1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
10 #include <linux/clk.h>
11 #include <linux/interconnect.h>
12 #include <linux/regulator/consumer.h>
15 #include "msm_fence.h"
16 #include "msm_ringbuffer.h"
18 struct msm_gem_submit
;
19 struct msm_gpu_perfcntr
;
22 struct msm_gpu_config
{
26 unsigned int nr_rings
;
29 /* So far, with hardware that I've seen to date, we can have:
30 * + zero, one, or two z180 2d cores
31 * + a3xx or a2xx 3d core, which share a common CP (the firmware
32 * for the CP seems to implement some different PM4 packet types
33 * but the basics of cmdstream submission are the same)
35 * Which means that the eventual complete "class" hierarchy, once
36 * support for all past and present hw is in place, becomes:
43 struct msm_gpu_funcs
{
44 int (*get_param
)(struct msm_gpu
*gpu
, uint32_t param
, uint64_t *value
);
45 int (*hw_init
)(struct msm_gpu
*gpu
);
46 int (*pm_suspend
)(struct msm_gpu
*gpu
);
47 int (*pm_resume
)(struct msm_gpu
*gpu
);
48 void (*submit
)(struct msm_gpu
*gpu
, struct msm_gem_submit
*submit
,
49 struct msm_file_private
*ctx
);
50 void (*flush
)(struct msm_gpu
*gpu
, struct msm_ringbuffer
*ring
);
51 irqreturn_t (*irq
)(struct msm_gpu
*irq
);
52 struct msm_ringbuffer
*(*active_ring
)(struct msm_gpu
*gpu
);
53 void (*recover
)(struct msm_gpu
*gpu
);
54 void (*destroy
)(struct msm_gpu
*gpu
);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 /* show GPU status in debugfs: */
57 void (*show
)(struct msm_gpu
*gpu
, struct msm_gpu_state
*state
,
58 struct drm_printer
*p
);
59 /* for generation specific debugfs: */
60 int (*debugfs_init
)(struct msm_gpu
*gpu
, struct drm_minor
*minor
);
62 unsigned long (*gpu_busy
)(struct msm_gpu
*gpu
);
63 struct msm_gpu_state
*(*gpu_state_get
)(struct msm_gpu
*gpu
);
64 int (*gpu_state_put
)(struct msm_gpu_state
*state
);
65 unsigned long (*gpu_get_freq
)(struct msm_gpu
*gpu
);
66 void (*gpu_set_freq
)(struct msm_gpu
*gpu
, unsigned long freq
);
71 struct drm_device
*dev
;
72 struct platform_device
*pdev
;
73 const struct msm_gpu_funcs
*funcs
;
75 /* performance counters (hw & sw): */
82 uint32_t totaltime
, activetime
; /* sw counters */
83 uint32_t last_cntrs
[5]; /* hw counters */
84 const struct msm_gpu_perfcntr
*perfcntrs
;
85 uint32_t num_perfcntrs
;
87 struct msm_ringbuffer
*rb
[MSM_GPU_MAX_RINGS
];
90 /* list of GEM active objects: */
91 struct list_head active_list
;
93 /* does gpu need hw_init? */
96 /* number of GPU hangs (for all contexts) */
99 /* worker for handling active-list retiring: */
100 struct work_struct retire_work
;
105 struct msm_gem_address_space
*aspace
;
108 struct regulator
*gpu_reg
, *gpu_cx
;
109 struct clk_bulk_data
*grp_clks
;
111 struct clk
*ebi1_clk
, *core_clk
, *rbbmtimer_clk
;
114 /* The gfx-mem interconnect path that's used by all GPU types. */
115 struct icc_path
*icc_path
;
118 * Second interconnect path for some A3xx and all A4xx GPUs to the
119 * On Chip MEMory (OCMEM).
121 struct icc_path
*ocmem_icc_path
;
123 /* Hang and Inactivity Detection:
125 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
127 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
128 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
129 struct timer_list hangcheck_timer
;
130 struct work_struct recover_work
;
132 struct drm_gem_object
*memptrs_bo
;
135 struct devfreq
*devfreq
;
140 struct msm_gpu_state
*crashstate
;
143 /* It turns out that all targets use the same ringbuffer size */
144 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
145 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
147 #define MSM_GPU_RB_CNTL_DEFAULT \
148 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
149 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
151 static inline bool msm_gpu_active(struct msm_gpu
*gpu
)
155 for (i
= 0; i
< gpu
->nr_rings
; i
++) {
156 struct msm_ringbuffer
*ring
= gpu
->rb
[i
];
158 if (ring
->seqno
> ring
->memptrs
->fence
)
166 * The select_reg and select_val are just there for the benefit of the child
167 * class that actually enables the perf counter.. but msm_gpu base class
168 * will handle sampling/displaying the counters.
171 struct msm_gpu_perfcntr
{
178 struct msm_gpu_submitqueue
{
183 struct list_head node
;
187 struct msm_gpu_state_bo
{
194 struct msm_gpu_state
{
196 struct timespec64 time
;
207 } ring
[MSM_GPU_MAX_RINGS
];
218 struct msm_gpu_state_bo
*bos
;
221 static inline void gpu_write(struct msm_gpu
*gpu
, u32 reg
, u32 data
)
223 msm_writel(data
, gpu
->mmio
+ (reg
<< 2));
226 static inline u32
gpu_read(struct msm_gpu
*gpu
, u32 reg
)
228 return msm_readl(gpu
->mmio
+ (reg
<< 2));
231 static inline void gpu_rmw(struct msm_gpu
*gpu
, u32 reg
, u32 mask
, u32
or)
233 uint32_t val
= gpu_read(gpu
, reg
);
236 gpu_write(gpu
, reg
, val
| or);
239 static inline u64
gpu_read64(struct msm_gpu
*gpu
, u32 lo
, u32 hi
)
244 * Why not a readq here? Two reasons: 1) many of the LO registers are
245 * not quad word aligned and 2) the GPU hardware designers have a bit
246 * of a history of putting registers where they fit, especially in
247 * spins. The longer a GPU family goes the higher the chance that
248 * we'll get burned. We could do a series of validity checks if we
249 * wanted to, but really is a readq() that much better? Nah.
253 * For some lo/hi registers (like perfcounters), the hi value is latched
254 * when the lo is read, so make sure to read the lo first to trigger
257 val
= (u64
) msm_readl(gpu
->mmio
+ (lo
<< 2));
258 val
|= ((u64
) msm_readl(gpu
->mmio
+ (hi
<< 2)) << 32);
263 static inline void gpu_write64(struct msm_gpu
*gpu
, u32 lo
, u32 hi
, u64 val
)
265 /* Why not a writeq here? Read the screed above */
266 msm_writel(lower_32_bits(val
), gpu
->mmio
+ (lo
<< 2));
267 msm_writel(upper_32_bits(val
), gpu
->mmio
+ (hi
<< 2));
270 int msm_gpu_pm_suspend(struct msm_gpu
*gpu
);
271 int msm_gpu_pm_resume(struct msm_gpu
*gpu
);
272 void msm_gpu_resume_devfreq(struct msm_gpu
*gpu
);
274 int msm_gpu_hw_init(struct msm_gpu
*gpu
);
276 void msm_gpu_perfcntr_start(struct msm_gpu
*gpu
);
277 void msm_gpu_perfcntr_stop(struct msm_gpu
*gpu
);
278 int msm_gpu_perfcntr_sample(struct msm_gpu
*gpu
, uint32_t *activetime
,
279 uint32_t *totaltime
, uint32_t ncntrs
, uint32_t *cntrs
);
281 void msm_gpu_retire(struct msm_gpu
*gpu
);
282 void msm_gpu_submit(struct msm_gpu
*gpu
, struct msm_gem_submit
*submit
,
283 struct msm_file_private
*ctx
);
285 int msm_gpu_init(struct drm_device
*drm
, struct platform_device
*pdev
,
286 struct msm_gpu
*gpu
, const struct msm_gpu_funcs
*funcs
,
287 const char *name
, struct msm_gpu_config
*config
);
289 void msm_gpu_cleanup(struct msm_gpu
*gpu
);
291 struct msm_gpu
*adreno_load_gpu(struct drm_device
*dev
);
292 void __init
adreno_register(void);
293 void __exit
adreno_unregister(void);
295 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue
*queue
)
298 kref_put(&queue
->ref
, msm_submitqueue_destroy
);
301 static inline struct msm_gpu_state
*msm_gpu_crashstate_get(struct msm_gpu
*gpu
)
303 struct msm_gpu_state
*state
= NULL
;
305 mutex_lock(&gpu
->dev
->struct_mutex
);
307 if (gpu
->crashstate
) {
308 kref_get(&gpu
->crashstate
->ref
);
309 state
= gpu
->crashstate
;
312 mutex_unlock(&gpu
->dev
->struct_mutex
);
317 static inline void msm_gpu_crashstate_put(struct msm_gpu
*gpu
)
319 mutex_lock(&gpu
->dev
->struct_mutex
);
321 if (gpu
->crashstate
) {
322 if (gpu
->funcs
->gpu_state_put(gpu
->crashstate
))
323 gpu
->crashstate
= NULL
;
326 mutex_unlock(&gpu
->dev
->struct_mutex
);
329 #endif /* __MSM_GPU_H__ */