treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / nand / raw / au1550nd.c
blob75eb3e97fae3457333891b43fc893045c2a2440a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2004 Embedded Edge, LLC
4 */
6 #include <linux/slab.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/mtd/mtd.h>
10 #include <linux/mtd/rawnand.h>
11 #include <linux/mtd/partitions.h>
12 #include <linux/platform_device.h>
13 #include <asm/io.h>
14 #include <asm/mach-au1x00/au1000.h>
15 #include <asm/mach-au1x00/au1550nd.h>
18 struct au1550nd_ctx {
19 struct nand_chip chip;
21 int cs;
22 void __iomem *base;
23 void (*write_byte)(struct nand_chip *, u_char);
26 /**
27 * au_read_byte - read one byte from the chip
28 * @this: NAND chip object
30 * read function for 8bit buswidth
32 static u_char au_read_byte(struct nand_chip *this)
34 u_char ret = readb(this->legacy.IO_ADDR_R);
35 wmb(); /* drain writebuffer */
36 return ret;
39 /**
40 * au_write_byte - write one byte to the chip
41 * @this: NAND chip object
42 * @byte: pointer to data byte to write
44 * write function for 8it buswidth
46 static void au_write_byte(struct nand_chip *this, u_char byte)
48 writeb(byte, this->legacy.IO_ADDR_W);
49 wmb(); /* drain writebuffer */
52 /**
53 * au_read_byte16 - read one byte endianness aware from the chip
54 * @this: NAND chip object
56 * read function for 16bit buswidth with endianness conversion
58 static u_char au_read_byte16(struct nand_chip *this)
60 u_char ret = (u_char) cpu_to_le16(readw(this->legacy.IO_ADDR_R));
61 wmb(); /* drain writebuffer */
62 return ret;
65 /**
66 * au_write_byte16 - write one byte endianness aware to the chip
67 * @this: NAND chip object
68 * @byte: pointer to data byte to write
70 * write function for 16bit buswidth with endianness conversion
72 static void au_write_byte16(struct nand_chip *this, u_char byte)
74 writew(le16_to_cpu((u16) byte), this->legacy.IO_ADDR_W);
75 wmb(); /* drain writebuffer */
78 /**
79 * au_write_buf - write buffer to chip
80 * @this: NAND chip object
81 * @buf: data buffer
82 * @len: number of bytes to write
84 * write function for 8bit buswidth
86 static void au_write_buf(struct nand_chip *this, const u_char *buf, int len)
88 int i;
90 for (i = 0; i < len; i++) {
91 writeb(buf[i], this->legacy.IO_ADDR_W);
92 wmb(); /* drain writebuffer */
96 /**
97 * au_read_buf - read chip data into buffer
98 * @this: NAND chip object
99 * @buf: buffer to store date
100 * @len: number of bytes to read
102 * read function for 8bit buswidth
104 static void au_read_buf(struct nand_chip *this, u_char *buf, int len)
106 int i;
108 for (i = 0; i < len; i++) {
109 buf[i] = readb(this->legacy.IO_ADDR_R);
110 wmb(); /* drain writebuffer */
115 * au_write_buf16 - write buffer to chip
116 * @this: NAND chip object
117 * @buf: data buffer
118 * @len: number of bytes to write
120 * write function for 16bit buswidth
122 static void au_write_buf16(struct nand_chip *this, const u_char *buf, int len)
124 int i;
125 u16 *p = (u16 *) buf;
126 len >>= 1;
128 for (i = 0; i < len; i++) {
129 writew(p[i], this->legacy.IO_ADDR_W);
130 wmb(); /* drain writebuffer */
136 * au_read_buf16 - read chip data into buffer
137 * @this: NAND chip object
138 * @buf: buffer to store date
139 * @len: number of bytes to read
141 * read function for 16bit buswidth
143 static void au_read_buf16(struct nand_chip *this, u_char *buf, int len)
145 int i;
146 u16 *p = (u16 *) buf;
147 len >>= 1;
149 for (i = 0; i < len; i++) {
150 p[i] = readw(this->legacy.IO_ADDR_R);
151 wmb(); /* drain writebuffer */
155 /* Select the chip by setting nCE to low */
156 #define NAND_CTL_SETNCE 1
157 /* Deselect the chip by setting nCE to high */
158 #define NAND_CTL_CLRNCE 2
159 /* Select the command latch by setting CLE to high */
160 #define NAND_CTL_SETCLE 3
161 /* Deselect the command latch by setting CLE to low */
162 #define NAND_CTL_CLRCLE 4
163 /* Select the address latch by setting ALE to high */
164 #define NAND_CTL_SETALE 5
165 /* Deselect the address latch by setting ALE to low */
166 #define NAND_CTL_CLRALE 6
168 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
170 struct nand_chip *this = mtd_to_nand(mtd);
171 struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
172 chip);
174 switch (cmd) {
176 case NAND_CTL_SETCLE:
177 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
178 break;
180 case NAND_CTL_CLRCLE:
181 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
182 break;
184 case NAND_CTL_SETALE:
185 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
186 break;
188 case NAND_CTL_CLRALE:
189 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
190 /* FIXME: Nobody knows why this is necessary,
191 * but it works only that way */
192 udelay(1);
193 break;
195 case NAND_CTL_SETNCE:
196 /* assert (force assert) chip enable */
197 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
198 break;
200 case NAND_CTL_CLRNCE:
201 /* deassert chip enable */
202 alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
203 break;
206 this->legacy.IO_ADDR_R = this->legacy.IO_ADDR_W;
208 wmb(); /* Drain the writebuffer */
211 int au1550_device_ready(struct nand_chip *this)
213 return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
217 * au1550_select_chip - control -CE line
218 * Forbid driving -CE manually permitting the NAND controller to do this.
219 * Keeping -CE asserted during the whole sector reads interferes with the
220 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
221 * We only have to hold -CE low for the NAND read commands since the flash
222 * chip needs it to be asserted during chip not ready time but the NAND
223 * controller keeps it released.
225 * @this: NAND chip object
226 * @chip: chipnumber to select, -1 for deselect
228 static void au1550_select_chip(struct nand_chip *this, int chip)
233 * au1550_command - Send command to NAND device
234 * @this: NAND chip object
235 * @command: the command to be sent
236 * @column: the column address for this command, -1 if none
237 * @page_addr: the page address for this command, -1 if none
239 static void au1550_command(struct nand_chip *this, unsigned command,
240 int column, int page_addr)
242 struct mtd_info *mtd = nand_to_mtd(this);
243 struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
244 chip);
245 int ce_override = 0, i;
246 unsigned long flags = 0;
248 /* Begin command latch cycle */
249 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
251 * Write out the command to the device.
253 if (command == NAND_CMD_SEQIN) {
254 int readcmd;
256 if (column >= mtd->writesize) {
257 /* OOB area */
258 column -= mtd->writesize;
259 readcmd = NAND_CMD_READOOB;
260 } else if (column < 256) {
261 /* First 256 bytes --> READ0 */
262 readcmd = NAND_CMD_READ0;
263 } else {
264 column -= 256;
265 readcmd = NAND_CMD_READ1;
267 ctx->write_byte(this, readcmd);
269 ctx->write_byte(this, command);
271 /* Set ALE and clear CLE to start address cycle */
272 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
274 if (column != -1 || page_addr != -1) {
275 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
277 /* Serially input address */
278 if (column != -1) {
279 /* Adjust columns for 16 bit buswidth */
280 if (this->options & NAND_BUSWIDTH_16 &&
281 !nand_opcode_8bits(command))
282 column >>= 1;
283 ctx->write_byte(this, column);
285 if (page_addr != -1) {
286 ctx->write_byte(this, (u8)(page_addr & 0xff));
288 if (command == NAND_CMD_READ0 ||
289 command == NAND_CMD_READ1 ||
290 command == NAND_CMD_READOOB) {
292 * NAND controller will release -CE after
293 * the last address byte is written, so we'll
294 * have to forcibly assert it. No interrupts
295 * are allowed while we do this as we don't
296 * want the NOR flash or PCMCIA drivers to
297 * steal our precious bytes of data...
299 ce_override = 1;
300 local_irq_save(flags);
301 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
304 ctx->write_byte(this, (u8)(page_addr >> 8));
306 if (this->options & NAND_ROW_ADDR_3)
307 ctx->write_byte(this,
308 ((page_addr >> 16) & 0x0f));
310 /* Latch in address */
311 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
315 * Program and erase have their own busy handlers.
316 * Status and sequential in need no delay.
318 switch (command) {
320 case NAND_CMD_PAGEPROG:
321 case NAND_CMD_ERASE1:
322 case NAND_CMD_ERASE2:
323 case NAND_CMD_SEQIN:
324 case NAND_CMD_STATUS:
325 return;
327 case NAND_CMD_RESET:
328 break;
330 case NAND_CMD_READ0:
331 case NAND_CMD_READ1:
332 case NAND_CMD_READOOB:
333 /* Check if we're really driving -CE low (just in case) */
334 if (unlikely(!ce_override))
335 break;
337 /* Apply a short delay always to ensure that we do wait tWB. */
338 ndelay(100);
339 /* Wait for a chip to become ready... */
340 for (i = this->legacy.chip_delay;
341 !this->legacy.dev_ready(this) && i > 0; --i)
342 udelay(1);
344 /* Release -CE and re-enable interrupts. */
345 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
346 local_irq_restore(flags);
347 return;
349 /* Apply this short delay always to ensure that we do wait tWB. */
350 ndelay(100);
352 while(!this->legacy.dev_ready(this));
355 static int find_nand_cs(unsigned long nand_base)
357 void __iomem *base =
358 (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
359 unsigned long addr, staddr, start, mask, end;
360 int i;
362 for (i = 0; i < 4; i++) {
363 addr = 0x1000 + (i * 0x10); /* CSx */
364 staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
365 /* figure out the decoded range of this CS */
366 start = (staddr << 4) & 0xfffc0000;
367 mask = (staddr << 18) & 0xfffc0000;
368 end = (start | (start - 1)) & ~(start ^ mask);
369 if ((nand_base >= start) && (nand_base < end))
370 return i;
373 return -ENODEV;
376 static int au1550nd_probe(struct platform_device *pdev)
378 struct au1550nd_platdata *pd;
379 struct au1550nd_ctx *ctx;
380 struct nand_chip *this;
381 struct mtd_info *mtd;
382 struct resource *r;
383 int ret, cs;
385 pd = dev_get_platdata(&pdev->dev);
386 if (!pd) {
387 dev_err(&pdev->dev, "missing platform data\n");
388 return -ENODEV;
391 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
392 if (!ctx)
393 return -ENOMEM;
395 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
396 if (!r) {
397 dev_err(&pdev->dev, "no NAND memory resource\n");
398 ret = -ENODEV;
399 goto out1;
401 if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
402 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
403 ret = -ENOMEM;
404 goto out1;
407 ctx->base = ioremap(r->start, 0x1000);
408 if (!ctx->base) {
409 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
410 ret = -ENODEV;
411 goto out2;
414 this = &ctx->chip;
415 mtd = nand_to_mtd(this);
416 mtd->dev.parent = &pdev->dev;
418 /* figure out which CS# r->start belongs to */
419 cs = find_nand_cs(r->start);
420 if (cs < 0) {
421 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
422 ret = -ENODEV;
423 goto out3;
425 ctx->cs = cs;
427 this->legacy.dev_ready = au1550_device_ready;
428 this->legacy.select_chip = au1550_select_chip;
429 this->legacy.cmdfunc = au1550_command;
431 /* 30 us command delay time */
432 this->legacy.chip_delay = 30;
433 this->ecc.mode = NAND_ECC_SOFT;
434 this->ecc.algo = NAND_ECC_HAMMING;
436 if (pd->devwidth)
437 this->options |= NAND_BUSWIDTH_16;
439 this->legacy.read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
440 ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
441 this->legacy.write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
442 this->legacy.read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
444 ret = nand_scan(this, 1);
445 if (ret) {
446 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
447 goto out3;
450 mtd_device_register(mtd, pd->parts, pd->num_parts);
452 platform_set_drvdata(pdev, ctx);
454 return 0;
456 out3:
457 iounmap(ctx->base);
458 out2:
459 release_mem_region(r->start, resource_size(r));
460 out1:
461 kfree(ctx);
462 return ret;
465 static int au1550nd_remove(struct platform_device *pdev)
467 struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
468 struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
470 nand_release(&ctx->chip);
471 iounmap(ctx->base);
472 release_mem_region(r->start, 0x1000);
473 kfree(ctx);
474 return 0;
477 static struct platform_driver au1550nd_driver = {
478 .driver = {
479 .name = "au1550-nand",
481 .probe = au1550nd_probe,
482 .remove = au1550nd_remove,
485 module_platform_driver(au1550nd_driver);
487 MODULE_LICENSE("GPL");
488 MODULE_AUTHOR("Embedded Edge, LLC");
489 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");