2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * Zhi Wang <zhi.a.wang@intel.com>
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
36 #include <linux/kthread.h>
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
43 #include "i915_gem_gtt.h"
46 #define RING_CTX_OFF(x) \
47 offsetof(struct execlist_ring_context, x)
49 static void set_context_pdp_root_pointer(
50 struct execlist_ring_context
*ring_context
,
55 for (i
= 0; i
< 8; i
++)
56 ring_context
->pdps
[i
].val
= pdp
[7 - i
];
59 static void update_shadow_pdps(struct intel_vgpu_workload
*workload
)
61 struct drm_i915_gem_object
*ctx_obj
=
62 workload
->req
->context
->state
->obj
;
63 struct execlist_ring_context
*shadow_ring_context
;
66 if (WARN_ON(!workload
->shadow_mm
))
69 if (WARN_ON(!atomic_read(&workload
->shadow_mm
->pincount
)))
72 page
= i915_gem_object_get_page(ctx_obj
, LRC_STATE_PN
);
73 shadow_ring_context
= kmap(page
);
74 set_context_pdp_root_pointer(shadow_ring_context
,
75 (void *)workload
->shadow_mm
->ppgtt_mm
.shadow_pdps
);
80 * when populating shadow ctx from guest, we should not overrride oa related
81 * registers, so that they will not be overlapped by guest oa configs. Thus
82 * made it possible to capture oa data from host for both host and guests.
84 static void sr_oa_regs(struct intel_vgpu_workload
*workload
,
85 u32
*reg_state
, bool save
)
87 struct drm_i915_private
*dev_priv
= workload
->vgpu
->gvt
->dev_priv
;
88 u32 ctx_oactxctrl
= dev_priv
->perf
.ctx_oactxctrl_offset
;
89 u32 ctx_flexeu0
= dev_priv
->perf
.ctx_flexeu0_offset
;
92 i915_mmio_reg_offset(EU_PERF_CNTL0
),
93 i915_mmio_reg_offset(EU_PERF_CNTL1
),
94 i915_mmio_reg_offset(EU_PERF_CNTL2
),
95 i915_mmio_reg_offset(EU_PERF_CNTL3
),
96 i915_mmio_reg_offset(EU_PERF_CNTL4
),
97 i915_mmio_reg_offset(EU_PERF_CNTL5
),
98 i915_mmio_reg_offset(EU_PERF_CNTL6
),
101 if (workload
->ring_id
!= RCS0
)
105 workload
->oactxctrl
= reg_state
[ctx_oactxctrl
+ 1];
107 for (i
= 0; i
< ARRAY_SIZE(workload
->flex_mmio
); i
++) {
108 u32 state_offset
= ctx_flexeu0
+ i
* 2;
110 workload
->flex_mmio
[i
] = reg_state
[state_offset
+ 1];
113 reg_state
[ctx_oactxctrl
] =
114 i915_mmio_reg_offset(GEN8_OACTXCONTROL
);
115 reg_state
[ctx_oactxctrl
+ 1] = workload
->oactxctrl
;
117 for (i
= 0; i
< ARRAY_SIZE(workload
->flex_mmio
); i
++) {
118 u32 state_offset
= ctx_flexeu0
+ i
* 2;
119 u32 mmio
= flex_mmio
[i
];
121 reg_state
[state_offset
] = mmio
;
122 reg_state
[state_offset
+ 1] = workload
->flex_mmio
[i
];
127 static int populate_shadow_context(struct intel_vgpu_workload
*workload
)
129 struct intel_vgpu
*vgpu
= workload
->vgpu
;
130 struct intel_gvt
*gvt
= vgpu
->gvt
;
131 int ring_id
= workload
->ring_id
;
132 struct drm_i915_gem_object
*ctx_obj
=
133 workload
->req
->context
->state
->obj
;
134 struct execlist_ring_context
*shadow_ring_context
;
137 unsigned long context_gpa
, context_page_num
;
140 page
= i915_gem_object_get_page(ctx_obj
, LRC_STATE_PN
);
141 shadow_ring_context
= kmap(page
);
143 sr_oa_regs(workload
, (u32
*)shadow_ring_context
, true);
144 #define COPY_REG(name) \
145 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
146 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
147 #define COPY_REG_MASKED(name) {\
148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 + RING_CTX_OFF(name.val),\
150 &shadow_ring_context->name.val, 4);\
151 shadow_ring_context->name.val |= 0xffff << 16;\
154 COPY_REG_MASKED(ctx_ctrl
);
155 COPY_REG(ctx_timestamp
);
157 if (ring_id
== RCS0
) {
158 COPY_REG(bb_per_ctx_ptr
);
159 COPY_REG(rcs_indirect_ctx
);
160 COPY_REG(rcs_indirect_ctx_offset
);
163 #undef COPY_REG_MASKED
165 intel_gvt_hypervisor_read_gpa(vgpu
,
166 workload
->ring_context_gpa
+
167 sizeof(*shadow_ring_context
),
168 (void *)shadow_ring_context
+
169 sizeof(*shadow_ring_context
),
170 I915_GTT_PAGE_SIZE
- sizeof(*shadow_ring_context
));
172 sr_oa_regs(workload
, (u32
*)shadow_ring_context
, false);
175 if (IS_RESTORE_INHIBIT(shadow_ring_context
->ctx_ctrl
.val
))
178 gvt_dbg_sched("ring id %d workload lrca %x", ring_id
,
179 workload
->ctx_desc
.lrca
);
181 context_page_num
= gvt
->dev_priv
->engine
[ring_id
]->context_size
;
183 context_page_num
= context_page_num
>> PAGE_SHIFT
;
185 if (IS_BROADWELL(gvt
->dev_priv
) && ring_id
== RCS0
)
186 context_page_num
= 19;
189 while (i
< context_page_num
) {
190 context_gpa
= intel_vgpu_gma_to_gpa(vgpu
->gtt
.ggtt_mm
,
191 (u32
)((workload
->ctx_desc
.lrca
+ i
) <<
192 I915_GTT_PAGE_SHIFT
));
193 if (context_gpa
== INTEL_GVT_INVALID_ADDR
) {
194 gvt_vgpu_err("Invalid guest context descriptor\n");
198 page
= i915_gem_object_get_page(ctx_obj
, i
);
200 intel_gvt_hypervisor_read_gpa(vgpu
, context_gpa
, dst
,
208 static inline bool is_gvt_request(struct i915_request
*rq
)
210 return intel_context_force_single_submission(rq
->context
);
213 static void save_ring_hw_state(struct intel_vgpu
*vgpu
, int ring_id
)
215 struct drm_i915_private
*dev_priv
= vgpu
->gvt
->dev_priv
;
216 u32 ring_base
= dev_priv
->engine
[ring_id
]->mmio_base
;
219 reg
= RING_INSTDONE(ring_base
);
220 vgpu_vreg(vgpu
, i915_mmio_reg_offset(reg
)) = I915_READ_FW(reg
);
221 reg
= RING_ACTHD(ring_base
);
222 vgpu_vreg(vgpu
, i915_mmio_reg_offset(reg
)) = I915_READ_FW(reg
);
223 reg
= RING_ACTHD_UDW(ring_base
);
224 vgpu_vreg(vgpu
, i915_mmio_reg_offset(reg
)) = I915_READ_FW(reg
);
227 static int shadow_context_status_change(struct notifier_block
*nb
,
228 unsigned long action
, void *data
)
230 struct i915_request
*req
= data
;
231 struct intel_gvt
*gvt
= container_of(nb
, struct intel_gvt
,
232 shadow_ctx_notifier_block
[req
->engine
->id
]);
233 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
234 enum intel_engine_id ring_id
= req
->engine
->id
;
235 struct intel_vgpu_workload
*workload
;
238 if (!is_gvt_request(req
)) {
239 spin_lock_irqsave(&scheduler
->mmio_context_lock
, flags
);
240 if (action
== INTEL_CONTEXT_SCHEDULE_IN
&&
241 scheduler
->engine_owner
[ring_id
]) {
242 /* Switch ring from vGPU to host. */
243 intel_gvt_switch_mmio(scheduler
->engine_owner
[ring_id
],
245 scheduler
->engine_owner
[ring_id
] = NULL
;
247 spin_unlock_irqrestore(&scheduler
->mmio_context_lock
, flags
);
252 workload
= scheduler
->current_workload
[ring_id
];
253 if (unlikely(!workload
))
257 case INTEL_CONTEXT_SCHEDULE_IN
:
258 spin_lock_irqsave(&scheduler
->mmio_context_lock
, flags
);
259 if (workload
->vgpu
!= scheduler
->engine_owner
[ring_id
]) {
260 /* Switch ring from host to vGPU or vGPU to vGPU. */
261 intel_gvt_switch_mmio(scheduler
->engine_owner
[ring_id
],
262 workload
->vgpu
, ring_id
);
263 scheduler
->engine_owner
[ring_id
] = workload
->vgpu
;
265 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
266 ring_id
, workload
->vgpu
->id
);
267 spin_unlock_irqrestore(&scheduler
->mmio_context_lock
, flags
);
268 atomic_set(&workload
->shadow_ctx_active
, 1);
270 case INTEL_CONTEXT_SCHEDULE_OUT
:
271 save_ring_hw_state(workload
->vgpu
, ring_id
);
272 atomic_set(&workload
->shadow_ctx_active
, 0);
274 case INTEL_CONTEXT_SCHEDULE_PREEMPTED
:
275 save_ring_hw_state(workload
->vgpu
, ring_id
);
281 wake_up(&workload
->shadow_ctx_status_wq
);
286 shadow_context_descriptor_update(struct intel_context
*ce
,
287 struct intel_vgpu_workload
*workload
)
289 u64 desc
= ce
->lrc_desc
;
292 * Update bits 0-11 of the context descriptor which includes flags
293 * like GEN8_CTX_* cached in desc_template
295 desc
&= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT
);
296 desc
|= workload
->ctx_desc
.addressing_mode
<<
297 GEN8_CTX_ADDRESSING_MODE_SHIFT
;
302 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload
*workload
)
304 struct intel_vgpu
*vgpu
= workload
->vgpu
;
305 struct i915_request
*req
= workload
->req
;
306 void *shadow_ring_buffer_va
;
310 if (IS_GEN(req
->i915
, 9) && is_inhibit_context(req
->context
))
311 intel_vgpu_restore_inhibit_context(vgpu
, req
);
314 * To track whether a request has started on HW, we can emit a
315 * breadcrumb at the beginning of the request and check its
316 * timeline's HWSP to see if the breadcrumb has advanced past the
317 * start of this request. Actually, the request must have the
318 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
319 * scheduler might get a wrong state of it during reset. Since the
320 * requests from gvt always set the has_init_breadcrumb flag, here
321 * need to do the emit_init_breadcrumb for all the requests.
323 if (req
->engine
->emit_init_breadcrumb
) {
324 err
= req
->engine
->emit_init_breadcrumb(req
);
326 gvt_vgpu_err("fail to emit init breadcrumb\n");
331 /* allocate shadow ring buffer */
332 cs
= intel_ring_begin(workload
->req
, workload
->rb_len
/ sizeof(u32
));
334 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
339 shadow_ring_buffer_va
= workload
->shadow_ring_buffer_va
;
341 /* get shadow ring buffer va */
342 workload
->shadow_ring_buffer_va
= cs
;
344 memcpy(cs
, shadow_ring_buffer_va
,
347 cs
+= workload
->rb_len
/ sizeof(u32
);
348 intel_ring_advance(workload
->req
, cs
);
353 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
355 if (!wa_ctx
->indirect_ctx
.obj
)
358 i915_gem_object_unpin_map(wa_ctx
->indirect_ctx
.obj
);
359 i915_gem_object_put(wa_ctx
->indirect_ctx
.obj
);
361 wa_ctx
->indirect_ctx
.obj
= NULL
;
362 wa_ctx
->indirect_ctx
.shadow_va
= NULL
;
365 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload
*workload
,
366 struct intel_context
*ce
)
368 struct intel_vgpu_mm
*mm
= workload
->shadow_mm
;
369 struct i915_ppgtt
*ppgtt
= i915_vm_to_ppgtt(ce
->vm
);
372 if (mm
->ppgtt_mm
.root_entry_type
== GTT_TYPE_PPGTT_ROOT_L4_ENTRY
) {
373 px_dma(ppgtt
->pd
) = mm
->ppgtt_mm
.shadow_pdps
[0];
375 for (i
= 0; i
< GVT_RING_CTX_NR_PDPS
; i
++) {
376 struct i915_page_directory
* const pd
=
377 i915_pd_entry(ppgtt
->pd
, i
);
379 px_dma(pd
) = mm
->ppgtt_mm
.shadow_pdps
[i
];
385 intel_gvt_workload_req_alloc(struct intel_vgpu_workload
*workload
)
387 struct intel_vgpu
*vgpu
= workload
->vgpu
;
388 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
389 struct i915_request
*rq
;
394 rq
= i915_request_create(s
->shadow
[workload
->ring_id
]);
396 gvt_vgpu_err("fail to allocate gem request\n");
400 workload
->req
= i915_request_get(rq
);
405 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
406 * shadow it as well, include ringbuffer,wa_ctx and ctx.
407 * @workload: an abstract entity for each execlist submission.
409 * This function is called before the workload submitting to i915, to make
410 * sure the content of the workload is valid.
412 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload
*workload
)
414 struct intel_vgpu
*vgpu
= workload
->vgpu
;
415 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
418 lockdep_assert_held(&vgpu
->vgpu_lock
);
420 if (workload
->shadow
)
423 if (!test_and_set_bit(workload
->ring_id
, s
->shadow_ctx_desc_updated
))
424 shadow_context_descriptor_update(s
->shadow
[workload
->ring_id
],
427 ret
= intel_gvt_scan_and_shadow_ringbuffer(workload
);
431 if (workload
->ring_id
== RCS0
&& workload
->wa_ctx
.indirect_ctx
.size
) {
432 ret
= intel_gvt_scan_and_shadow_wa_ctx(&workload
->wa_ctx
);
437 workload
->shadow
= true;
440 release_shadow_wa_ctx(&workload
->wa_ctx
);
444 static void release_shadow_batch_buffer(struct intel_vgpu_workload
*workload
);
446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload
*workload
)
448 struct intel_gvt
*gvt
= workload
->vgpu
->gvt
;
449 const int gmadr_bytes
= gvt
->device_info
.gmadr_bytes_in_cmd
;
450 struct intel_vgpu_shadow_bb
*bb
;
453 list_for_each_entry(bb
, &workload
->shadow_bb
, list
) {
454 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
455 * is only updated into ring_scan_buffer, not real ring address
456 * allocated in later copy_workload_to_ring_buffer. pls be noted
457 * shadow_ring_buffer_va is now pointed to real ring buffer va
458 * in copy_workload_to_ring_buffer.
462 bb
->bb_start_cmd_va
= workload
->shadow_ring_buffer_va
466 /* for non-priv bb, scan&shadow is only for
467 * debugging purpose, so the content of shadow bb
468 * is the same as original bb. Therefore,
469 * here, rather than switch to shadow bb's gma
470 * address, we directly use original batch buffer's
471 * gma address, and send original bb to hardware
474 if (bb
->clflush
& CLFLUSH_AFTER
) {
475 drm_clflush_virt_range(bb
->va
,
477 bb
->clflush
&= ~CLFLUSH_AFTER
;
479 i915_gem_object_finish_access(bb
->obj
);
480 bb
->accessing
= false;
483 bb
->vma
= i915_gem_object_ggtt_pin(bb
->obj
,
485 if (IS_ERR(bb
->vma
)) {
486 ret
= PTR_ERR(bb
->vma
);
490 /* relocate shadow batch buffer */
491 bb
->bb_start_cmd_va
[1] = i915_ggtt_offset(bb
->vma
);
492 if (gmadr_bytes
== 8)
493 bb
->bb_start_cmd_va
[2] = 0;
495 /* No one is going to touch shadow bb from now on. */
496 if (bb
->clflush
& CLFLUSH_AFTER
) {
497 drm_clflush_virt_range(bb
->va
,
499 bb
->clflush
&= ~CLFLUSH_AFTER
;
502 ret
= i915_gem_object_set_to_gtt_domain(bb
->obj
,
507 ret
= i915_vma_move_to_active(bb
->vma
,
513 i915_gem_object_finish_access(bb
->obj
);
514 bb
->accessing
= false;
519 release_shadow_batch_buffer(workload
);
523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
525 struct intel_vgpu_workload
*workload
=
526 container_of(wa_ctx
, struct intel_vgpu_workload
, wa_ctx
);
527 struct i915_request
*rq
= workload
->req
;
528 struct execlist_ring_context
*shadow_ring_context
=
529 (struct execlist_ring_context
*)rq
->context
->lrc_reg_state
;
531 shadow_ring_context
->bb_per_ctx_ptr
.val
=
532 (shadow_ring_context
->bb_per_ctx_ptr
.val
&
533 (~PER_CTX_ADDR_MASK
)) | wa_ctx
->per_ctx
.shadow_gma
;
534 shadow_ring_context
->rcs_indirect_ctx
.val
=
535 (shadow_ring_context
->rcs_indirect_ctx
.val
&
536 (~INDIRECT_CTX_ADDR_MASK
)) | wa_ctx
->indirect_ctx
.shadow_gma
;
539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
541 struct i915_vma
*vma
;
542 unsigned char *per_ctx_va
=
543 (unsigned char *)wa_ctx
->indirect_ctx
.shadow_va
+
544 wa_ctx
->indirect_ctx
.size
;
546 if (wa_ctx
->indirect_ctx
.size
== 0)
549 vma
= i915_gem_object_ggtt_pin(wa_ctx
->indirect_ctx
.obj
, NULL
,
550 0, CACHELINE_BYTES
, 0);
554 /* FIXME: we are not tracking our pinned VMA leaving it
555 * up to the core to fix up the stray pin_count upon
559 wa_ctx
->indirect_ctx
.shadow_gma
= i915_ggtt_offset(vma
);
561 wa_ctx
->per_ctx
.shadow_gma
= *((unsigned int *)per_ctx_va
+ 1);
562 memset(per_ctx_va
, 0, CACHELINE_BYTES
);
564 update_wa_ctx_2_shadow_ctx(wa_ctx
);
568 static void update_vreg_in_ctx(struct intel_vgpu_workload
*workload
)
570 struct intel_vgpu
*vgpu
= workload
->vgpu
;
571 struct drm_i915_private
*dev_priv
= vgpu
->gvt
->dev_priv
;
574 ring_base
= dev_priv
->engine
[workload
->ring_id
]->mmio_base
;
575 vgpu_vreg_t(vgpu
, RING_START(ring_base
)) = workload
->rb_start
;
578 static void release_shadow_batch_buffer(struct intel_vgpu_workload
*workload
)
580 struct intel_vgpu_shadow_bb
*bb
, *pos
;
582 if (list_empty(&workload
->shadow_bb
))
585 bb
= list_first_entry(&workload
->shadow_bb
,
586 struct intel_vgpu_shadow_bb
, list
);
588 list_for_each_entry_safe(bb
, pos
, &workload
->shadow_bb
, list
) {
591 i915_gem_object_finish_access(bb
->obj
);
593 if (bb
->va
&& !IS_ERR(bb
->va
))
594 i915_gem_object_unpin_map(bb
->obj
);
596 if (bb
->vma
&& !IS_ERR(bb
->vma
)) {
597 i915_vma_unpin(bb
->vma
);
598 i915_vma_close(bb
->vma
);
600 i915_gem_object_put(bb
->obj
);
607 static int prepare_workload(struct intel_vgpu_workload
*workload
)
609 struct intel_vgpu
*vgpu
= workload
->vgpu
;
610 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
611 int ring
= workload
->ring_id
;
614 ret
= intel_vgpu_pin_mm(workload
->shadow_mm
);
616 gvt_vgpu_err("fail to vgpu pin mm\n");
620 if (workload
->shadow_mm
->type
!= INTEL_GVT_MM_PPGTT
||
621 !workload
->shadow_mm
->ppgtt_mm
.shadowed
) {
622 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
626 update_shadow_pdps(workload
);
628 set_context_ppgtt_from_shadow(workload
, s
->shadow
[ring
]);
630 ret
= intel_vgpu_sync_oos_pages(workload
->vgpu
);
632 gvt_vgpu_err("fail to vgpu sync oos pages\n");
636 ret
= intel_vgpu_flush_post_shadow(workload
->vgpu
);
638 gvt_vgpu_err("fail to flush post shadow\n");
642 ret
= copy_workload_to_ring_buffer(workload
);
644 gvt_vgpu_err("fail to generate request\n");
648 ret
= prepare_shadow_batch_buffer(workload
);
650 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
654 ret
= prepare_shadow_wa_ctx(&workload
->wa_ctx
);
656 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
657 goto err_shadow_batch
;
660 if (workload
->prepare
) {
661 ret
= workload
->prepare(workload
);
663 goto err_shadow_wa_ctx
;
668 release_shadow_wa_ctx(&workload
->wa_ctx
);
670 release_shadow_batch_buffer(workload
);
672 intel_vgpu_unpin_mm(workload
->shadow_mm
);
676 static int dispatch_workload(struct intel_vgpu_workload
*workload
)
678 struct intel_vgpu
*vgpu
= workload
->vgpu
;
679 struct i915_request
*rq
;
680 int ring_id
= workload
->ring_id
;
683 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
686 mutex_lock(&vgpu
->vgpu_lock
);
688 ret
= intel_gvt_workload_req_alloc(workload
);
692 ret
= intel_gvt_scan_and_shadow_workload(workload
);
696 ret
= populate_shadow_context(workload
);
698 release_shadow_wa_ctx(&workload
->wa_ctx
);
702 ret
= prepare_workload(workload
);
705 /* We might still need to add request with
706 * clean ctx to retire it properly..
708 rq
= fetch_and_zero(&workload
->req
);
709 i915_request_put(rq
);
712 if (!IS_ERR_OR_NULL(workload
->req
)) {
713 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
714 ring_id
, workload
->req
);
715 i915_request_add(workload
->req
);
716 workload
->dispatched
= true;
720 workload
->status
= ret
;
721 mutex_unlock(&vgpu
->vgpu_lock
);
725 static struct intel_vgpu_workload
*pick_next_workload(
726 struct intel_gvt
*gvt
, int ring_id
)
728 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
729 struct intel_vgpu_workload
*workload
= NULL
;
731 mutex_lock(&gvt
->sched_lock
);
734 * no current vgpu / will be scheduled out / no workload
737 if (!scheduler
->current_vgpu
) {
738 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id
);
742 if (scheduler
->need_reschedule
) {
743 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id
);
747 if (!scheduler
->current_vgpu
->active
||
748 list_empty(workload_q_head(scheduler
->current_vgpu
, ring_id
)))
752 * still have current workload, maybe the workload disptacher
753 * fail to submit it for some reason, resubmit it.
755 if (scheduler
->current_workload
[ring_id
]) {
756 workload
= scheduler
->current_workload
[ring_id
];
757 gvt_dbg_sched("ring id %d still have current workload %p\n",
763 * pick a workload as current workload
764 * once current workload is set, schedule policy routines
765 * will wait the current workload is finished when trying to
766 * schedule out a vgpu.
768 scheduler
->current_workload
[ring_id
] = container_of(
769 workload_q_head(scheduler
->current_vgpu
, ring_id
)->next
,
770 struct intel_vgpu_workload
, list
);
772 workload
= scheduler
->current_workload
[ring_id
];
774 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id
, workload
);
776 atomic_inc(&workload
->vgpu
->submission
.running_workload_num
);
778 mutex_unlock(&gvt
->sched_lock
);
782 static void update_guest_context(struct intel_vgpu_workload
*workload
)
784 struct i915_request
*rq
= workload
->req
;
785 struct intel_vgpu
*vgpu
= workload
->vgpu
;
786 struct intel_gvt
*gvt
= vgpu
->gvt
;
787 struct drm_i915_gem_object
*ctx_obj
= rq
->context
->state
->obj
;
788 struct execlist_ring_context
*shadow_ring_context
;
791 unsigned long context_gpa
, context_page_num
;
793 struct drm_i915_private
*dev_priv
= gvt
->dev_priv
;
798 gvt_dbg_sched("ring id %d workload lrca %x\n", rq
->engine
->id
,
799 workload
->ctx_desc
.lrca
);
801 head
= workload
->rb_head
;
802 tail
= workload
->rb_tail
;
803 wrap_count
= workload
->guest_rb_head
>> RB_HEAD_WRAP_CNT_OFF
;
806 if (wrap_count
== RB_HEAD_WRAP_CNT_MAX
)
812 head
= (wrap_count
<< RB_HEAD_WRAP_CNT_OFF
) | tail
;
814 ring_base
= dev_priv
->engine
[workload
->ring_id
]->mmio_base
;
815 vgpu_vreg_t(vgpu
, RING_TAIL(ring_base
)) = tail
;
816 vgpu_vreg_t(vgpu
, RING_HEAD(ring_base
)) = head
;
818 context_page_num
= rq
->engine
->context_size
;
819 context_page_num
= context_page_num
>> PAGE_SHIFT
;
821 if (IS_BROADWELL(gvt
->dev_priv
) && rq
->engine
->id
== RCS0
)
822 context_page_num
= 19;
826 while (i
< context_page_num
) {
827 context_gpa
= intel_vgpu_gma_to_gpa(vgpu
->gtt
.ggtt_mm
,
828 (u32
)((workload
->ctx_desc
.lrca
+ i
) <<
829 I915_GTT_PAGE_SHIFT
));
830 if (context_gpa
== INTEL_GVT_INVALID_ADDR
) {
831 gvt_vgpu_err("invalid guest context descriptor\n");
835 page
= i915_gem_object_get_page(ctx_obj
, i
);
837 intel_gvt_hypervisor_write_gpa(vgpu
, context_gpa
, src
,
843 intel_gvt_hypervisor_write_gpa(vgpu
, workload
->ring_context_gpa
+
844 RING_CTX_OFF(ring_header
.val
), &workload
->rb_tail
, 4);
846 page
= i915_gem_object_get_page(ctx_obj
, LRC_STATE_PN
);
847 shadow_ring_context
= kmap(page
);
849 #define COPY_REG(name) \
850 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
851 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
854 COPY_REG(ctx_timestamp
);
858 intel_gvt_hypervisor_write_gpa(vgpu
,
859 workload
->ring_context_gpa
+
860 sizeof(*shadow_ring_context
),
861 (void *)shadow_ring_context
+
862 sizeof(*shadow_ring_context
),
863 I915_GTT_PAGE_SIZE
- sizeof(*shadow_ring_context
));
868 void intel_vgpu_clean_workloads(struct intel_vgpu
*vgpu
,
869 intel_engine_mask_t engine_mask
)
871 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
872 struct drm_i915_private
*dev_priv
= vgpu
->gvt
->dev_priv
;
873 struct intel_engine_cs
*engine
;
874 struct intel_vgpu_workload
*pos
, *n
;
875 intel_engine_mask_t tmp
;
877 /* free the unsubmited workloads in the queues. */
878 for_each_engine_masked(engine
, &dev_priv
->gt
, engine_mask
, tmp
) {
879 list_for_each_entry_safe(pos
, n
,
880 &s
->workload_q_head
[engine
->id
], list
) {
881 list_del_init(&pos
->list
);
882 intel_vgpu_destroy_workload(pos
);
884 clear_bit(engine
->id
, s
->shadow_ctx_desc_updated
);
888 static void complete_current_workload(struct intel_gvt
*gvt
, int ring_id
)
890 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
891 struct intel_vgpu_workload
*workload
=
892 scheduler
->current_workload
[ring_id
];
893 struct intel_vgpu
*vgpu
= workload
->vgpu
;
894 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
895 struct i915_request
*rq
= workload
->req
;
898 mutex_lock(&vgpu
->vgpu_lock
);
899 mutex_lock(&gvt
->sched_lock
);
901 /* For the workload w/ request, needs to wait for the context
902 * switch to make sure request is completed.
903 * For the workload w/o request, directly complete the workload.
906 wait_event(workload
->shadow_ctx_status_wq
,
907 !atomic_read(&workload
->shadow_ctx_active
));
909 /* If this request caused GPU hang, req->fence.error will
910 * be set to -EIO. Use -EIO to set workload status so
911 * that when this request caused GPU hang, didn't trigger
912 * context switch interrupt to guest.
914 if (likely(workload
->status
== -EINPROGRESS
)) {
915 if (workload
->req
->fence
.error
== -EIO
)
916 workload
->status
= -EIO
;
918 workload
->status
= 0;
921 if (!workload
->status
&&
922 !(vgpu
->resetting_eng
& BIT(ring_id
))) {
923 update_guest_context(workload
);
925 for_each_set_bit(event
, workload
->pending_events
,
927 intel_vgpu_trigger_virtual_event(vgpu
, event
);
930 i915_request_put(fetch_and_zero(&workload
->req
));
933 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
934 ring_id
, workload
, workload
->status
);
936 scheduler
->current_workload
[ring_id
] = NULL
;
938 list_del_init(&workload
->list
);
940 if (workload
->status
|| vgpu
->resetting_eng
& BIT(ring_id
)) {
941 /* if workload->status is not successful means HW GPU
942 * has occurred GPU hang or something wrong with i915/GVT,
943 * and GVT won't inject context switch interrupt to guest.
944 * So this error is a vGPU hang actually to the guest.
945 * According to this we should emunlate a vGPU hang. If
946 * there are pending workloads which are already submitted
947 * from guest, we should clean them up like HW GPU does.
949 * if it is in middle of engine resetting, the pending
950 * workloads won't be submitted to HW GPU and will be
951 * cleaned up during the resetting process later, so doing
952 * the workload clean up here doesn't have any impact.
954 intel_vgpu_clean_workloads(vgpu
, BIT(ring_id
));
957 workload
->complete(workload
);
959 atomic_dec(&s
->running_workload_num
);
960 wake_up(&scheduler
->workload_complete_wq
);
962 if (gvt
->scheduler
.need_reschedule
)
963 intel_gvt_request_service(gvt
, INTEL_GVT_REQUEST_EVENT_SCHED
);
965 mutex_unlock(&gvt
->sched_lock
);
966 mutex_unlock(&vgpu
->vgpu_lock
);
969 struct workload_thread_param
{
970 struct intel_gvt
*gvt
;
974 static int workload_thread(void *priv
)
976 struct workload_thread_param
*p
= (struct workload_thread_param
*)priv
;
977 struct intel_gvt
*gvt
= p
->gvt
;
978 int ring_id
= p
->ring_id
;
979 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
980 struct intel_vgpu_workload
*workload
= NULL
;
981 struct intel_vgpu
*vgpu
= NULL
;
983 bool need_force_wake
= (INTEL_GEN(gvt
->dev_priv
) >= 9);
984 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
985 struct intel_runtime_pm
*rpm
= &gvt
->dev_priv
->runtime_pm
;
989 gvt_dbg_core("workload thread for ring %d started\n", ring_id
);
991 while (!kthread_should_stop()) {
992 add_wait_queue(&scheduler
->waitq
[ring_id
], &wait
);
994 workload
= pick_next_workload(gvt
, ring_id
);
997 wait_woken(&wait
, TASK_INTERRUPTIBLE
,
998 MAX_SCHEDULE_TIMEOUT
);
999 } while (!kthread_should_stop());
1000 remove_wait_queue(&scheduler
->waitq
[ring_id
], &wait
);
1005 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1006 workload
->ring_id
, workload
,
1007 workload
->vgpu
->id
);
1009 intel_runtime_pm_get(rpm
);
1011 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1012 workload
->ring_id
, workload
);
1014 if (need_force_wake
)
1015 intel_uncore_forcewake_get(&gvt
->dev_priv
->uncore
,
1018 * Update the vReg of the vGPU which submitted this
1019 * workload. The vGPU may use these registers for checking
1020 * the context state. The value comes from GPU commands
1023 update_vreg_in_ctx(workload
);
1025 ret
= dispatch_workload(workload
);
1028 vgpu
= workload
->vgpu
;
1029 gvt_vgpu_err("fail to dispatch workload, skip\n");
1033 gvt_dbg_sched("ring id %d wait workload %p\n",
1034 workload
->ring_id
, workload
);
1035 i915_request_wait(workload
->req
, 0, MAX_SCHEDULE_TIMEOUT
);
1038 gvt_dbg_sched("will complete workload %p, status: %d\n",
1039 workload
, workload
->status
);
1041 complete_current_workload(gvt
, ring_id
);
1043 if (need_force_wake
)
1044 intel_uncore_forcewake_put(&gvt
->dev_priv
->uncore
,
1047 intel_runtime_pm_put_unchecked(rpm
);
1048 if (ret
&& (vgpu_is_vm_unhealthy(ret
)))
1049 enter_failsafe_mode(vgpu
, GVT_FAILSAFE_GUEST_ERR
);
1054 void intel_gvt_wait_vgpu_idle(struct intel_vgpu
*vgpu
)
1056 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1057 struct intel_gvt
*gvt
= vgpu
->gvt
;
1058 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
1060 if (atomic_read(&s
->running_workload_num
)) {
1061 gvt_dbg_sched("wait vgpu idle\n");
1063 wait_event(scheduler
->workload_complete_wq
,
1064 !atomic_read(&s
->running_workload_num
));
1068 void intel_gvt_clean_workload_scheduler(struct intel_gvt
*gvt
)
1070 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
1071 struct intel_engine_cs
*engine
;
1072 enum intel_engine_id i
;
1074 gvt_dbg_core("clean workload scheduler\n");
1076 for_each_engine(engine
, gvt
->dev_priv
, i
) {
1077 atomic_notifier_chain_unregister(
1078 &engine
->context_status_notifier
,
1079 &gvt
->shadow_ctx_notifier_block
[i
]);
1080 kthread_stop(scheduler
->thread
[i
]);
1084 int intel_gvt_init_workload_scheduler(struct intel_gvt
*gvt
)
1086 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
1087 struct workload_thread_param
*param
= NULL
;
1088 struct intel_engine_cs
*engine
;
1089 enum intel_engine_id i
;
1092 gvt_dbg_core("init workload scheduler\n");
1094 init_waitqueue_head(&scheduler
->workload_complete_wq
);
1096 for_each_engine(engine
, gvt
->dev_priv
, i
) {
1097 init_waitqueue_head(&scheduler
->waitq
[i
]);
1099 param
= kzalloc(sizeof(*param
), GFP_KERNEL
);
1108 scheduler
->thread
[i
] = kthread_run(workload_thread
, param
,
1109 "gvt workload %d", i
);
1110 if (IS_ERR(scheduler
->thread
[i
])) {
1111 gvt_err("fail to create workload thread\n");
1112 ret
= PTR_ERR(scheduler
->thread
[i
]);
1116 gvt
->shadow_ctx_notifier_block
[i
].notifier_call
=
1117 shadow_context_status_change
;
1118 atomic_notifier_chain_register(&engine
->context_status_notifier
,
1119 &gvt
->shadow_ctx_notifier_block
[i
]);
1123 intel_gvt_clean_workload_scheduler(gvt
);
1130 i915_context_ppgtt_root_restore(struct intel_vgpu_submission
*s
,
1131 struct i915_ppgtt
*ppgtt
)
1135 if (i915_vm_is_4lvl(&ppgtt
->vm
)) {
1136 px_dma(ppgtt
->pd
) = s
->i915_context_pml4
;
1138 for (i
= 0; i
< GEN8_3LVL_PDPES
; i
++) {
1139 struct i915_page_directory
* const pd
=
1140 i915_pd_entry(ppgtt
->pd
, i
);
1142 px_dma(pd
) = s
->i915_context_pdps
[i
];
1148 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1151 * This function is called when a vGPU is being destroyed.
1154 void intel_vgpu_clean_submission(struct intel_vgpu
*vgpu
)
1156 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1157 struct intel_engine_cs
*engine
;
1158 enum intel_engine_id id
;
1160 intel_vgpu_select_submission_ops(vgpu
, ALL_ENGINES
, 0);
1162 i915_context_ppgtt_root_restore(s
, i915_vm_to_ppgtt(s
->shadow
[0]->vm
));
1163 for_each_engine(engine
, vgpu
->gvt
->dev_priv
, id
)
1164 intel_context_unpin(s
->shadow
[id
]);
1166 kmem_cache_destroy(s
->workloads
);
1171 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1173 * @engine_mask: engines expected to be reset
1175 * This function is called when a vGPU is being destroyed.
1178 void intel_vgpu_reset_submission(struct intel_vgpu
*vgpu
,
1179 intel_engine_mask_t engine_mask
)
1181 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1186 intel_vgpu_clean_workloads(vgpu
, engine_mask
);
1187 s
->ops
->reset(vgpu
, engine_mask
);
1191 i915_context_ppgtt_root_save(struct intel_vgpu_submission
*s
,
1192 struct i915_ppgtt
*ppgtt
)
1196 if (i915_vm_is_4lvl(&ppgtt
->vm
)) {
1197 s
->i915_context_pml4
= px_dma(ppgtt
->pd
);
1199 for (i
= 0; i
< GEN8_3LVL_PDPES
; i
++) {
1200 struct i915_page_directory
* const pd
=
1201 i915_pd_entry(ppgtt
->pd
, i
);
1203 s
->i915_context_pdps
[i
] = px_dma(pd
);
1209 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1212 * This function is called when a vGPU is being created.
1215 * Zero on success, negative error code if failed.
1218 int intel_vgpu_setup_submission(struct intel_vgpu
*vgpu
)
1220 struct drm_i915_private
*i915
= vgpu
->gvt
->dev_priv
;
1221 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1222 struct intel_engine_cs
*engine
;
1223 struct i915_ppgtt
*ppgtt
;
1224 enum intel_engine_id i
;
1227 ppgtt
= i915_ppgtt_create(&i915
->gt
);
1229 return PTR_ERR(ppgtt
);
1231 i915_context_ppgtt_root_save(s
, ppgtt
);
1233 for_each_engine(engine
, i915
, i
) {
1234 struct intel_context
*ce
;
1236 INIT_LIST_HEAD(&s
->workload_q_head
[i
]);
1237 s
->shadow
[i
] = ERR_PTR(-EINVAL
);
1239 ce
= intel_context_create(engine
);
1242 goto out_shadow_ctx
;
1245 i915_vm_put(ce
->vm
);
1246 ce
->vm
= i915_vm_get(&ppgtt
->vm
);
1247 intel_context_set_single_submission(ce
);
1249 if (!USES_GUC_SUBMISSION(i915
)) { /* Max ring buffer size */
1250 const unsigned int ring_size
= 512 * SZ_4K
;
1252 ce
->ring
= __intel_context_ring_size(ring_size
);
1255 ret
= intel_context_pin(ce
);
1256 intel_context_put(ce
);
1258 goto out_shadow_ctx
;
1263 bitmap_zero(s
->shadow_ctx_desc_updated
, I915_NUM_ENGINES
);
1265 s
->workloads
= kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1266 sizeof(struct intel_vgpu_workload
), 0,
1268 offsetof(struct intel_vgpu_workload
, rb_tail
),
1269 sizeof_field(struct intel_vgpu_workload
, rb_tail
),
1272 if (!s
->workloads
) {
1274 goto out_shadow_ctx
;
1277 atomic_set(&s
->running_workload_num
, 0);
1278 bitmap_zero(s
->tlb_handle_pending
, I915_NUM_ENGINES
);
1280 i915_vm_put(&ppgtt
->vm
);
1284 i915_context_ppgtt_root_restore(s
, ppgtt
);
1285 for_each_engine(engine
, i915
, i
) {
1286 if (IS_ERR(s
->shadow
[i
]))
1289 intel_context_unpin(s
->shadow
[i
]);
1290 intel_context_put(s
->shadow
[i
]);
1292 i915_vm_put(&ppgtt
->vm
);
1297 * intel_vgpu_select_submission_ops - select virtual submission interface
1299 * @engine_mask: either ALL_ENGINES or target engine mask
1300 * @interface: expected vGPU virtual submission interface
1302 * This function is called when guest configures submission interface.
1305 * Zero on success, negative error code if failed.
1308 int intel_vgpu_select_submission_ops(struct intel_vgpu
*vgpu
,
1309 intel_engine_mask_t engine_mask
,
1310 unsigned int interface
)
1312 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1313 const struct intel_vgpu_submission_ops
*ops
[] = {
1314 [INTEL_VGPU_EXECLIST_SUBMISSION
] =
1315 &intel_vgpu_execlist_submission_ops
,
1319 if (WARN_ON(interface
>= ARRAY_SIZE(ops
)))
1322 if (WARN_ON(interface
== 0 && engine_mask
!= ALL_ENGINES
))
1326 s
->ops
->clean(vgpu
, engine_mask
);
1328 if (interface
== 0) {
1330 s
->virtual_submission_interface
= 0;
1332 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu
->id
);
1336 ret
= ops
[interface
]->init(vgpu
, engine_mask
);
1340 s
->ops
= ops
[interface
];
1341 s
->virtual_submission_interface
= interface
;
1344 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1345 vgpu
->id
, s
->ops
->name
);
1351 * intel_vgpu_destroy_workload - destroy a vGPU workload
1352 * @workload: workload to destroy
1354 * This function is called when destroy a vGPU workload.
1357 void intel_vgpu_destroy_workload(struct intel_vgpu_workload
*workload
)
1359 struct intel_vgpu_submission
*s
= &workload
->vgpu
->submission
;
1361 release_shadow_batch_buffer(workload
);
1362 release_shadow_wa_ctx(&workload
->wa_ctx
);
1364 if (workload
->shadow_mm
)
1365 intel_vgpu_mm_put(workload
->shadow_mm
);
1367 kmem_cache_free(s
->workloads
, workload
);
1370 static struct intel_vgpu_workload
*
1371 alloc_workload(struct intel_vgpu
*vgpu
)
1373 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1374 struct intel_vgpu_workload
*workload
;
1376 workload
= kmem_cache_zalloc(s
->workloads
, GFP_KERNEL
);
1378 return ERR_PTR(-ENOMEM
);
1380 INIT_LIST_HEAD(&workload
->list
);
1381 INIT_LIST_HEAD(&workload
->shadow_bb
);
1383 init_waitqueue_head(&workload
->shadow_ctx_status_wq
);
1384 atomic_set(&workload
->shadow_ctx_active
, 0);
1386 workload
->status
= -EINPROGRESS
;
1387 workload
->vgpu
= vgpu
;
1392 #define RING_CTX_OFF(x) \
1393 offsetof(struct execlist_ring_context, x)
1395 static void read_guest_pdps(struct intel_vgpu
*vgpu
,
1396 u64 ring_context_gpa
, u32 pdp
[8])
1401 gpa
= ring_context_gpa
+ RING_CTX_OFF(pdps
[0].val
);
1403 for (i
= 0; i
< 8; i
++)
1404 intel_gvt_hypervisor_read_gpa(vgpu
,
1405 gpa
+ i
* 8, &pdp
[7 - i
], 4);
1408 static int prepare_mm(struct intel_vgpu_workload
*workload
)
1410 struct execlist_ctx_descriptor_format
*desc
= &workload
->ctx_desc
;
1411 struct intel_vgpu_mm
*mm
;
1412 struct intel_vgpu
*vgpu
= workload
->vgpu
;
1413 enum intel_gvt_gtt_type root_entry_type
;
1414 u64 pdps
[GVT_RING_CTX_NR_PDPS
];
1416 switch (desc
->addressing_mode
) {
1417 case 1: /* legacy 32-bit */
1418 root_entry_type
= GTT_TYPE_PPGTT_ROOT_L3_ENTRY
;
1420 case 3: /* legacy 64-bit */
1421 root_entry_type
= GTT_TYPE_PPGTT_ROOT_L4_ENTRY
;
1424 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1428 read_guest_pdps(workload
->vgpu
, workload
->ring_context_gpa
, (void *)pdps
);
1430 mm
= intel_vgpu_get_ppgtt_mm(workload
->vgpu
, root_entry_type
, pdps
);
1434 workload
->shadow_mm
= mm
;
1438 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1439 ((a)->lrca == (b)->lrca))
1442 * intel_vgpu_create_workload - create a vGPU workload
1444 * @ring_id: ring index
1445 * @desc: a guest context descriptor
1447 * This function is called when creating a vGPU workload.
1450 * struct intel_vgpu_workload * on success, negative error code in
1451 * pointer if failed.
1454 struct intel_vgpu_workload
*
1455 intel_vgpu_create_workload(struct intel_vgpu
*vgpu
, int ring_id
,
1456 struct execlist_ctx_descriptor_format
*desc
)
1458 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1459 struct list_head
*q
= workload_q_head(vgpu
, ring_id
);
1460 struct intel_vgpu_workload
*last_workload
= NULL
;
1461 struct intel_vgpu_workload
*workload
= NULL
;
1462 struct drm_i915_private
*dev_priv
= vgpu
->gvt
->dev_priv
;
1463 u64 ring_context_gpa
;
1464 u32 head
, tail
, start
, ctl
, ctx_ctl
, per_ctx
, indirect_ctx
;
1468 ring_context_gpa
= intel_vgpu_gma_to_gpa(vgpu
->gtt
.ggtt_mm
,
1469 (u32
)((desc
->lrca
+ 1) << I915_GTT_PAGE_SHIFT
));
1470 if (ring_context_gpa
== INTEL_GVT_INVALID_ADDR
) {
1471 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc
->lrca
);
1472 return ERR_PTR(-EINVAL
);
1475 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1476 RING_CTX_OFF(ring_header
.val
), &head
, 4);
1478 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1479 RING_CTX_OFF(ring_tail
.val
), &tail
, 4);
1483 head
&= RB_HEAD_OFF_MASK
;
1484 tail
&= RB_TAIL_OFF_MASK
;
1486 list_for_each_entry_reverse(last_workload
, q
, list
) {
1488 if (same_context(&last_workload
->ctx_desc
, desc
)) {
1489 gvt_dbg_el("ring id %d cur workload == last\n",
1491 gvt_dbg_el("ctx head %x real head %lx\n", head
,
1492 last_workload
->rb_tail
);
1494 * cannot use guest context head pointer here,
1495 * as it might not be updated at this time
1497 head
= last_workload
->rb_tail
;
1502 gvt_dbg_el("ring id %d begin a new workload\n", ring_id
);
1504 /* record some ring buffer register values for scan and shadow */
1505 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1506 RING_CTX_OFF(rb_start
.val
), &start
, 4);
1507 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1508 RING_CTX_OFF(rb_ctrl
.val
), &ctl
, 4);
1509 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1510 RING_CTX_OFF(ctx_ctrl
.val
), &ctx_ctl
, 4);
1512 if (!intel_gvt_ggtt_validate_range(vgpu
, start
,
1513 _RING_CTL_BUF_SIZE(ctl
))) {
1514 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start
);
1515 return ERR_PTR(-EINVAL
);
1518 workload
= alloc_workload(vgpu
);
1519 if (IS_ERR(workload
))
1522 workload
->ring_id
= ring_id
;
1523 workload
->ctx_desc
= *desc
;
1524 workload
->ring_context_gpa
= ring_context_gpa
;
1525 workload
->rb_head
= head
;
1526 workload
->guest_rb_head
= guest_head
;
1527 workload
->rb_tail
= tail
;
1528 workload
->rb_start
= start
;
1529 workload
->rb_ctl
= ctl
;
1531 if (ring_id
== RCS0
) {
1532 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1533 RING_CTX_OFF(bb_per_ctx_ptr
.val
), &per_ctx
, 4);
1534 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1535 RING_CTX_OFF(rcs_indirect_ctx
.val
), &indirect_ctx
, 4);
1537 workload
->wa_ctx
.indirect_ctx
.guest_gma
=
1538 indirect_ctx
& INDIRECT_CTX_ADDR_MASK
;
1539 workload
->wa_ctx
.indirect_ctx
.size
=
1540 (indirect_ctx
& INDIRECT_CTX_SIZE_MASK
) *
1543 if (workload
->wa_ctx
.indirect_ctx
.size
!= 0) {
1544 if (!intel_gvt_ggtt_validate_range(vgpu
,
1545 workload
->wa_ctx
.indirect_ctx
.guest_gma
,
1546 workload
->wa_ctx
.indirect_ctx
.size
)) {
1547 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1548 workload
->wa_ctx
.indirect_ctx
.guest_gma
);
1549 kmem_cache_free(s
->workloads
, workload
);
1550 return ERR_PTR(-EINVAL
);
1554 workload
->wa_ctx
.per_ctx
.guest_gma
=
1555 per_ctx
& PER_CTX_ADDR_MASK
;
1556 workload
->wa_ctx
.per_ctx
.valid
= per_ctx
& 1;
1557 if (workload
->wa_ctx
.per_ctx
.valid
) {
1558 if (!intel_gvt_ggtt_validate_range(vgpu
,
1559 workload
->wa_ctx
.per_ctx
.guest_gma
,
1561 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1562 workload
->wa_ctx
.per_ctx
.guest_gma
);
1563 kmem_cache_free(s
->workloads
, workload
);
1564 return ERR_PTR(-EINVAL
);
1569 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1570 workload
, ring_id
, head
, tail
, start
, ctl
);
1572 ret
= prepare_mm(workload
);
1574 kmem_cache_free(s
->workloads
, workload
);
1575 return ERR_PTR(ret
);
1578 /* Only scan and shadow the first workload in the queue
1579 * as there is only one pre-allocated buf-obj for shadow.
1581 if (list_empty(workload_q_head(vgpu
, ring_id
))) {
1582 intel_runtime_pm_get(&dev_priv
->runtime_pm
);
1583 ret
= intel_gvt_scan_and_shadow_workload(workload
);
1584 intel_runtime_pm_put_unchecked(&dev_priv
->runtime_pm
);
1588 if (vgpu_is_vm_unhealthy(ret
))
1589 enter_failsafe_mode(vgpu
, GVT_FAILSAFE_GUEST_ERR
);
1590 intel_vgpu_destroy_workload(workload
);
1591 return ERR_PTR(ret
);
1598 * intel_vgpu_queue_workload - Qeue a vGPU workload
1599 * @workload: the workload to queue in
1601 void intel_vgpu_queue_workload(struct intel_vgpu_workload
*workload
)
1603 list_add_tail(&workload
->list
,
1604 workload_q_head(workload
->vgpu
, workload
->ring_id
));
1605 intel_gvt_kick_schedule(workload
->vgpu
->gvt
);
1606 wake_up(&workload
->vgpu
->gvt
->scheduler
.waitq
[workload
->ring_id
]);