treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / driver.c
blob049d15befe58df540059ef94968513ba94291359
1 /*
2 * Copyright(c) 2015-2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 #include "fault.h"
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
70 * The size has to be longer than this string, so we can append
71 * board/chip information to it in the initialization code.
73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
75 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
77 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
78 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
80 HFI1_DEFAULT_MAX_MTU));
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
88 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
89 static const struct kernel_param_ops cap_ops = {
90 .set = hfi1_caps_set,
91 .get = hfi1_caps_get
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
100 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102 #define MAX_PKT_RECV 64
104 * MAX_PKT_THREAD_RCV is the max # of packets processed before
105 * the qp_wait_list queue is flushed.
107 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
108 #define EGR_HEAD_UPDATE_THRESHOLD 16
110 struct hfi1_ib_stats hfi1_stats;
112 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
114 int ret = 0;
115 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
116 cap_mask = *cap_mask_ptr, value, diff,
117 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
118 HFI1_CAP_WRITABLE_MASK);
120 ret = kstrtoul(val, 0, &value);
121 if (ret) {
122 pr_warn("Invalid module parameter value for 'cap_mask'\n");
123 goto done;
125 /* Get the changed bits (except the locked bit) */
126 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
128 /* Remove any bits that are not allowed to change after driver load */
129 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
130 pr_warn("Ignoring non-writable capability bits %#lx\n",
131 diff & ~write_mask);
132 diff &= write_mask;
135 /* Mask off any reserved bits */
136 diff &= ~HFI1_CAP_RESERVED_MASK;
137 /* Clear any previously set and changing bits */
138 cap_mask &= ~diff;
139 /* Update the bits with the new capability */
140 cap_mask |= (value & diff);
141 /* Check for any kernel/user restrictions */
142 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
143 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
144 cap_mask &= ~diff;
145 /* Set the bitmask to the final set */
146 *cap_mask_ptr = cap_mask;
147 done:
148 return ret;
151 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
153 unsigned long cap_mask = *(unsigned long *)kp->arg;
155 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
156 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
158 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
161 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
163 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
164 struct hfi1_devdata *dd = container_of(ibdev,
165 struct hfi1_devdata, verbs_dev);
166 return dd->pcidev;
170 * Return count of units with at least one port ACTIVE.
172 int hfi1_count_active_units(void)
174 struct hfi1_devdata *dd;
175 struct hfi1_pportdata *ppd;
176 unsigned long index, flags;
177 int pidx, nunits_active = 0;
179 xa_lock_irqsave(&hfi1_dev_table, flags);
180 xa_for_each(&hfi1_dev_table, index, dd) {
181 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
182 continue;
183 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
184 ppd = dd->pport + pidx;
185 if (ppd->lid && ppd->linkup) {
186 nunits_active++;
187 break;
191 xa_unlock_irqrestore(&hfi1_dev_table, flags);
192 return nunits_active;
196 * Get address of eager buffer from it's index (allocated in chunks, not
197 * contiguous).
199 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
200 u8 *update)
202 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
204 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
205 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
206 (offset * RCV_BUF_BLOCK_SIZE));
209 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
210 __le32 *rhf_addr)
212 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
214 return (void *)(rhf_addr - rcd->rhf_offset + offset);
217 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
218 __le32 *rhf_addr)
220 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
223 static inline struct hfi1_16b_header
224 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
225 __le32 *rhf_addr)
227 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
231 * Validate and encode the a given RcvArray Buffer size.
232 * The function will check whether the given size falls within
233 * allowed size ranges for the respective type and, optionally,
234 * return the proper encoding.
236 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
238 if (unlikely(!PAGE_ALIGNED(size)))
239 return 0;
240 if (unlikely(size < MIN_EAGER_BUFFER))
241 return 0;
242 if (size >
243 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
244 return 0;
245 if (encoded)
246 *encoded = ilog2(size / PAGE_SIZE) + 1;
247 return 1;
250 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
251 struct hfi1_packet *packet)
253 struct ib_header *rhdr = packet->hdr;
254 u32 rte = rhf_rcv_type_err(packet->rhf);
255 u32 mlid_base;
256 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
257 struct hfi1_devdata *dd = ppd->dd;
258 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
259 struct rvt_dev_info *rdi = &verbs_dev->rdi;
261 if ((packet->rhf & RHF_DC_ERR) &&
262 hfi1_dbg_fault_suppress_err(verbs_dev))
263 return;
265 if (packet->rhf & RHF_ICRC_ERR)
266 return;
268 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
269 goto drop;
270 } else {
271 u8 lnh = ib_get_lnh(rhdr);
273 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
274 if (lnh == HFI1_LRH_BTH) {
275 packet->ohdr = &rhdr->u.oth;
276 } else if (lnh == HFI1_LRH_GRH) {
277 packet->ohdr = &rhdr->u.l.oth;
278 packet->grh = &rhdr->u.l.grh;
279 } else {
280 goto drop;
284 if (packet->rhf & RHF_TID_ERR) {
285 /* For TIDERR and RC QPs preemptively schedule a NAK */
286 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
287 u32 dlid = ib_get_dlid(rhdr);
288 u32 qp_num;
290 /* Sanity check packet */
291 if (tlen < 24)
292 goto drop;
294 /* Check for GRH */
295 if (packet->grh) {
296 u32 vtf;
297 struct ib_grh *grh = packet->grh;
299 if (grh->next_hdr != IB_GRH_NEXT_HDR)
300 goto drop;
301 vtf = be32_to_cpu(grh->version_tclass_flow);
302 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
303 goto drop;
306 /* Get the destination QP number. */
307 qp_num = ib_bth_get_qpn(packet->ohdr);
308 if (dlid < mlid_base) {
309 struct rvt_qp *qp;
310 unsigned long flags;
312 rcu_read_lock();
313 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
314 if (!qp) {
315 rcu_read_unlock();
316 goto drop;
320 * Handle only RC QPs - for other QP types drop error
321 * packet.
323 spin_lock_irqsave(&qp->r_lock, flags);
325 /* Check for valid receive state. */
326 if (!(ib_rvt_state_ops[qp->state] &
327 RVT_PROCESS_RECV_OK)) {
328 ibp->rvp.n_pkt_drops++;
331 switch (qp->ibqp.qp_type) {
332 case IB_QPT_RC:
333 hfi1_rc_hdrerr(rcd, packet, qp);
334 break;
335 default:
336 /* For now don't handle any other QP types */
337 break;
340 spin_unlock_irqrestore(&qp->r_lock, flags);
341 rcu_read_unlock();
342 } /* Unicast QP */
343 } /* Valid packet with TIDErr */
345 /* handle "RcvTypeErr" flags */
346 switch (rte) {
347 case RHF_RTE_ERROR_OP_CODE_ERR:
349 void *ebuf = NULL;
350 u8 opcode;
352 if (rhf_use_egr_bfr(packet->rhf))
353 ebuf = packet->ebuf;
355 if (!ebuf)
356 goto drop; /* this should never happen */
358 opcode = ib_bth_get_opcode(packet->ohdr);
359 if (opcode == IB_OPCODE_CNP) {
361 * Only in pre-B0 h/w is the CNP_OPCODE handled
362 * via this code path.
364 struct rvt_qp *qp = NULL;
365 u32 lqpn, rqpn;
366 u16 rlid;
367 u8 svc_type, sl, sc5;
369 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
370 sl = ibp->sc_to_sl[sc5];
372 lqpn = ib_bth_get_qpn(packet->ohdr);
373 rcu_read_lock();
374 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
375 if (!qp) {
376 rcu_read_unlock();
377 goto drop;
380 switch (qp->ibqp.qp_type) {
381 case IB_QPT_UD:
382 rlid = 0;
383 rqpn = 0;
384 svc_type = IB_CC_SVCTYPE_UD;
385 break;
386 case IB_QPT_UC:
387 rlid = ib_get_slid(rhdr);
388 rqpn = qp->remote_qpn;
389 svc_type = IB_CC_SVCTYPE_UC;
390 break;
391 default:
392 rcu_read_unlock();
393 goto drop;
396 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
397 rcu_read_unlock();
400 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
401 break;
403 default:
404 break;
407 drop:
408 return;
411 static inline void init_packet(struct hfi1_ctxtdata *rcd,
412 struct hfi1_packet *packet)
414 packet->rsize = get_hdrqentsize(rcd); /* words */
415 packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
416 packet->rcd = rcd;
417 packet->updegr = 0;
418 packet->etail = -1;
419 packet->rhf_addr = get_rhf_addr(rcd);
420 packet->rhf = rhf_to_cpu(packet->rhf_addr);
421 packet->rhqoff = hfi1_rcd_head(rcd);
422 packet->numpkt = 0;
425 /* We support only two types - 9B and 16B for now */
426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
427 [HFI1_PKT_TYPE_9B] = &return_cnp,
428 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
432 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
433 * @qp: The packet's destination QP
434 * @pkt: The packet itself.
435 * @prescan: Is the caller the RXQ prescan
437 * Process the packet's FECN or BECN bits. By now, the packet
438 * has already been evaluated whether processing of those bit should
439 * be done.
440 * The significance of the @prescan argument is that if the caller
441 * is the RXQ prescan, a CNP will be send out instead of waiting for the
442 * normal packet processing to send an ACK with BECN set (or a CNP).
444 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
445 bool prescan)
447 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
448 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
449 struct ib_other_headers *ohdr = pkt->ohdr;
450 struct ib_grh *grh = pkt->grh;
451 u32 rqpn = 0;
452 u16 pkey;
453 u32 rlid, slid, dlid = 0;
454 u8 hdr_type, sc, svc_type, opcode;
455 bool is_mcast = false, ignore_fecn = false, do_cnp = false,
456 fecn, becn;
458 /* can be called from prescan */
459 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
460 pkey = hfi1_16B_get_pkey(pkt->hdr);
461 sc = hfi1_16B_get_sc(pkt->hdr);
462 dlid = hfi1_16B_get_dlid(pkt->hdr);
463 slid = hfi1_16B_get_slid(pkt->hdr);
464 is_mcast = hfi1_is_16B_mcast(dlid);
465 opcode = ib_bth_get_opcode(ohdr);
466 hdr_type = HFI1_PKT_TYPE_16B;
467 fecn = hfi1_16B_get_fecn(pkt->hdr);
468 becn = hfi1_16B_get_becn(pkt->hdr);
469 } else {
470 pkey = ib_bth_get_pkey(ohdr);
471 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
472 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
473 ppd->lid;
474 slid = ib_get_slid(pkt->hdr);
475 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
476 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
477 opcode = ib_bth_get_opcode(ohdr);
478 hdr_type = HFI1_PKT_TYPE_9B;
479 fecn = ib_bth_get_fecn(ohdr);
480 becn = ib_bth_get_becn(ohdr);
483 switch (qp->ibqp.qp_type) {
484 case IB_QPT_UD:
485 rlid = slid;
486 rqpn = ib_get_sqpn(pkt->ohdr);
487 svc_type = IB_CC_SVCTYPE_UD;
488 break;
489 case IB_QPT_SMI:
490 case IB_QPT_GSI:
491 rlid = slid;
492 rqpn = ib_get_sqpn(pkt->ohdr);
493 svc_type = IB_CC_SVCTYPE_UD;
494 break;
495 case IB_QPT_UC:
496 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
497 rqpn = qp->remote_qpn;
498 svc_type = IB_CC_SVCTYPE_UC;
499 break;
500 case IB_QPT_RC:
501 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
502 rqpn = qp->remote_qpn;
503 svc_type = IB_CC_SVCTYPE_RC;
504 break;
505 default:
506 return false;
509 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
510 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
512 * ACKNOWLEDGE packets do not get a CNP but this will be
513 * guarded by ignore_fecn above.
515 do_cnp = prescan ||
516 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
517 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
518 opcode == TID_OP(READ_RESP) ||
519 opcode == TID_OP(ACK);
521 /* Call appropriate CNP handler */
522 if (!ignore_fecn && do_cnp && fecn)
523 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
524 dlid, rlid, sc, grh);
526 if (becn) {
527 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
528 u8 sl = ibp->sc_to_sl[sc];
530 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
532 return !ignore_fecn && fecn;
535 struct ps_mdata {
536 struct hfi1_ctxtdata *rcd;
537 u32 rsize;
538 u32 maxcnt;
539 u32 ps_head;
540 u32 ps_tail;
541 u32 ps_seq;
544 static inline void init_ps_mdata(struct ps_mdata *mdata,
545 struct hfi1_packet *packet)
547 struct hfi1_ctxtdata *rcd = packet->rcd;
549 mdata->rcd = rcd;
550 mdata->rsize = packet->rsize;
551 mdata->maxcnt = packet->maxcnt;
552 mdata->ps_head = packet->rhqoff;
554 if (get_dma_rtail_setting(rcd)) {
555 mdata->ps_tail = get_rcvhdrtail(rcd);
556 if (rcd->ctxt == HFI1_CTRL_CTXT)
557 mdata->ps_seq = hfi1_seq_cnt(rcd);
558 else
559 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
560 } else {
561 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
562 mdata->ps_seq = hfi1_seq_cnt(rcd);
566 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
567 struct hfi1_ctxtdata *rcd)
569 if (get_dma_rtail_setting(rcd))
570 return mdata->ps_head == mdata->ps_tail;
571 return mdata->ps_seq != rhf_rcv_seq(rhf);
574 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
575 struct hfi1_ctxtdata *rcd)
578 * Control context can potentially receive an invalid rhf.
579 * Drop such packets.
581 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
582 return mdata->ps_seq != rhf_rcv_seq(rhf);
584 return 0;
587 static inline void update_ps_mdata(struct ps_mdata *mdata,
588 struct hfi1_ctxtdata *rcd)
590 mdata->ps_head += mdata->rsize;
591 if (mdata->ps_head >= mdata->maxcnt)
592 mdata->ps_head = 0;
594 /* Control context must do seq counting */
595 if (!get_dma_rtail_setting(rcd) ||
596 rcd->ctxt == HFI1_CTRL_CTXT)
597 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
601 * prescan_rxq - search through the receive queue looking for packets
602 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
603 * When an ECN is found, process the Congestion Notification, and toggle
604 * it off.
605 * This is declared as a macro to allow quick checking of the port to avoid
606 * the overhead of a function call if not enabled.
608 #define prescan_rxq(rcd, packet) \
609 do { \
610 if (rcd->ppd->cc_prescan) \
611 __prescan_rxq(packet); \
612 } while (0)
613 static void __prescan_rxq(struct hfi1_packet *packet)
615 struct hfi1_ctxtdata *rcd = packet->rcd;
616 struct ps_mdata mdata;
618 init_ps_mdata(&mdata, packet);
620 while (1) {
621 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
622 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
623 packet->rcd->rhf_offset;
624 struct rvt_qp *qp;
625 struct ib_header *hdr;
626 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
627 u64 rhf = rhf_to_cpu(rhf_addr);
628 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
629 u8 lnh;
631 if (ps_done(&mdata, rhf, rcd))
632 break;
634 if (ps_skip(&mdata, rhf, rcd))
635 goto next;
637 if (etype != RHF_RCV_TYPE_IB)
638 goto next;
640 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
641 hdr = packet->hdr;
642 lnh = ib_get_lnh(hdr);
644 if (lnh == HFI1_LRH_BTH) {
645 packet->ohdr = &hdr->u.oth;
646 packet->grh = NULL;
647 } else if (lnh == HFI1_LRH_GRH) {
648 packet->ohdr = &hdr->u.l.oth;
649 packet->grh = &hdr->u.l.grh;
650 } else {
651 goto next; /* just in case */
654 if (!hfi1_may_ecn(packet))
655 goto next;
657 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
658 qpn = bth1 & RVT_QPN_MASK;
659 rcu_read_lock();
660 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
662 if (!qp) {
663 rcu_read_unlock();
664 goto next;
667 hfi1_process_ecn_slowpath(qp, packet, true);
668 rcu_read_unlock();
670 /* turn off BECN, FECN */
671 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
672 packet->ohdr->bth[1] = cpu_to_be32(bth1);
673 next:
674 update_ps_mdata(&mdata, rcd);
678 static void process_rcv_qp_work(struct hfi1_packet *packet)
680 struct rvt_qp *qp, *nqp;
681 struct hfi1_ctxtdata *rcd = packet->rcd;
684 * Iterate over all QPs waiting to respond.
685 * The list won't change since the IRQ is only run on one CPU.
687 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
688 list_del_init(&qp->rspwait);
689 if (qp->r_flags & RVT_R_RSP_NAK) {
690 qp->r_flags &= ~RVT_R_RSP_NAK;
691 packet->qp = qp;
692 hfi1_send_rc_ack(packet, 0);
694 if (qp->r_flags & RVT_R_RSP_SEND) {
695 unsigned long flags;
697 qp->r_flags &= ~RVT_R_RSP_SEND;
698 spin_lock_irqsave(&qp->s_lock, flags);
699 if (ib_rvt_state_ops[qp->state] &
700 RVT_PROCESS_OR_FLUSH_SEND)
701 hfi1_schedule_send(qp);
702 spin_unlock_irqrestore(&qp->s_lock, flags);
704 rvt_put_qp(qp);
708 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
710 if (thread) {
711 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
712 /* allow defered processing */
713 process_rcv_qp_work(packet);
714 cond_resched();
715 return RCV_PKT_OK;
716 } else {
717 this_cpu_inc(*packet->rcd->dd->rcv_limit);
718 return RCV_PKT_LIMIT;
722 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
724 int ret = RCV_PKT_OK;
726 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
727 ret = max_packet_exceeded(packet, thread);
728 return ret;
731 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
733 int ret;
735 packet->rcd->dd->ctx0_seq_drop++;
736 /* Set up for the next packet */
737 packet->rhqoff += packet->rsize;
738 if (packet->rhqoff >= packet->maxcnt)
739 packet->rhqoff = 0;
741 packet->numpkt++;
742 ret = check_max_packet(packet, thread);
744 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
745 packet->rcd->rhf_offset;
746 packet->rhf = rhf_to_cpu(packet->rhf_addr);
748 return ret;
751 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
753 int ret;
755 packet->etype = rhf_rcv_type(packet->rhf);
757 /* total length */
758 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
759 /* retrieve eager buffer details */
760 packet->ebuf = NULL;
761 if (rhf_use_egr_bfr(packet->rhf)) {
762 packet->etail = rhf_egr_index(packet->rhf);
763 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
764 &packet->updegr);
766 * Prefetch the contents of the eager buffer. It is
767 * OK to send a negative length to prefetch_range().
768 * The +2 is the size of the RHF.
770 prefetch_range(packet->ebuf,
771 packet->tlen - ((get_hdrqentsize(packet->rcd) -
772 (rhf_hdrq_offset(packet->rhf)
773 + 2)) * 4));
777 * Call a type specific handler for the packet. We
778 * should be able to trust that etype won't be beyond
779 * the range of valid indexes. If so something is really
780 * wrong and we can probably just let things come
781 * crashing down. There is no need to eat another
782 * comparison in this performance critical code.
784 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
785 packet->numpkt++;
787 /* Set up for the next packet */
788 packet->rhqoff += packet->rsize;
789 if (packet->rhqoff >= packet->maxcnt)
790 packet->rhqoff = 0;
792 ret = check_max_packet(packet, thread);
794 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
795 packet->rcd->rhf_offset;
796 packet->rhf = rhf_to_cpu(packet->rhf_addr);
798 return ret;
801 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
804 * Update head regs etc., every 16 packets, if not last pkt,
805 * to help prevent rcvhdrq overflows, when many packets
806 * are processed and queue is nearly full.
807 * Don't request an interrupt for intermediate updates.
809 if (!last && !(packet->numpkt & 0xf)) {
810 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
811 packet->etail, 0, 0);
812 packet->updegr = 0;
814 packet->grh = NULL;
817 static inline void finish_packet(struct hfi1_packet *packet)
820 * Nothing we need to free for the packet.
822 * The only thing we need to do is a final update and call for an
823 * interrupt
825 update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
826 packet->etail, rcv_intr_dynamic, packet->numpkt);
830 * Handle receive interrupts when using the no dma rtail option.
832 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
834 int last = RCV_PKT_OK;
835 struct hfi1_packet packet;
837 init_packet(rcd, &packet);
838 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
839 last = RCV_PKT_DONE;
840 goto bail;
843 prescan_rxq(rcd, &packet);
845 while (last == RCV_PKT_OK) {
846 last = process_rcv_packet(&packet, thread);
847 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
848 last = RCV_PKT_DONE;
849 process_rcv_update(last, &packet);
851 process_rcv_qp_work(&packet);
852 hfi1_set_rcd_head(rcd, packet.rhqoff);
853 bail:
854 finish_packet(&packet);
855 return last;
858 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
860 u32 hdrqtail;
861 int last = RCV_PKT_OK;
862 struct hfi1_packet packet;
864 init_packet(rcd, &packet);
865 hdrqtail = get_rcvhdrtail(rcd);
866 if (packet.rhqoff == hdrqtail) {
867 last = RCV_PKT_DONE;
868 goto bail;
870 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
872 prescan_rxq(rcd, &packet);
874 while (last == RCV_PKT_OK) {
875 last = process_rcv_packet(&packet, thread);
876 if (packet.rhqoff == hdrqtail)
877 last = RCV_PKT_DONE;
878 process_rcv_update(last, &packet);
880 process_rcv_qp_work(&packet);
881 hfi1_set_rcd_head(rcd, packet.rhqoff);
882 bail:
883 finish_packet(&packet);
884 return last;
887 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
889 u16 i;
892 * For dynamically allocated kernel contexts (like vnic) switch
893 * interrupt handler only for that context. Otherwise, switch
894 * interrupt handler for all statically allocated kernel contexts.
896 if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
897 hfi1_rcd_get(rcd);
898 hfi1_set_fast(rcd);
899 hfi1_rcd_put(rcd);
900 return;
903 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
904 rcd = hfi1_rcd_get_by_index(dd, i);
905 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
906 hfi1_set_fast(rcd);
907 hfi1_rcd_put(rcd);
911 void set_all_slowpath(struct hfi1_devdata *dd)
913 struct hfi1_ctxtdata *rcd;
914 u16 i;
916 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
917 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
918 rcd = hfi1_rcd_get_by_index(dd, i);
919 if (!rcd)
920 continue;
921 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
922 rcd->do_interrupt = rcd->slow_handler;
924 hfi1_rcd_put(rcd);
928 static bool __set_armed_to_active(struct hfi1_packet *packet)
930 u8 etype = rhf_rcv_type(packet->rhf);
931 u8 sc = SC15_PACKET;
933 if (etype == RHF_RCV_TYPE_IB) {
934 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
935 packet->rhf_addr);
936 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
937 } else if (etype == RHF_RCV_TYPE_BYPASS) {
938 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
939 packet->rcd,
940 packet->rhf_addr);
941 sc = hfi1_16B_get_sc(hdr);
943 if (sc != SC15_PACKET) {
944 int hwstate = driver_lstate(packet->rcd->ppd);
945 struct work_struct *lsaw =
946 &packet->rcd->ppd->linkstate_active_work;
948 if (hwstate != IB_PORT_ACTIVE) {
949 dd_dev_info(packet->rcd->dd,
950 "Unexpected link state %s\n",
951 opa_lstate_name(hwstate));
952 return false;
955 queue_work(packet->rcd->ppd->link_wq, lsaw);
956 return true;
958 return false;
962 * armed to active - the fast path for armed to active
963 * @packet: the packet structure
965 * Return true if packet processing needs to bail.
967 static bool set_armed_to_active(struct hfi1_packet *packet)
969 if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
970 return false;
971 return __set_armed_to_active(packet);
975 * handle_receive_interrupt - receive a packet
976 * @rcd: the context
978 * Called from interrupt handler for errors or receive interrupt.
979 * This is the slow path interrupt handler.
981 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
983 struct hfi1_devdata *dd = rcd->dd;
984 u32 hdrqtail;
985 int needset, last = RCV_PKT_OK;
986 struct hfi1_packet packet;
987 int skip_pkt = 0;
989 /* Control context will always use the slow path interrupt handler */
990 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
992 init_packet(rcd, &packet);
994 if (!get_dma_rtail_setting(rcd)) {
995 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
996 last = RCV_PKT_DONE;
997 goto bail;
999 hdrqtail = 0;
1000 } else {
1001 hdrqtail = get_rcvhdrtail(rcd);
1002 if (packet.rhqoff == hdrqtail) {
1003 last = RCV_PKT_DONE;
1004 goto bail;
1006 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1009 * Control context can potentially receive an invalid
1010 * rhf. Drop such packets.
1012 if (rcd->ctxt == HFI1_CTRL_CTXT)
1013 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1014 skip_pkt = 1;
1017 prescan_rxq(rcd, &packet);
1019 while (last == RCV_PKT_OK) {
1020 if (hfi1_need_drop(dd)) {
1021 /* On to the next packet */
1022 packet.rhqoff += packet.rsize;
1023 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1024 packet.rhqoff +
1025 rcd->rhf_offset;
1026 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1028 } else if (skip_pkt) {
1029 last = skip_rcv_packet(&packet, thread);
1030 skip_pkt = 0;
1031 } else {
1032 if (set_armed_to_active(&packet))
1033 goto bail;
1034 last = process_rcv_packet(&packet, thread);
1037 if (!get_dma_rtail_setting(rcd)) {
1038 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1039 last = RCV_PKT_DONE;
1040 } else {
1041 if (packet.rhqoff == hdrqtail)
1042 last = RCV_PKT_DONE;
1044 * Control context can potentially receive an invalid
1045 * rhf. Drop such packets.
1047 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1048 bool lseq;
1050 lseq = hfi1_seq_incr(rcd,
1051 rhf_rcv_seq(packet.rhf));
1052 if (!last && lseq)
1053 skip_pkt = 1;
1057 if (needset) {
1058 needset = false;
1059 set_all_fastpath(dd, rcd);
1061 process_rcv_update(last, &packet);
1064 process_rcv_qp_work(&packet);
1065 hfi1_set_rcd_head(rcd, packet.rhqoff);
1067 bail:
1069 * Always write head at end, and setup rcv interrupt, even
1070 * if no packets were processed.
1072 finish_packet(&packet);
1073 return last;
1077 * We may discover in the interrupt that the hardware link state has
1078 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1079 * and we need to update the driver's notion of the link state. We cannot
1080 * run set_link_state from interrupt context, so we queue this function on
1081 * a workqueue.
1083 * We delay the regular interrupt processing until after the state changes
1084 * so that the link will be in the correct state by the time any application
1085 * we wake up attempts to send a reply to any message it received.
1086 * (Subsequent receive interrupts may possibly force the wakeup before we
1087 * update the link state.)
1089 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1090 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1091 * so we're safe from use-after-free of the rcd.
1093 void receive_interrupt_work(struct work_struct *work)
1095 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1096 linkstate_active_work);
1097 struct hfi1_devdata *dd = ppd->dd;
1098 struct hfi1_ctxtdata *rcd;
1099 u16 i;
1101 /* Received non-SC15 packet implies neighbor_normal */
1102 ppd->neighbor_normal = 1;
1103 set_link_state(ppd, HLS_UP_ACTIVE);
1106 * Interrupt all statically allocated kernel contexts that could
1107 * have had an interrupt during auto activation.
1109 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1110 rcd = hfi1_rcd_get_by_index(dd, i);
1111 if (rcd)
1112 force_recv_intr(rcd);
1113 hfi1_rcd_put(rcd);
1118 * Convert a given MTU size to the on-wire MAD packet enumeration.
1119 * Return -1 if the size is invalid.
1121 int mtu_to_enum(u32 mtu, int default_if_bad)
1123 switch (mtu) {
1124 case 0: return OPA_MTU_0;
1125 case 256: return OPA_MTU_256;
1126 case 512: return OPA_MTU_512;
1127 case 1024: return OPA_MTU_1024;
1128 case 2048: return OPA_MTU_2048;
1129 case 4096: return OPA_MTU_4096;
1130 case 8192: return OPA_MTU_8192;
1131 case 10240: return OPA_MTU_10240;
1133 return default_if_bad;
1136 u16 enum_to_mtu(int mtu)
1138 switch (mtu) {
1139 case OPA_MTU_0: return 0;
1140 case OPA_MTU_256: return 256;
1141 case OPA_MTU_512: return 512;
1142 case OPA_MTU_1024: return 1024;
1143 case OPA_MTU_2048: return 2048;
1144 case OPA_MTU_4096: return 4096;
1145 case OPA_MTU_8192: return 8192;
1146 case OPA_MTU_10240: return 10240;
1147 default: return 0xffff;
1152 * set_mtu - set the MTU
1153 * @ppd: the per port data
1155 * We can handle "any" incoming size, the issue here is whether we
1156 * need to restrict our outgoing size. We do not deal with what happens
1157 * to programs that are already running when the size changes.
1159 int set_mtu(struct hfi1_pportdata *ppd)
1161 struct hfi1_devdata *dd = ppd->dd;
1162 int i, drain, ret = 0, is_up = 0;
1164 ppd->ibmtu = 0;
1165 for (i = 0; i < ppd->vls_supported; i++)
1166 if (ppd->ibmtu < dd->vld[i].mtu)
1167 ppd->ibmtu = dd->vld[i].mtu;
1168 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1170 mutex_lock(&ppd->hls_lock);
1171 if (ppd->host_link_state == HLS_UP_INIT ||
1172 ppd->host_link_state == HLS_UP_ARMED ||
1173 ppd->host_link_state == HLS_UP_ACTIVE)
1174 is_up = 1;
1176 drain = !is_ax(dd) && is_up;
1178 if (drain)
1180 * MTU is specified per-VL. To ensure that no packet gets
1181 * stuck (due, e.g., to the MTU for the packet's VL being
1182 * reduced), empty the per-VL FIFOs before adjusting MTU.
1184 ret = stop_drain_data_vls(dd);
1186 if (ret) {
1187 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1188 __func__);
1189 goto err;
1192 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1194 if (drain)
1195 open_fill_data_vls(dd); /* reopen all VLs */
1197 err:
1198 mutex_unlock(&ppd->hls_lock);
1200 return ret;
1203 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1205 struct hfi1_devdata *dd = ppd->dd;
1207 ppd->lid = lid;
1208 ppd->lmc = lmc;
1209 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1211 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1213 return 0;
1216 void shutdown_led_override(struct hfi1_pportdata *ppd)
1218 struct hfi1_devdata *dd = ppd->dd;
1221 * This pairs with the memory barrier in hfi1_start_led_override to
1222 * ensure that we read the correct state of LED beaconing represented
1223 * by led_override_timer_active
1225 smp_rmb();
1226 if (atomic_read(&ppd->led_override_timer_active)) {
1227 del_timer_sync(&ppd->led_override_timer);
1228 atomic_set(&ppd->led_override_timer_active, 0);
1229 /* Ensure the atomic_set is visible to all CPUs */
1230 smp_wmb();
1233 /* Hand control of the LED to the DC for normal operation */
1234 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1237 static void run_led_override(struct timer_list *t)
1239 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1240 struct hfi1_devdata *dd = ppd->dd;
1241 unsigned long timeout;
1242 int phase_idx;
1244 if (!(dd->flags & HFI1_INITTED))
1245 return;
1247 phase_idx = ppd->led_override_phase & 1;
1249 setextled(dd, phase_idx);
1251 timeout = ppd->led_override_vals[phase_idx];
1253 /* Set up for next phase */
1254 ppd->led_override_phase = !ppd->led_override_phase;
1256 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1260 * To have the LED blink in a particular pattern, provide timeon and timeoff
1261 * in milliseconds.
1262 * To turn off custom blinking and return to normal operation, use
1263 * shutdown_led_override()
1265 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1266 unsigned int timeoff)
1268 if (!(ppd->dd->flags & HFI1_INITTED))
1269 return;
1271 /* Convert to jiffies for direct use in timer */
1272 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1273 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1275 /* Arbitrarily start from LED on phase */
1276 ppd->led_override_phase = 1;
1279 * If the timer has not already been started, do so. Use a "quick"
1280 * timeout so the handler will be called soon to look at our request.
1282 if (!timer_pending(&ppd->led_override_timer)) {
1283 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1284 ppd->led_override_timer.expires = jiffies + 1;
1285 add_timer(&ppd->led_override_timer);
1286 atomic_set(&ppd->led_override_timer_active, 1);
1287 /* Ensure the atomic_set is visible to all CPUs */
1288 smp_wmb();
1293 * hfi1_reset_device - reset the chip if possible
1294 * @unit: the device to reset
1296 * Whether or not reset is successful, we attempt to re-initialize the chip
1297 * (that is, much like a driver unload/reload). We clear the INITTED flag
1298 * so that the various entry points will fail until we reinitialize. For
1299 * now, we only allow this if no user contexts are open that use chip resources
1301 int hfi1_reset_device(int unit)
1303 int ret;
1304 struct hfi1_devdata *dd = hfi1_lookup(unit);
1305 struct hfi1_pportdata *ppd;
1306 int pidx;
1308 if (!dd) {
1309 ret = -ENODEV;
1310 goto bail;
1313 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1315 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1316 dd_dev_info(dd,
1317 "Invalid unit number %u or not initialized or not present\n",
1318 unit);
1319 ret = -ENXIO;
1320 goto bail;
1323 /* If there are any user/vnic contexts, we cannot reset */
1324 mutex_lock(&hfi1_mutex);
1325 if (dd->rcd)
1326 if (hfi1_stats.sps_ctxts) {
1327 mutex_unlock(&hfi1_mutex);
1328 ret = -EBUSY;
1329 goto bail;
1331 mutex_unlock(&hfi1_mutex);
1333 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1334 ppd = dd->pport + pidx;
1336 shutdown_led_override(ppd);
1338 if (dd->flags & HFI1_HAS_SEND_DMA)
1339 sdma_exit(dd);
1341 hfi1_reset_cpu_counters(dd);
1343 ret = hfi1_init(dd, 1);
1345 if (ret)
1346 dd_dev_err(dd,
1347 "Reinitialize unit %u after reset failed with %d\n",
1348 unit, ret);
1349 else
1350 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1351 unit);
1353 bail:
1354 return ret;
1357 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1359 packet->hdr = (struct hfi1_ib_message_header *)
1360 hfi1_get_msgheader(packet->rcd,
1361 packet->rhf_addr);
1362 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1365 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1367 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1369 /* slid and dlid cannot be 0 */
1370 if ((!packet->slid) || (!packet->dlid))
1371 return -EINVAL;
1373 /* Compare port lid with incoming packet dlid */
1374 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1375 (packet->dlid !=
1376 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1377 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1378 return -EINVAL;
1381 /* No multicast packets with SC15 */
1382 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1383 return -EINVAL;
1385 /* Packets with permissive DLID always on SC15 */
1386 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1387 16B)) &&
1388 (packet->sc != 0xF))
1389 return -EINVAL;
1391 return 0;
1394 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1396 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1397 struct ib_header *hdr;
1398 u8 lnh;
1400 hfi1_setup_ib_header(packet);
1401 hdr = packet->hdr;
1403 lnh = ib_get_lnh(hdr);
1404 if (lnh == HFI1_LRH_BTH) {
1405 packet->ohdr = &hdr->u.oth;
1406 packet->grh = NULL;
1407 } else if (lnh == HFI1_LRH_GRH) {
1408 u32 vtf;
1410 packet->ohdr = &hdr->u.l.oth;
1411 packet->grh = &hdr->u.l.grh;
1412 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1413 goto drop;
1414 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1415 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1416 goto drop;
1417 } else {
1418 goto drop;
1421 /* Query commonly used fields from packet header */
1422 packet->payload = packet->ebuf;
1423 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1424 packet->slid = ib_get_slid(hdr);
1425 packet->dlid = ib_get_dlid(hdr);
1426 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1427 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1428 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1429 be16_to_cpu(IB_MULTICAST_LID_BASE);
1430 packet->sl = ib_get_sl(hdr);
1431 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1432 packet->pad = ib_bth_get_pad(packet->ohdr);
1433 packet->extra_byte = 0;
1434 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1435 packet->migrated = ib_bth_is_migration(packet->ohdr);
1437 return 0;
1438 drop:
1439 ibp->rvp.n_pkt_drops++;
1440 return -EINVAL;
1443 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1446 * Bypass packets have a different header/payload split
1447 * compared to an IB packet.
1448 * Current split is set such that 16 bytes of the actual
1449 * header is in the header buffer and the remining is in
1450 * the eager buffer. We chose 16 since hfi1 driver only
1451 * supports 16B bypass packets and we will be able to
1452 * receive the entire LRH with such a split.
1455 struct hfi1_ctxtdata *rcd = packet->rcd;
1456 struct hfi1_pportdata *ppd = rcd->ppd;
1457 struct hfi1_ibport *ibp = &ppd->ibport_data;
1458 u8 l4;
1460 packet->hdr = (struct hfi1_16b_header *)
1461 hfi1_get_16B_header(packet->rcd,
1462 packet->rhf_addr);
1463 l4 = hfi1_16B_get_l4(packet->hdr);
1464 if (l4 == OPA_16B_L4_IB_LOCAL) {
1465 packet->ohdr = packet->ebuf;
1466 packet->grh = NULL;
1467 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1468 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1469 /* hdr_len_by_opcode already has an IB LRH factored in */
1470 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1471 (LRH_16B_BYTES - LRH_9B_BYTES);
1472 packet->migrated = opa_bth_is_migration(packet->ohdr);
1473 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1474 u32 vtf;
1475 u8 grh_len = sizeof(struct ib_grh);
1477 packet->ohdr = packet->ebuf + grh_len;
1478 packet->grh = packet->ebuf;
1479 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1480 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1481 /* hdr_len_by_opcode already has an IB LRH factored in */
1482 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1483 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1484 packet->migrated = opa_bth_is_migration(packet->ohdr);
1486 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1487 goto drop;
1488 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1489 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1490 goto drop;
1491 } else if (l4 == OPA_16B_L4_FM) {
1492 packet->mgmt = packet->ebuf;
1493 packet->ohdr = NULL;
1494 packet->grh = NULL;
1495 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1496 packet->pad = OPA_16B_L4_FM_PAD;
1497 packet->hlen = OPA_16B_L4_FM_HLEN;
1498 packet->migrated = false;
1499 } else {
1500 goto drop;
1503 /* Query commonly used fields from packet header */
1504 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1505 packet->slid = hfi1_16B_get_slid(packet->hdr);
1506 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1507 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1508 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1509 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1510 16B);
1511 packet->sc = hfi1_16B_get_sc(packet->hdr);
1512 packet->sl = ibp->sc_to_sl[packet->sc];
1513 packet->extra_byte = SIZE_OF_LT;
1514 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1516 if (hfi1_bypass_ingress_pkt_check(packet))
1517 goto drop;
1519 return 0;
1520 drop:
1521 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1522 ibp->rvp.n_pkt_drops++;
1523 return -EINVAL;
1526 static void show_eflags_errs(struct hfi1_packet *packet)
1528 struct hfi1_ctxtdata *rcd = packet->rcd;
1529 u32 rte = rhf_rcv_type_err(packet->rhf);
1531 dd_dev_err(rcd->dd,
1532 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1533 rcd->ctxt, packet->rhf,
1534 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1535 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1536 packet->rhf & RHF_DC_ERR ? "dc " : "",
1537 packet->rhf & RHF_TID_ERR ? "tid " : "",
1538 packet->rhf & RHF_LEN_ERR ? "len " : "",
1539 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1540 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1541 rte);
1544 void handle_eflags(struct hfi1_packet *packet)
1546 struct hfi1_ctxtdata *rcd = packet->rcd;
1548 rcv_hdrerr(rcd, rcd->ppd, packet);
1549 if (rhf_err_flags(packet->rhf))
1550 show_eflags_errs(packet);
1554 * The following functions are called by the interrupt handler. They are type
1555 * specific handlers for each packet type.
1557 static void process_receive_ib(struct hfi1_packet *packet)
1559 if (hfi1_setup_9B_packet(packet))
1560 return;
1562 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1563 return;
1565 trace_hfi1_rcvhdr(packet);
1567 if (unlikely(rhf_err_flags(packet->rhf))) {
1568 handle_eflags(packet);
1569 return;
1572 hfi1_ib_rcv(packet);
1575 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1577 /* Packet received in VNIC context via RSM */
1578 if (packet->rcd->is_vnic)
1579 return true;
1581 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1582 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1583 return true;
1585 return false;
1588 static void process_receive_bypass(struct hfi1_packet *packet)
1590 struct hfi1_devdata *dd = packet->rcd->dd;
1592 if (hfi1_is_vnic_packet(packet)) {
1593 hfi1_vnic_bypass_rcv(packet);
1594 return;
1597 if (hfi1_setup_bypass_packet(packet))
1598 return;
1600 trace_hfi1_rcvhdr(packet);
1602 if (unlikely(rhf_err_flags(packet->rhf))) {
1603 handle_eflags(packet);
1604 return;
1607 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1608 hfi1_16B_rcv(packet);
1609 } else {
1610 dd_dev_err(dd,
1611 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1612 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1613 if (!(dd->err_info_rcvport.status_and_code &
1614 OPA_EI_STATUS_SMASK)) {
1615 u64 *flits = packet->ebuf;
1617 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1618 dd->err_info_rcvport.packet_flit1 = flits[0];
1619 dd->err_info_rcvport.packet_flit2 =
1620 packet->tlen > sizeof(flits[0]) ?
1621 flits[1] : 0;
1623 dd->err_info_rcvport.status_and_code |=
1624 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1629 static void process_receive_error(struct hfi1_packet *packet)
1631 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1632 if (unlikely(
1633 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1634 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1635 packet->rhf & RHF_DC_ERR)))
1636 return;
1638 hfi1_setup_ib_header(packet);
1639 handle_eflags(packet);
1641 if (unlikely(rhf_err_flags(packet->rhf)))
1642 dd_dev_err(packet->rcd->dd,
1643 "Unhandled error packet received. Dropping.\n");
1646 static void kdeth_process_expected(struct hfi1_packet *packet)
1648 hfi1_setup_9B_packet(packet);
1649 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1650 return;
1652 if (unlikely(rhf_err_flags(packet->rhf))) {
1653 struct hfi1_ctxtdata *rcd = packet->rcd;
1655 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1656 return;
1659 hfi1_kdeth_expected_rcv(packet);
1662 static void kdeth_process_eager(struct hfi1_packet *packet)
1664 hfi1_setup_9B_packet(packet);
1665 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1666 return;
1668 trace_hfi1_rcvhdr(packet);
1669 if (unlikely(rhf_err_flags(packet->rhf))) {
1670 struct hfi1_ctxtdata *rcd = packet->rcd;
1672 show_eflags_errs(packet);
1673 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1674 return;
1677 hfi1_kdeth_eager_rcv(packet);
1680 static void process_receive_invalid(struct hfi1_packet *packet)
1682 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1683 rhf_rcv_type(packet->rhf));
1686 #define HFI1_RCVHDR_DUMP_MAX 5
1688 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1690 struct hfi1_packet packet;
1691 struct ps_mdata mdata;
1692 int i;
1694 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n",
1695 rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1696 get_dma_rtail_setting(rcd) ?
1697 "dma_rtail" : "nodma_rtail",
1698 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1699 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1700 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1701 RCV_HDR_HEAD_HEAD_MASK,
1702 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1703 rcd->head);
1705 init_packet(rcd, &packet);
1706 init_ps_mdata(&mdata, &packet);
1708 for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1709 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1710 rcd->rhf_offset;
1711 struct ib_header *hdr;
1712 u64 rhf = rhf_to_cpu(rhf_addr);
1713 u32 etype = rhf_rcv_type(rhf), qpn;
1714 u8 opcode;
1715 u32 psn;
1716 u8 lnh;
1718 if (ps_done(&mdata, rhf, rcd))
1719 break;
1721 if (ps_skip(&mdata, rhf, rcd))
1722 goto next;
1724 if (etype > RHF_RCV_TYPE_IB)
1725 goto next;
1727 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1728 hdr = packet.hdr;
1730 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1732 if (lnh == HFI1_LRH_BTH)
1733 packet.ohdr = &hdr->u.oth;
1734 else if (lnh == HFI1_LRH_GRH)
1735 packet.ohdr = &hdr->u.l.oth;
1736 else
1737 goto next; /* just in case */
1739 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1740 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1741 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1743 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1744 mdata.ps_head, opcode, qpn, psn);
1745 next:
1746 update_ps_mdata(&mdata, rcd);
1750 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1751 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1752 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1753 [RHF_RCV_TYPE_IB] = process_receive_ib,
1754 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1755 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1756 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1757 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1758 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,