treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / mtd / nand / raw / nand_micron.c
blob56654030ec7ffd4bab447221f7f4ebc71a3f4435
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017 Free Electrons
4 * Copyright (C) 2017 NextThing Co
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 */
9 #include <linux/slab.h>
11 #include "internals.h"
14 * Special Micron status bit 3 indicates that the block has been
15 * corrected by on-die ECC and should be rewritten.
17 #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3)
20 * On chips with 8-bit ECC and additional bit can be used to distinguish
21 * cases where a errors were corrected without needing a rewrite
23 * Bit 4 Bit 3 Bit 0 Description
24 * ----- ----- ----- -----------
25 * 0 0 0 No Errors
26 * 0 0 1 Multiple uncorrected errors
27 * 0 1 0 4 - 6 errors corrected, recommend rewrite
28 * 0 1 1 Reserved
29 * 1 0 0 1 - 3 errors corrected
30 * 1 0 1 Reserved
31 * 1 1 0 7 - 8 errors corrected, recommend rewrite
33 #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0))
34 #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0)
35 #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3)
36 #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4)
37 #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3))
39 struct nand_onfi_vendor_micron {
40 u8 two_plane_read;
41 u8 read_cache;
42 u8 read_unique_id;
43 u8 dq_imped;
44 u8 dq_imped_num_settings;
45 u8 dq_imped_feat_addr;
46 u8 rb_pulldown_strength;
47 u8 rb_pulldown_strength_feat_addr;
48 u8 rb_pulldown_strength_num_settings;
49 u8 otp_mode;
50 u8 otp_page_start;
51 u8 otp_data_prot_addr;
52 u8 otp_num_pages;
53 u8 otp_feat_addr;
54 u8 read_retry_options;
55 u8 reserved[72];
56 u8 param_revision;
57 } __packed;
59 struct micron_on_die_ecc {
60 bool forced;
61 bool enabled;
62 void *rawbuf;
65 struct micron_nand {
66 struct micron_on_die_ecc ecc;
69 static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
71 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
73 return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
77 * Configure chip properties from Micron vendor-specific ONFI table
79 static int micron_nand_onfi_init(struct nand_chip *chip)
81 struct nand_parameters *p = &chip->parameters;
83 if (p->onfi) {
84 struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
86 chip->read_retries = micron->read_retry_options;
87 chip->setup_read_retry = micron_nand_setup_read_retry;
90 if (p->supports_set_get_features) {
91 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
92 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
93 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
94 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
97 return 0;
100 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
101 int section,
102 struct mtd_oob_region *oobregion)
104 if (section >= 4)
105 return -ERANGE;
107 oobregion->offset = (section * 16) + 8;
108 oobregion->length = 8;
110 return 0;
113 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
114 int section,
115 struct mtd_oob_region *oobregion)
117 if (section >= 4)
118 return -ERANGE;
120 oobregion->offset = (section * 16) + 2;
121 oobregion->length = 6;
123 return 0;
126 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
127 .ecc = micron_nand_on_die_4_ooblayout_ecc,
128 .free = micron_nand_on_die_4_ooblayout_free,
131 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
132 int section,
133 struct mtd_oob_region *oobregion)
135 struct nand_chip *chip = mtd_to_nand(mtd);
137 if (section)
138 return -ERANGE;
140 oobregion->offset = mtd->oobsize - chip->ecc.total;
141 oobregion->length = chip->ecc.total;
143 return 0;
146 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
147 int section,
148 struct mtd_oob_region *oobregion)
150 struct nand_chip *chip = mtd_to_nand(mtd);
152 if (section)
153 return -ERANGE;
155 oobregion->offset = 2;
156 oobregion->length = mtd->oobsize - chip->ecc.total - 2;
158 return 0;
161 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
162 .ecc = micron_nand_on_die_8_ooblayout_ecc,
163 .free = micron_nand_on_die_8_ooblayout_free,
166 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
168 struct micron_nand *micron = nand_get_manufacturer_data(chip);
169 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
170 int ret;
172 if (micron->ecc.forced)
173 return 0;
175 if (micron->ecc.enabled == enable)
176 return 0;
178 if (enable)
179 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
181 ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
182 if (!ret)
183 micron->ecc.enabled = enable;
185 return ret;
188 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
189 void *buf, int page,
190 int oob_required)
192 struct micron_nand *micron = nand_get_manufacturer_data(chip);
193 struct mtd_info *mtd = nand_to_mtd(chip);
194 unsigned int step, max_bitflips = 0;
195 int ret;
197 if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
198 if (status & NAND_STATUS_FAIL)
199 mtd->ecc_stats.failed++;
201 return 0;
205 * The internal ECC doesn't tell us the number of bitflips that have
206 * been corrected, but tells us if it recommends to rewrite the block.
207 * If it's the case, we need to read the page in raw mode and compare
208 * its content to the corrected version to extract the actual number of
209 * bitflips.
210 * But before we do that, we must make sure we have all OOB bytes read
211 * in non-raw mode, even if the user did not request those bytes.
213 if (!oob_required) {
214 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
215 false);
216 if (ret)
217 return ret;
220 micron_nand_on_die_ecc_setup(chip, false);
222 ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
223 mtd->writesize + mtd->oobsize);
224 if (ret)
225 return ret;
227 for (step = 0; step < chip->ecc.steps; step++) {
228 unsigned int offs, i, nbitflips = 0;
229 u8 *rawbuf, *corrbuf;
231 offs = step * chip->ecc.size;
232 rawbuf = micron->ecc.rawbuf + offs;
233 corrbuf = buf + offs;
235 for (i = 0; i < chip->ecc.size; i++)
236 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
238 offs = (step * 16) + 4;
239 rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
240 corrbuf = chip->oob_poi + offs;
242 for (i = 0; i < chip->ecc.bytes + 4; i++)
243 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
245 if (WARN_ON(nbitflips > chip->ecc.strength))
246 return -EINVAL;
248 max_bitflips = max(nbitflips, max_bitflips);
249 mtd->ecc_stats.corrected += nbitflips;
252 return max_bitflips;
255 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
257 struct mtd_info *mtd = nand_to_mtd(chip);
260 * With 8/512 we have more information but still don't know precisely
261 * how many bit-flips were seen.
263 switch (status & NAND_ECC_STATUS_MASK) {
264 case NAND_ECC_STATUS_UNCORRECTABLE:
265 mtd->ecc_stats.failed++;
266 return 0;
267 case NAND_ECC_STATUS_1_3_CORRECTED:
268 mtd->ecc_stats.corrected += 3;
269 return 3;
270 case NAND_ECC_STATUS_4_6_CORRECTED:
271 mtd->ecc_stats.corrected += 6;
272 /* rewrite recommended */
273 return 6;
274 case NAND_ECC_STATUS_7_8_CORRECTED:
275 mtd->ecc_stats.corrected += 8;
276 /* rewrite recommended */
277 return 8;
278 default:
279 return 0;
283 static int
284 micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
285 int oob_required, int page)
287 struct mtd_info *mtd = nand_to_mtd(chip);
288 u8 status;
289 int ret, max_bitflips = 0;
291 ret = micron_nand_on_die_ecc_setup(chip, true);
292 if (ret)
293 return ret;
295 ret = nand_read_page_op(chip, page, 0, NULL, 0);
296 if (ret)
297 goto out;
299 ret = nand_status_op(chip, &status);
300 if (ret)
301 goto out;
303 ret = nand_exit_status_op(chip);
304 if (ret)
305 goto out;
307 ret = nand_read_data_op(chip, buf, mtd->writesize, false);
308 if (!ret && oob_required)
309 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
310 false);
312 if (chip->ecc.strength == 4)
313 max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
314 buf, page,
315 oob_required);
316 else
317 max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
319 out:
320 micron_nand_on_die_ecc_setup(chip, false);
322 return ret ? ret : max_bitflips;
325 static int
326 micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
327 int oob_required, int page)
329 int ret;
331 ret = micron_nand_on_die_ecc_setup(chip, true);
332 if (ret)
333 return ret;
335 ret = nand_write_page_raw(chip, buf, oob_required, page);
336 micron_nand_on_die_ecc_setup(chip, false);
338 return ret;
341 enum {
342 /* The NAND flash doesn't support on-die ECC */
343 MICRON_ON_DIE_UNSUPPORTED,
346 * The NAND flash supports on-die ECC and it can be
347 * enabled/disabled by a set features command.
349 MICRON_ON_DIE_SUPPORTED,
352 * The NAND flash supports on-die ECC, and it cannot be
353 * disabled.
355 MICRON_ON_DIE_MANDATORY,
358 #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0)
359 #define MICRON_ID_ECC_ENABLED BIT(7)
362 * Try to detect if the NAND support on-die ECC. To do this, we enable
363 * the feature, and read back if it has been enabled as expected. We
364 * also check if it can be disabled, because some Micron NANDs do not
365 * allow disabling the on-die ECC and we don't support such NANDs for
366 * now.
368 * This function also has the side effect of disabling on-die ECC if
369 * it had been left enabled by the firmware/bootloader.
371 static int micron_supports_on_die_ecc(struct nand_chip *chip)
373 u8 id[5];
374 int ret;
376 if (!chip->parameters.onfi)
377 return MICRON_ON_DIE_UNSUPPORTED;
379 if (nanddev_bits_per_cell(&chip->base) != 1)
380 return MICRON_ON_DIE_UNSUPPORTED;
383 * We only support on-die ECC of 4/512 or 8/512
385 if (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
386 return MICRON_ON_DIE_UNSUPPORTED;
388 /* 0x2 means on-die ECC is available. */
389 if (chip->id.len != 5 ||
390 (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
391 return MICRON_ON_DIE_UNSUPPORTED;
394 * It seems that there are devices which do not support ECC officially.
395 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
396 * enabling the ECC feature but don't reflect that to the READ_ID table.
397 * So we have to guarantee that we disable the ECC feature directly
398 * after we did the READ_ID table command. Later we can evaluate the
399 * ECC_ENABLE support.
401 ret = micron_nand_on_die_ecc_setup(chip, true);
402 if (ret)
403 return MICRON_ON_DIE_UNSUPPORTED;
405 ret = nand_readid_op(chip, 0, id, sizeof(id));
406 if (ret)
407 return MICRON_ON_DIE_UNSUPPORTED;
409 ret = micron_nand_on_die_ecc_setup(chip, false);
410 if (ret)
411 return MICRON_ON_DIE_UNSUPPORTED;
413 if (!(id[4] & MICRON_ID_ECC_ENABLED))
414 return MICRON_ON_DIE_UNSUPPORTED;
416 ret = nand_readid_op(chip, 0, id, sizeof(id));
417 if (ret)
418 return MICRON_ON_DIE_UNSUPPORTED;
420 if (id[4] & MICRON_ID_ECC_ENABLED)
421 return MICRON_ON_DIE_MANDATORY;
424 * We only support on-die ECC of 4/512 or 8/512
426 if (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
427 return MICRON_ON_DIE_UNSUPPORTED;
429 return MICRON_ON_DIE_SUPPORTED;
432 static int micron_nand_init(struct nand_chip *chip)
434 struct mtd_info *mtd = nand_to_mtd(chip);
435 struct micron_nand *micron;
436 int ondie;
437 int ret;
439 micron = kzalloc(sizeof(*micron), GFP_KERNEL);
440 if (!micron)
441 return -ENOMEM;
443 nand_set_manufacturer_data(chip, micron);
445 ret = micron_nand_onfi_init(chip);
446 if (ret)
447 goto err_free_manuf_data;
449 chip->options |= NAND_BBM_FIRSTPAGE;
451 if (mtd->writesize == 2048)
452 chip->options |= NAND_BBM_SECONDPAGE;
454 ondie = micron_supports_on_die_ecc(chip);
456 if (ondie == MICRON_ON_DIE_MANDATORY &&
457 chip->ecc.mode != NAND_ECC_ON_DIE) {
458 pr_err("On-die ECC forcefully enabled, not supported\n");
459 ret = -EINVAL;
460 goto err_free_manuf_data;
463 if (chip->ecc.mode == NAND_ECC_ON_DIE) {
464 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
465 pr_err("On-die ECC selected but not supported\n");
466 ret = -EINVAL;
467 goto err_free_manuf_data;
470 if (ondie == MICRON_ON_DIE_MANDATORY) {
471 micron->ecc.forced = true;
472 micron->ecc.enabled = true;
476 * In case of 4bit on-die ECC, we need a buffer to store a
477 * page dumped in raw mode so that we can compare its content
478 * to the same page after ECC correction happened and extract
479 * the real number of bitflips from this comparison.
480 * That's not needed for 8-bit ECC, because the status expose
481 * a better approximation of the number of bitflips in a page.
483 if (chip->base.eccreq.strength == 4) {
484 micron->ecc.rawbuf = kmalloc(mtd->writesize +
485 mtd->oobsize,
486 GFP_KERNEL);
487 if (!micron->ecc.rawbuf) {
488 ret = -ENOMEM;
489 goto err_free_manuf_data;
493 if (chip->base.eccreq.strength == 4)
494 mtd_set_ooblayout(mtd,
495 &micron_nand_on_die_4_ooblayout_ops);
496 else
497 mtd_set_ooblayout(mtd,
498 &micron_nand_on_die_8_ooblayout_ops);
500 chip->ecc.bytes = chip->base.eccreq.strength * 2;
501 chip->ecc.size = 512;
502 chip->ecc.strength = chip->base.eccreq.strength;
503 chip->ecc.algo = NAND_ECC_BCH;
504 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
505 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
507 if (ondie == MICRON_ON_DIE_MANDATORY) {
508 chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
509 chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
510 } else {
511 chip->ecc.read_page_raw = nand_read_page_raw;
512 chip->ecc.write_page_raw = nand_write_page_raw;
516 return 0;
518 err_free_manuf_data:
519 kfree(micron->ecc.rawbuf);
520 kfree(micron);
522 return ret;
525 static void micron_nand_cleanup(struct nand_chip *chip)
527 struct micron_nand *micron = nand_get_manufacturer_data(chip);
529 kfree(micron->ecc.rawbuf);
530 kfree(micron);
533 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
534 struct nand_onfi_params *p)
537 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
538 * revision number field of the ONFI parameter page. Assume ONFI
539 * version 1.0 if the revision number is 00 00.
541 if (le16_to_cpu(p->revision) == 0)
542 p->revision = cpu_to_le16(ONFI_VERSION_1_0);
545 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
546 .init = micron_nand_init,
547 .cleanup = micron_nand_cleanup,
548 .fixup_onfi_param_page = micron_fixup_onfi_param_page,