treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / macintosh / windfarm_pm112.c
blob4150301a89a5a83b05799f2a1aa7b558232eff70
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
21 #define VERSION "0.2"
23 #define DEBUG
24 #undef LOTSA_DEBUG
26 #ifdef DEBUG
27 #define DBG(args...) printk(args)
28 #else
29 #define DBG(args...) do { } while(0)
30 #endif
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...) printk(args)
34 #else
35 #define DBG_LOTS(args...) do { } while(0)
36 #endif
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39 * the overtemp code
41 #undef HACKED_OVERTEMP
43 /* We currently only handle 2 chips, 4 cores... */
44 #define NR_CHIPS 2
45 #define NR_CORES 4
46 #define NR_CPU_FANS 3 * NR_CHIPS
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CORES];
50 static struct wf_sensor *sens_cpu_power[NR_CORES];
51 static struct wf_sensor *hd_temp;
52 static struct wf_sensor *slots_power;
53 static struct wf_sensor *u4_temp;
55 static struct wf_control *cpu_fans[NR_CPU_FANS];
56 static char *cpu_fan_names[NR_CPU_FANS] = {
57 "cpu-rear-fan-0",
58 "cpu-rear-fan-1",
59 "cpu-front-fan-0",
60 "cpu-front-fan-1",
61 "cpu-pump-0",
62 "cpu-pump-1",
64 static struct wf_control *cpufreq_clamp;
66 /* Second pump isn't required (and isn't actually present) */
67 #define CPU_FANS_REQD (NR_CPU_FANS - 2)
68 #define FIRST_PUMP 4
69 #define LAST_PUMP 5
71 /* We keep a temperature history for average calculation of 180s */
72 #define CPU_TEMP_HIST_SIZE 180
74 /* Scale factor for fan speed, *100 */
75 static int cpu_fan_scale[NR_CPU_FANS] = {
76 100,
77 100,
78 97, /* inlet fans run at 97% of exhaust fan */
79 97,
80 100, /* updated later */
81 100, /* updated later */
84 static struct wf_control *backside_fan;
85 static struct wf_control *slots_fan;
86 static struct wf_control *drive_bay_fan;
88 /* PID loop state */
89 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
90 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
91 static int cpu_thist_pt;
92 static s64 cpu_thist_total;
93 static s32 cpu_all_tmax = 100 << 16;
94 static int cpu_last_target;
95 static struct wf_pid_state backside_pid;
96 static int backside_tick;
97 static struct wf_pid_state slots_pid;
98 static bool slots_started;
99 static struct wf_pid_state drive_bay_pid;
100 static int drive_bay_tick;
102 static int nr_cores;
103 static int have_all_controls;
104 static int have_all_sensors;
105 static bool started;
107 static int failure_state;
108 #define FAILURE_SENSOR 1
109 #define FAILURE_FAN 2
110 #define FAILURE_PERM 4
111 #define FAILURE_LOW_OVERTEMP 8
112 #define FAILURE_HIGH_OVERTEMP 16
114 /* Overtemp values */
115 #define LOW_OVER_AVERAGE 0
116 #define LOW_OVER_IMMEDIATE (10 << 16)
117 #define LOW_OVER_CLEAR ((-10) << 16)
118 #define HIGH_OVER_IMMEDIATE (14 << 16)
119 #define HIGH_OVER_AVERAGE (10 << 16)
120 #define HIGH_OVER_IMMEDIATE (14 << 16)
123 /* Implementation... */
124 static int create_cpu_loop(int cpu)
126 int chip = cpu / 2;
127 int core = cpu & 1;
128 struct smu_sdbp_header *hdr;
129 struct smu_sdbp_cpupiddata *piddata;
130 struct wf_cpu_pid_param pid;
131 struct wf_control *main_fan = cpu_fans[0];
132 s32 tmax;
133 int fmin;
135 /* Get PID params from the appropriate SAT */
136 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
137 if (hdr == NULL) {
138 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
139 return -EINVAL;
141 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
143 /* Get FVT params to get Tmax; if not found, assume default */
144 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
145 if (hdr) {
146 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
147 tmax = fvt->maxtemp << 16;
148 } else
149 tmax = 95 << 16; /* default to 95 degrees C */
151 /* We keep a global tmax for overtemp calculations */
152 if (tmax < cpu_all_tmax)
153 cpu_all_tmax = tmax;
156 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
157 * 515 for the 2-way. That appears to be overkill, so for now,
158 * impose a minimum of 750 or 515.
160 fmin = (nr_cores > 2) ? 750 : 515;
162 /* Initialize PID loop */
163 pid.interval = 1; /* seconds */
164 pid.history_len = piddata->history_len;
165 pid.gd = piddata->gd;
166 pid.gp = piddata->gp;
167 pid.gr = piddata->gr / piddata->history_len;
168 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
169 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
170 pid.tmax = tmax;
171 pid.min = main_fan->ops->get_min(main_fan);
172 pid.max = main_fan->ops->get_max(main_fan);
173 if (pid.min < fmin)
174 pid.min = fmin;
176 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
177 return 0;
180 static void cpu_max_all_fans(void)
182 int i;
184 /* We max all CPU fans in case of a sensor error. We also do the
185 * cpufreq clamping now, even if it's supposedly done later by the
186 * generic code anyway, we do it earlier here to react faster
188 if (cpufreq_clamp)
189 wf_control_set_max(cpufreq_clamp);
190 for (i = 0; i < NR_CPU_FANS; ++i)
191 if (cpu_fans[i])
192 wf_control_set_max(cpu_fans[i]);
195 static int cpu_check_overtemp(s32 temp)
197 int new_state = 0;
198 s32 t_avg, t_old;
200 /* First check for immediate overtemps */
201 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
202 new_state |= FAILURE_LOW_OVERTEMP;
203 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
204 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
205 " temperature !\n");
207 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
208 new_state |= FAILURE_HIGH_OVERTEMP;
209 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
210 printk(KERN_ERR "windfarm: Critical overtemp due to"
211 " immediate CPU temperature !\n");
214 /* We calculate a history of max temperatures and use that for the
215 * overtemp management
217 t_old = cpu_thist[cpu_thist_pt];
218 cpu_thist[cpu_thist_pt] = temp;
219 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
220 cpu_thist_total -= t_old;
221 cpu_thist_total += temp;
222 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
224 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
225 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
227 /* Now check for average overtemps */
228 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
229 new_state |= FAILURE_LOW_OVERTEMP;
230 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
231 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
232 " temperature !\n");
234 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
235 new_state |= FAILURE_HIGH_OVERTEMP;
236 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
237 printk(KERN_ERR "windfarm: Critical overtemp due to"
238 " average CPU temperature !\n");
241 /* Now handle overtemp conditions. We don't currently use the windfarm
242 * overtemp handling core as it's not fully suited to the needs of those
243 * new machine. This will be fixed later.
245 if (new_state) {
246 /* High overtemp -> immediate shutdown */
247 if (new_state & FAILURE_HIGH_OVERTEMP)
248 machine_power_off();
249 if ((failure_state & new_state) != new_state)
250 cpu_max_all_fans();
251 failure_state |= new_state;
252 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
253 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
254 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
255 failure_state &= ~FAILURE_LOW_OVERTEMP;
258 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
261 static void cpu_fans_tick(void)
263 int err, cpu;
264 s32 greatest_delta = 0;
265 s32 temp, power, t_max = 0;
266 int i, t, target = 0;
267 struct wf_sensor *sr;
268 struct wf_control *ct;
269 struct wf_cpu_pid_state *sp;
271 DBG_LOTS(KERN_DEBUG);
272 for (cpu = 0; cpu < nr_cores; ++cpu) {
273 /* Get CPU core temperature */
274 sr = sens_cpu_temp[cpu];
275 err = sr->ops->get_value(sr, &temp);
276 if (err) {
277 DBG("\n");
278 printk(KERN_WARNING "windfarm: CPU %d temperature "
279 "sensor error %d\n", cpu, err);
280 failure_state |= FAILURE_SENSOR;
281 cpu_max_all_fans();
282 return;
285 /* Keep track of highest temp */
286 t_max = max(t_max, temp);
288 /* Get CPU power */
289 sr = sens_cpu_power[cpu];
290 err = sr->ops->get_value(sr, &power);
291 if (err) {
292 DBG("\n");
293 printk(KERN_WARNING "windfarm: CPU %d power "
294 "sensor error %d\n", cpu, err);
295 failure_state |= FAILURE_SENSOR;
296 cpu_max_all_fans();
297 return;
300 /* Run PID */
301 sp = &cpu_pid[cpu];
302 t = wf_cpu_pid_run(sp, power, temp);
304 if (cpu == 0 || sp->last_delta > greatest_delta) {
305 greatest_delta = sp->last_delta;
306 target = t;
308 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
309 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
311 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
313 /* Darwin limits decrease to 20 per iteration */
314 if (target < (cpu_last_target - 20))
315 target = cpu_last_target - 20;
316 cpu_last_target = target;
317 for (cpu = 0; cpu < nr_cores; ++cpu)
318 cpu_pid[cpu].target = target;
320 /* Handle possible overtemps */
321 if (cpu_check_overtemp(t_max))
322 return;
324 /* Set fans */
325 for (i = 0; i < NR_CPU_FANS; ++i) {
326 ct = cpu_fans[i];
327 if (ct == NULL)
328 continue;
329 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
330 if (err) {
331 printk(KERN_WARNING "windfarm: fan %s reports "
332 "error %d\n", ct->name, err);
333 failure_state |= FAILURE_FAN;
334 break;
339 /* Backside/U4 fan */
340 static struct wf_pid_param backside_param = {
341 .interval = 5,
342 .history_len = 2,
343 .gd = 48 << 20,
344 .gp = 5 << 20,
345 .gr = 0,
346 .itarget = 64 << 16,
347 .additive = 1,
350 static void backside_fan_tick(void)
352 s32 temp;
353 int speed;
354 int err;
356 if (!backside_fan || !u4_temp)
357 return;
358 if (!backside_tick) {
359 /* first time; initialize things */
360 printk(KERN_INFO "windfarm: Backside control loop started.\n");
361 backside_param.min = backside_fan->ops->get_min(backside_fan);
362 backside_param.max = backside_fan->ops->get_max(backside_fan);
363 wf_pid_init(&backside_pid, &backside_param);
364 backside_tick = 1;
366 if (--backside_tick > 0)
367 return;
368 backside_tick = backside_pid.param.interval;
370 err = u4_temp->ops->get_value(u4_temp, &temp);
371 if (err) {
372 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
373 err);
374 failure_state |= FAILURE_SENSOR;
375 wf_control_set_max(backside_fan);
376 return;
378 speed = wf_pid_run(&backside_pid, temp);
379 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
380 FIX32TOPRINT(temp), speed);
382 err = backside_fan->ops->set_value(backside_fan, speed);
383 if (err) {
384 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
385 failure_state |= FAILURE_FAN;
389 /* Drive bay fan */
390 static struct wf_pid_param drive_bay_prm = {
391 .interval = 5,
392 .history_len = 2,
393 .gd = 30 << 20,
394 .gp = 5 << 20,
395 .gr = 0,
396 .itarget = 40 << 16,
397 .additive = 1,
400 static void drive_bay_fan_tick(void)
402 s32 temp;
403 int speed;
404 int err;
406 if (!drive_bay_fan || !hd_temp)
407 return;
408 if (!drive_bay_tick) {
409 /* first time; initialize things */
410 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
411 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
412 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
413 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
414 drive_bay_tick = 1;
416 if (--drive_bay_tick > 0)
417 return;
418 drive_bay_tick = drive_bay_pid.param.interval;
420 err = hd_temp->ops->get_value(hd_temp, &temp);
421 if (err) {
422 printk(KERN_WARNING "windfarm: drive bay temp sensor "
423 "error %d\n", err);
424 failure_state |= FAILURE_SENSOR;
425 wf_control_set_max(drive_bay_fan);
426 return;
428 speed = wf_pid_run(&drive_bay_pid, temp);
429 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
430 FIX32TOPRINT(temp), speed);
432 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
433 if (err) {
434 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
435 failure_state |= FAILURE_FAN;
439 /* PCI slots area fan */
440 /* This makes the fan speed proportional to the power consumed */
441 static struct wf_pid_param slots_param = {
442 .interval = 1,
443 .history_len = 2,
444 .gd = 0,
445 .gp = 0,
446 .gr = 0x1277952,
447 .itarget = 0,
448 .min = 1560,
449 .max = 3510,
452 static void slots_fan_tick(void)
454 s32 power;
455 int speed;
456 int err;
458 if (!slots_fan || !slots_power)
459 return;
460 if (!slots_started) {
461 /* first time; initialize things */
462 printk(KERN_INFO "windfarm: Slots control loop started.\n");
463 wf_pid_init(&slots_pid, &slots_param);
464 slots_started = true;
467 err = slots_power->ops->get_value(slots_power, &power);
468 if (err) {
469 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
470 err);
471 failure_state |= FAILURE_SENSOR;
472 wf_control_set_max(slots_fan);
473 return;
475 speed = wf_pid_run(&slots_pid, power);
476 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
477 FIX32TOPRINT(power), speed);
479 err = slots_fan->ops->set_value(slots_fan, speed);
480 if (err) {
481 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
482 failure_state |= FAILURE_FAN;
486 static void set_fail_state(void)
488 int i;
490 if (cpufreq_clamp)
491 wf_control_set_max(cpufreq_clamp);
492 for (i = 0; i < NR_CPU_FANS; ++i)
493 if (cpu_fans[i])
494 wf_control_set_max(cpu_fans[i]);
495 if (backside_fan)
496 wf_control_set_max(backside_fan);
497 if (slots_fan)
498 wf_control_set_max(slots_fan);
499 if (drive_bay_fan)
500 wf_control_set_max(drive_bay_fan);
503 static void pm112_tick(void)
505 int i, last_failure;
507 if (!started) {
508 started = true;
509 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
510 for (i = 0; i < nr_cores; ++i) {
511 if (create_cpu_loop(i) < 0) {
512 failure_state = FAILURE_PERM;
513 set_fail_state();
514 break;
517 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
519 #ifdef HACKED_OVERTEMP
520 cpu_all_tmax = 60 << 16;
521 #endif
524 /* Permanent failure, bail out */
525 if (failure_state & FAILURE_PERM)
526 return;
527 /* Clear all failure bits except low overtemp which will be eventually
528 * cleared by the control loop itself
530 last_failure = failure_state;
531 failure_state &= FAILURE_LOW_OVERTEMP;
532 cpu_fans_tick();
533 backside_fan_tick();
534 slots_fan_tick();
535 drive_bay_fan_tick();
537 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
538 last_failure, failure_state);
540 /* Check for failures. Any failure causes cpufreq clamping */
541 if (failure_state && last_failure == 0 && cpufreq_clamp)
542 wf_control_set_max(cpufreq_clamp);
543 if (failure_state == 0 && last_failure && cpufreq_clamp)
544 wf_control_set_min(cpufreq_clamp);
546 /* That's it for now, we might want to deal with other failures
547 * differently in the future though
551 static void pm112_new_control(struct wf_control *ct)
553 int i, max_exhaust;
555 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
556 if (wf_get_control(ct) == 0)
557 cpufreq_clamp = ct;
560 for (i = 0; i < NR_CPU_FANS; ++i) {
561 if (!strcmp(ct->name, cpu_fan_names[i])) {
562 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
563 cpu_fans[i] = ct;
564 break;
567 if (i >= NR_CPU_FANS) {
568 /* not a CPU fan, try the others */
569 if (!strcmp(ct->name, "backside-fan")) {
570 if (backside_fan == NULL && wf_get_control(ct) == 0)
571 backside_fan = ct;
572 } else if (!strcmp(ct->name, "slots-fan")) {
573 if (slots_fan == NULL && wf_get_control(ct) == 0)
574 slots_fan = ct;
575 } else if (!strcmp(ct->name, "drive-bay-fan")) {
576 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
577 drive_bay_fan = ct;
579 return;
582 for (i = 0; i < CPU_FANS_REQD; ++i)
583 if (cpu_fans[i] == NULL)
584 return;
586 /* work out pump scaling factors */
587 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
588 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
589 if ((ct = cpu_fans[i]) != NULL)
590 cpu_fan_scale[i] =
591 ct->ops->get_max(ct) * 100 / max_exhaust;
593 have_all_controls = 1;
596 static void pm112_new_sensor(struct wf_sensor *sr)
598 unsigned int i;
600 if (!strncmp(sr->name, "cpu-temp-", 9)) {
601 i = sr->name[9] - '0';
602 if (sr->name[10] == 0 && i < NR_CORES &&
603 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
604 sens_cpu_temp[i] = sr;
606 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
607 i = sr->name[10] - '0';
608 if (sr->name[11] == 0 && i < NR_CORES &&
609 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
610 sens_cpu_power[i] = sr;
611 } else if (!strcmp(sr->name, "hd-temp")) {
612 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
613 hd_temp = sr;
614 } else if (!strcmp(sr->name, "slots-power")) {
615 if (slots_power == NULL && wf_get_sensor(sr) == 0)
616 slots_power = sr;
617 } else if (!strcmp(sr->name, "backside-temp")) {
618 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
619 u4_temp = sr;
620 } else
621 return;
623 /* check if we have all the sensors we need */
624 for (i = 0; i < nr_cores; ++i)
625 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
626 return;
628 have_all_sensors = 1;
631 static int pm112_wf_notify(struct notifier_block *self,
632 unsigned long event, void *data)
634 switch (event) {
635 case WF_EVENT_NEW_SENSOR:
636 pm112_new_sensor(data);
637 break;
638 case WF_EVENT_NEW_CONTROL:
639 pm112_new_control(data);
640 break;
641 case WF_EVENT_TICK:
642 if (have_all_controls && have_all_sensors)
643 pm112_tick();
645 return 0;
648 static struct notifier_block pm112_events = {
649 .notifier_call = pm112_wf_notify,
652 static int wf_pm112_probe(struct platform_device *dev)
654 wf_register_client(&pm112_events);
655 return 0;
658 static int wf_pm112_remove(struct platform_device *dev)
660 wf_unregister_client(&pm112_events);
661 /* should release all sensors and controls */
662 return 0;
665 static struct platform_driver wf_pm112_driver = {
666 .probe = wf_pm112_probe,
667 .remove = wf_pm112_remove,
668 .driver = {
669 .name = "windfarm",
673 static int __init wf_pm112_init(void)
675 struct device_node *cpu;
677 if (!of_machine_is_compatible("PowerMac11,2"))
678 return -ENODEV;
680 /* Count the number of CPU cores */
681 nr_cores = 0;
682 for_each_node_by_type(cpu, "cpu")
683 ++nr_cores;
685 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
687 #ifdef MODULE
688 request_module("windfarm_smu_controls");
689 request_module("windfarm_smu_sensors");
690 request_module("windfarm_smu_sat");
691 request_module("windfarm_lm75_sensor");
692 request_module("windfarm_max6690_sensor");
693 request_module("windfarm_cpufreq_clamp");
695 #endif /* MODULE */
697 platform_driver_register(&wf_pm112_driver);
698 return 0;
701 static void __exit wf_pm112_exit(void)
703 platform_driver_unregister(&wf_pm112_driver);
706 module_init(wf_pm112_init);
707 module_exit(wf_pm112_exit);
709 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
710 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
711 MODULE_LICENSE("GPL");
712 MODULE_ALIAS("platform:windfarm");