treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
blobeeca50d9a1ee4dbba4dade327acba96e55be85c6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
5 * Queued image conversion support, with tiling and rotation.
6 */
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
14 * The IC Resizer has a restriction that the output frame from the
15 * resizer must be 1024 or less in both width (pixels) and height
16 * (lines).
18 * The image converter attempts to split up a conversion when
19 * the desired output (converted) frame resolution exceeds the
20 * IC resizer limit of 1024 in either dimension.
22 * If either dimension of the output frame exceeds the limit, the
23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24 * of 4*4 or 16 tiles. A conversion is then carried out for each
25 * tile (but taking care to pass the full frame stride length to
26 * the DMA channel's parameter memory!). IDMA double-buffering is used
27 * to convert each tile back-to-back when possible (see note below
28 * when double_buffering boolean is set).
30 * Note that the input frame must be split up into the same number
31 * of tiles as the output frame:
33 * +---------+-----+
34 * +-----+---+ | A | B |
35 * | A | B | | | |
36 * +-----+---+ --> +---------+-----+
37 * | C | D | | C | D |
38 * +-----+---+ | | |
39 * +---------+-----+
41 * Clockwise 90° rotations are handled by first rescaling into a
42 * reusable temporary tile buffer and then rotating with the 8x8
43 * block rotator, writing to the correct destination:
45 * +-----+-----+
46 * | | |
47 * +-----+---+ +---------+ | C | A |
48 * | A | B | | A,B, | | | | |
49 * +-----+---+ --> | C,D | | --> | | |
50 * | C | D | +---------+ +-----+-----+
51 * +-----+---+ | D | B |
52 * | | |
53 * +-----+-----+
55 * If the 8x8 block rotator is used, horizontal or vertical flipping
56 * is done during the rotation step, otherwise flipping is done
57 * during the scaling step.
58 * With rotation or flipping, tile order changes between input and
59 * output image. Tiles are numbered row major from top left to bottom
60 * right for both input and output image.
63 #define MAX_STRIPES_W 4
64 #define MAX_STRIPES_H 4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
67 #define MIN_W 16
68 #define MIN_H 8
69 #define MAX_W 4096
70 #define MAX_H 4096
72 enum ipu_image_convert_type {
73 IMAGE_CONVERT_IN = 0,
74 IMAGE_CONVERT_OUT,
77 struct ipu_image_convert_dma_buf {
78 void *virt;
79 dma_addr_t phys;
80 unsigned long len;
83 struct ipu_image_convert_dma_chan {
84 int in;
85 int out;
86 int rot_in;
87 int rot_out;
88 int vdi_in_p;
89 int vdi_in;
90 int vdi_in_n;
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 u32 width;
96 u32 height;
97 u32 left;
98 u32 top;
99 /* size and strides are in bytes */
100 u32 size;
101 u32 stride;
102 u32 rot_stride;
103 /* start Y or packed offset of this tile */
104 u32 offset;
105 /* offset from start to tile in U plane, for planar formats */
106 u32 u_off;
107 /* offset from start to tile in V plane, for planar formats */
108 u32 v_off;
111 struct ipu_image_convert_image {
112 struct ipu_image base;
113 enum ipu_image_convert_type type;
115 const struct ipu_image_pixfmt *fmt;
116 unsigned int stride;
118 /* # of rows (horizontal stripes) if dest height is > 1024 */
119 unsigned int num_rows;
120 /* # of columns (vertical stripes) if dest width is > 1024 */
121 unsigned int num_cols;
123 struct ipu_image_tile tile[MAX_TILES];
126 struct ipu_image_pixfmt {
127 u32 fourcc; /* V4L2 fourcc */
128 int bpp; /* total bpp */
129 int uv_width_dec; /* decimation in width for U/V planes */
130 int uv_height_dec; /* decimation in height for U/V planes */
131 bool planar; /* planar format */
132 bool uv_swapped; /* U and V planes are swapped */
133 bool uv_packed; /* partial planar (U and V in same plane) */
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
140 struct ipu_image_convert_ctx {
141 struct ipu_image_convert_chan *chan;
143 ipu_image_convert_cb_t complete;
144 void *complete_context;
146 /* Source/destination image data and rotation mode */
147 struct ipu_image_convert_image in;
148 struct ipu_image_convert_image out;
149 struct ipu_ic_csc csc;
150 enum ipu_rotate_mode rot_mode;
151 u32 downsize_coeff_h;
152 u32 downsize_coeff_v;
153 u32 image_resize_coeff_h;
154 u32 image_resize_coeff_v;
155 u32 resize_coeffs_h[MAX_STRIPES_W];
156 u32 resize_coeffs_v[MAX_STRIPES_H];
158 /* intermediate buffer for rotation */
159 struct ipu_image_convert_dma_buf rot_intermediate[2];
161 /* current buffer number for double buffering */
162 int cur_buf_num;
164 bool aborting;
165 struct completion aborted;
167 /* can we use double-buffering for this conversion operation? */
168 bool double_buffering;
169 /* num_rows * num_cols */
170 unsigned int num_tiles;
171 /* next tile to process */
172 unsigned int next_tile;
173 /* where to place converted tile in dest image */
174 unsigned int out_tile_map[MAX_TILES];
176 struct list_head list;
179 struct ipu_image_convert_chan {
180 struct ipu_image_convert_priv *priv;
182 enum ipu_ic_task ic_task;
183 const struct ipu_image_convert_dma_chan *dma_ch;
185 struct ipu_ic *ic;
186 struct ipuv3_channel *in_chan;
187 struct ipuv3_channel *out_chan;
188 struct ipuv3_channel *rotation_in_chan;
189 struct ipuv3_channel *rotation_out_chan;
191 /* the IPU end-of-frame irqs */
192 int out_eof_irq;
193 int rot_out_eof_irq;
195 spinlock_t irqlock;
197 /* list of convert contexts */
198 struct list_head ctx_list;
199 /* queue of conversion runs */
200 struct list_head pending_q;
201 /* queue of completed runs */
202 struct list_head done_q;
204 /* the current conversion run */
205 struct ipu_image_convert_run *current_run;
208 struct ipu_image_convert_priv {
209 struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210 struct ipu_soc *ipu;
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215 [IC_TASK_VIEWFINDER] = {
216 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
224 [IC_TASK_POST_PROCESSOR] = {
225 .in = IPUV3_CHANNEL_MEM_IC_PP,
226 .out = IPUV3_CHANNEL_IC_PP_MEM,
227 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
234 .fourcc = V4L2_PIX_FMT_RGB565,
235 .bpp = 16,
236 }, {
237 .fourcc = V4L2_PIX_FMT_RGB24,
238 .bpp = 24,
239 }, {
240 .fourcc = V4L2_PIX_FMT_BGR24,
241 .bpp = 24,
242 }, {
243 .fourcc = V4L2_PIX_FMT_RGB32,
244 .bpp = 32,
245 }, {
246 .fourcc = V4L2_PIX_FMT_BGR32,
247 .bpp = 32,
248 }, {
249 .fourcc = V4L2_PIX_FMT_XRGB32,
250 .bpp = 32,
251 }, {
252 .fourcc = V4L2_PIX_FMT_XBGR32,
253 .bpp = 32,
254 }, {
255 .fourcc = V4L2_PIX_FMT_BGRX32,
256 .bpp = 32,
257 }, {
258 .fourcc = V4L2_PIX_FMT_RGBX32,
259 .bpp = 32,
260 }, {
261 .fourcc = V4L2_PIX_FMT_YUYV,
262 .bpp = 16,
263 .uv_width_dec = 2,
264 .uv_height_dec = 1,
265 }, {
266 .fourcc = V4L2_PIX_FMT_UYVY,
267 .bpp = 16,
268 .uv_width_dec = 2,
269 .uv_height_dec = 1,
270 }, {
271 .fourcc = V4L2_PIX_FMT_YUV420,
272 .bpp = 12,
273 .planar = true,
274 .uv_width_dec = 2,
275 .uv_height_dec = 2,
276 }, {
277 .fourcc = V4L2_PIX_FMT_YVU420,
278 .bpp = 12,
279 .planar = true,
280 .uv_width_dec = 2,
281 .uv_height_dec = 2,
282 .uv_swapped = true,
283 }, {
284 .fourcc = V4L2_PIX_FMT_NV12,
285 .bpp = 12,
286 .planar = true,
287 .uv_width_dec = 2,
288 .uv_height_dec = 2,
289 .uv_packed = true,
290 }, {
291 .fourcc = V4L2_PIX_FMT_YUV422P,
292 .bpp = 16,
293 .planar = true,
294 .uv_width_dec = 2,
295 .uv_height_dec = 1,
296 }, {
297 .fourcc = V4L2_PIX_FMT_NV16,
298 .bpp = 16,
299 .planar = true,
300 .uv_width_dec = 2,
301 .uv_height_dec = 1,
302 .uv_packed = true,
306 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
308 const struct ipu_image_pixfmt *ret = NULL;
309 unsigned int i;
311 for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
312 if (image_convert_formats[i].fourcc == fourcc) {
313 ret = &image_convert_formats[i];
314 break;
318 return ret;
321 static void dump_format(struct ipu_image_convert_ctx *ctx,
322 struct ipu_image_convert_image *ic_image)
324 struct ipu_image_convert_chan *chan = ctx->chan;
325 struct ipu_image_convert_priv *priv = chan->priv;
327 dev_dbg(priv->ipu->dev,
328 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
329 chan->ic_task, ctx,
330 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
331 ic_image->base.pix.width, ic_image->base.pix.height,
332 ic_image->num_cols, ic_image->num_rows,
333 ic_image->fmt->fourcc & 0xff,
334 (ic_image->fmt->fourcc >> 8) & 0xff,
335 (ic_image->fmt->fourcc >> 16) & 0xff,
336 (ic_image->fmt->fourcc >> 24) & 0xff);
339 int ipu_image_convert_enum_format(int index, u32 *fourcc)
341 const struct ipu_image_pixfmt *fmt;
343 if (index >= (int)ARRAY_SIZE(image_convert_formats))
344 return -EINVAL;
346 /* Format found */
347 fmt = &image_convert_formats[index];
348 *fourcc = fmt->fourcc;
349 return 0;
351 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
353 static void free_dma_buf(struct ipu_image_convert_priv *priv,
354 struct ipu_image_convert_dma_buf *buf)
356 if (buf->virt)
357 dma_free_coherent(priv->ipu->dev,
358 buf->len, buf->virt, buf->phys);
359 buf->virt = NULL;
360 buf->phys = 0;
363 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
364 struct ipu_image_convert_dma_buf *buf,
365 int size)
367 buf->len = PAGE_ALIGN(size);
368 buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
369 GFP_DMA | GFP_KERNEL);
370 if (!buf->virt) {
371 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
372 return -ENOMEM;
375 return 0;
378 static inline int num_stripes(int dim)
380 return (dim - 1) / 1024 + 1;
384 * Calculate downsizing coefficients, which are the same for all tiles,
385 * and initial bilinear resizing coefficients, which are used to find the
386 * best seam positions.
387 * Also determine the number of tiles necessary to guarantee that no tile
388 * is larger than 1024 pixels in either dimension at the output and between
389 * IC downsizing and main processing sections.
391 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
392 struct ipu_image *in,
393 struct ipu_image *out)
395 u32 downsized_width = in->rect.width;
396 u32 downsized_height = in->rect.height;
397 u32 downsize_coeff_v = 0;
398 u32 downsize_coeff_h = 0;
399 u32 resized_width = out->rect.width;
400 u32 resized_height = out->rect.height;
401 u32 resize_coeff_h;
402 u32 resize_coeff_v;
403 u32 cols;
404 u32 rows;
406 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
407 resized_width = out->rect.height;
408 resized_height = out->rect.width;
411 /* Do not let invalid input lead to an endless loop below */
412 if (WARN_ON(resized_width == 0 || resized_height == 0))
413 return -EINVAL;
415 while (downsized_width >= resized_width * 2) {
416 downsized_width >>= 1;
417 downsize_coeff_h++;
420 while (downsized_height >= resized_height * 2) {
421 downsized_height >>= 1;
422 downsize_coeff_v++;
426 * Calculate the bilinear resizing coefficients that could be used if
427 * we were converting with a single tile. The bottom right output pixel
428 * should sample as close as possible to the bottom right input pixel
429 * out of the decimator, but not overshoot it:
431 resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
432 resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
435 * Both the output of the IC downsizing section before being passed to
436 * the IC main processing section and the final output of the IC main
437 * processing section must be <= 1024 pixels in both dimensions.
439 cols = num_stripes(max_t(u32, downsized_width, resized_width));
440 rows = num_stripes(max_t(u32, downsized_height, resized_height));
442 dev_dbg(ctx->chan->priv->ipu->dev,
443 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
444 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
445 resize_coeff_v, cols, rows);
447 if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
448 resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
449 return -EINVAL;
451 ctx->downsize_coeff_h = downsize_coeff_h;
452 ctx->downsize_coeff_v = downsize_coeff_v;
453 ctx->image_resize_coeff_h = resize_coeff_h;
454 ctx->image_resize_coeff_v = resize_coeff_v;
455 ctx->in.num_cols = cols;
456 ctx->in.num_rows = rows;
458 return 0;
461 #define round_closest(x, y) round_down((x) + (y)/2, (y))
464 * Find the best aligned seam position for the given column / row index.
465 * Rotation and image offsets are out of scope.
467 * @index: column / row index, used to calculate valid interval
468 * @in_edge: input right / bottom edge
469 * @out_edge: output right / bottom edge
470 * @in_align: input alignment, either horizontal 8-byte line start address
471 * alignment, or pixel alignment due to image format
472 * @out_align: output alignment, either horizontal 8-byte line start address
473 * alignment, or pixel alignment due to image format or rotator
474 * block size
475 * @in_burst: horizontal input burst size in case of horizontal flip
476 * @out_burst: horizontal output burst size or rotator block size
477 * @downsize_coeff: downsizing section coefficient
478 * @resize_coeff: main processing section resizing coefficient
479 * @_in_seam: aligned input seam position return value
480 * @_out_seam: aligned output seam position return value
482 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
483 unsigned int index,
484 unsigned int in_edge,
485 unsigned int out_edge,
486 unsigned int in_align,
487 unsigned int out_align,
488 unsigned int in_burst,
489 unsigned int out_burst,
490 unsigned int downsize_coeff,
491 unsigned int resize_coeff,
492 u32 *_in_seam,
493 u32 *_out_seam)
495 struct device *dev = ctx->chan->priv->ipu->dev;
496 unsigned int out_pos;
497 /* Input / output seam position candidates */
498 unsigned int out_seam = 0;
499 unsigned int in_seam = 0;
500 unsigned int min_diff = UINT_MAX;
501 unsigned int out_start;
502 unsigned int out_end;
503 unsigned int in_start;
504 unsigned int in_end;
506 /* Start within 1024 pixels of the right / bottom edge */
507 out_start = max_t(int, index * out_align, out_edge - 1024);
508 /* End before having to add more columns to the left / rows above */
509 out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
512 * Limit input seam position to make sure that the downsized input tile
513 * to the right or bottom does not exceed 1024 pixels.
515 in_start = max_t(int, index * in_align,
516 in_edge - (1024 << downsize_coeff));
517 in_end = min_t(unsigned int, in_edge,
518 index * (1024 << downsize_coeff) + 1);
521 * Output tiles must start at a multiple of 8 bytes horizontally and
522 * possibly at an even line horizontally depending on the pixel format.
523 * Only consider output aligned positions for the seam.
525 out_start = round_up(out_start, out_align);
526 for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
527 unsigned int in_pos;
528 unsigned int in_pos_aligned;
529 unsigned int in_pos_rounded;
530 unsigned int abs_diff;
533 * Tiles in the right row / bottom column may not be allowed to
534 * overshoot horizontally / vertically. out_burst may be the
535 * actual DMA burst size, or the rotator block size.
537 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
538 continue;
541 * Input sample position, corresponding to out_pos, 19.13 fixed
542 * point.
544 in_pos = (out_pos * resize_coeff) << downsize_coeff;
546 * The closest input sample position that we could actually
547 * start the input tile at, 19.13 fixed point.
549 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
550 /* Convert 19.13 fixed point to integer */
551 in_pos_rounded = in_pos_aligned / 8192U;
553 if (in_pos_rounded < in_start)
554 continue;
555 if (in_pos_rounded >= in_end)
556 break;
558 if ((in_burst > 1) &&
559 (in_edge - in_pos_rounded) % in_burst)
560 continue;
562 if (in_pos < in_pos_aligned)
563 abs_diff = in_pos_aligned - in_pos;
564 else
565 abs_diff = in_pos - in_pos_aligned;
567 if (abs_diff < min_diff) {
568 in_seam = in_pos_rounded;
569 out_seam = out_pos;
570 min_diff = abs_diff;
574 *_out_seam = out_seam;
575 *_in_seam = in_seam;
577 dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
578 __func__, out_seam, out_align, out_start, out_end,
579 in_seam, in_align, in_start, in_end, min_diff / 8192,
580 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
584 * Tile left edges are required to be aligned to multiples of 8 bytes
585 * by the IDMAC.
587 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
589 if (fmt->planar)
590 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
591 else
592 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
596 * Tile top edge alignment is only limited by chroma subsampling.
598 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
600 return fmt->uv_height_dec > 1 ? 2 : 1;
603 static inline u32 tile_width_align(enum ipu_image_convert_type type,
604 const struct ipu_image_pixfmt *fmt,
605 enum ipu_rotate_mode rot_mode)
607 if (type == IMAGE_CONVERT_IN) {
609 * The IC burst reads 8 pixels at a time. Reading beyond the
610 * end of the line is usually acceptable. Those pixels are
611 * ignored, unless the IC has to write the scaled line in
612 * reverse.
614 return (!ipu_rot_mode_is_irt(rot_mode) &&
615 (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
619 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
620 * formats to guarantee 8-byte aligned line start addresses in the
621 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
622 * for all other formats.
624 return (ipu_rot_mode_is_irt(rot_mode) &&
625 fmt->planar && !fmt->uv_packed) ?
626 8 * fmt->uv_width_dec : 8;
629 static inline u32 tile_height_align(enum ipu_image_convert_type type,
630 const struct ipu_image_pixfmt *fmt,
631 enum ipu_rotate_mode rot_mode)
633 if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
634 return 2;
637 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
638 * formats to guarantee 8-byte aligned line start addresses in the
639 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
640 * for all other formats.
642 return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
646 * Fill in left position and width and for all tiles in an input column, and
647 * for all corresponding output tiles. If the 90° rotator is used, the output
648 * tiles are in a row, and output tile top position and height are set.
650 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
651 unsigned int col,
652 struct ipu_image_convert_image *in,
653 unsigned int in_left, unsigned int in_width,
654 struct ipu_image_convert_image *out,
655 unsigned int out_left, unsigned int out_width)
657 unsigned int row, tile_idx;
658 struct ipu_image_tile *in_tile, *out_tile;
660 for (row = 0; row < in->num_rows; row++) {
661 tile_idx = in->num_cols * row + col;
662 in_tile = &in->tile[tile_idx];
663 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
665 in_tile->left = in_left;
666 in_tile->width = in_width;
668 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
669 out_tile->top = out_left;
670 out_tile->height = out_width;
671 } else {
672 out_tile->left = out_left;
673 out_tile->width = out_width;
679 * Fill in top position and height and for all tiles in an input row, and
680 * for all corresponding output tiles. If the 90° rotator is used, the output
681 * tiles are in a column, and output tile left position and width are set.
683 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
684 struct ipu_image_convert_image *in,
685 unsigned int in_top, unsigned int in_height,
686 struct ipu_image_convert_image *out,
687 unsigned int out_top, unsigned int out_height)
689 unsigned int col, tile_idx;
690 struct ipu_image_tile *in_tile, *out_tile;
692 for (col = 0; col < in->num_cols; col++) {
693 tile_idx = in->num_cols * row + col;
694 in_tile = &in->tile[tile_idx];
695 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
697 in_tile->top = in_top;
698 in_tile->height = in_height;
700 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
701 out_tile->left = out_top;
702 out_tile->width = out_height;
703 } else {
704 out_tile->top = out_top;
705 out_tile->height = out_height;
711 * Find the best horizontal and vertical seam positions to split into tiles.
712 * Minimize the fractional part of the input sampling position for the
713 * top / left pixels of each tile.
715 static void find_seams(struct ipu_image_convert_ctx *ctx,
716 struct ipu_image_convert_image *in,
717 struct ipu_image_convert_image *out)
719 struct device *dev = ctx->chan->priv->ipu->dev;
720 unsigned int resized_width = out->base.rect.width;
721 unsigned int resized_height = out->base.rect.height;
722 unsigned int col;
723 unsigned int row;
724 unsigned int in_left_align = tile_left_align(in->fmt);
725 unsigned int in_top_align = tile_top_align(in->fmt);
726 unsigned int out_left_align = tile_left_align(out->fmt);
727 unsigned int out_top_align = tile_top_align(out->fmt);
728 unsigned int out_width_align = tile_width_align(out->type, out->fmt,
729 ctx->rot_mode);
730 unsigned int out_height_align = tile_height_align(out->type, out->fmt,
731 ctx->rot_mode);
732 unsigned int in_right = in->base.rect.width;
733 unsigned int in_bottom = in->base.rect.height;
734 unsigned int out_right = out->base.rect.width;
735 unsigned int out_bottom = out->base.rect.height;
736 unsigned int flipped_out_left;
737 unsigned int flipped_out_top;
739 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
740 /* Switch width/height and align top left to IRT block size */
741 resized_width = out->base.rect.height;
742 resized_height = out->base.rect.width;
743 out_left_align = out_height_align;
744 out_top_align = out_width_align;
745 out_width_align = out_left_align;
746 out_height_align = out_top_align;
747 out_right = out->base.rect.height;
748 out_bottom = out->base.rect.width;
751 for (col = in->num_cols - 1; col > 0; col--) {
752 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
753 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
754 bool allow_out_overshoot = (col < in->num_cols - 1) &&
755 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
756 unsigned int in_left;
757 unsigned int out_left;
760 * Align input width to burst length if the scaling step flips
761 * horizontally.
764 find_best_seam(ctx, col,
765 in_right, out_right,
766 in_left_align, out_left_align,
767 allow_in_overshoot ? 1 : 8 /* burst length */,
768 allow_out_overshoot ? 1 : out_width_align,
769 ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
770 &in_left, &out_left);
772 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
773 flipped_out_left = resized_width - out_right;
774 else
775 flipped_out_left = out_left;
777 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
778 out, flipped_out_left, out_right - out_left);
780 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
781 in_left, in_right - in_left,
782 flipped_out_left, out_right - out_left);
784 in_right = in_left;
785 out_right = out_left;
788 flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
789 resized_width - out_right : 0;
791 fill_tile_column(ctx, 0, in, 0, in_right,
792 out, flipped_out_left, out_right);
794 dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
795 in_right, flipped_out_left, out_right);
797 for (row = in->num_rows - 1; row > 0; row--) {
798 bool allow_overshoot = row < in->num_rows - 1;
799 unsigned int in_top;
800 unsigned int out_top;
802 find_best_seam(ctx, row,
803 in_bottom, out_bottom,
804 in_top_align, out_top_align,
805 1, allow_overshoot ? 1 : out_height_align,
806 ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
807 &in_top, &out_top);
809 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
810 ipu_rot_mode_is_irt(ctx->rot_mode))
811 flipped_out_top = resized_height - out_bottom;
812 else
813 flipped_out_top = out_top;
815 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
816 out, flipped_out_top, out_bottom - out_top);
818 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
819 in_top, in_bottom - in_top,
820 flipped_out_top, out_bottom - out_top);
822 in_bottom = in_top;
823 out_bottom = out_top;
826 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
827 ipu_rot_mode_is_irt(ctx->rot_mode))
828 flipped_out_top = resized_height - out_bottom;
829 else
830 flipped_out_top = 0;
832 fill_tile_row(ctx, 0, in, 0, in_bottom,
833 out, flipped_out_top, out_bottom);
835 dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
836 in_bottom, flipped_out_top, out_bottom);
839 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
840 struct ipu_image_convert_image *image)
842 struct ipu_image_convert_chan *chan = ctx->chan;
843 struct ipu_image_convert_priv *priv = chan->priv;
844 unsigned int max_width = 1024;
845 unsigned int max_height = 1024;
846 unsigned int i;
848 if (image->type == IMAGE_CONVERT_IN) {
849 /* Up to 4096x4096 input tile size */
850 max_width <<= ctx->downsize_coeff_h;
851 max_height <<= ctx->downsize_coeff_v;
854 for (i = 0; i < ctx->num_tiles; i++) {
855 struct ipu_image_tile *tile;
856 const unsigned int row = i / image->num_cols;
857 const unsigned int col = i % image->num_cols;
859 if (image->type == IMAGE_CONVERT_OUT)
860 tile = &image->tile[ctx->out_tile_map[i]];
861 else
862 tile = &image->tile[i];
864 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
865 tile->width;
867 if (image->fmt->planar) {
868 tile->stride = tile->width;
869 tile->rot_stride = tile->height;
870 } else {
871 tile->stride =
872 (image->fmt->bpp * tile->width) >> 3;
873 tile->rot_stride =
874 (image->fmt->bpp * tile->height) >> 3;
877 dev_dbg(priv->ipu->dev,
878 "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
879 chan->ic_task, ctx,
880 image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
881 row, col,
882 tile->width, tile->height, tile->left, tile->top);
884 if (!tile->width || tile->width > max_width ||
885 !tile->height || tile->height > max_height) {
886 dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
887 image->type == IMAGE_CONVERT_IN ? "input" :
888 "output", tile->width, tile->height);
889 return -EINVAL;
893 return 0;
897 * Use the rotation transformation to find the tile coordinates
898 * (row, col) of a tile in the destination frame that corresponds
899 * to the given tile coordinates of a source frame. The destination
900 * coordinate is then converted to a tile index.
902 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
903 int src_row, int src_col)
905 struct ipu_image_convert_chan *chan = ctx->chan;
906 struct ipu_image_convert_priv *priv = chan->priv;
907 struct ipu_image_convert_image *s_image = &ctx->in;
908 struct ipu_image_convert_image *d_image = &ctx->out;
909 int dst_row, dst_col;
911 /* with no rotation it's a 1:1 mapping */
912 if (ctx->rot_mode == IPU_ROTATE_NONE)
913 return src_row * s_image->num_cols + src_col;
916 * before doing the transform, first we have to translate
917 * source row,col for an origin in the center of s_image
919 src_row = src_row * 2 - (s_image->num_rows - 1);
920 src_col = src_col * 2 - (s_image->num_cols - 1);
922 /* do the rotation transform */
923 if (ctx->rot_mode & IPU_ROT_BIT_90) {
924 dst_col = -src_row;
925 dst_row = src_col;
926 } else {
927 dst_col = src_col;
928 dst_row = src_row;
931 /* apply flip */
932 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
933 dst_col = -dst_col;
934 if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
935 dst_row = -dst_row;
937 dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
938 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
941 * finally translate dest row,col using an origin in upper
942 * left of d_image
944 dst_row += d_image->num_rows - 1;
945 dst_col += d_image->num_cols - 1;
946 dst_row /= 2;
947 dst_col /= 2;
949 return dst_row * d_image->num_cols + dst_col;
953 * Fill the out_tile_map[] with transformed destination tile indeces.
955 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
957 struct ipu_image_convert_image *s_image = &ctx->in;
958 unsigned int row, col, tile = 0;
960 for (row = 0; row < s_image->num_rows; row++) {
961 for (col = 0; col < s_image->num_cols; col++) {
962 ctx->out_tile_map[tile] =
963 transform_tile_index(ctx, row, col);
964 tile++;
969 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
970 struct ipu_image_convert_image *image)
972 struct ipu_image_convert_chan *chan = ctx->chan;
973 struct ipu_image_convert_priv *priv = chan->priv;
974 const struct ipu_image_pixfmt *fmt = image->fmt;
975 unsigned int row, col, tile = 0;
976 u32 H, top, y_stride, uv_stride;
977 u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
978 u32 y_row_off, y_col_off, y_off;
979 u32 y_size, uv_size;
981 /* setup some convenience vars */
982 H = image->base.pix.height;
984 y_stride = image->stride;
985 uv_stride = y_stride / fmt->uv_width_dec;
986 if (fmt->uv_packed)
987 uv_stride *= 2;
989 y_size = H * y_stride;
990 uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
992 for (row = 0; row < image->num_rows; row++) {
993 top = image->tile[tile].top;
994 y_row_off = top * y_stride;
995 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
997 for (col = 0; col < image->num_cols; col++) {
998 y_col_off = image->tile[tile].left;
999 uv_col_off = y_col_off / fmt->uv_width_dec;
1000 if (fmt->uv_packed)
1001 uv_col_off *= 2;
1003 y_off = y_row_off + y_col_off;
1004 uv_off = uv_row_off + uv_col_off;
1006 u_off = y_size - y_off + uv_off;
1007 v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1008 if (fmt->uv_swapped) {
1009 tmp = u_off;
1010 u_off = v_off;
1011 v_off = tmp;
1014 image->tile[tile].offset = y_off;
1015 image->tile[tile].u_off = u_off;
1016 image->tile[tile++].v_off = v_off;
1018 if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1019 dev_err(priv->ipu->dev,
1020 "task %u: ctx %p: %s@[%d,%d]: "
1021 "y_off %08x, u_off %08x, v_off %08x\n",
1022 chan->ic_task, ctx,
1023 image->type == IMAGE_CONVERT_IN ?
1024 "Input" : "Output", row, col,
1025 y_off, u_off, v_off);
1026 return -EINVAL;
1031 return 0;
1034 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1035 struct ipu_image_convert_image *image)
1037 struct ipu_image_convert_chan *chan = ctx->chan;
1038 struct ipu_image_convert_priv *priv = chan->priv;
1039 const struct ipu_image_pixfmt *fmt = image->fmt;
1040 unsigned int row, col, tile = 0;
1041 u32 bpp, stride, offset;
1042 u32 row_off, col_off;
1044 /* setup some convenience vars */
1045 stride = image->stride;
1046 bpp = fmt->bpp;
1048 for (row = 0; row < image->num_rows; row++) {
1049 row_off = image->tile[tile].top * stride;
1051 for (col = 0; col < image->num_cols; col++) {
1052 col_off = (image->tile[tile].left * bpp) >> 3;
1054 offset = row_off + col_off;
1056 image->tile[tile].offset = offset;
1057 image->tile[tile].u_off = 0;
1058 image->tile[tile++].v_off = 0;
1060 if (offset & 0x7) {
1061 dev_err(priv->ipu->dev,
1062 "task %u: ctx %p: %s@[%d,%d]: "
1063 "phys %08x\n",
1064 chan->ic_task, ctx,
1065 image->type == IMAGE_CONVERT_IN ?
1066 "Input" : "Output", row, col,
1067 row_off + col_off);
1068 return -EINVAL;
1073 return 0;
1076 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1077 struct ipu_image_convert_image *image)
1079 if (image->fmt->planar)
1080 return calc_tile_offsets_planar(ctx, image);
1082 return calc_tile_offsets_packed(ctx, image);
1086 * Calculate the resizing ratio for the IC main processing section given input
1087 * size, fixed downsizing coefficient, and output size.
1088 * Either round to closest for the next tile's first pixel to minimize seams
1089 * and distortion (for all but right column / bottom row), or round down to
1090 * avoid sampling beyond the edges of the input image for this tile's last
1091 * pixel.
1092 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1094 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1095 u32 output_size, bool allow_overshoot)
1097 u32 downsized = input_size >> downsize_coeff;
1099 if (allow_overshoot)
1100 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1101 else
1102 return 8192 * (downsized - 1) / (output_size - 1);
1106 * Slightly modify resize coefficients per tile to hide the bilinear
1107 * interpolator reset at tile borders, shifting the right / bottom edge
1108 * by up to a half input pixel. This removes noticeable seams between
1109 * tiles at higher upscaling factors.
1111 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1113 struct ipu_image_convert_chan *chan = ctx->chan;
1114 struct ipu_image_convert_priv *priv = chan->priv;
1115 struct ipu_image_tile *in_tile, *out_tile;
1116 unsigned int col, row, tile_idx;
1117 unsigned int last_output;
1119 for (col = 0; col < ctx->in.num_cols; col++) {
1120 bool closest = (col < ctx->in.num_cols - 1) &&
1121 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1122 u32 resized_width;
1123 u32 resize_coeff_h;
1124 u32 in_width;
1126 tile_idx = col;
1127 in_tile = &ctx->in.tile[tile_idx];
1128 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1130 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1131 resized_width = out_tile->height;
1132 else
1133 resized_width = out_tile->width;
1135 resize_coeff_h = calc_resize_coeff(in_tile->width,
1136 ctx->downsize_coeff_h,
1137 resized_width, closest);
1139 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1140 __func__, col, resize_coeff_h);
1143 * With the horizontal scaling factor known, round up resized
1144 * width (output width or height) to burst size.
1146 resized_width = round_up(resized_width, 8);
1149 * Calculate input width from the last accessed input pixel
1150 * given resized width and scaling coefficients. Round up to
1151 * burst size.
1153 last_output = resized_width - 1;
1154 if (closest && ((last_output * resize_coeff_h) % 8192))
1155 last_output++;
1156 in_width = round_up(
1157 (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1158 << ctx->downsize_coeff_h, 8);
1160 for (row = 0; row < ctx->in.num_rows; row++) {
1161 tile_idx = row * ctx->in.num_cols + col;
1162 in_tile = &ctx->in.tile[tile_idx];
1163 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1165 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1166 out_tile->height = resized_width;
1167 else
1168 out_tile->width = resized_width;
1170 in_tile->width = in_width;
1173 ctx->resize_coeffs_h[col] = resize_coeff_h;
1176 for (row = 0; row < ctx->in.num_rows; row++) {
1177 bool closest = (row < ctx->in.num_rows - 1) &&
1178 !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1179 u32 resized_height;
1180 u32 resize_coeff_v;
1181 u32 in_height;
1183 tile_idx = row * ctx->in.num_cols;
1184 in_tile = &ctx->in.tile[tile_idx];
1185 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1187 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1188 resized_height = out_tile->width;
1189 else
1190 resized_height = out_tile->height;
1192 resize_coeff_v = calc_resize_coeff(in_tile->height,
1193 ctx->downsize_coeff_v,
1194 resized_height, closest);
1196 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1197 __func__, row, resize_coeff_v);
1200 * With the vertical scaling factor known, round up resized
1201 * height (output width or height) to IDMAC limitations.
1203 resized_height = round_up(resized_height, 2);
1206 * Calculate input width from the last accessed input pixel
1207 * given resized height and scaling coefficients. Align to
1208 * IDMAC restrictions.
1210 last_output = resized_height - 1;
1211 if (closest && ((last_output * resize_coeff_v) % 8192))
1212 last_output++;
1213 in_height = round_up(
1214 (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1215 << ctx->downsize_coeff_v, 2);
1217 for (col = 0; col < ctx->in.num_cols; col++) {
1218 tile_idx = row * ctx->in.num_cols + col;
1219 in_tile = &ctx->in.tile[tile_idx];
1220 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1222 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1223 out_tile->width = resized_height;
1224 else
1225 out_tile->height = resized_height;
1227 in_tile->height = in_height;
1230 ctx->resize_coeffs_v[row] = resize_coeff_v;
1235 * return the number of runs in given queue (pending_q or done_q)
1236 * for this context. hold irqlock when calling.
1238 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1239 struct list_head *q)
1241 struct ipu_image_convert_run *run;
1242 int count = 0;
1244 lockdep_assert_held(&ctx->chan->irqlock);
1246 list_for_each_entry(run, q, list) {
1247 if (run->ctx == ctx)
1248 count++;
1251 return count;
1254 static void convert_stop(struct ipu_image_convert_run *run)
1256 struct ipu_image_convert_ctx *ctx = run->ctx;
1257 struct ipu_image_convert_chan *chan = ctx->chan;
1258 struct ipu_image_convert_priv *priv = chan->priv;
1260 dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1261 __func__, chan->ic_task, ctx, run);
1263 /* disable IC tasks and the channels */
1264 ipu_ic_task_disable(chan->ic);
1265 ipu_idmac_disable_channel(chan->in_chan);
1266 ipu_idmac_disable_channel(chan->out_chan);
1268 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1269 ipu_idmac_disable_channel(chan->rotation_in_chan);
1270 ipu_idmac_disable_channel(chan->rotation_out_chan);
1271 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1274 ipu_ic_disable(chan->ic);
1277 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1278 struct ipuv3_channel *channel,
1279 struct ipu_image_convert_image *image,
1280 enum ipu_rotate_mode rot_mode,
1281 bool rot_swap_width_height,
1282 unsigned int tile)
1284 struct ipu_image_convert_chan *chan = ctx->chan;
1285 unsigned int burst_size;
1286 u32 width, height, stride;
1287 dma_addr_t addr0, addr1 = 0;
1288 struct ipu_image tile_image;
1289 unsigned int tile_idx[2];
1291 if (image->type == IMAGE_CONVERT_OUT) {
1292 tile_idx[0] = ctx->out_tile_map[tile];
1293 tile_idx[1] = ctx->out_tile_map[1];
1294 } else {
1295 tile_idx[0] = tile;
1296 tile_idx[1] = 1;
1299 if (rot_swap_width_height) {
1300 width = image->tile[tile_idx[0]].height;
1301 height = image->tile[tile_idx[0]].width;
1302 stride = image->tile[tile_idx[0]].rot_stride;
1303 addr0 = ctx->rot_intermediate[0].phys;
1304 if (ctx->double_buffering)
1305 addr1 = ctx->rot_intermediate[1].phys;
1306 } else {
1307 width = image->tile[tile_idx[0]].width;
1308 height = image->tile[tile_idx[0]].height;
1309 stride = image->stride;
1310 addr0 = image->base.phys0 +
1311 image->tile[tile_idx[0]].offset;
1312 if (ctx->double_buffering)
1313 addr1 = image->base.phys0 +
1314 image->tile[tile_idx[1]].offset;
1317 ipu_cpmem_zero(channel);
1319 memset(&tile_image, 0, sizeof(tile_image));
1320 tile_image.pix.width = tile_image.rect.width = width;
1321 tile_image.pix.height = tile_image.rect.height = height;
1322 tile_image.pix.bytesperline = stride;
1323 tile_image.pix.pixelformat = image->fmt->fourcc;
1324 tile_image.phys0 = addr0;
1325 tile_image.phys1 = addr1;
1326 if (image->fmt->planar && !rot_swap_width_height) {
1327 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1328 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1331 ipu_cpmem_set_image(channel, &tile_image);
1333 if (rot_mode)
1334 ipu_cpmem_set_rotation(channel, rot_mode);
1337 * Skip writing U and V components to odd rows in the output
1338 * channels for planar 4:2:0.
1340 if ((channel == chan->out_chan ||
1341 channel == chan->rotation_out_chan) &&
1342 image->fmt->planar && image->fmt->uv_height_dec == 2)
1343 ipu_cpmem_skip_odd_chroma_rows(channel);
1345 if (channel == chan->rotation_in_chan ||
1346 channel == chan->rotation_out_chan) {
1347 burst_size = 8;
1348 ipu_cpmem_set_block_mode(channel);
1349 } else
1350 burst_size = (width % 16) ? 8 : 16;
1352 ipu_cpmem_set_burstsize(channel, burst_size);
1354 ipu_ic_task_idma_init(chan->ic, channel, width, height,
1355 burst_size, rot_mode);
1358 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1359 * only do this when there is no PRG present.
1361 if (!channel->ipu->prg_priv)
1362 ipu_cpmem_set_axi_id(channel, 1);
1364 ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1367 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1369 struct ipu_image_convert_ctx *ctx = run->ctx;
1370 struct ipu_image_convert_chan *chan = ctx->chan;
1371 struct ipu_image_convert_priv *priv = chan->priv;
1372 struct ipu_image_convert_image *s_image = &ctx->in;
1373 struct ipu_image_convert_image *d_image = &ctx->out;
1374 unsigned int dst_tile = ctx->out_tile_map[tile];
1375 unsigned int dest_width, dest_height;
1376 unsigned int col, row;
1377 u32 rsc;
1378 int ret;
1380 dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1381 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1383 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1384 /* swap width/height for resizer */
1385 dest_width = d_image->tile[dst_tile].height;
1386 dest_height = d_image->tile[dst_tile].width;
1387 } else {
1388 dest_width = d_image->tile[dst_tile].width;
1389 dest_height = d_image->tile[dst_tile].height;
1392 row = tile / s_image->num_cols;
1393 col = tile % s_image->num_cols;
1395 rsc = (ctx->downsize_coeff_v << 30) |
1396 (ctx->resize_coeffs_v[row] << 16) |
1397 (ctx->downsize_coeff_h << 14) |
1398 (ctx->resize_coeffs_h[col]);
1400 dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1401 __func__, s_image->tile[tile].width,
1402 s_image->tile[tile].height, dest_width, dest_height, rsc);
1404 /* setup the IC resizer and CSC */
1405 ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1406 s_image->tile[tile].width,
1407 s_image->tile[tile].height,
1408 dest_width,
1409 dest_height,
1410 rsc);
1411 if (ret) {
1412 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1413 return ret;
1416 /* init the source MEM-->IC PP IDMAC channel */
1417 init_idmac_channel(ctx, chan->in_chan, s_image,
1418 IPU_ROTATE_NONE, false, tile);
1420 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1421 /* init the IC PP-->MEM IDMAC channel */
1422 init_idmac_channel(ctx, chan->out_chan, d_image,
1423 IPU_ROTATE_NONE, true, tile);
1425 /* init the MEM-->IC PP ROT IDMAC channel */
1426 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1427 ctx->rot_mode, true, tile);
1429 /* init the destination IC PP ROT-->MEM IDMAC channel */
1430 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1431 IPU_ROTATE_NONE, false, tile);
1433 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1434 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1435 } else {
1436 /* init the destination IC PP-->MEM IDMAC channel */
1437 init_idmac_channel(ctx, chan->out_chan, d_image,
1438 ctx->rot_mode, false, tile);
1441 /* enable the IC */
1442 ipu_ic_enable(chan->ic);
1444 /* set buffers ready */
1445 ipu_idmac_select_buffer(chan->in_chan, 0);
1446 ipu_idmac_select_buffer(chan->out_chan, 0);
1447 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1448 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1449 if (ctx->double_buffering) {
1450 ipu_idmac_select_buffer(chan->in_chan, 1);
1451 ipu_idmac_select_buffer(chan->out_chan, 1);
1452 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1453 ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1456 /* enable the channels! */
1457 ipu_idmac_enable_channel(chan->in_chan);
1458 ipu_idmac_enable_channel(chan->out_chan);
1459 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1460 ipu_idmac_enable_channel(chan->rotation_in_chan);
1461 ipu_idmac_enable_channel(chan->rotation_out_chan);
1464 ipu_ic_task_enable(chan->ic);
1466 ipu_cpmem_dump(chan->in_chan);
1467 ipu_cpmem_dump(chan->out_chan);
1468 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1469 ipu_cpmem_dump(chan->rotation_in_chan);
1470 ipu_cpmem_dump(chan->rotation_out_chan);
1473 ipu_dump(priv->ipu);
1475 return 0;
1478 /* hold irqlock when calling */
1479 static int do_run(struct ipu_image_convert_run *run)
1481 struct ipu_image_convert_ctx *ctx = run->ctx;
1482 struct ipu_image_convert_chan *chan = ctx->chan;
1484 lockdep_assert_held(&chan->irqlock);
1486 ctx->in.base.phys0 = run->in_phys;
1487 ctx->out.base.phys0 = run->out_phys;
1489 ctx->cur_buf_num = 0;
1490 ctx->next_tile = 1;
1492 /* remove run from pending_q and set as current */
1493 list_del(&run->list);
1494 chan->current_run = run;
1496 return convert_start(run, 0);
1499 /* hold irqlock when calling */
1500 static void run_next(struct ipu_image_convert_chan *chan)
1502 struct ipu_image_convert_priv *priv = chan->priv;
1503 struct ipu_image_convert_run *run, *tmp;
1504 int ret;
1506 lockdep_assert_held(&chan->irqlock);
1508 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1509 /* skip contexts that are aborting */
1510 if (run->ctx->aborting) {
1511 dev_dbg(priv->ipu->dev,
1512 "%s: task %u: skipping aborting ctx %p run %p\n",
1513 __func__, chan->ic_task, run->ctx, run);
1514 continue;
1517 ret = do_run(run);
1518 if (!ret)
1519 break;
1522 * something went wrong with start, add the run
1523 * to done q and continue to the next run in the
1524 * pending q.
1526 run->status = ret;
1527 list_add_tail(&run->list, &chan->done_q);
1528 chan->current_run = NULL;
1532 static void empty_done_q(struct ipu_image_convert_chan *chan)
1534 struct ipu_image_convert_priv *priv = chan->priv;
1535 struct ipu_image_convert_run *run;
1536 unsigned long flags;
1538 spin_lock_irqsave(&chan->irqlock, flags);
1540 while (!list_empty(&chan->done_q)) {
1541 run = list_entry(chan->done_q.next,
1542 struct ipu_image_convert_run,
1543 list);
1545 list_del(&run->list);
1547 dev_dbg(priv->ipu->dev,
1548 "%s: task %u: completing ctx %p run %p with %d\n",
1549 __func__, chan->ic_task, run->ctx, run, run->status);
1551 /* call the completion callback and free the run */
1552 spin_unlock_irqrestore(&chan->irqlock, flags);
1553 run->ctx->complete(run, run->ctx->complete_context);
1554 spin_lock_irqsave(&chan->irqlock, flags);
1557 spin_unlock_irqrestore(&chan->irqlock, flags);
1561 * the bottom half thread clears out the done_q, calling the
1562 * completion handler for each.
1564 static irqreturn_t do_bh(int irq, void *dev_id)
1566 struct ipu_image_convert_chan *chan = dev_id;
1567 struct ipu_image_convert_priv *priv = chan->priv;
1568 struct ipu_image_convert_ctx *ctx;
1569 unsigned long flags;
1571 dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1572 chan->ic_task);
1574 empty_done_q(chan);
1576 spin_lock_irqsave(&chan->irqlock, flags);
1579 * the done_q is cleared out, signal any contexts
1580 * that are aborting that abort can complete.
1582 list_for_each_entry(ctx, &chan->ctx_list, list) {
1583 if (ctx->aborting) {
1584 dev_dbg(priv->ipu->dev,
1585 "%s: task %u: signaling abort for ctx %p\n",
1586 __func__, chan->ic_task, ctx);
1587 complete_all(&ctx->aborted);
1591 spin_unlock_irqrestore(&chan->irqlock, flags);
1593 dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1594 chan->ic_task);
1596 return IRQ_HANDLED;
1599 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1601 unsigned int cur_tile = ctx->next_tile - 1;
1602 unsigned int next_tile = ctx->next_tile;
1604 if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1605 ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1606 ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1607 ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1608 ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1609 ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1610 ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1611 ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1612 return true;
1614 return false;
1617 /* hold irqlock when calling */
1618 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1620 struct ipu_image_convert_ctx *ctx = run->ctx;
1621 struct ipu_image_convert_chan *chan = ctx->chan;
1622 struct ipu_image_tile *src_tile, *dst_tile;
1623 struct ipu_image_convert_image *s_image = &ctx->in;
1624 struct ipu_image_convert_image *d_image = &ctx->out;
1625 struct ipuv3_channel *outch;
1626 unsigned int dst_idx;
1628 lockdep_assert_held(&chan->irqlock);
1630 outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1631 chan->rotation_out_chan : chan->out_chan;
1634 * It is difficult to stop the channel DMA before the channels
1635 * enter the paused state. Without double-buffering the channels
1636 * are always in a paused state when the EOF irq occurs, so it
1637 * is safe to stop the channels now. For double-buffering we
1638 * just ignore the abort until the operation completes, when it
1639 * is safe to shut down.
1641 if (ctx->aborting && !ctx->double_buffering) {
1642 convert_stop(run);
1643 run->status = -EIO;
1644 goto done;
1647 if (ctx->next_tile == ctx->num_tiles) {
1649 * the conversion is complete
1651 convert_stop(run);
1652 run->status = 0;
1653 goto done;
1657 * not done, place the next tile buffers.
1659 if (!ctx->double_buffering) {
1660 if (ic_settings_changed(ctx)) {
1661 convert_stop(run);
1662 convert_start(run, ctx->next_tile);
1663 } else {
1664 src_tile = &s_image->tile[ctx->next_tile];
1665 dst_idx = ctx->out_tile_map[ctx->next_tile];
1666 dst_tile = &d_image->tile[dst_idx];
1668 ipu_cpmem_set_buffer(chan->in_chan, 0,
1669 s_image->base.phys0 +
1670 src_tile->offset);
1671 ipu_cpmem_set_buffer(outch, 0,
1672 d_image->base.phys0 +
1673 dst_tile->offset);
1674 if (s_image->fmt->planar)
1675 ipu_cpmem_set_uv_offset(chan->in_chan,
1676 src_tile->u_off,
1677 src_tile->v_off);
1678 if (d_image->fmt->planar)
1679 ipu_cpmem_set_uv_offset(outch,
1680 dst_tile->u_off,
1681 dst_tile->v_off);
1683 ipu_idmac_select_buffer(chan->in_chan, 0);
1684 ipu_idmac_select_buffer(outch, 0);
1686 } else if (ctx->next_tile < ctx->num_tiles - 1) {
1688 src_tile = &s_image->tile[ctx->next_tile + 1];
1689 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1690 dst_tile = &d_image->tile[dst_idx];
1692 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1693 s_image->base.phys0 + src_tile->offset);
1694 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1695 d_image->base.phys0 + dst_tile->offset);
1697 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1698 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1700 ctx->cur_buf_num ^= 1;
1703 ctx->next_tile++;
1704 return IRQ_HANDLED;
1705 done:
1706 list_add_tail(&run->list, &chan->done_q);
1707 chan->current_run = NULL;
1708 run_next(chan);
1709 return IRQ_WAKE_THREAD;
1712 static irqreturn_t norotate_irq(int irq, void *data)
1714 struct ipu_image_convert_chan *chan = data;
1715 struct ipu_image_convert_ctx *ctx;
1716 struct ipu_image_convert_run *run;
1717 unsigned long flags;
1718 irqreturn_t ret;
1720 spin_lock_irqsave(&chan->irqlock, flags);
1722 /* get current run and its context */
1723 run = chan->current_run;
1724 if (!run) {
1725 ret = IRQ_NONE;
1726 goto out;
1729 ctx = run->ctx;
1731 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1732 /* this is a rotation operation, just ignore */
1733 spin_unlock_irqrestore(&chan->irqlock, flags);
1734 return IRQ_HANDLED;
1737 ret = do_irq(run);
1738 out:
1739 spin_unlock_irqrestore(&chan->irqlock, flags);
1740 return ret;
1743 static irqreturn_t rotate_irq(int irq, void *data)
1745 struct ipu_image_convert_chan *chan = data;
1746 struct ipu_image_convert_priv *priv = chan->priv;
1747 struct ipu_image_convert_ctx *ctx;
1748 struct ipu_image_convert_run *run;
1749 unsigned long flags;
1750 irqreturn_t ret;
1752 spin_lock_irqsave(&chan->irqlock, flags);
1754 /* get current run and its context */
1755 run = chan->current_run;
1756 if (!run) {
1757 ret = IRQ_NONE;
1758 goto out;
1761 ctx = run->ctx;
1763 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1764 /* this was NOT a rotation operation, shouldn't happen */
1765 dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1766 spin_unlock_irqrestore(&chan->irqlock, flags);
1767 return IRQ_HANDLED;
1770 ret = do_irq(run);
1771 out:
1772 spin_unlock_irqrestore(&chan->irqlock, flags);
1773 return ret;
1777 * try to force the completion of runs for this ctx. Called when
1778 * abort wait times out in ipu_image_convert_abort().
1780 static void force_abort(struct ipu_image_convert_ctx *ctx)
1782 struct ipu_image_convert_chan *chan = ctx->chan;
1783 struct ipu_image_convert_run *run;
1784 unsigned long flags;
1786 spin_lock_irqsave(&chan->irqlock, flags);
1788 run = chan->current_run;
1789 if (run && run->ctx == ctx) {
1790 convert_stop(run);
1791 run->status = -EIO;
1792 list_add_tail(&run->list, &chan->done_q);
1793 chan->current_run = NULL;
1794 run_next(chan);
1797 spin_unlock_irqrestore(&chan->irqlock, flags);
1799 empty_done_q(chan);
1802 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1804 if (chan->out_eof_irq >= 0)
1805 free_irq(chan->out_eof_irq, chan);
1806 if (chan->rot_out_eof_irq >= 0)
1807 free_irq(chan->rot_out_eof_irq, chan);
1809 if (!IS_ERR_OR_NULL(chan->in_chan))
1810 ipu_idmac_put(chan->in_chan);
1811 if (!IS_ERR_OR_NULL(chan->out_chan))
1812 ipu_idmac_put(chan->out_chan);
1813 if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1814 ipu_idmac_put(chan->rotation_in_chan);
1815 if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1816 ipu_idmac_put(chan->rotation_out_chan);
1817 if (!IS_ERR_OR_NULL(chan->ic))
1818 ipu_ic_put(chan->ic);
1820 chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1821 chan->rotation_out_chan = NULL;
1822 chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1825 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1827 const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1828 struct ipu_image_convert_priv *priv = chan->priv;
1829 int ret;
1831 /* get IC */
1832 chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1833 if (IS_ERR(chan->ic)) {
1834 dev_err(priv->ipu->dev, "could not acquire IC\n");
1835 ret = PTR_ERR(chan->ic);
1836 goto err;
1839 /* get IDMAC channels */
1840 chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1841 chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1842 if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1843 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1844 ret = -EBUSY;
1845 goto err;
1848 chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1849 chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1850 if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1851 dev_err(priv->ipu->dev,
1852 "could not acquire idmac rotation channels\n");
1853 ret = -EBUSY;
1854 goto err;
1857 /* acquire the EOF interrupts */
1858 chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1859 chan->out_chan,
1860 IPU_IRQ_EOF);
1862 ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1863 0, "ipu-ic", chan);
1864 if (ret < 0) {
1865 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1866 chan->out_eof_irq);
1867 chan->out_eof_irq = -1;
1868 goto err;
1871 chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1872 chan->rotation_out_chan,
1873 IPU_IRQ_EOF);
1875 ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1876 0, "ipu-ic", chan);
1877 if (ret < 0) {
1878 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1879 chan->rot_out_eof_irq);
1880 chan->rot_out_eof_irq = -1;
1881 goto err;
1884 return 0;
1885 err:
1886 release_ipu_resources(chan);
1887 return ret;
1890 static int fill_image(struct ipu_image_convert_ctx *ctx,
1891 struct ipu_image_convert_image *ic_image,
1892 struct ipu_image *image,
1893 enum ipu_image_convert_type type)
1895 struct ipu_image_convert_priv *priv = ctx->chan->priv;
1897 ic_image->base = *image;
1898 ic_image->type = type;
1900 ic_image->fmt = get_format(image->pix.pixelformat);
1901 if (!ic_image->fmt) {
1902 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1903 type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1904 return -EINVAL;
1907 if (ic_image->fmt->planar)
1908 ic_image->stride = ic_image->base.pix.width;
1909 else
1910 ic_image->stride = ic_image->base.pix.bytesperline;
1912 return 0;
1915 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1916 static unsigned int clamp_align(unsigned int x, unsigned int min,
1917 unsigned int max, unsigned int align)
1919 /* Bits that must be zero to be aligned */
1920 unsigned int mask = ~((1 << align) - 1);
1922 /* Clamp to aligned min and max */
1923 x = clamp(x, (min + ~mask) & mask, max & mask);
1925 /* Round to nearest aligned value */
1926 if (align)
1927 x = (x + (1 << (align - 1))) & mask;
1929 return x;
1932 /* Adjusts input/output images to IPU restrictions */
1933 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1934 enum ipu_rotate_mode rot_mode)
1936 const struct ipu_image_pixfmt *infmt, *outfmt;
1937 u32 w_align_out, h_align_out;
1938 u32 w_align_in, h_align_in;
1940 infmt = get_format(in->pix.pixelformat);
1941 outfmt = get_format(out->pix.pixelformat);
1943 /* set some default pixel formats if needed */
1944 if (!infmt) {
1945 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1946 infmt = get_format(V4L2_PIX_FMT_RGB24);
1948 if (!outfmt) {
1949 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1950 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1953 /* image converter does not handle fields */
1954 in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1956 /* resizer cannot downsize more than 4:1 */
1957 if (ipu_rot_mode_is_irt(rot_mode)) {
1958 out->pix.height = max_t(__u32, out->pix.height,
1959 in->pix.width / 4);
1960 out->pix.width = max_t(__u32, out->pix.width,
1961 in->pix.height / 4);
1962 } else {
1963 out->pix.width = max_t(__u32, out->pix.width,
1964 in->pix.width / 4);
1965 out->pix.height = max_t(__u32, out->pix.height,
1966 in->pix.height / 4);
1969 /* align input width/height */
1970 w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1971 rot_mode));
1972 h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1973 rot_mode));
1974 in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1975 w_align_in);
1976 in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1977 h_align_in);
1979 /* align output width/height */
1980 w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1981 rot_mode));
1982 h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1983 rot_mode));
1984 out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1985 w_align_out);
1986 out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1987 h_align_out);
1989 /* set input/output strides and image sizes */
1990 in->pix.bytesperline = infmt->planar ?
1991 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1992 w_align_in) :
1993 clamp_align((in->pix.width * infmt->bpp) >> 3,
1994 ((2 << w_align_in) * infmt->bpp) >> 3,
1995 (MAX_W * infmt->bpp) >> 3,
1996 w_align_in);
1997 in->pix.sizeimage = infmt->planar ?
1998 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1999 in->pix.height * in->pix.bytesperline;
2000 out->pix.bytesperline = outfmt->planar ? out->pix.width :
2001 (out->pix.width * outfmt->bpp) >> 3;
2002 out->pix.sizeimage = outfmt->planar ?
2003 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2004 out->pix.height * out->pix.bytesperline;
2006 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2009 * this is used by ipu_image_convert_prepare() to verify set input and
2010 * output images are valid before starting the conversion. Clients can
2011 * also call it before calling ipu_image_convert_prepare().
2013 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2014 enum ipu_rotate_mode rot_mode)
2016 struct ipu_image testin, testout;
2018 testin = *in;
2019 testout = *out;
2021 ipu_image_convert_adjust(&testin, &testout, rot_mode);
2023 if (testin.pix.width != in->pix.width ||
2024 testin.pix.height != in->pix.height ||
2025 testout.pix.width != out->pix.width ||
2026 testout.pix.height != out->pix.height)
2027 return -EINVAL;
2029 return 0;
2031 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2034 * Call ipu_image_convert_prepare() to prepare for the conversion of
2035 * given images and rotation mode. Returns a new conversion context.
2037 struct ipu_image_convert_ctx *
2038 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2039 struct ipu_image *in, struct ipu_image *out,
2040 enum ipu_rotate_mode rot_mode,
2041 ipu_image_convert_cb_t complete,
2042 void *complete_context)
2044 struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2045 struct ipu_image_convert_image *s_image, *d_image;
2046 struct ipu_image_convert_chan *chan;
2047 struct ipu_image_convert_ctx *ctx;
2048 unsigned long flags;
2049 unsigned int i;
2050 bool get_res;
2051 int ret;
2053 if (!in || !out || !complete ||
2054 (ic_task != IC_TASK_VIEWFINDER &&
2055 ic_task != IC_TASK_POST_PROCESSOR))
2056 return ERR_PTR(-EINVAL);
2058 /* verify the in/out images before continuing */
2059 ret = ipu_image_convert_verify(in, out, rot_mode);
2060 if (ret) {
2061 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2062 __func__);
2063 return ERR_PTR(ret);
2066 chan = &priv->chan[ic_task];
2068 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2069 if (!ctx)
2070 return ERR_PTR(-ENOMEM);
2072 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2073 chan->ic_task, ctx);
2075 ctx->chan = chan;
2076 init_completion(&ctx->aborted);
2078 ctx->rot_mode = rot_mode;
2080 /* Sets ctx->in.num_rows/cols as well */
2081 ret = calc_image_resize_coefficients(ctx, in, out);
2082 if (ret)
2083 goto out_free;
2085 s_image = &ctx->in;
2086 d_image = &ctx->out;
2088 /* set tiling and rotation */
2089 if (ipu_rot_mode_is_irt(rot_mode)) {
2090 d_image->num_rows = s_image->num_cols;
2091 d_image->num_cols = s_image->num_rows;
2092 } else {
2093 d_image->num_rows = s_image->num_rows;
2094 d_image->num_cols = s_image->num_cols;
2097 ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2099 ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2100 if (ret)
2101 goto out_free;
2102 ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2103 if (ret)
2104 goto out_free;
2106 calc_out_tile_map(ctx);
2108 find_seams(ctx, s_image, d_image);
2110 ret = calc_tile_dimensions(ctx, s_image);
2111 if (ret)
2112 goto out_free;
2114 ret = calc_tile_offsets(ctx, s_image);
2115 if (ret)
2116 goto out_free;
2118 calc_tile_dimensions(ctx, d_image);
2119 ret = calc_tile_offsets(ctx, d_image);
2120 if (ret)
2121 goto out_free;
2123 calc_tile_resize_coefficients(ctx);
2125 ret = ipu_ic_calc_csc(&ctx->csc,
2126 s_image->base.pix.ycbcr_enc,
2127 s_image->base.pix.quantization,
2128 ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2129 d_image->base.pix.ycbcr_enc,
2130 d_image->base.pix.quantization,
2131 ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2132 if (ret)
2133 goto out_free;
2135 dump_format(ctx, s_image);
2136 dump_format(ctx, d_image);
2138 ctx->complete = complete;
2139 ctx->complete_context = complete_context;
2142 * Can we use double-buffering for this operation? If there is
2143 * only one tile (the whole image can be converted in a single
2144 * operation) there's no point in using double-buffering. Also,
2145 * the IPU's IDMAC channels allow only a single U and V plane
2146 * offset shared between both buffers, but these offsets change
2147 * for every tile, and therefore would have to be updated for
2148 * each buffer which is not possible. So double-buffering is
2149 * impossible when either the source or destination images are
2150 * a planar format (YUV420, YUV422P, etc.). Further, differently
2151 * sized tiles or different resizing coefficients per tile
2152 * prevent double-buffering as well.
2154 ctx->double_buffering = (ctx->num_tiles > 1 &&
2155 !s_image->fmt->planar &&
2156 !d_image->fmt->planar);
2157 for (i = 1; i < ctx->num_tiles; i++) {
2158 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2159 ctx->in.tile[i].height != ctx->in.tile[0].height ||
2160 ctx->out.tile[i].width != ctx->out.tile[0].width ||
2161 ctx->out.tile[i].height != ctx->out.tile[0].height) {
2162 ctx->double_buffering = false;
2163 break;
2166 for (i = 1; i < ctx->in.num_cols; i++) {
2167 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2168 ctx->double_buffering = false;
2169 break;
2172 for (i = 1; i < ctx->in.num_rows; i++) {
2173 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2174 ctx->double_buffering = false;
2175 break;
2179 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2180 unsigned long intermediate_size = d_image->tile[0].size;
2182 for (i = 1; i < ctx->num_tiles; i++) {
2183 if (d_image->tile[i].size > intermediate_size)
2184 intermediate_size = d_image->tile[i].size;
2187 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2188 intermediate_size);
2189 if (ret)
2190 goto out_free;
2191 if (ctx->double_buffering) {
2192 ret = alloc_dma_buf(priv,
2193 &ctx->rot_intermediate[1],
2194 intermediate_size);
2195 if (ret)
2196 goto out_free_dmabuf0;
2200 spin_lock_irqsave(&chan->irqlock, flags);
2202 get_res = list_empty(&chan->ctx_list);
2204 list_add_tail(&ctx->list, &chan->ctx_list);
2206 spin_unlock_irqrestore(&chan->irqlock, flags);
2208 if (get_res) {
2209 ret = get_ipu_resources(chan);
2210 if (ret)
2211 goto out_free_dmabuf1;
2214 return ctx;
2216 out_free_dmabuf1:
2217 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2218 spin_lock_irqsave(&chan->irqlock, flags);
2219 list_del(&ctx->list);
2220 spin_unlock_irqrestore(&chan->irqlock, flags);
2221 out_free_dmabuf0:
2222 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2223 out_free:
2224 kfree(ctx);
2225 return ERR_PTR(ret);
2227 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2230 * Carry out a single image conversion run. Only the physaddr's of the input
2231 * and output image buffers are needed. The conversion context must have
2232 * been created previously with ipu_image_convert_prepare().
2234 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2236 struct ipu_image_convert_chan *chan;
2237 struct ipu_image_convert_priv *priv;
2238 struct ipu_image_convert_ctx *ctx;
2239 unsigned long flags;
2240 int ret = 0;
2242 if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2243 return -EINVAL;
2245 ctx = run->ctx;
2246 chan = ctx->chan;
2247 priv = chan->priv;
2249 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2250 chan->ic_task, ctx, run);
2252 INIT_LIST_HEAD(&run->list);
2254 spin_lock_irqsave(&chan->irqlock, flags);
2256 if (ctx->aborting) {
2257 ret = -EIO;
2258 goto unlock;
2261 list_add_tail(&run->list, &chan->pending_q);
2263 if (!chan->current_run) {
2264 ret = do_run(run);
2265 if (ret)
2266 chan->current_run = NULL;
2268 unlock:
2269 spin_unlock_irqrestore(&chan->irqlock, flags);
2270 return ret;
2272 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2274 /* Abort any active or pending conversions for this context */
2275 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2277 struct ipu_image_convert_chan *chan = ctx->chan;
2278 struct ipu_image_convert_priv *priv = chan->priv;
2279 struct ipu_image_convert_run *run, *active_run, *tmp;
2280 unsigned long flags;
2281 int run_count, ret;
2283 spin_lock_irqsave(&chan->irqlock, flags);
2285 /* move all remaining pending runs in this context to done_q */
2286 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2287 if (run->ctx != ctx)
2288 continue;
2289 run->status = -EIO;
2290 list_move_tail(&run->list, &chan->done_q);
2293 run_count = get_run_count(ctx, &chan->done_q);
2294 active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2295 chan->current_run : NULL;
2297 if (active_run)
2298 reinit_completion(&ctx->aborted);
2300 ctx->aborting = true;
2302 spin_unlock_irqrestore(&chan->irqlock, flags);
2304 if (!run_count && !active_run) {
2305 dev_dbg(priv->ipu->dev,
2306 "%s: task %u: no abort needed for ctx %p\n",
2307 __func__, chan->ic_task, ctx);
2308 return;
2311 if (!active_run) {
2312 empty_done_q(chan);
2313 return;
2316 dev_dbg(priv->ipu->dev,
2317 "%s: task %u: wait for completion: %d runs\n",
2318 __func__, chan->ic_task, run_count);
2320 ret = wait_for_completion_timeout(&ctx->aborted,
2321 msecs_to_jiffies(10000));
2322 if (ret == 0) {
2323 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2324 force_abort(ctx);
2328 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2330 __ipu_image_convert_abort(ctx);
2331 ctx->aborting = false;
2333 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2335 /* Unprepare image conversion context */
2336 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2338 struct ipu_image_convert_chan *chan = ctx->chan;
2339 struct ipu_image_convert_priv *priv = chan->priv;
2340 unsigned long flags;
2341 bool put_res;
2343 /* make sure no runs are hanging around */
2344 __ipu_image_convert_abort(ctx);
2346 dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2347 chan->ic_task, ctx);
2349 spin_lock_irqsave(&chan->irqlock, flags);
2351 list_del(&ctx->list);
2353 put_res = list_empty(&chan->ctx_list);
2355 spin_unlock_irqrestore(&chan->irqlock, flags);
2357 if (put_res)
2358 release_ipu_resources(chan);
2360 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2361 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2363 kfree(ctx);
2365 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2368 * "Canned" asynchronous single image conversion. Allocates and returns
2369 * a new conversion run. On successful return the caller must free the
2370 * run and call ipu_image_convert_unprepare() after conversion completes.
2372 struct ipu_image_convert_run *
2373 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2374 struct ipu_image *in, struct ipu_image *out,
2375 enum ipu_rotate_mode rot_mode,
2376 ipu_image_convert_cb_t complete,
2377 void *complete_context)
2379 struct ipu_image_convert_ctx *ctx;
2380 struct ipu_image_convert_run *run;
2381 int ret;
2383 ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2384 complete, complete_context);
2385 if (IS_ERR(ctx))
2386 return ERR_CAST(ctx);
2388 run = kzalloc(sizeof(*run), GFP_KERNEL);
2389 if (!run) {
2390 ipu_image_convert_unprepare(ctx);
2391 return ERR_PTR(-ENOMEM);
2394 run->ctx = ctx;
2395 run->in_phys = in->phys0;
2396 run->out_phys = out->phys0;
2398 ret = ipu_image_convert_queue(run);
2399 if (ret) {
2400 ipu_image_convert_unprepare(ctx);
2401 kfree(run);
2402 return ERR_PTR(ret);
2405 return run;
2407 EXPORT_SYMBOL_GPL(ipu_image_convert);
2409 /* "Canned" synchronous single image conversion */
2410 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2411 void *data)
2413 struct completion *comp = data;
2415 complete(comp);
2418 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2419 struct ipu_image *in, struct ipu_image *out,
2420 enum ipu_rotate_mode rot_mode)
2422 struct ipu_image_convert_run *run;
2423 struct completion comp;
2424 int ret;
2426 init_completion(&comp);
2428 run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2429 image_convert_sync_complete, &comp);
2430 if (IS_ERR(run))
2431 return PTR_ERR(run);
2433 ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2434 ret = (ret == 0) ? -ETIMEDOUT : 0;
2436 ipu_image_convert_unprepare(run->ctx);
2437 kfree(run);
2439 return ret;
2441 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2443 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2445 struct ipu_image_convert_priv *priv;
2446 int i;
2448 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2449 if (!priv)
2450 return -ENOMEM;
2452 ipu->image_convert_priv = priv;
2453 priv->ipu = ipu;
2455 for (i = 0; i < IC_NUM_TASKS; i++) {
2456 struct ipu_image_convert_chan *chan = &priv->chan[i];
2458 chan->ic_task = i;
2459 chan->priv = priv;
2460 chan->dma_ch = &image_convert_dma_chan[i];
2461 chan->out_eof_irq = -1;
2462 chan->rot_out_eof_irq = -1;
2464 spin_lock_init(&chan->irqlock);
2465 INIT_LIST_HEAD(&chan->ctx_list);
2466 INIT_LIST_HEAD(&chan->pending_q);
2467 INIT_LIST_HEAD(&chan->done_q);
2470 return 0;
2473 void ipu_image_convert_exit(struct ipu_soc *ipu)