otg_state
*s
)
1270 REG_GET(OTG_CONTROL
,
1271 OTG_MASTER_EN
, &s
->otg_enabled
);
1273 REG_GET_2(OTG_V_BLANK_START_END
,
1274 OTG_V_BLANK_START
, &s
->v_blank_start
,
1275 OTG_V_BLANK_END
, &s
->v_blank_end
);
1277 REG_GET(OTG_V_SYNC_A_CNTL
,
1278 OTG_V_SYNC_A_POL
, &s
->v_sync_a_pol
);
1280 REG_GET(OTG_V_TOTAL
,
1281 OTG_V_TOTAL
, &s
->v_total
);
1283 REG_GET(OTG_V_TOTAL_MAX
,
1284 OTG_V_TOTAL_MAX
, &s
->v_total_max
);
1286 REG_GET(OTG_V_TOTAL_MIN
,
1287 OTG_V_TOTAL_MIN
, &s
->v_total_min
);
1289 REG_GET(OTG_V_TOTAL_CONTROL
,
1290 OTG_V_TOTAL_MAX_SEL
, &s
->v_total_max_sel
);
1292 REG_GET(OTG_V_TOTAL_CONTROL
,
1293 OTG_V_TOTAL_MIN_SEL
, &s
->v_total_min_sel
);
1295 REG_GET_2(OTG_V_SYNC_A
,
1296 OTG_V_SYNC_A_START
, &s
->v_sync_a_start
,
1297 OTG_V_SYNC_A_END
, &s
->v_sync_a_end
);
1299 REG_GET_2(OTG_H_BLANK_START_END
,
1300 OTG_H_BLANK_START
, &s
->h_blank_start
,
1301 OTG_H_BLANK_END
, &s
->h_blank_end
);
1303 REG_GET_2(OTG_H_SYNC_A
,
1304 OTG_H_SYNC_A_START
, &s
->h_sync_a_start
,
1305 OTG_H_SYNC_A_END
, &s
->h_sync_a_end
);
1307 REG_GET(OTG_H_SYNC_A_CNTL
,
1308 OTG_H_SYNC_A_POL
, &s
->h_sync_a_pol
);
1310 REG_GET(OTG_H_TOTAL
,
1311 OTG_H_TOTAL
, &s
->h_total
);
1313 REG_GET(OPTC_INPUT_GLOBAL_CONTROL
,
1314 OPTC_UNDERFLOW_OCCURRED_STATUS
, &s
->underflow_occurred_status
);
1317 bool optc1_get_otg_active_size(struct timing_generator
*optc
,
1318 uint32_t *otg_active_width
,
1319 uint32_t *otg_active_height
)
1321 uint32_t otg_enabled
;
1322 uint32_t v_blank_start
;
1323 uint32_t v_blank_end
;
1324 uint32_t h_blank_start
;
1325 uint32_t h_blank_end
;
1326 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1329 REG_GET(OTG_CONTROL
,
1330 OTG_MASTER_EN
, &otg_enabled
);
1332 if (otg_enabled
== 0)
1335 REG_GET_2(OTG_V_BLANK_START_END
,
1336 OTG_V_BLANK_START
, &v_blank_start
,
1337 OTG_V_BLANK_END
, &v_blank_end
);
1339 REG_GET_2(OTG_H_BLANK_START_END
,
1340 OTG_H_BLANK_START
, &h_blank_start
,
1341 OTG_H_BLANK_END
, &h_blank_end
);
1343 *otg_active_width
= v_blank_start
- v_blank_end
;
1344 *otg_active_height
= h_blank_start
- h_blank_end
;
1348 void optc1_clear_optc_underflow(struct timing_generator
*optc
)
1350 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1352 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL
, OPTC_UNDERFLOW_CLEAR
, 1);
1355 void optc1_tg_init(struct timing_generator
*optc
)
1357 optc1_set_blank_data_double_buffer(optc
, true);
1358 optc1_clear_optc_underflow(optc
);
1361 bool optc1_is_tg_enabled(struct timing_generator
*optc
)
1363 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1364 uint32_t otg_enabled
= 0;
1366 REG_GET(OTG_CONTROL
, OTG_MASTER_EN
, &otg_enabled
);
1368 return (otg_enabled
!= 0);
1372 bool optc1_is_optc_underflow_occurred(struct timing_generator
*optc
)
1374 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1375 uint32_t underflow_occurred
= 0;
1377 REG_GET(OPTC_INPUT_GLOBAL_CONTROL
,
1378 OPTC_UNDERFLOW_OCCURRED_STATUS
,
1379 &underflow_occurred
);
1381 return (underflow_occurred
== 1);
1384 bool optc1_configure_crc(struct timing_generator
*optc
,
1385 const struct crc_params
*params
)
1387 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1389 /* Cannot configure crc on a CRTC that is disabled */
1390 if (!optc1_is_tg_enabled(optc
))
1393 REG_WRITE(OTG_CRC_CNTL
, 0);
1395 if (!params
->enable
)
1398 /* Program frame boundaries */
1399 /* Window A x axis start and end. */
1400 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL
,
1401 OTG_CRC0_WINDOWA_X_START
, params
->windowa_x_start
,
1402 OTG_CRC0_WINDOWA_X_END
, params
->windowa_x_end
);
1404 /* Window A y axis start and end. */
1405 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL
,
1406 OTG_CRC0_WINDOWA_Y_START
, params
->windowa_y_start
,
1407 OTG_CRC0_WINDOWA_Y_END
, params
->windowa_y_end
);
1409 /* Window B x axis start and end. */
1410 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL
,
1411 OTG_CRC0_WINDOWB_X_START
, params
->windowb_x_start
,
1412 OTG_CRC0_WINDOWB_X_END
, params
->windowb_x_end
);
1414 /* Window B y axis start and end. */
1415 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL
,
1416 OTG_CRC0_WINDOWB_Y_START
, params
->windowb_y_start
,
1417 OTG_CRC0_WINDOWB_Y_END
, params
->windowb_y_end
);
1419 /* Set crc mode and selection, and enable. Only using CRC0*/
1420 REG_UPDATE_3(OTG_CRC_CNTL
,
1421 OTG_CRC_CONT_EN
, params
->continuous_mode
? 1 : 0,
1422 OTG_CRC0_SELECT
, params
->selection
,
1428 bool optc1_get_crc(struct timing_generator
*optc
,
1429 uint32_t *r_cr
, uint32_t *g_y
, uint32_t *b_cb
)
1432 struct optc
*optc1
= DCN10TG_FROM_TG(optc
);
1434 REG_GET(OTG_CRC_CNTL
, OTG_CRC_EN
, &field
);
1436 /* Early return if CRC is not enabled for this CRTC */
1440 REG_GET_2(OTG_CRC0_DATA_RG
,
1444 REG_GET(OTG_CRC0_DATA_B
,
1450 static const struct timing_generator_funcs dcn10_tg_funcs
= {
1451 .validate_timing
= optc1_validate_timing
,
1452 .program_timing
= optc1_program_timing
,
1453 .setup_vertical_interrupt0
= optc1_setup_vertical_interrupt0
,
1454 .setup_vertical_interrupt1
= optc1_setup_vertical_interrupt1
,
1455 .setup_vertical_interrupt2
= optc1_setup_vertical_interrupt2
,
1456 .program_global_sync
= optc1_program_global_sync
,
1457 .enable_crtc
= optc1_enable_crtc
,
1458 .disable_crtc
= optc1_disable_crtc
,
1459 /* used by enable_timing_synchronization. Not need for FPGA */
1460 .is_counter_moving
= optc1_is_counter_moving
,
1461 .get_position
= optc1_get_position
,
1462 .get_frame_count
= optc1_get_vblank_counter
,
1463 .get_scanoutpos
= optc1_get_crtc_scanoutpos
,
1464 .get_otg_active_size
= optc1_get_otg_active_size
,
1465 .set_early_control
= optc1_set_early_control
,
1466 /* used by enable_timing_synchronization. Not need for FPGA */
1467 .wait_for_state
= optc1_wait_for_state
,
1468 .set_blank
= optc1_set_blank
,
1469 .is_blanked
= optc1_is_blanked
,
1470 .set_blank_color
= optc1_program_blank_color
,
1471 .did_triggered_reset_occur
= optc1_did_triggered_reset_occur
,
1472 .enable_reset_trigger
= optc1_enable_reset_trigger
,
1473 .enable_crtc_reset
= optc1_enable_crtc_reset
,
1474 .disable_reset_trigger
= optc1_disable_reset_trigger
,
1476 .unlock
= optc1_unlock
,
1477 .enable_optc_clock
= optc1_enable_optc_clock
,
1478 .set_drr
= optc1_set_drr
,
1479 .set_static_screen_control
= optc1_set_static_screen_control
,
1480 .set_test_pattern
= optc1_set_test_pattern
,
1481 .program_stereo
= optc1_program_stereo
,
1482 .is_stereo_left_eye
= optc1_is_stereo_left_eye
,
1483 .set_blank_data_double_buffer
= optc1_set_blank_data_double_buffer
,
1484 .tg_init
= optc1_tg_init
,
1485 .is_tg_enabled
= optc1_is_tg_enabled
,
1486 .is_optc_underflow_occurred
= optc1_is_optc_underflow_occurred
,
1487 .clear_optc_underflow
= optc1_clear_optc_underflow
,
1488 .get_crc
= optc1_get_crc
,
1489 .configure_crc
= optc1_configure_crc
,
1490 .set_vtg_params
= optc1_set_vtg_params
,
1491 .program_manual_trigger
= optc1_program_manual_trigger
,
1492 .setup_manual_trigger
= optc1_setup_manual_trigger
,
1493 .get_hw_timing
= optc1_get_hw_timing
,
1496 void dcn10_timing_generator_init(struct optc
*optc1
)
1498 optc1
->base
.funcs
= &dcn10_tg_funcs
;
1500 optc1
->max_h_total
= optc1
->tg_mask
->OTG_H_TOTAL
+ 1;
1501 optc1
->max_v_total
= optc1
->tg_mask
->OTG_V_TOTAL
+ 1;
1503 optc1
->min_h_blank
= 32;
1504 optc1
->min_v_blank
= 3;
1505 optc1
->min_v_blank_interlace
= 5;
1506 optc1
->min_h_sync_width
= 8;
1507 optc1
->min_v_sync_width
= 1;
1510 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1512 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1515 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1516 * halved to maintain the correct pixel rate.
1518 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1519 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1522 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing
*timing
)
1524 bool two_pix
= timing
->pixel_encoding
== PIXEL_ENCODING_YCBCR420
;
1526 two_pix
= two_pix
|| (timing
->flags
.DSC
&& timing
->pixel_encoding
== PIXEL_ENCODING_YCBCR422
1527 && !timing
->dsc_cfg
.ycbcr422_simple
);