treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / nand / raw / mxc_nand.c
blob59554c187e01a99e3302497dd86631dcaccb0560
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 */
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_data/mtd-mxc_nand.h>
26 #define DRIVER_NAME "mxc_nand"
28 /* Addresses for NFC registers */
29 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
30 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
31 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
32 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
33 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
34 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
35 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
36 #define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10)
37 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
38 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
39 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
40 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
41 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
42 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
43 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
44 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
45 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
46 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
47 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
48 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
49 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
50 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
52 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
53 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
54 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
55 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
56 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
57 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
58 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
59 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
60 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
61 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
63 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
66 * Operation modes for the NFC. Valid for v1, v2 and v3
67 * type controllers.
69 #define NFC_CMD (1 << 0)
70 #define NFC_ADDR (1 << 1)
71 #define NFC_INPUT (1 << 2)
72 #define NFC_OUTPUT (1 << 3)
73 #define NFC_ID (1 << 4)
74 #define NFC_STATUS (1 << 5)
76 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
77 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
79 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
80 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
81 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
83 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
85 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
87 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
88 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
89 #define NFC_V3_WRPROT_LOCK (1 << 1)
90 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
91 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
93 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
95 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
96 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
97 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
98 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
99 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
100 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
101 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
102 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
103 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
104 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
105 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
106 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
107 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
108 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
110 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
111 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
112 #define NFC_V3_CONFIG3_FW8 (1 << 3)
113 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
114 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
115 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
116 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
118 #define NFC_V3_IPC (host->regs_ip + 0x2C)
119 #define NFC_V3_IPC_CREQ (1 << 0)
120 #define NFC_V3_IPC_INT (1 << 31)
122 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
124 struct mxc_nand_host;
126 struct mxc_nand_devtype_data {
127 void (*preset)(struct mtd_info *);
128 int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
129 int page);
130 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
131 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
132 void (*send_page)(struct mtd_info *, unsigned int);
133 void (*send_read_id)(struct mxc_nand_host *);
134 uint16_t (*get_dev_status)(struct mxc_nand_host *);
135 int (*check_int)(struct mxc_nand_host *);
136 void (*irq_control)(struct mxc_nand_host *, int);
137 u32 (*get_ecc_status)(struct mxc_nand_host *);
138 const struct mtd_ooblayout_ops *ooblayout;
139 void (*select_chip)(struct nand_chip *chip, int cs);
140 int (*setup_data_interface)(struct nand_chip *chip, int csline,
141 const struct nand_data_interface *conf);
142 void (*enable_hwecc)(struct nand_chip *chip, bool enable);
145 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
146 * (CONFIG1:INT_MSK is set). To handle this the driver uses
147 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
149 int irqpending_quirk;
150 int needs_ip;
152 size_t regs_offset;
153 size_t spare0_offset;
154 size_t axi_offset;
156 int spare_len;
157 int eccbytes;
158 int eccsize;
159 int ppb_shift;
162 struct mxc_nand_host {
163 struct nand_chip nand;
164 struct device *dev;
166 void __iomem *spare0;
167 void __iomem *main_area0;
169 void __iomem *base;
170 void __iomem *regs;
171 void __iomem *regs_axi;
172 void __iomem *regs_ip;
173 int status_request;
174 struct clk *clk;
175 int clk_act;
176 int irq;
177 int eccsize;
178 int used_oobsize;
179 int active_cs;
181 struct completion op_completion;
183 uint8_t *data_buf;
184 unsigned int buf_start;
186 const struct mxc_nand_devtype_data *devtype_data;
187 struct mxc_nand_platform_data pdata;
190 static const char * const part_probes[] = {
191 "cmdlinepart", "RedBoot", "ofpart", NULL };
193 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
195 int i;
196 u32 *t = trg;
197 const __iomem u32 *s = src;
199 for (i = 0; i < (size >> 2); i++)
200 *t++ = __raw_readl(s++);
203 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
205 int i;
206 u16 *t = trg;
207 const __iomem u16 *s = src;
209 /* We assume that src (IO) is always 32bit aligned */
210 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
211 memcpy32_fromio(trg, src, size);
212 return;
215 for (i = 0; i < (size >> 1); i++)
216 *t++ = __raw_readw(s++);
219 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
221 /* __iowrite32_copy use 32bit size values so divide by 4 */
222 __iowrite32_copy(trg, src, size / 4);
225 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
227 int i;
228 __iomem u16 *t = trg;
229 const u16 *s = src;
231 /* We assume that trg (IO) is always 32bit aligned */
232 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
233 memcpy32_toio(trg, src, size);
234 return;
237 for (i = 0; i < (size >> 1); i++)
238 __raw_writew(*s++, t++);
242 * The controller splits a page into data chunks of 512 bytes + partial oob.
243 * There are writesize / 512 such chunks, the size of the partial oob parts is
244 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
245 * contains additionally the byte lost by rounding (if any).
246 * This function handles the needed shuffling between host->data_buf (which
247 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
248 * spare) and the NFC buffer.
250 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
252 struct nand_chip *this = mtd_to_nand(mtd);
253 struct mxc_nand_host *host = nand_get_controller_data(this);
254 u16 i, oob_chunk_size;
255 u16 num_chunks = mtd->writesize / 512;
257 u8 *d = buf;
258 u8 __iomem *s = host->spare0;
259 u16 sparebuf_size = host->devtype_data->spare_len;
261 /* size of oob chunk for all but possibly the last one */
262 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
264 if (bfrom) {
265 for (i = 0; i < num_chunks - 1; i++)
266 memcpy16_fromio(d + i * oob_chunk_size,
267 s + i * sparebuf_size,
268 oob_chunk_size);
270 /* the last chunk */
271 memcpy16_fromio(d + i * oob_chunk_size,
272 s + i * sparebuf_size,
273 host->used_oobsize - i * oob_chunk_size);
274 } else {
275 for (i = 0; i < num_chunks - 1; i++)
276 memcpy16_toio(&s[i * sparebuf_size],
277 &d[i * oob_chunk_size],
278 oob_chunk_size);
280 /* the last chunk */
281 memcpy16_toio(&s[i * sparebuf_size],
282 &d[i * oob_chunk_size],
283 host->used_oobsize - i * oob_chunk_size);
288 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
289 * the upper layers perform a read/write buf operation, the saved column address
290 * is used to index into the full page. So usually this function is called with
291 * column == 0 (unless no column cycle is needed indicated by column == -1)
293 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
295 struct nand_chip *nand_chip = mtd_to_nand(mtd);
296 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
298 /* Write out column address, if necessary */
299 if (column != -1) {
300 host->devtype_data->send_addr(host, column & 0xff,
301 page_addr == -1);
302 if (mtd->writesize > 512)
303 /* another col addr cycle for 2k page */
304 host->devtype_data->send_addr(host,
305 (column >> 8) & 0xff,
306 false);
309 /* Write out page address, if necessary */
310 if (page_addr != -1) {
311 /* paddr_0 - p_addr_7 */
312 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
314 if (mtd->writesize > 512) {
315 if (mtd->size >= 0x10000000) {
316 /* paddr_8 - paddr_15 */
317 host->devtype_data->send_addr(host,
318 (page_addr >> 8) & 0xff,
319 false);
320 host->devtype_data->send_addr(host,
321 (page_addr >> 16) & 0xff,
322 true);
323 } else
324 /* paddr_8 - paddr_15 */
325 host->devtype_data->send_addr(host,
326 (page_addr >> 8) & 0xff, true);
327 } else {
328 if (nand_chip->options & NAND_ROW_ADDR_3) {
329 /* paddr_8 - paddr_15 */
330 host->devtype_data->send_addr(host,
331 (page_addr >> 8) & 0xff,
332 false);
333 host->devtype_data->send_addr(host,
334 (page_addr >> 16) & 0xff,
335 true);
336 } else
337 /* paddr_8 - paddr_15 */
338 host->devtype_data->send_addr(host,
339 (page_addr >> 8) & 0xff, true);
344 static int check_int_v3(struct mxc_nand_host *host)
346 uint32_t tmp;
348 tmp = readl(NFC_V3_IPC);
349 if (!(tmp & NFC_V3_IPC_INT))
350 return 0;
352 tmp &= ~NFC_V3_IPC_INT;
353 writel(tmp, NFC_V3_IPC);
355 return 1;
358 static int check_int_v1_v2(struct mxc_nand_host *host)
360 uint32_t tmp;
362 tmp = readw(NFC_V1_V2_CONFIG2);
363 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
364 return 0;
366 if (!host->devtype_data->irqpending_quirk)
367 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
369 return 1;
372 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
374 uint16_t tmp;
376 tmp = readw(NFC_V1_V2_CONFIG1);
378 if (activate)
379 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
380 else
381 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
383 writew(tmp, NFC_V1_V2_CONFIG1);
386 static void irq_control_v3(struct mxc_nand_host *host, int activate)
388 uint32_t tmp;
390 tmp = readl(NFC_V3_CONFIG2);
392 if (activate)
393 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
394 else
395 tmp |= NFC_V3_CONFIG2_INT_MSK;
397 writel(tmp, NFC_V3_CONFIG2);
400 static void irq_control(struct mxc_nand_host *host, int activate)
402 if (host->devtype_data->irqpending_quirk) {
403 if (activate)
404 enable_irq(host->irq);
405 else
406 disable_irq_nosync(host->irq);
407 } else {
408 host->devtype_data->irq_control(host, activate);
412 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
414 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
417 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
419 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
422 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
424 return readl(NFC_V3_ECC_STATUS_RESULT);
427 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
429 struct mxc_nand_host *host = dev_id;
431 if (!host->devtype_data->check_int(host))
432 return IRQ_NONE;
434 irq_control(host, 0);
436 complete(&host->op_completion);
438 return IRQ_HANDLED;
441 /* This function polls the NANDFC to wait for the basic operation to
442 * complete by checking the INT bit of config2 register.
444 static int wait_op_done(struct mxc_nand_host *host, int useirq)
446 int ret = 0;
449 * If operation is already complete, don't bother to setup an irq or a
450 * loop.
452 if (host->devtype_data->check_int(host))
453 return 0;
455 if (useirq) {
456 unsigned long timeout;
458 reinit_completion(&host->op_completion);
460 irq_control(host, 1);
462 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
463 if (!timeout && !host->devtype_data->check_int(host)) {
464 dev_dbg(host->dev, "timeout waiting for irq\n");
465 ret = -ETIMEDOUT;
467 } else {
468 int max_retries = 8000;
469 int done;
471 do {
472 udelay(1);
474 done = host->devtype_data->check_int(host);
475 if (done)
476 break;
478 } while (--max_retries);
480 if (!done) {
481 dev_dbg(host->dev, "timeout polling for completion\n");
482 ret = -ETIMEDOUT;
486 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
488 return ret;
491 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
493 /* fill command */
494 writel(cmd, NFC_V3_FLASH_CMD);
496 /* send out command */
497 writel(NFC_CMD, NFC_V3_LAUNCH);
499 /* Wait for operation to complete */
500 wait_op_done(host, useirq);
503 /* This function issues the specified command to the NAND device and
504 * waits for completion. */
505 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
507 dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
509 writew(cmd, NFC_V1_V2_FLASH_CMD);
510 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
512 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
513 int max_retries = 100;
514 /* Reset completion is indicated by NFC_CONFIG2 */
515 /* being set to 0 */
516 while (max_retries-- > 0) {
517 if (readw(NFC_V1_V2_CONFIG2) == 0) {
518 break;
520 udelay(1);
522 if (max_retries < 0)
523 dev_dbg(host->dev, "%s: RESET failed\n", __func__);
524 } else {
525 /* Wait for operation to complete */
526 wait_op_done(host, useirq);
530 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
532 /* fill address */
533 writel(addr, NFC_V3_FLASH_ADDR0);
535 /* send out address */
536 writel(NFC_ADDR, NFC_V3_LAUNCH);
538 wait_op_done(host, 0);
541 /* This function sends an address (or partial address) to the
542 * NAND device. The address is used to select the source/destination for
543 * a NAND command. */
544 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
546 dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
548 writew(addr, NFC_V1_V2_FLASH_ADDR);
549 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
551 /* Wait for operation to complete */
552 wait_op_done(host, islast);
555 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
557 struct nand_chip *nand_chip = mtd_to_nand(mtd);
558 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
559 uint32_t tmp;
561 tmp = readl(NFC_V3_CONFIG1);
562 tmp &= ~(7 << 4);
563 writel(tmp, NFC_V3_CONFIG1);
565 /* transfer data from NFC ram to nand */
566 writel(ops, NFC_V3_LAUNCH);
568 wait_op_done(host, false);
571 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
573 struct nand_chip *nand_chip = mtd_to_nand(mtd);
574 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
576 /* NANDFC buffer 0 is used for page read/write */
577 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
579 writew(ops, NFC_V1_V2_CONFIG2);
581 /* Wait for operation to complete */
582 wait_op_done(host, true);
585 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
587 struct nand_chip *nand_chip = mtd_to_nand(mtd);
588 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
589 int bufs, i;
591 if (mtd->writesize > 512)
592 bufs = 4;
593 else
594 bufs = 1;
596 for (i = 0; i < bufs; i++) {
598 /* NANDFC buffer 0 is used for page read/write */
599 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
601 writew(ops, NFC_V1_V2_CONFIG2);
603 /* Wait for operation to complete */
604 wait_op_done(host, true);
608 static void send_read_id_v3(struct mxc_nand_host *host)
610 /* Read ID into main buffer */
611 writel(NFC_ID, NFC_V3_LAUNCH);
613 wait_op_done(host, true);
615 memcpy32_fromio(host->data_buf, host->main_area0, 16);
618 /* Request the NANDFC to perform a read of the NAND device ID. */
619 static void send_read_id_v1_v2(struct mxc_nand_host *host)
621 /* NANDFC buffer 0 is used for device ID output */
622 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
624 writew(NFC_ID, NFC_V1_V2_CONFIG2);
626 /* Wait for operation to complete */
627 wait_op_done(host, true);
629 memcpy32_fromio(host->data_buf, host->main_area0, 16);
632 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
634 writew(NFC_STATUS, NFC_V3_LAUNCH);
635 wait_op_done(host, true);
637 return readl(NFC_V3_CONFIG1) >> 16;
640 /* This function requests the NANDFC to perform a read of the
641 * NAND device status and returns the current status. */
642 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
644 void __iomem *main_buf = host->main_area0;
645 uint32_t store;
646 uint16_t ret;
648 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
651 * The device status is stored in main_area0. To
652 * prevent corruption of the buffer save the value
653 * and restore it afterwards.
655 store = readl(main_buf);
657 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
658 wait_op_done(host, true);
660 ret = readw(main_buf);
662 writel(store, main_buf);
664 return ret;
667 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
669 struct mxc_nand_host *host = nand_get_controller_data(chip);
670 uint16_t config1;
672 if (chip->ecc.mode != NAND_ECC_HW)
673 return;
675 config1 = readw(NFC_V1_V2_CONFIG1);
677 if (enable)
678 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
679 else
680 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
682 writew(config1, NFC_V1_V2_CONFIG1);
685 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
687 struct mxc_nand_host *host = nand_get_controller_data(chip);
688 uint32_t config2;
690 if (chip->ecc.mode != NAND_ECC_HW)
691 return;
693 config2 = readl(NFC_V3_CONFIG2);
695 if (enable)
696 config2 |= NFC_V3_CONFIG2_ECC_EN;
697 else
698 config2 &= ~NFC_V3_CONFIG2_ECC_EN;
700 writel(config2, NFC_V3_CONFIG2);
703 /* This functions is used by upper layer to checks if device is ready */
704 static int mxc_nand_dev_ready(struct nand_chip *chip)
707 * NFC handles R/B internally. Therefore, this function
708 * always returns status as ready.
710 return 1;
713 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
714 bool ecc, int page)
716 struct mtd_info *mtd = nand_to_mtd(chip);
717 struct mxc_nand_host *host = nand_get_controller_data(chip);
718 unsigned int bitflips_corrected = 0;
719 int no_subpages;
720 int i;
722 host->devtype_data->enable_hwecc(chip, ecc);
724 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
725 mxc_do_addr_cycle(mtd, 0, page);
727 if (mtd->writesize > 512)
728 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
730 no_subpages = mtd->writesize >> 9;
732 for (i = 0; i < no_subpages; i++) {
733 uint16_t ecc_stats;
735 /* NANDFC buffer 0 is used for page read/write */
736 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
738 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
740 /* Wait for operation to complete */
741 wait_op_done(host, true);
743 ecc_stats = get_ecc_status_v1(host);
745 ecc_stats >>= 2;
747 if (buf && ecc) {
748 switch (ecc_stats & 0x3) {
749 case 0:
750 default:
751 break;
752 case 1:
753 mtd->ecc_stats.corrected++;
754 bitflips_corrected = 1;
755 break;
756 case 2:
757 mtd->ecc_stats.failed++;
758 break;
763 if (buf)
764 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
765 if (oob)
766 copy_spare(mtd, true, oob);
768 return bitflips_corrected;
771 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
772 void *oob, bool ecc, int page)
774 struct mtd_info *mtd = nand_to_mtd(chip);
775 struct mxc_nand_host *host = nand_get_controller_data(chip);
776 unsigned int max_bitflips = 0;
777 u32 ecc_stat, err;
778 int no_subpages;
779 u8 ecc_bit_mask, err_limit;
781 host->devtype_data->enable_hwecc(chip, ecc);
783 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
784 mxc_do_addr_cycle(mtd, 0, page);
786 if (mtd->writesize > 512)
787 host->devtype_data->send_cmd(host,
788 NAND_CMD_READSTART, true);
790 host->devtype_data->send_page(mtd, NFC_OUTPUT);
792 if (buf)
793 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
794 if (oob)
795 copy_spare(mtd, true, oob);
797 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
798 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
800 no_subpages = mtd->writesize >> 9;
802 ecc_stat = host->devtype_data->get_ecc_status(host);
804 do {
805 err = ecc_stat & ecc_bit_mask;
806 if (err > err_limit) {
807 mtd->ecc_stats.failed++;
808 } else {
809 mtd->ecc_stats.corrected += err;
810 max_bitflips = max_t(unsigned int, max_bitflips, err);
813 ecc_stat >>= 4;
814 } while (--no_subpages);
816 return max_bitflips;
819 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
820 int oob_required, int page)
822 struct mxc_nand_host *host = nand_get_controller_data(chip);
823 void *oob_buf;
825 if (oob_required)
826 oob_buf = chip->oob_poi;
827 else
828 oob_buf = NULL;
830 return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
833 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
834 int oob_required, int page)
836 struct mxc_nand_host *host = nand_get_controller_data(chip);
837 void *oob_buf;
839 if (oob_required)
840 oob_buf = chip->oob_poi;
841 else
842 oob_buf = NULL;
844 return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
847 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
849 struct mxc_nand_host *host = nand_get_controller_data(chip);
851 return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
852 page);
855 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
856 bool ecc, int page)
858 struct mtd_info *mtd = nand_to_mtd(chip);
859 struct mxc_nand_host *host = nand_get_controller_data(chip);
861 host->devtype_data->enable_hwecc(chip, ecc);
863 host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
864 mxc_do_addr_cycle(mtd, 0, page);
866 memcpy32_toio(host->main_area0, buf, mtd->writesize);
867 copy_spare(mtd, false, chip->oob_poi);
869 host->devtype_data->send_page(mtd, NFC_INPUT);
870 host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
871 mxc_do_addr_cycle(mtd, 0, page);
873 return 0;
876 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
877 int oob_required, int page)
879 return mxc_nand_write_page(chip, buf, true, page);
882 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
883 int oob_required, int page)
885 return mxc_nand_write_page(chip, buf, false, page);
888 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
890 struct mtd_info *mtd = nand_to_mtd(chip);
891 struct mxc_nand_host *host = nand_get_controller_data(chip);
893 memset(host->data_buf, 0xff, mtd->writesize);
895 return mxc_nand_write_page(chip, host->data_buf, false, page);
898 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
900 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
901 uint8_t ret;
903 /* Check for status request */
904 if (host->status_request)
905 return host->devtype_data->get_dev_status(host) & 0xFF;
907 if (nand_chip->options & NAND_BUSWIDTH_16) {
908 /* only take the lower byte of each word */
909 ret = *(uint16_t *)(host->data_buf + host->buf_start);
911 host->buf_start += 2;
912 } else {
913 ret = *(uint8_t *)(host->data_buf + host->buf_start);
914 host->buf_start++;
917 dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
918 return ret;
921 /* Write data of length len to buffer buf. The data to be
922 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
923 * Operation by the NFC, the data is written to NAND Flash */
924 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
925 int len)
927 struct mtd_info *mtd = nand_to_mtd(nand_chip);
928 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
929 u16 col = host->buf_start;
930 int n = mtd->oobsize + mtd->writesize - col;
932 n = min(n, len);
934 memcpy(host->data_buf + col, buf, n);
936 host->buf_start += n;
939 /* Read the data buffer from the NAND Flash. To read the data from NAND
940 * Flash first the data output cycle is initiated by the NFC, which copies
941 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
943 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
944 int len)
946 struct mtd_info *mtd = nand_to_mtd(nand_chip);
947 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
948 u16 col = host->buf_start;
949 int n = mtd->oobsize + mtd->writesize - col;
951 n = min(n, len);
953 memcpy(buf, host->data_buf + col, n);
955 host->buf_start += n;
958 /* This function is used by upper layer for select and
959 * deselect of the NAND chip */
960 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
962 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
964 if (chip == -1) {
965 /* Disable the NFC clock */
966 if (host->clk_act) {
967 clk_disable_unprepare(host->clk);
968 host->clk_act = 0;
970 return;
973 if (!host->clk_act) {
974 /* Enable the NFC clock */
975 clk_prepare_enable(host->clk);
976 host->clk_act = 1;
980 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
982 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
984 if (chip == -1) {
985 /* Disable the NFC clock */
986 if (host->clk_act) {
987 clk_disable_unprepare(host->clk);
988 host->clk_act = 0;
990 return;
993 if (!host->clk_act) {
994 /* Enable the NFC clock */
995 clk_prepare_enable(host->clk);
996 host->clk_act = 1;
999 host->active_cs = chip;
1000 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1003 #define MXC_V1_ECCBYTES 5
1005 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1006 struct mtd_oob_region *oobregion)
1008 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1010 if (section >= nand_chip->ecc.steps)
1011 return -ERANGE;
1013 oobregion->offset = (section * 16) + 6;
1014 oobregion->length = MXC_V1_ECCBYTES;
1016 return 0;
1019 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1020 struct mtd_oob_region *oobregion)
1022 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1024 if (section > nand_chip->ecc.steps)
1025 return -ERANGE;
1027 if (!section) {
1028 if (mtd->writesize <= 512) {
1029 oobregion->offset = 0;
1030 oobregion->length = 5;
1031 } else {
1032 oobregion->offset = 2;
1033 oobregion->length = 4;
1035 } else {
1036 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1037 if (section < nand_chip->ecc.steps)
1038 oobregion->length = (section * 16) + 6 -
1039 oobregion->offset;
1040 else
1041 oobregion->length = mtd->oobsize - oobregion->offset;
1044 return 0;
1047 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1048 .ecc = mxc_v1_ooblayout_ecc,
1049 .free = mxc_v1_ooblayout_free,
1052 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1053 struct mtd_oob_region *oobregion)
1055 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1056 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1058 if (section >= nand_chip->ecc.steps)
1059 return -ERANGE;
1061 oobregion->offset = (section * stepsize) + 7;
1062 oobregion->length = nand_chip->ecc.bytes;
1064 return 0;
1067 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1068 struct mtd_oob_region *oobregion)
1070 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1071 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1073 if (section >= nand_chip->ecc.steps)
1074 return -ERANGE;
1076 if (!section) {
1077 if (mtd->writesize <= 512) {
1078 oobregion->offset = 0;
1079 oobregion->length = 5;
1080 } else {
1081 oobregion->offset = 2;
1082 oobregion->length = 4;
1084 } else {
1085 oobregion->offset = section * stepsize;
1086 oobregion->length = 7;
1089 return 0;
1092 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1093 .ecc = mxc_v2_ooblayout_ecc,
1094 .free = mxc_v2_ooblayout_free,
1098 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1099 * on how much oob the nand chip has. For 8bit ecc we need at least
1100 * 26 bytes of oob data per 512 byte block.
1102 static int get_eccsize(struct mtd_info *mtd)
1104 int oobbytes_per_512 = 0;
1106 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1108 if (oobbytes_per_512 < 26)
1109 return 4;
1110 else
1111 return 8;
1114 static void preset_v1(struct mtd_info *mtd)
1116 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1117 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1118 uint16_t config1 = 0;
1120 if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
1121 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1123 if (!host->devtype_data->irqpending_quirk)
1124 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1126 host->eccsize = 1;
1128 writew(config1, NFC_V1_V2_CONFIG1);
1129 /* preset operation */
1131 /* Unlock the internal RAM Buffer */
1132 writew(0x2, NFC_V1_V2_CONFIG);
1134 /* Blocks to be unlocked */
1135 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1136 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1138 /* Unlock Block Command for given address range */
1139 writew(0x4, NFC_V1_V2_WRPROT);
1142 static int mxc_nand_v2_setup_data_interface(struct nand_chip *chip, int csline,
1143 const struct nand_data_interface *conf)
1145 struct mxc_nand_host *host = nand_get_controller_data(chip);
1146 int tRC_min_ns, tRC_ps, ret;
1147 unsigned long rate, rate_round;
1148 const struct nand_sdr_timings *timings;
1149 u16 config1;
1151 timings = nand_get_sdr_timings(conf);
1152 if (IS_ERR(timings))
1153 return -ENOTSUPP;
1155 config1 = readw(NFC_V1_V2_CONFIG1);
1157 tRC_min_ns = timings->tRC_min / 1000;
1158 rate = 1000000000 / tRC_min_ns;
1161 * For tRC < 30ns we have to use EDO mode. In this case the controller
1162 * does one access per clock cycle. Otherwise the controller does one
1163 * access in two clock cycles, thus we have to double the rate to the
1164 * controller.
1166 if (tRC_min_ns < 30) {
1167 rate_round = clk_round_rate(host->clk, rate);
1168 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1169 tRC_ps = 1000000000 / (rate_round / 1000);
1170 } else {
1171 rate *= 2;
1172 rate_round = clk_round_rate(host->clk, rate);
1173 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1174 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1178 * The timing values compared against are from the i.MX25 Automotive
1179 * datasheet, Table 50. NFC Timing Parameters
1181 if (timings->tCLS_min > tRC_ps - 1000 ||
1182 timings->tCLH_min > tRC_ps - 2000 ||
1183 timings->tCS_min > tRC_ps - 1000 ||
1184 timings->tCH_min > tRC_ps - 2000 ||
1185 timings->tWP_min > tRC_ps - 1500 ||
1186 timings->tALS_min > tRC_ps ||
1187 timings->tALH_min > tRC_ps - 3000 ||
1188 timings->tDS_min > tRC_ps ||
1189 timings->tDH_min > tRC_ps - 5000 ||
1190 timings->tWC_min > 2 * tRC_ps ||
1191 timings->tWH_min > tRC_ps - 2500 ||
1192 timings->tRR_min > 6 * tRC_ps ||
1193 timings->tRP_min > 3 * tRC_ps / 2 ||
1194 timings->tRC_min > 2 * tRC_ps ||
1195 timings->tREH_min > (tRC_ps / 2) - 2500) {
1196 dev_dbg(host->dev, "Timing out of bounds\n");
1197 return -EINVAL;
1200 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1201 return 0;
1203 ret = clk_set_rate(host->clk, rate);
1204 if (ret)
1205 return ret;
1207 writew(config1, NFC_V1_V2_CONFIG1);
1209 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1210 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1211 "normal");
1213 return 0;
1216 static void preset_v2(struct mtd_info *mtd)
1218 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1219 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1220 uint16_t config1 = 0;
1222 config1 |= NFC_V2_CONFIG1_FP_INT;
1224 if (!host->devtype_data->irqpending_quirk)
1225 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1227 if (mtd->writesize) {
1228 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1230 if (nand_chip->ecc.mode == NAND_ECC_HW)
1231 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1233 host->eccsize = get_eccsize(mtd);
1234 if (host->eccsize == 4)
1235 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1237 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1238 } else {
1239 host->eccsize = 1;
1242 writew(config1, NFC_V1_V2_CONFIG1);
1243 /* preset operation */
1245 /* spare area size in 16-bit half-words */
1246 writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1248 /* Unlock the internal RAM Buffer */
1249 writew(0x2, NFC_V1_V2_CONFIG);
1251 /* Blocks to be unlocked */
1252 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1253 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1254 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1255 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1256 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1257 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1258 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1259 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1261 /* Unlock Block Command for given address range */
1262 writew(0x4, NFC_V1_V2_WRPROT);
1265 static void preset_v3(struct mtd_info *mtd)
1267 struct nand_chip *chip = mtd_to_nand(mtd);
1268 struct mxc_nand_host *host = nand_get_controller_data(chip);
1269 uint32_t config2, config3;
1270 int i, addr_phases;
1272 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1273 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1275 /* Unlock the internal RAM Buffer */
1276 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1277 NFC_V3_WRPROT);
1279 /* Blocks to be unlocked */
1280 for (i = 0; i < NAND_MAX_CHIPS; i++)
1281 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1283 writel(0, NFC_V3_IPC);
1285 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1286 NFC_V3_CONFIG2_2CMD_PHASES |
1287 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1288 NFC_V3_CONFIG2_ST_CMD(0x70) |
1289 NFC_V3_CONFIG2_INT_MSK |
1290 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1292 addr_phases = fls(chip->pagemask) >> 3;
1294 if (mtd->writesize == 2048) {
1295 config2 |= NFC_V3_CONFIG2_PS_2048;
1296 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1297 } else if (mtd->writesize == 4096) {
1298 config2 |= NFC_V3_CONFIG2_PS_4096;
1299 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1300 } else {
1301 config2 |= NFC_V3_CONFIG2_PS_512;
1302 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1305 if (mtd->writesize) {
1306 if (chip->ecc.mode == NAND_ECC_HW)
1307 config2 |= NFC_V3_CONFIG2_ECC_EN;
1309 config2 |= NFC_V3_CONFIG2_PPB(
1310 ffs(mtd->erasesize / mtd->writesize) - 6,
1311 host->devtype_data->ppb_shift);
1312 host->eccsize = get_eccsize(mtd);
1313 if (host->eccsize == 8)
1314 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1317 writel(config2, NFC_V3_CONFIG2);
1319 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1320 NFC_V3_CONFIG3_NO_SDMA |
1321 NFC_V3_CONFIG3_RBB_MODE |
1322 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1323 NFC_V3_CONFIG3_ADD_OP(0);
1325 if (!(chip->options & NAND_BUSWIDTH_16))
1326 config3 |= NFC_V3_CONFIG3_FW8;
1328 writel(config3, NFC_V3_CONFIG3);
1330 writel(0, NFC_V3_DELAY_LINE);
1333 /* Used by the upper layer to write command to NAND Flash for
1334 * different operations to be carried out on NAND Flash */
1335 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1336 int column, int page_addr)
1338 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1339 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1341 dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1342 command, column, page_addr);
1344 /* Reset command state information */
1345 host->status_request = false;
1347 /* Command pre-processing step */
1348 switch (command) {
1349 case NAND_CMD_RESET:
1350 host->devtype_data->preset(mtd);
1351 host->devtype_data->send_cmd(host, command, false);
1352 break;
1354 case NAND_CMD_STATUS:
1355 host->buf_start = 0;
1356 host->status_request = true;
1358 host->devtype_data->send_cmd(host, command, true);
1359 WARN_ONCE(column != -1 || page_addr != -1,
1360 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1361 command, column, page_addr);
1362 mxc_do_addr_cycle(mtd, column, page_addr);
1363 break;
1365 case NAND_CMD_READID:
1366 host->devtype_data->send_cmd(host, command, true);
1367 mxc_do_addr_cycle(mtd, column, page_addr);
1368 host->devtype_data->send_read_id(host);
1369 host->buf_start = 0;
1370 break;
1372 case NAND_CMD_ERASE1:
1373 case NAND_CMD_ERASE2:
1374 host->devtype_data->send_cmd(host, command, false);
1375 WARN_ONCE(column != -1,
1376 "Unexpected column value (cmd=%u, col=%d)\n",
1377 command, column);
1378 mxc_do_addr_cycle(mtd, column, page_addr);
1380 break;
1381 case NAND_CMD_PARAM:
1382 host->devtype_data->send_cmd(host, command, false);
1383 mxc_do_addr_cycle(mtd, column, page_addr);
1384 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1385 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1386 host->buf_start = 0;
1387 break;
1388 default:
1389 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1390 command);
1391 break;
1395 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1396 u8 *subfeature_param)
1398 struct mtd_info *mtd = nand_to_mtd(chip);
1399 struct mxc_nand_host *host = nand_get_controller_data(chip);
1400 int i;
1402 host->buf_start = 0;
1404 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1405 chip->legacy.write_byte(chip, subfeature_param[i]);
1407 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1408 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1409 mxc_do_addr_cycle(mtd, addr, -1);
1410 host->devtype_data->send_page(mtd, NFC_INPUT);
1412 return 0;
1415 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1416 u8 *subfeature_param)
1418 struct mtd_info *mtd = nand_to_mtd(chip);
1419 struct mxc_nand_host *host = nand_get_controller_data(chip);
1420 int i;
1422 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1423 mxc_do_addr_cycle(mtd, addr, -1);
1424 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1425 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1426 host->buf_start = 0;
1428 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1429 *subfeature_param++ = chip->legacy.read_byte(chip);
1431 return 0;
1435 * The generic flash bbt decriptors overlap with our ecc
1436 * hardware, so define some i.MX specific ones.
1438 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1439 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1441 static struct nand_bbt_descr bbt_main_descr = {
1442 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1443 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1444 .offs = 0,
1445 .len = 4,
1446 .veroffs = 4,
1447 .maxblocks = 4,
1448 .pattern = bbt_pattern,
1451 static struct nand_bbt_descr bbt_mirror_descr = {
1452 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1453 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1454 .offs = 0,
1455 .len = 4,
1456 .veroffs = 4,
1457 .maxblocks = 4,
1458 .pattern = mirror_pattern,
1461 /* v1 + irqpending_quirk: i.MX21 */
1462 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1463 .preset = preset_v1,
1464 .read_page = mxc_nand_read_page_v1,
1465 .send_cmd = send_cmd_v1_v2,
1466 .send_addr = send_addr_v1_v2,
1467 .send_page = send_page_v1,
1468 .send_read_id = send_read_id_v1_v2,
1469 .get_dev_status = get_dev_status_v1_v2,
1470 .check_int = check_int_v1_v2,
1471 .irq_control = irq_control_v1_v2,
1472 .get_ecc_status = get_ecc_status_v1,
1473 .ooblayout = &mxc_v1_ooblayout_ops,
1474 .select_chip = mxc_nand_select_chip_v1_v3,
1475 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1476 .irqpending_quirk = 1,
1477 .needs_ip = 0,
1478 .regs_offset = 0xe00,
1479 .spare0_offset = 0x800,
1480 .spare_len = 16,
1481 .eccbytes = 3,
1482 .eccsize = 1,
1485 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1486 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1487 .preset = preset_v1,
1488 .read_page = mxc_nand_read_page_v1,
1489 .send_cmd = send_cmd_v1_v2,
1490 .send_addr = send_addr_v1_v2,
1491 .send_page = send_page_v1,
1492 .send_read_id = send_read_id_v1_v2,
1493 .get_dev_status = get_dev_status_v1_v2,
1494 .check_int = check_int_v1_v2,
1495 .irq_control = irq_control_v1_v2,
1496 .get_ecc_status = get_ecc_status_v1,
1497 .ooblayout = &mxc_v1_ooblayout_ops,
1498 .select_chip = mxc_nand_select_chip_v1_v3,
1499 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1500 .irqpending_quirk = 0,
1501 .needs_ip = 0,
1502 .regs_offset = 0xe00,
1503 .spare0_offset = 0x800,
1504 .axi_offset = 0,
1505 .spare_len = 16,
1506 .eccbytes = 3,
1507 .eccsize = 1,
1510 /* v21: i.MX25, i.MX35 */
1511 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1512 .preset = preset_v2,
1513 .read_page = mxc_nand_read_page_v2_v3,
1514 .send_cmd = send_cmd_v1_v2,
1515 .send_addr = send_addr_v1_v2,
1516 .send_page = send_page_v2,
1517 .send_read_id = send_read_id_v1_v2,
1518 .get_dev_status = get_dev_status_v1_v2,
1519 .check_int = check_int_v1_v2,
1520 .irq_control = irq_control_v1_v2,
1521 .get_ecc_status = get_ecc_status_v2,
1522 .ooblayout = &mxc_v2_ooblayout_ops,
1523 .select_chip = mxc_nand_select_chip_v2,
1524 .setup_data_interface = mxc_nand_v2_setup_data_interface,
1525 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1526 .irqpending_quirk = 0,
1527 .needs_ip = 0,
1528 .regs_offset = 0x1e00,
1529 .spare0_offset = 0x1000,
1530 .axi_offset = 0,
1531 .spare_len = 64,
1532 .eccbytes = 9,
1533 .eccsize = 0,
1536 /* v3.2a: i.MX51 */
1537 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1538 .preset = preset_v3,
1539 .read_page = mxc_nand_read_page_v2_v3,
1540 .send_cmd = send_cmd_v3,
1541 .send_addr = send_addr_v3,
1542 .send_page = send_page_v3,
1543 .send_read_id = send_read_id_v3,
1544 .get_dev_status = get_dev_status_v3,
1545 .check_int = check_int_v3,
1546 .irq_control = irq_control_v3,
1547 .get_ecc_status = get_ecc_status_v3,
1548 .ooblayout = &mxc_v2_ooblayout_ops,
1549 .select_chip = mxc_nand_select_chip_v1_v3,
1550 .enable_hwecc = mxc_nand_enable_hwecc_v3,
1551 .irqpending_quirk = 0,
1552 .needs_ip = 1,
1553 .regs_offset = 0,
1554 .spare0_offset = 0x1000,
1555 .axi_offset = 0x1e00,
1556 .spare_len = 64,
1557 .eccbytes = 0,
1558 .eccsize = 0,
1559 .ppb_shift = 7,
1562 /* v3.2b: i.MX53 */
1563 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1564 .preset = preset_v3,
1565 .read_page = mxc_nand_read_page_v2_v3,
1566 .send_cmd = send_cmd_v3,
1567 .send_addr = send_addr_v3,
1568 .send_page = send_page_v3,
1569 .send_read_id = send_read_id_v3,
1570 .get_dev_status = get_dev_status_v3,
1571 .check_int = check_int_v3,
1572 .irq_control = irq_control_v3,
1573 .get_ecc_status = get_ecc_status_v3,
1574 .ooblayout = &mxc_v2_ooblayout_ops,
1575 .select_chip = mxc_nand_select_chip_v1_v3,
1576 .enable_hwecc = mxc_nand_enable_hwecc_v3,
1577 .irqpending_quirk = 0,
1578 .needs_ip = 1,
1579 .regs_offset = 0,
1580 .spare0_offset = 0x1000,
1581 .axi_offset = 0x1e00,
1582 .spare_len = 64,
1583 .eccbytes = 0,
1584 .eccsize = 0,
1585 .ppb_shift = 8,
1588 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1590 return host->devtype_data == &imx21_nand_devtype_data;
1593 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1595 return host->devtype_data == &imx27_nand_devtype_data;
1598 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1600 return host->devtype_data == &imx25_nand_devtype_data;
1603 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1605 return host->devtype_data == &imx51_nand_devtype_data;
1608 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1610 return host->devtype_data == &imx53_nand_devtype_data;
1613 static const struct platform_device_id mxcnd_devtype[] = {
1615 .name = "imx21-nand",
1616 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1617 }, {
1618 .name = "imx27-nand",
1619 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1620 }, {
1621 .name = "imx25-nand",
1622 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1623 }, {
1624 .name = "imx51-nand",
1625 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1626 }, {
1627 .name = "imx53-nand",
1628 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1629 }, {
1630 /* sentinel */
1633 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1635 #ifdef CONFIG_OF
1636 static const struct of_device_id mxcnd_dt_ids[] = {
1638 .compatible = "fsl,imx21-nand",
1639 .data = &imx21_nand_devtype_data,
1640 }, {
1641 .compatible = "fsl,imx27-nand",
1642 .data = &imx27_nand_devtype_data,
1643 }, {
1644 .compatible = "fsl,imx25-nand",
1645 .data = &imx25_nand_devtype_data,
1646 }, {
1647 .compatible = "fsl,imx51-nand",
1648 .data = &imx51_nand_devtype_data,
1649 }, {
1650 .compatible = "fsl,imx53-nand",
1651 .data = &imx53_nand_devtype_data,
1653 { /* sentinel */ }
1655 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1657 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1659 struct device_node *np = host->dev->of_node;
1660 const struct of_device_id *of_id =
1661 of_match_device(mxcnd_dt_ids, host->dev);
1663 if (!np)
1664 return 1;
1666 host->devtype_data = of_id->data;
1668 return 0;
1670 #else
1671 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1673 return 1;
1675 #endif
1677 static int mxcnd_attach_chip(struct nand_chip *chip)
1679 struct mtd_info *mtd = nand_to_mtd(chip);
1680 struct mxc_nand_host *host = nand_get_controller_data(chip);
1681 struct device *dev = mtd->dev.parent;
1683 switch (chip->ecc.mode) {
1684 case NAND_ECC_HW:
1685 chip->ecc.read_page = mxc_nand_read_page;
1686 chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1687 chip->ecc.read_oob = mxc_nand_read_oob;
1688 chip->ecc.write_page = mxc_nand_write_page_ecc;
1689 chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1690 chip->ecc.write_oob = mxc_nand_write_oob;
1691 break;
1693 case NAND_ECC_SOFT:
1694 break;
1696 default:
1697 return -EINVAL;
1700 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1701 chip->bbt_td = &bbt_main_descr;
1702 chip->bbt_md = &bbt_mirror_descr;
1705 /* Allocate the right size buffer now */
1706 devm_kfree(dev, (void *)host->data_buf);
1707 host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1708 GFP_KERNEL);
1709 if (!host->data_buf)
1710 return -ENOMEM;
1712 /* Call preset again, with correct writesize chip time */
1713 host->devtype_data->preset(mtd);
1715 if (!chip->ecc.bytes) {
1716 if (host->eccsize == 8)
1717 chip->ecc.bytes = 18;
1718 else if (host->eccsize == 4)
1719 chip->ecc.bytes = 9;
1723 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1724 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1725 * into copying invalid data to/from the spare IO buffer, as this
1726 * might cause ECC data corruption when doing sub-page write to a
1727 * partially written page.
1729 host->used_oobsize = min(mtd->oobsize, 218U);
1731 if (chip->ecc.mode == NAND_ECC_HW) {
1732 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1733 chip->ecc.strength = 1;
1734 else
1735 chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1738 return 0;
1741 static int mxcnd_setup_data_interface(struct nand_chip *chip, int chipnr,
1742 const struct nand_data_interface *conf)
1744 struct mxc_nand_host *host = nand_get_controller_data(chip);
1746 return host->devtype_data->setup_data_interface(chip, chipnr, conf);
1749 static const struct nand_controller_ops mxcnd_controller_ops = {
1750 .attach_chip = mxcnd_attach_chip,
1751 .setup_data_interface = mxcnd_setup_data_interface,
1754 static int mxcnd_probe(struct platform_device *pdev)
1756 struct nand_chip *this;
1757 struct mtd_info *mtd;
1758 struct mxc_nand_host *host;
1759 struct resource *res;
1760 int err = 0;
1762 /* Allocate memory for MTD device structure and private data */
1763 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1764 GFP_KERNEL);
1765 if (!host)
1766 return -ENOMEM;
1768 /* allocate a temporary buffer for the nand_scan_ident() */
1769 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1770 if (!host->data_buf)
1771 return -ENOMEM;
1773 host->dev = &pdev->dev;
1774 /* structures must be linked */
1775 this = &host->nand;
1776 mtd = nand_to_mtd(this);
1777 mtd->dev.parent = &pdev->dev;
1778 mtd->name = DRIVER_NAME;
1780 /* 50 us command delay time */
1781 this->legacy.chip_delay = 5;
1783 nand_set_controller_data(this, host);
1784 nand_set_flash_node(this, pdev->dev.of_node),
1785 this->legacy.dev_ready = mxc_nand_dev_ready;
1786 this->legacy.cmdfunc = mxc_nand_command;
1787 this->legacy.read_byte = mxc_nand_read_byte;
1788 this->legacy.write_buf = mxc_nand_write_buf;
1789 this->legacy.read_buf = mxc_nand_read_buf;
1790 this->legacy.set_features = mxc_nand_set_features;
1791 this->legacy.get_features = mxc_nand_get_features;
1793 host->clk = devm_clk_get(&pdev->dev, NULL);
1794 if (IS_ERR(host->clk))
1795 return PTR_ERR(host->clk);
1797 err = mxcnd_probe_dt(host);
1798 if (err > 0) {
1799 struct mxc_nand_platform_data *pdata =
1800 dev_get_platdata(&pdev->dev);
1801 if (pdata) {
1802 host->pdata = *pdata;
1803 host->devtype_data = (struct mxc_nand_devtype_data *)
1804 pdev->id_entry->driver_data;
1805 } else {
1806 err = -ENODEV;
1809 if (err < 0)
1810 return err;
1812 if (!host->devtype_data->setup_data_interface)
1813 this->options |= NAND_KEEP_TIMINGS;
1815 if (host->devtype_data->needs_ip) {
1816 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1817 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1818 if (IS_ERR(host->regs_ip))
1819 return PTR_ERR(host->regs_ip);
1821 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1822 } else {
1823 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826 host->base = devm_ioremap_resource(&pdev->dev, res);
1827 if (IS_ERR(host->base))
1828 return PTR_ERR(host->base);
1830 host->main_area0 = host->base;
1832 if (host->devtype_data->regs_offset)
1833 host->regs = host->base + host->devtype_data->regs_offset;
1834 host->spare0 = host->base + host->devtype_data->spare0_offset;
1835 if (host->devtype_data->axi_offset)
1836 host->regs_axi = host->base + host->devtype_data->axi_offset;
1838 this->ecc.bytes = host->devtype_data->eccbytes;
1839 host->eccsize = host->devtype_data->eccsize;
1841 this->legacy.select_chip = host->devtype_data->select_chip;
1842 this->ecc.size = 512;
1843 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1845 if (host->pdata.hw_ecc) {
1846 this->ecc.mode = NAND_ECC_HW;
1847 } else {
1848 this->ecc.mode = NAND_ECC_SOFT;
1849 this->ecc.algo = NAND_ECC_HAMMING;
1852 /* NAND bus width determines access functions used by upper layer */
1853 if (host->pdata.width == 2)
1854 this->options |= NAND_BUSWIDTH_16;
1856 /* update flash based bbt */
1857 if (host->pdata.flash_bbt)
1858 this->bbt_options |= NAND_BBT_USE_FLASH;
1860 init_completion(&host->op_completion);
1862 host->irq = platform_get_irq(pdev, 0);
1863 if (host->irq < 0)
1864 return host->irq;
1867 * Use host->devtype_data->irq_control() here instead of irq_control()
1868 * because we must not disable_irq_nosync without having requested the
1869 * irq.
1871 host->devtype_data->irq_control(host, 0);
1873 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1874 0, DRIVER_NAME, host);
1875 if (err)
1876 return err;
1878 err = clk_prepare_enable(host->clk);
1879 if (err)
1880 return err;
1881 host->clk_act = 1;
1884 * Now that we "own" the interrupt make sure the interrupt mask bit is
1885 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1886 * on this machine.
1888 if (host->devtype_data->irqpending_quirk) {
1889 disable_irq_nosync(host->irq);
1890 host->devtype_data->irq_control(host, 1);
1893 /* Scan the NAND device */
1894 this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1895 err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1896 if (err)
1897 goto escan;
1899 /* Register the partitions */
1900 err = mtd_device_parse_register(mtd, part_probes, NULL,
1901 host->pdata.parts,
1902 host->pdata.nr_parts);
1903 if (err)
1904 goto cleanup_nand;
1906 platform_set_drvdata(pdev, host);
1908 return 0;
1910 cleanup_nand:
1911 nand_cleanup(this);
1912 escan:
1913 if (host->clk_act)
1914 clk_disable_unprepare(host->clk);
1916 return err;
1919 static int mxcnd_remove(struct platform_device *pdev)
1921 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1923 nand_release(&host->nand);
1924 if (host->clk_act)
1925 clk_disable_unprepare(host->clk);
1927 return 0;
1930 static struct platform_driver mxcnd_driver = {
1931 .driver = {
1932 .name = DRIVER_NAME,
1933 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1935 .id_table = mxcnd_devtype,
1936 .probe = mxcnd_probe,
1937 .remove = mxcnd_remove,
1939 module_platform_driver(mxcnd_driver);
1941 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1942 MODULE_DESCRIPTION("MXC NAND MTD driver");
1943 MODULE_LICENSE("GPL");