treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_hw_ctl.c
blob831e5f7a9b7f0ed676377aa3dc145af7756e627a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3 */
5 #include <linux/delay.h>
6 #include "dpu_hwio.h"
7 #include "dpu_hw_ctl.h"
8 #include "dpu_kms.h"
9 #include "dpu_trace.h"
11 #define CTL_LAYER(lm) \
12 (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
13 #define CTL_LAYER_EXT(lm) \
14 (0x40 + (((lm) - LM_0) * 0x004))
15 #define CTL_LAYER_EXT2(lm) \
16 (0x70 + (((lm) - LM_0) * 0x004))
17 #define CTL_LAYER_EXT3(lm) \
18 (0xA0 + (((lm) - LM_0) * 0x004))
19 #define CTL_TOP 0x014
20 #define CTL_FLUSH 0x018
21 #define CTL_START 0x01C
22 #define CTL_PREPARE 0x0d0
23 #define CTL_SW_RESET 0x030
24 #define CTL_LAYER_EXTN_OFFSET 0x40
25 #define CTL_INTF_ACTIVE 0x0F4
26 #define CTL_INTF_FLUSH 0x110
27 #define CTL_INTF_MASTER 0x134
29 #define CTL_MIXER_BORDER_OUT BIT(24)
30 #define CTL_FLUSH_MASK_CTL BIT(17)
32 #define DPU_REG_RESET_TIMEOUT_US 2000
33 #define INTF_IDX 31
35 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
36 const struct dpu_mdss_cfg *m,
37 void __iomem *addr,
38 struct dpu_hw_blk_reg_map *b)
40 int i;
42 for (i = 0; i < m->ctl_count; i++) {
43 if (ctl == m->ctl[i].id) {
44 b->base_off = addr;
45 b->blk_off = m->ctl[i].base;
46 b->length = m->ctl[i].len;
47 b->hwversion = m->hwversion;
48 b->log_mask = DPU_DBG_MASK_CTL;
49 return &m->ctl[i];
52 return ERR_PTR(-ENOMEM);
55 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
56 enum dpu_lm lm)
58 int i;
59 int stages = -EINVAL;
61 for (i = 0; i < count; i++) {
62 if (lm == mixer[i].id) {
63 stages = mixer[i].sblk->maxblendstages;
64 break;
68 return stages;
71 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
73 struct dpu_hw_blk_reg_map *c = &ctx->hw;
75 return DPU_REG_READ(c, CTL_FLUSH);
78 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
80 trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
81 dpu_hw_ctl_get_flush_register(ctx));
82 DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
85 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
87 trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
88 dpu_hw_ctl_get_flush_register(ctx));
89 DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
92 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
94 trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
95 dpu_hw_ctl_get_flush_register(ctx));
96 ctx->pending_flush_mask = 0x0;
99 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
100 u32 flushbits)
102 trace_dpu_hw_ctl_update_pending_flush(flushbits,
103 ctx->pending_flush_mask);
104 ctx->pending_flush_mask |= flushbits;
107 static inline void dpu_hw_ctl_update_pending_intf_flush(struct dpu_hw_ctl *ctx,
108 u32 flushbits)
110 ctx->pending_intf_flush_mask |= flushbits;
113 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
115 return ctx->pending_flush_mask;
118 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
121 if (ctx->pending_flush_mask & BIT(INTF_IDX))
122 DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
123 ctx->pending_intf_flush_mask);
125 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
128 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
130 trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
131 dpu_hw_ctl_get_flush_register(ctx));
132 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
135 static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx,
136 enum dpu_sspp sspp)
138 uint32_t flushbits = 0;
140 switch (sspp) {
141 case SSPP_VIG0:
142 flushbits = BIT(0);
143 break;
144 case SSPP_VIG1:
145 flushbits = BIT(1);
146 break;
147 case SSPP_VIG2:
148 flushbits = BIT(2);
149 break;
150 case SSPP_VIG3:
151 flushbits = BIT(18);
152 break;
153 case SSPP_RGB0:
154 flushbits = BIT(3);
155 break;
156 case SSPP_RGB1:
157 flushbits = BIT(4);
158 break;
159 case SSPP_RGB2:
160 flushbits = BIT(5);
161 break;
162 case SSPP_RGB3:
163 flushbits = BIT(19);
164 break;
165 case SSPP_DMA0:
166 flushbits = BIT(11);
167 break;
168 case SSPP_DMA1:
169 flushbits = BIT(12);
170 break;
171 case SSPP_DMA2:
172 flushbits = BIT(24);
173 break;
174 case SSPP_DMA3:
175 flushbits = BIT(25);
176 break;
177 case SSPP_CURSOR0:
178 flushbits = BIT(22);
179 break;
180 case SSPP_CURSOR1:
181 flushbits = BIT(23);
182 break;
183 default:
184 break;
187 return flushbits;
190 static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx,
191 enum dpu_lm lm)
193 uint32_t flushbits = 0;
195 switch (lm) {
196 case LM_0:
197 flushbits = BIT(6);
198 break;
199 case LM_1:
200 flushbits = BIT(7);
201 break;
202 case LM_2:
203 flushbits = BIT(8);
204 break;
205 case LM_3:
206 flushbits = BIT(9);
207 break;
208 case LM_4:
209 flushbits = BIT(10);
210 break;
211 case LM_5:
212 flushbits = BIT(20);
213 break;
214 default:
215 return -EINVAL;
218 flushbits |= CTL_FLUSH_MASK_CTL;
220 return flushbits;
223 static int dpu_hw_ctl_get_bitmask_intf(struct dpu_hw_ctl *ctx,
224 u32 *flushbits, enum dpu_intf intf)
226 switch (intf) {
227 case INTF_0:
228 *flushbits |= BIT(31);
229 break;
230 case INTF_1:
231 *flushbits |= BIT(30);
232 break;
233 case INTF_2:
234 *flushbits |= BIT(29);
235 break;
236 case INTF_3:
237 *flushbits |= BIT(28);
238 break;
239 default:
240 return -EINVAL;
242 return 0;
245 static int dpu_hw_ctl_get_bitmask_intf_v1(struct dpu_hw_ctl *ctx,
246 u32 *flushbits, enum dpu_intf intf)
248 switch (intf) {
249 case INTF_0:
250 case INTF_1:
251 *flushbits |= BIT(31);
252 break;
253 default:
254 return 0;
256 return 0;
259 static int dpu_hw_ctl_active_get_bitmask_intf(struct dpu_hw_ctl *ctx,
260 u32 *flushbits, enum dpu_intf intf)
262 switch (intf) {
263 case INTF_0:
264 *flushbits |= BIT(0);
265 break;
266 case INTF_1:
267 *flushbits |= BIT(1);
268 break;
269 default:
270 return 0;
272 return 0;
275 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
277 struct dpu_hw_blk_reg_map *c = &ctx->hw;
278 ktime_t timeout;
279 u32 status;
281 timeout = ktime_add_us(ktime_get(), timeout_us);
284 * it takes around 30us to have mdp finish resetting its ctl path
285 * poll every 50us so that reset should be completed at 1st poll
287 do {
288 status = DPU_REG_READ(c, CTL_SW_RESET);
289 status &= 0x1;
290 if (status)
291 usleep_range(20, 50);
292 } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
294 return status;
297 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
299 struct dpu_hw_blk_reg_map *c = &ctx->hw;
301 pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
302 DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
303 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
304 return -EINVAL;
306 return 0;
309 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
311 struct dpu_hw_blk_reg_map *c = &ctx->hw;
312 u32 status;
314 status = DPU_REG_READ(c, CTL_SW_RESET);
315 status &= 0x01;
316 if (!status)
317 return 0;
319 pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
320 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
321 pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
322 return -EINVAL;
325 return 0;
328 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
330 struct dpu_hw_blk_reg_map *c = &ctx->hw;
331 int i;
333 for (i = 0; i < ctx->mixer_count; i++) {
334 DPU_REG_WRITE(c, CTL_LAYER(LM_0 + i), 0);
335 DPU_REG_WRITE(c, CTL_LAYER_EXT(LM_0 + i), 0);
336 DPU_REG_WRITE(c, CTL_LAYER_EXT2(LM_0 + i), 0);
337 DPU_REG_WRITE(c, CTL_LAYER_EXT3(LM_0 + i), 0);
341 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
342 enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
344 struct dpu_hw_blk_reg_map *c = &ctx->hw;
345 u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
346 u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
347 int i, j;
348 int stages;
349 int pipes_per_stage;
351 stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
352 if (stages < 0)
353 return;
355 if (test_bit(DPU_MIXER_SOURCESPLIT,
356 &ctx->mixer_hw_caps->features))
357 pipes_per_stage = PIPES_PER_STAGE;
358 else
359 pipes_per_stage = 1;
361 mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
363 if (!stage_cfg)
364 goto exit;
366 for (i = 0; i <= stages; i++) {
367 /* overflow to ext register if 'i + 1 > 7' */
368 mix = (i + 1) & 0x7;
369 ext = i >= 7;
371 for (j = 0 ; j < pipes_per_stage; j++) {
372 enum dpu_sspp_multirect_index rect_index =
373 stage_cfg->multirect_index[i][j];
375 switch (stage_cfg->stage[i][j]) {
376 case SSPP_VIG0:
377 if (rect_index == DPU_SSPP_RECT_1) {
378 mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
379 } else {
380 mixercfg |= mix << 0;
381 mixercfg_ext |= ext << 0;
383 break;
384 case SSPP_VIG1:
385 if (rect_index == DPU_SSPP_RECT_1) {
386 mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
387 } else {
388 mixercfg |= mix << 3;
389 mixercfg_ext |= ext << 2;
391 break;
392 case SSPP_VIG2:
393 if (rect_index == DPU_SSPP_RECT_1) {
394 mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
395 } else {
396 mixercfg |= mix << 6;
397 mixercfg_ext |= ext << 4;
399 break;
400 case SSPP_VIG3:
401 if (rect_index == DPU_SSPP_RECT_1) {
402 mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
403 } else {
404 mixercfg |= mix << 26;
405 mixercfg_ext |= ext << 6;
407 break;
408 case SSPP_RGB0:
409 mixercfg |= mix << 9;
410 mixercfg_ext |= ext << 8;
411 break;
412 case SSPP_RGB1:
413 mixercfg |= mix << 12;
414 mixercfg_ext |= ext << 10;
415 break;
416 case SSPP_RGB2:
417 mixercfg |= mix << 15;
418 mixercfg_ext |= ext << 12;
419 break;
420 case SSPP_RGB3:
421 mixercfg |= mix << 29;
422 mixercfg_ext |= ext << 14;
423 break;
424 case SSPP_DMA0:
425 if (rect_index == DPU_SSPP_RECT_1) {
426 mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
427 } else {
428 mixercfg |= mix << 18;
429 mixercfg_ext |= ext << 16;
431 break;
432 case SSPP_DMA1:
433 if (rect_index == DPU_SSPP_RECT_1) {
434 mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
435 } else {
436 mixercfg |= mix << 21;
437 mixercfg_ext |= ext << 18;
439 break;
440 case SSPP_DMA2:
441 if (rect_index == DPU_SSPP_RECT_1) {
442 mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
443 } else {
444 mix |= (i + 1) & 0xF;
445 mixercfg_ext2 |= mix << 0;
447 break;
448 case SSPP_DMA3:
449 if (rect_index == DPU_SSPP_RECT_1) {
450 mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
451 } else {
452 mix |= (i + 1) & 0xF;
453 mixercfg_ext2 |= mix << 4;
455 break;
456 case SSPP_CURSOR0:
457 mixercfg_ext |= ((i + 1) & 0xF) << 20;
458 break;
459 case SSPP_CURSOR1:
460 mixercfg_ext |= ((i + 1) & 0xF) << 26;
461 break;
462 default:
463 break;
468 exit:
469 DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
470 DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
471 DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
472 DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
476 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
477 struct dpu_hw_intf_cfg *cfg)
479 struct dpu_hw_blk_reg_map *c = &ctx->hw;
480 u32 intf_active = 0;
481 u32 mode_sel = 0;
483 if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
484 mode_sel |= BIT(17);
486 intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
487 intf_active |= BIT(cfg->intf - INTF_0);
489 DPU_REG_WRITE(c, CTL_TOP, mode_sel);
490 DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
493 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
494 struct dpu_hw_intf_cfg *cfg)
496 struct dpu_hw_blk_reg_map *c = &ctx->hw;
497 u32 intf_cfg = 0;
499 intf_cfg |= (cfg->intf & 0xF) << 4;
501 if (cfg->mode_3d) {
502 intf_cfg |= BIT(19);
503 intf_cfg |= (cfg->mode_3d - 0x1) << 20;
506 switch (cfg->intf_mode_sel) {
507 case DPU_CTL_MODE_SEL_VID:
508 intf_cfg &= ~BIT(17);
509 intf_cfg &= ~(0x3 << 15);
510 break;
511 case DPU_CTL_MODE_SEL_CMD:
512 intf_cfg |= BIT(17);
513 intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
514 break;
515 default:
516 pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
517 return;
520 DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
523 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
524 unsigned long cap)
526 if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
527 ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
528 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
529 ops->get_bitmask_intf = dpu_hw_ctl_get_bitmask_intf_v1;
530 ops->get_bitmask_active_intf =
531 dpu_hw_ctl_active_get_bitmask_intf;
532 ops->update_pending_intf_flush =
533 dpu_hw_ctl_update_pending_intf_flush;
534 } else {
535 ops->trigger_flush = dpu_hw_ctl_trigger_flush;
536 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
537 ops->get_bitmask_intf = dpu_hw_ctl_get_bitmask_intf;
539 ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
540 ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
541 ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
542 ops->get_flush_register = dpu_hw_ctl_get_flush_register;
543 ops->trigger_start = dpu_hw_ctl_trigger_start;
544 ops->trigger_pending = dpu_hw_ctl_trigger_pending;
545 ops->reset = dpu_hw_ctl_reset_control;
546 ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
547 ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
548 ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
549 ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp;
550 ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer;
553 static struct dpu_hw_blk_ops dpu_hw_ops;
555 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
556 void __iomem *addr,
557 const struct dpu_mdss_cfg *m)
559 struct dpu_hw_ctl *c;
560 const struct dpu_ctl_cfg *cfg;
562 c = kzalloc(sizeof(*c), GFP_KERNEL);
563 if (!c)
564 return ERR_PTR(-ENOMEM);
566 cfg = _ctl_offset(idx, m, addr, &c->hw);
567 if (IS_ERR_OR_NULL(cfg)) {
568 kfree(c);
569 pr_err("failed to create dpu_hw_ctl %d\n", idx);
570 return ERR_PTR(-EINVAL);
573 c->caps = cfg;
574 _setup_ctl_ops(&c->ops, c->caps->features);
575 c->idx = idx;
576 c->mixer_count = m->mixer_count;
577 c->mixer_hw_caps = m->mixer;
579 dpu_hw_blk_init(&c->base, DPU_HW_BLK_CTL, idx, &dpu_hw_ops);
581 return c;
584 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
586 if (ctx)
587 dpu_hw_blk_destroy(&ctx->base);
588 kfree(ctx);