2 * Copyright(c) 2015 - 2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 #include <linux/numa.h>
58 struct hfi1_affinity_node_list node_affinity
= {
59 .list
= LIST_HEAD_INIT(node_affinity
.list
),
60 .lock
= __MUTEX_INITIALIZER(node_affinity
.lock
)
63 /* Name of IRQ types, indexed by enum irq_type */
64 static const char * const irq_type_names
[] = {
71 /* Per NUMA node count of HFI devices */
72 static unsigned int *hfi1_per_node_cntr
;
74 static inline void init_cpu_mask_set(struct cpu_mask_set
*set
)
76 cpumask_clear(&set
->mask
);
77 cpumask_clear(&set
->used
);
81 /* Increment generation of CPU set if needed */
82 static void _cpu_mask_set_gen_inc(struct cpu_mask_set
*set
)
84 if (cpumask_equal(&set
->mask
, &set
->used
)) {
86 * We've used up all the CPUs, bump up the generation
87 * and reset the 'used' map
90 cpumask_clear(&set
->used
);
94 static void _cpu_mask_set_gen_dec(struct cpu_mask_set
*set
)
96 if (cpumask_empty(&set
->used
) && set
->gen
) {
98 cpumask_copy(&set
->used
, &set
->mask
);
102 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
103 static int cpu_mask_set_get_first(struct cpu_mask_set
*set
, cpumask_var_t diff
)
110 _cpu_mask_set_gen_inc(set
);
112 /* Find out CPUs left in CPU mask */
113 cpumask_andnot(diff
, &set
->mask
, &set
->used
);
115 cpu
= cpumask_first(diff
);
116 if (cpu
>= nr_cpu_ids
) /* empty */
119 cpumask_set_cpu(cpu
, &set
->used
);
124 static void cpu_mask_set_put(struct cpu_mask_set
*set
, int cpu
)
129 cpumask_clear_cpu(cpu
, &set
->used
);
130 _cpu_mask_set_gen_dec(set
);
133 /* Initialize non-HT cpu cores mask */
134 void init_real_cpu_mask(void)
136 int possible
, curr_cpu
, i
, ht
;
138 cpumask_clear(&node_affinity
.real_cpu_mask
);
140 /* Start with cpu online mask as the real cpu mask */
141 cpumask_copy(&node_affinity
.real_cpu_mask
, cpu_online_mask
);
144 * Remove HT cores from the real cpu mask. Do this in two steps below.
146 possible
= cpumask_weight(&node_affinity
.real_cpu_mask
);
147 ht
= cpumask_weight(topology_sibling_cpumask(
148 cpumask_first(&node_affinity
.real_cpu_mask
)));
150 * Step 1. Skip over the first N HT siblings and use them as the
151 * "real" cores. Assumes that HT cores are not enumerated in
152 * succession (except in the single core case).
154 curr_cpu
= cpumask_first(&node_affinity
.real_cpu_mask
);
155 for (i
= 0; i
< possible
/ ht
; i
++)
156 curr_cpu
= cpumask_next(curr_cpu
, &node_affinity
.real_cpu_mask
);
158 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
161 for (; i
< possible
; i
++) {
162 cpumask_clear_cpu(curr_cpu
, &node_affinity
.real_cpu_mask
);
163 curr_cpu
= cpumask_next(curr_cpu
, &node_affinity
.real_cpu_mask
);
167 int node_affinity_init(void)
170 struct pci_dev
*dev
= NULL
;
171 const struct pci_device_id
*ids
= hfi1_pci_tbl
;
173 cpumask_clear(&node_affinity
.proc
.used
);
174 cpumask_copy(&node_affinity
.proc
.mask
, cpu_online_mask
);
176 node_affinity
.proc
.gen
= 0;
177 node_affinity
.num_core_siblings
=
178 cpumask_weight(topology_sibling_cpumask(
179 cpumask_first(&node_affinity
.proc
.mask
)
181 node_affinity
.num_possible_nodes
= num_possible_nodes();
182 node_affinity
.num_online_nodes
= num_online_nodes();
183 node_affinity
.num_online_cpus
= num_online_cpus();
186 * The real cpu mask is part of the affinity struct but it has to be
187 * initialized early. It is needed to calculate the number of user
188 * contexts in set_up_context_variables().
190 init_real_cpu_mask();
192 hfi1_per_node_cntr
= kcalloc(node_affinity
.num_possible_nodes
,
193 sizeof(*hfi1_per_node_cntr
), GFP_KERNEL
);
194 if (!hfi1_per_node_cntr
)
197 while (ids
->vendor
) {
199 while ((dev
= pci_get_device(ids
->vendor
, ids
->device
, dev
))) {
200 node
= pcibus_to_node(dev
->bus
);
204 hfi1_per_node_cntr
[node
]++;
213 * Invalid PCI NUMA node information found, note it, and populate
216 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
217 pr_err("HFI: System BIOS may need to be upgraded\n");
218 for (node
= 0; node
< node_affinity
.num_possible_nodes
; node
++)
219 hfi1_per_node_cntr
[node
] = 1;
224 static void node_affinity_destroy(struct hfi1_affinity_node
*entry
)
226 free_percpu(entry
->comp_vect_affinity
);
230 void node_affinity_destroy_all(void)
232 struct list_head
*pos
, *q
;
233 struct hfi1_affinity_node
*entry
;
235 mutex_lock(&node_affinity
.lock
);
236 list_for_each_safe(pos
, q
, &node_affinity
.list
) {
237 entry
= list_entry(pos
, struct hfi1_affinity_node
,
240 node_affinity_destroy(entry
);
242 mutex_unlock(&node_affinity
.lock
);
243 kfree(hfi1_per_node_cntr
);
246 static struct hfi1_affinity_node
*node_affinity_allocate(int node
)
248 struct hfi1_affinity_node
*entry
;
250 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
254 entry
->comp_vect_affinity
= alloc_percpu(u16
);
255 INIT_LIST_HEAD(&entry
->list
);
261 * It appends an entry to the list.
262 * It *must* be called with node_affinity.lock held.
264 static void node_affinity_add_tail(struct hfi1_affinity_node
*entry
)
266 list_add_tail(&entry
->list
, &node_affinity
.list
);
269 /* It must be called with node_affinity.lock held */
270 static struct hfi1_affinity_node
*node_affinity_lookup(int node
)
272 struct list_head
*pos
;
273 struct hfi1_affinity_node
*entry
;
275 list_for_each(pos
, &node_affinity
.list
) {
276 entry
= list_entry(pos
, struct hfi1_affinity_node
, list
);
277 if (entry
->node
== node
)
284 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask
,
285 u16 __percpu
*comp_vect_affinity
)
292 if (!possible_cpumask
) {
297 if (!comp_vect_affinity
) {
302 ret_cpu
= cpumask_first(possible_cpumask
);
303 if (ret_cpu
>= nr_cpu_ids
) {
308 prev_cntr
= *per_cpu_ptr(comp_vect_affinity
, ret_cpu
);
309 for_each_cpu(curr_cpu
, possible_cpumask
) {
310 cntr
= *per_cpu_ptr(comp_vect_affinity
, curr_cpu
);
312 if (cntr
< prev_cntr
) {
318 *per_cpu_ptr(comp_vect_affinity
, ret_cpu
) += 1;
324 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask
,
325 u16 __percpu
*comp_vect_affinity
)
332 if (!possible_cpumask
)
335 if (!comp_vect_affinity
)
338 max_cpu
= cpumask_first(possible_cpumask
);
339 if (max_cpu
>= nr_cpu_ids
)
342 prev_cntr
= *per_cpu_ptr(comp_vect_affinity
, max_cpu
);
343 for_each_cpu(curr_cpu
, possible_cpumask
) {
344 cntr
= *per_cpu_ptr(comp_vect_affinity
, curr_cpu
);
346 if (cntr
> prev_cntr
) {
352 *per_cpu_ptr(comp_vect_affinity
, max_cpu
) -= 1;
358 * Non-interrupt CPUs are used first, then interrupt CPUs.
359 * Two already allocated cpu masks must be passed.
361 static int _dev_comp_vect_cpu_get(struct hfi1_devdata
*dd
,
362 struct hfi1_affinity_node
*entry
,
363 cpumask_var_t non_intr_cpus
,
364 cpumask_var_t available_cpus
)
365 __must_hold(&node_affinity
.lock
)
368 struct cpu_mask_set
*set
= dd
->comp_vect
;
370 lockdep_assert_held(&node_affinity
.lock
);
371 if (!non_intr_cpus
) {
376 if (!available_cpus
) {
381 /* Available CPUs for pinning completion vectors */
382 _cpu_mask_set_gen_inc(set
);
383 cpumask_andnot(available_cpus
, &set
->mask
, &set
->used
);
385 /* Available CPUs without SDMA engine interrupts */
386 cpumask_andnot(non_intr_cpus
, available_cpus
,
387 &entry
->def_intr
.used
);
389 /* If there are non-interrupt CPUs available, use them first */
390 if (!cpumask_empty(non_intr_cpus
))
391 cpu
= cpumask_first(non_intr_cpus
);
392 else /* Otherwise, use interrupt CPUs */
393 cpu
= cpumask_first(available_cpus
);
395 if (cpu
>= nr_cpu_ids
) { /* empty */
399 cpumask_set_cpu(cpu
, &set
->used
);
405 static void _dev_comp_vect_cpu_put(struct hfi1_devdata
*dd
, int cpu
)
407 struct cpu_mask_set
*set
= dd
->comp_vect
;
412 cpu_mask_set_put(set
, cpu
);
415 /* _dev_comp_vect_mappings_destroy() is reentrant */
416 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata
*dd
)
420 if (!dd
->comp_vect_mappings
)
423 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
424 cpu
= dd
->comp_vect_mappings
[i
];
425 _dev_comp_vect_cpu_put(dd
, cpu
);
426 dd
->comp_vect_mappings
[i
] = -1;
428 "[%s] Release CPU %d from completion vector %d",
429 rvt_get_ibdev_name(&(dd
)->verbs_dev
.rdi
), cpu
, i
);
432 kfree(dd
->comp_vect_mappings
);
433 dd
->comp_vect_mappings
= NULL
;
437 * This function creates the table for looking up CPUs for completion vectors.
438 * num_comp_vectors needs to have been initilized before calling this function.
440 static int _dev_comp_vect_mappings_create(struct hfi1_devdata
*dd
,
441 struct hfi1_affinity_node
*entry
)
442 __must_hold(&node_affinity
.lock
)
445 cpumask_var_t non_intr_cpus
;
446 cpumask_var_t available_cpus
;
448 lockdep_assert_held(&node_affinity
.lock
);
450 if (!zalloc_cpumask_var(&non_intr_cpus
, GFP_KERNEL
))
453 if (!zalloc_cpumask_var(&available_cpus
, GFP_KERNEL
)) {
454 free_cpumask_var(non_intr_cpus
);
458 dd
->comp_vect_mappings
= kcalloc(dd
->comp_vect_possible_cpus
,
459 sizeof(*dd
->comp_vect_mappings
),
461 if (!dd
->comp_vect_mappings
) {
465 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++)
466 dd
->comp_vect_mappings
[i
] = -1;
468 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
469 cpu
= _dev_comp_vect_cpu_get(dd
, entry
, non_intr_cpus
,
476 dd
->comp_vect_mappings
[i
] = cpu
;
478 "[%s] Completion Vector %d -> CPU %d",
479 rvt_get_ibdev_name(&(dd
)->verbs_dev
.rdi
), i
, cpu
);
485 free_cpumask_var(available_cpus
);
486 free_cpumask_var(non_intr_cpus
);
487 _dev_comp_vect_mappings_destroy(dd
);
492 int hfi1_comp_vectors_set_up(struct hfi1_devdata
*dd
)
495 struct hfi1_affinity_node
*entry
;
497 mutex_lock(&node_affinity
.lock
);
498 entry
= node_affinity_lookup(dd
->node
);
503 ret
= _dev_comp_vect_mappings_create(dd
, entry
);
505 mutex_unlock(&node_affinity
.lock
);
510 void hfi1_comp_vectors_clean_up(struct hfi1_devdata
*dd
)
512 _dev_comp_vect_mappings_destroy(dd
);
515 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info
*rdi
, int comp_vect
)
517 struct hfi1_ibdev
*verbs_dev
= dev_from_rdi(rdi
);
518 struct hfi1_devdata
*dd
= dd_from_dev(verbs_dev
);
520 if (!dd
->comp_vect_mappings
)
522 if (comp_vect
>= dd
->comp_vect_possible_cpus
)
525 return dd
->comp_vect_mappings
[comp_vect
];
529 * It assumes dd->comp_vect_possible_cpus is available.
531 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata
*dd
,
532 struct hfi1_affinity_node
*entry
,
534 __must_hold(&node_affinity
.lock
)
537 int possible_cpus_comp_vect
= 0;
538 struct cpumask
*dev_comp_vect_mask
= &dd
->comp_vect
->mask
;
540 lockdep_assert_held(&node_affinity
.lock
);
542 * If there's only one CPU available for completion vectors, then
543 * there will only be one completion vector available. Othewise,
544 * the number of completion vector available will be the number of
545 * available CPUs divide it by the number of devices in the
548 if (cpumask_weight(&entry
->comp_vect_mask
) == 1) {
549 possible_cpus_comp_vect
= 1;
551 "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
553 possible_cpus_comp_vect
+=
554 cpumask_weight(&entry
->comp_vect_mask
) /
555 hfi1_per_node_cntr
[dd
->node
];
558 * If the completion vector CPUs available doesn't divide
559 * evenly among devices, then the first device device to be
560 * initialized gets an extra CPU.
562 if (first_dev_init
&&
563 cpumask_weight(&entry
->comp_vect_mask
) %
564 hfi1_per_node_cntr
[dd
->node
] != 0)
565 possible_cpus_comp_vect
++;
568 dd
->comp_vect_possible_cpus
= possible_cpus_comp_vect
;
570 /* Reserving CPUs for device completion vector */
571 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
572 curr_cpu
= per_cpu_affinity_get(&entry
->comp_vect_mask
,
573 entry
->comp_vect_affinity
);
577 cpumask_set_cpu(curr_cpu
, dev_comp_vect_mask
);
581 "[%s] Completion vector affinity CPU set(s) %*pbl",
582 rvt_get_ibdev_name(&(dd
)->verbs_dev
.rdi
),
583 cpumask_pr_args(dev_comp_vect_mask
));
588 for (j
= 0; j
< i
; j
++)
589 per_cpu_affinity_put_max(&entry
->comp_vect_mask
,
590 entry
->comp_vect_affinity
);
596 * It assumes dd->comp_vect_possible_cpus is available.
598 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata
*dd
,
599 struct hfi1_affinity_node
*entry
)
600 __must_hold(&node_affinity
.lock
)
604 lockdep_assert_held(&node_affinity
.lock
);
605 if (!dd
->comp_vect_possible_cpus
)
608 for (i
= 0; i
< dd
->comp_vect_possible_cpus
; i
++) {
609 cpu
= per_cpu_affinity_put_max(&dd
->comp_vect
->mask
,
610 entry
->comp_vect_affinity
);
611 /* Clearing CPU in device completion vector cpu mask */
613 cpumask_clear_cpu(cpu
, &dd
->comp_vect
->mask
);
616 dd
->comp_vect_possible_cpus
= 0;
620 * Interrupt affinity.
622 * non-rcv avail gets a default mask that
623 * starts as possible cpus with threads reset
624 * and each rcv avail reset.
626 * rcv avail gets node relative 1 wrapping back
627 * to the node relative 1 as necessary.
630 int hfi1_dev_affinity_init(struct hfi1_devdata
*dd
)
632 int node
= pcibus_to_node(dd
->pcidev
->bus
);
633 struct hfi1_affinity_node
*entry
;
634 const struct cpumask
*local_mask
;
635 int curr_cpu
, possible
, i
, ret
;
636 bool new_entry
= false;
639 * If the BIOS does not have the NUMA node information set, select
640 * NUMA 0 so we get consistent performance.
643 dd_dev_err(dd
, "Invalid PCI NUMA node. Performance may be affected\n");
648 local_mask
= cpumask_of_node(dd
->node
);
649 if (cpumask_first(local_mask
) >= nr_cpu_ids
)
650 local_mask
= topology_core_cpumask(0);
652 mutex_lock(&node_affinity
.lock
);
653 entry
= node_affinity_lookup(dd
->node
);
656 * If this is the first time this NUMA node's affinity is used,
657 * create an entry in the global affinity structure and initialize it.
660 entry
= node_affinity_allocate(node
);
663 "Unable to allocate global affinity node\n");
669 init_cpu_mask_set(&entry
->def_intr
);
670 init_cpu_mask_set(&entry
->rcv_intr
);
671 cpumask_clear(&entry
->comp_vect_mask
);
672 cpumask_clear(&entry
->general_intr_mask
);
673 /* Use the "real" cpu mask of this node as the default */
674 cpumask_and(&entry
->def_intr
.mask
, &node_affinity
.real_cpu_mask
,
677 /* fill in the receive list */
678 possible
= cpumask_weight(&entry
->def_intr
.mask
);
679 curr_cpu
= cpumask_first(&entry
->def_intr
.mask
);
682 /* only one CPU, everyone will use it */
683 cpumask_set_cpu(curr_cpu
, &entry
->rcv_intr
.mask
);
684 cpumask_set_cpu(curr_cpu
, &entry
->general_intr_mask
);
687 * The general/control context will be the first CPU in
688 * the default list, so it is removed from the default
689 * list and added to the general interrupt list.
691 cpumask_clear_cpu(curr_cpu
, &entry
->def_intr
.mask
);
692 cpumask_set_cpu(curr_cpu
, &entry
->general_intr_mask
);
693 curr_cpu
= cpumask_next(curr_cpu
,
694 &entry
->def_intr
.mask
);
697 * Remove the remaining kernel receive queues from
698 * the default list and add them to the receive list.
701 i
< (dd
->n_krcv_queues
- 1) *
702 hfi1_per_node_cntr
[dd
->node
];
704 cpumask_clear_cpu(curr_cpu
,
705 &entry
->def_intr
.mask
);
706 cpumask_set_cpu(curr_cpu
,
707 &entry
->rcv_intr
.mask
);
708 curr_cpu
= cpumask_next(curr_cpu
,
709 &entry
->def_intr
.mask
);
710 if (curr_cpu
>= nr_cpu_ids
)
715 * If there ends up being 0 CPU cores leftover for SDMA
716 * engines, use the same CPU cores as general/control
719 if (cpumask_weight(&entry
->def_intr
.mask
) == 0)
720 cpumask_copy(&entry
->def_intr
.mask
,
721 &entry
->general_intr_mask
);
724 /* Determine completion vector CPUs for the entire node */
725 cpumask_and(&entry
->comp_vect_mask
,
726 &node_affinity
.real_cpu_mask
, local_mask
);
727 cpumask_andnot(&entry
->comp_vect_mask
,
728 &entry
->comp_vect_mask
,
729 &entry
->rcv_intr
.mask
);
730 cpumask_andnot(&entry
->comp_vect_mask
,
731 &entry
->comp_vect_mask
,
732 &entry
->general_intr_mask
);
735 * If there ends up being 0 CPU cores leftover for completion
736 * vectors, use the same CPU core as the general/control
739 if (cpumask_weight(&entry
->comp_vect_mask
) == 0)
740 cpumask_copy(&entry
->comp_vect_mask
,
741 &entry
->general_intr_mask
);
744 ret
= _dev_comp_vect_cpu_mask_init(dd
, entry
, new_entry
);
749 node_affinity_add_tail(entry
);
751 mutex_unlock(&node_affinity
.lock
);
757 node_affinity_destroy(entry
);
758 mutex_unlock(&node_affinity
.lock
);
762 void hfi1_dev_affinity_clean_up(struct hfi1_devdata
*dd
)
764 struct hfi1_affinity_node
*entry
;
769 mutex_lock(&node_affinity
.lock
);
770 entry
= node_affinity_lookup(dd
->node
);
775 * Free device completion vector CPUs to be used by future
778 _dev_comp_vect_cpu_mask_clean_up(dd
, entry
);
780 mutex_unlock(&node_affinity
.lock
);
781 dd
->node
= NUMA_NO_NODE
;
785 * Function updates the irq affinity hint for msix after it has been changed
786 * by the user using the /proc/irq interface. This function only accepts
787 * one cpu in the mask.
789 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry
*msix
, int cpu
)
791 struct sdma_engine
*sde
= msix
->arg
;
792 struct hfi1_devdata
*dd
= sde
->dd
;
793 struct hfi1_affinity_node
*entry
;
794 struct cpu_mask_set
*set
;
797 if (cpu
> num_online_cpus() || cpu
== sde
->cpu
)
800 mutex_lock(&node_affinity
.lock
);
801 entry
= node_affinity_lookup(dd
->node
);
807 cpumask_clear(&msix
->mask
);
808 cpumask_set_cpu(cpu
, &msix
->mask
);
809 dd_dev_dbg(dd
, "IRQ: %u, type %s engine %u -> cpu: %d\n",
810 msix
->irq
, irq_type_names
[msix
->type
],
812 irq_set_affinity_hint(msix
->irq
, &msix
->mask
);
815 * Set the new cpu in the hfi1_affinity_node and clean
816 * the old cpu if it is not used by any other IRQ
818 set
= &entry
->def_intr
;
819 cpumask_set_cpu(cpu
, &set
->mask
);
820 cpumask_set_cpu(cpu
, &set
->used
);
821 for (i
= 0; i
< dd
->msix_info
.max_requested
; i
++) {
822 struct hfi1_msix_entry
*other_msix
;
824 other_msix
= &dd
->msix_info
.msix_entries
[i
];
825 if (other_msix
->type
!= IRQ_SDMA
|| other_msix
== msix
)
828 if (cpumask_test_cpu(old_cpu
, &other_msix
->mask
))
831 cpumask_clear_cpu(old_cpu
, &set
->mask
);
832 cpumask_clear_cpu(old_cpu
, &set
->used
);
834 mutex_unlock(&node_affinity
.lock
);
837 static void hfi1_irq_notifier_notify(struct irq_affinity_notify
*notify
,
838 const cpumask_t
*mask
)
840 int cpu
= cpumask_first(mask
);
841 struct hfi1_msix_entry
*msix
= container_of(notify
,
842 struct hfi1_msix_entry
,
845 /* Only one CPU configuration supported currently */
846 hfi1_update_sdma_affinity(msix
, cpu
);
849 static void hfi1_irq_notifier_release(struct kref
*ref
)
852 * This is required by affinity notifier. We don't have anything to
857 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry
*msix
)
859 struct irq_affinity_notify
*notify
= &msix
->notify
;
861 notify
->irq
= msix
->irq
;
862 notify
->notify
= hfi1_irq_notifier_notify
;
863 notify
->release
= hfi1_irq_notifier_release
;
865 if (irq_set_affinity_notifier(notify
->irq
, notify
))
866 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
870 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry
*msix
)
872 struct irq_affinity_notify
*notify
= &msix
->notify
;
874 if (irq_set_affinity_notifier(notify
->irq
, NULL
))
875 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
880 * Function sets the irq affinity for msix.
881 * It *must* be called with node_affinity.lock held.
883 static int get_irq_affinity(struct hfi1_devdata
*dd
,
884 struct hfi1_msix_entry
*msix
)
887 struct hfi1_affinity_node
*entry
;
888 struct cpu_mask_set
*set
= NULL
;
889 struct sdma_engine
*sde
= NULL
;
890 struct hfi1_ctxtdata
*rcd
= NULL
;
895 cpumask_clear(&msix
->mask
);
897 entry
= node_affinity_lookup(dd
->node
);
899 switch (msix
->type
) {
901 sde
= (struct sdma_engine
*)msix
->arg
;
902 scnprintf(extra
, 64, "engine %u", sde
->this_idx
);
903 set
= &entry
->def_intr
;
906 cpu
= cpumask_first(&entry
->general_intr_mask
);
909 rcd
= (struct hfi1_ctxtdata
*)msix
->arg
;
910 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
911 cpu
= cpumask_first(&entry
->general_intr_mask
);
913 set
= &entry
->rcv_intr
;
914 scnprintf(extra
, 64, "ctxt %u", rcd
->ctxt
);
917 dd_dev_err(dd
, "Invalid IRQ type %d\n", msix
->type
);
922 * The general and control contexts are placed on a particular
923 * CPU, which is set above. Skip accounting for it. Everything else
924 * finds its CPU here.
926 if (cpu
== -1 && set
) {
927 if (!zalloc_cpumask_var(&diff
, GFP_KERNEL
))
930 cpu
= cpu_mask_set_get_first(set
, diff
);
932 free_cpumask_var(diff
);
933 dd_dev_err(dd
, "Failure to obtain CPU for IRQ\n");
937 free_cpumask_var(diff
);
940 cpumask_set_cpu(cpu
, &msix
->mask
);
941 dd_dev_info(dd
, "IRQ: %u, type %s %s -> cpu: %d\n",
942 msix
->irq
, irq_type_names
[msix
->type
],
944 irq_set_affinity_hint(msix
->irq
, &msix
->mask
);
946 if (msix
->type
== IRQ_SDMA
) {
948 hfi1_setup_sdma_notifier(msix
);
954 int hfi1_get_irq_affinity(struct hfi1_devdata
*dd
, struct hfi1_msix_entry
*msix
)
958 mutex_lock(&node_affinity
.lock
);
959 ret
= get_irq_affinity(dd
, msix
);
960 mutex_unlock(&node_affinity
.lock
);
964 void hfi1_put_irq_affinity(struct hfi1_devdata
*dd
,
965 struct hfi1_msix_entry
*msix
)
967 struct cpu_mask_set
*set
= NULL
;
968 struct hfi1_ctxtdata
*rcd
;
969 struct hfi1_affinity_node
*entry
;
971 mutex_lock(&node_affinity
.lock
);
972 entry
= node_affinity_lookup(dd
->node
);
974 switch (msix
->type
) {
976 set
= &entry
->def_intr
;
977 hfi1_cleanup_sdma_notifier(msix
);
980 /* Don't do accounting for general contexts */
983 rcd
= (struct hfi1_ctxtdata
*)msix
->arg
;
984 /* Don't do accounting for control contexts */
985 if (rcd
->ctxt
!= HFI1_CTRL_CTXT
)
986 set
= &entry
->rcv_intr
;
989 mutex_unlock(&node_affinity
.lock
);
994 cpumask_andnot(&set
->used
, &set
->used
, &msix
->mask
);
995 _cpu_mask_set_gen_dec(set
);
998 irq_set_affinity_hint(msix
->irq
, NULL
);
999 cpumask_clear(&msix
->mask
);
1000 mutex_unlock(&node_affinity
.lock
);
1003 /* This should be called with node_affinity.lock held */
1004 static void find_hw_thread_mask(uint hw_thread_no
, cpumask_var_t hw_thread_mask
,
1005 struct hfi1_affinity_node_list
*affinity
)
1007 int possible
, curr_cpu
, i
;
1008 uint num_cores_per_socket
= node_affinity
.num_online_cpus
/
1009 affinity
->num_core_siblings
/
1010 node_affinity
.num_online_nodes
;
1012 cpumask_copy(hw_thread_mask
, &affinity
->proc
.mask
);
1013 if (affinity
->num_core_siblings
> 0) {
1014 /* Removing other siblings not needed for now */
1015 possible
= cpumask_weight(hw_thread_mask
);
1016 curr_cpu
= cpumask_first(hw_thread_mask
);
1018 i
< num_cores_per_socket
* node_affinity
.num_online_nodes
;
1020 curr_cpu
= cpumask_next(curr_cpu
, hw_thread_mask
);
1022 for (; i
< possible
; i
++) {
1023 cpumask_clear_cpu(curr_cpu
, hw_thread_mask
);
1024 curr_cpu
= cpumask_next(curr_cpu
, hw_thread_mask
);
1027 /* Identifying correct HW threads within physical cores */
1028 cpumask_shift_left(hw_thread_mask
, hw_thread_mask
,
1029 num_cores_per_socket
*
1030 node_affinity
.num_online_nodes
*
1035 int hfi1_get_proc_affinity(int node
)
1037 int cpu
= -1, ret
, i
;
1038 struct hfi1_affinity_node
*entry
;
1039 cpumask_var_t diff
, hw_thread_mask
, available_mask
, intrs_mask
;
1040 const struct cpumask
*node_mask
,
1041 *proc_mask
= current
->cpus_ptr
;
1042 struct hfi1_affinity_node_list
*affinity
= &node_affinity
;
1043 struct cpu_mask_set
*set
= &affinity
->proc
;
1046 * check whether process/context affinity has already
1049 if (current
->nr_cpus_allowed
== 1) {
1050 hfi1_cdbg(PROC
, "PID %u %s affinity set to CPU %*pbl",
1051 current
->pid
, current
->comm
,
1052 cpumask_pr_args(proc_mask
));
1054 * Mark the pre-set CPU as used. This is atomic so we don't
1057 cpu
= cpumask_first(proc_mask
);
1058 cpumask_set_cpu(cpu
, &set
->used
);
1060 } else if (current
->nr_cpus_allowed
< cpumask_weight(&set
->mask
)) {
1061 hfi1_cdbg(PROC
, "PID %u %s affinity set to CPU set(s) %*pbl",
1062 current
->pid
, current
->comm
,
1063 cpumask_pr_args(proc_mask
));
1068 * The process does not have a preset CPU affinity so find one to
1069 * recommend using the following algorithm:
1071 * For each user process that is opening a context on HFI Y:
1072 * a) If all cores are filled, reinitialize the bitmask
1073 * b) Fill real cores first, then HT cores (First set of HT
1074 * cores on all physical cores, then second set of HT core,
1075 * and, so on) in the following order:
1077 * 1. Same NUMA node as HFI Y and not running an IRQ
1079 * 2. Same NUMA node as HFI Y and running an IRQ handler
1080 * 3. Different NUMA node to HFI Y and not running an IRQ
1082 * 4. Different NUMA node to HFI Y and running an IRQ
1084 * c) Mark core as filled in the bitmask. As user processes are
1085 * done, clear cores from the bitmask.
1088 ret
= zalloc_cpumask_var(&diff
, GFP_KERNEL
);
1091 ret
= zalloc_cpumask_var(&hw_thread_mask
, GFP_KERNEL
);
1094 ret
= zalloc_cpumask_var(&available_mask
, GFP_KERNEL
);
1096 goto free_hw_thread_mask
;
1097 ret
= zalloc_cpumask_var(&intrs_mask
, GFP_KERNEL
);
1099 goto free_available_mask
;
1101 mutex_lock(&affinity
->lock
);
1103 * If we've used all available HW threads, clear the mask and start
1106 _cpu_mask_set_gen_inc(set
);
1109 * If NUMA node has CPUs used by interrupt handlers, include them in the
1110 * interrupt handler mask.
1112 entry
= node_affinity_lookup(node
);
1114 cpumask_copy(intrs_mask
, (entry
->def_intr
.gen
?
1115 &entry
->def_intr
.mask
:
1116 &entry
->def_intr
.used
));
1117 cpumask_or(intrs_mask
, intrs_mask
, (entry
->rcv_intr
.gen
?
1118 &entry
->rcv_intr
.mask
:
1119 &entry
->rcv_intr
.used
));
1120 cpumask_or(intrs_mask
, intrs_mask
, &entry
->general_intr_mask
);
1122 hfi1_cdbg(PROC
, "CPUs used by interrupts: %*pbl",
1123 cpumask_pr_args(intrs_mask
));
1125 cpumask_copy(hw_thread_mask
, &set
->mask
);
1128 * If HT cores are enabled, identify which HW threads within the
1129 * physical cores should be used.
1131 if (affinity
->num_core_siblings
> 0) {
1132 for (i
= 0; i
< affinity
->num_core_siblings
; i
++) {
1133 find_hw_thread_mask(i
, hw_thread_mask
, affinity
);
1136 * If there's at least one available core for this HW
1137 * thread number, stop looking for a core.
1139 * diff will always be not empty at least once in this
1140 * loop as the used mask gets reset when
1141 * (set->mask == set->used) before this loop.
1143 cpumask_andnot(diff
, hw_thread_mask
, &set
->used
);
1144 if (!cpumask_empty(diff
))
1148 hfi1_cdbg(PROC
, "Same available HW thread on all physical CPUs: %*pbl",
1149 cpumask_pr_args(hw_thread_mask
));
1151 node_mask
= cpumask_of_node(node
);
1152 hfi1_cdbg(PROC
, "Device on NUMA %u, CPUs %*pbl", node
,
1153 cpumask_pr_args(node_mask
));
1155 /* Get cpumask of available CPUs on preferred NUMA */
1156 cpumask_and(available_mask
, hw_thread_mask
, node_mask
);
1157 cpumask_andnot(available_mask
, available_mask
, &set
->used
);
1158 hfi1_cdbg(PROC
, "Available CPUs on NUMA %u: %*pbl", node
,
1159 cpumask_pr_args(available_mask
));
1162 * At first, we don't want to place processes on the same
1163 * CPUs as interrupt handlers. Then, CPUs running interrupt
1164 * handlers are used.
1166 * 1) If diff is not empty, then there are CPUs not running
1167 * non-interrupt handlers available, so diff gets copied
1168 * over to available_mask.
1169 * 2) If diff is empty, then all CPUs not running interrupt
1170 * handlers are taken, so available_mask contains all
1171 * available CPUs running interrupt handlers.
1172 * 3) If available_mask is empty, then all CPUs on the
1173 * preferred NUMA node are taken, so other NUMA nodes are
1174 * used for process assignments using the same method as
1175 * the preferred NUMA node.
1177 cpumask_andnot(diff
, available_mask
, intrs_mask
);
1178 if (!cpumask_empty(diff
))
1179 cpumask_copy(available_mask
, diff
);
1181 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1182 if (cpumask_empty(available_mask
)) {
1183 cpumask_andnot(available_mask
, hw_thread_mask
, &set
->used
);
1184 /* Excluding preferred NUMA cores */
1185 cpumask_andnot(available_mask
, available_mask
, node_mask
);
1187 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1188 cpumask_pr_args(available_mask
));
1191 * At first, we don't want to place processes on the same
1192 * CPUs as interrupt handlers.
1194 cpumask_andnot(diff
, available_mask
, intrs_mask
);
1195 if (!cpumask_empty(diff
))
1196 cpumask_copy(available_mask
, diff
);
1198 hfi1_cdbg(PROC
, "Possible CPUs for process: %*pbl",
1199 cpumask_pr_args(available_mask
));
1201 cpu
= cpumask_first(available_mask
);
1202 if (cpu
>= nr_cpu_ids
) /* empty */
1205 cpumask_set_cpu(cpu
, &set
->used
);
1207 mutex_unlock(&affinity
->lock
);
1208 hfi1_cdbg(PROC
, "Process assigned to CPU %d", cpu
);
1210 free_cpumask_var(intrs_mask
);
1211 free_available_mask
:
1212 free_cpumask_var(available_mask
);
1213 free_hw_thread_mask
:
1214 free_cpumask_var(hw_thread_mask
);
1216 free_cpumask_var(diff
);
1221 void hfi1_put_proc_affinity(int cpu
)
1223 struct hfi1_affinity_node_list
*affinity
= &node_affinity
;
1224 struct cpu_mask_set
*set
= &affinity
->proc
;
1229 mutex_lock(&affinity
->lock
);
1230 cpu_mask_set_put(set
, cpu
);
1231 hfi1_cdbg(PROC
, "Returning CPU %d for future process assignment", cpu
);
1232 mutex_unlock(&affinity
->lock
);