treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / amd / au1000_eth.c
blob089a4fbc61a020900b36ea493c4abf9b7acf35a6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
4 * Alchemy Au1x00 ethernet driver
6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
7 * Copyright 2002 TimeSys Corp.
8 * Added ethtool/mii-tool support,
9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
11 * or riemer@riemer-nt.de: fixed the link beat detection with
12 * ioctls (SIOCGMIIPHY)
13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
14 * converted to use linux-2.6.x's PHY framework
16 * Author: MontaVista Software, Inc.
17 * ppopov@mvista.com or source@mvista.com
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/capability.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/in.h>
29 #include <linux/ioport.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/mii.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/phy.h>
41 #include <linux/platform_device.h>
42 #include <linux/cpu.h>
43 #include <linux/io.h>
45 #include <asm/mipsregs.h>
46 #include <asm/irq.h>
47 #include <asm/processor.h>
49 #include <au1000.h>
50 #include <au1xxx_eth.h>
51 #include <prom.h>
53 #include "au1000_eth.h"
55 #ifdef AU1000_ETH_DEBUG
56 static int au1000_debug = 5;
57 #else
58 static int au1000_debug = 3;
59 #endif
61 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
62 NETIF_MSG_PROBE | \
63 NETIF_MSG_LINK)
65 #define DRV_NAME "au1000_eth"
66 #define DRV_VERSION "1.7"
67 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
68 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
70 MODULE_AUTHOR(DRV_AUTHOR);
71 MODULE_DESCRIPTION(DRV_DESC);
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_VERSION);
75 /* AU1000 MAC registers and bits */
76 #define MAC_CONTROL 0x0
77 # define MAC_RX_ENABLE (1 << 2)
78 # define MAC_TX_ENABLE (1 << 3)
79 # define MAC_DEF_CHECK (1 << 5)
80 # define MAC_SET_BL(X) (((X) & 0x3) << 6)
81 # define MAC_AUTO_PAD (1 << 8)
82 # define MAC_DISABLE_RETRY (1 << 10)
83 # define MAC_DISABLE_BCAST (1 << 11)
84 # define MAC_LATE_COL (1 << 12)
85 # define MAC_HASH_MODE (1 << 13)
86 # define MAC_HASH_ONLY (1 << 15)
87 # define MAC_PASS_ALL (1 << 16)
88 # define MAC_INVERSE_FILTER (1 << 17)
89 # define MAC_PROMISCUOUS (1 << 18)
90 # define MAC_PASS_ALL_MULTI (1 << 19)
91 # define MAC_FULL_DUPLEX (1 << 20)
92 # define MAC_NORMAL_MODE 0
93 # define MAC_INT_LOOPBACK (1 << 21)
94 # define MAC_EXT_LOOPBACK (1 << 22)
95 # define MAC_DISABLE_RX_OWN (1 << 23)
96 # define MAC_BIG_ENDIAN (1 << 30)
97 # define MAC_RX_ALL (1 << 31)
98 #define MAC_ADDRESS_HIGH 0x4
99 #define MAC_ADDRESS_LOW 0x8
100 #define MAC_MCAST_HIGH 0xC
101 #define MAC_MCAST_LOW 0x10
102 #define MAC_MII_CNTRL 0x14
103 # define MAC_MII_BUSY (1 << 0)
104 # define MAC_MII_READ 0
105 # define MAC_MII_WRITE (1 << 1)
106 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
107 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
108 #define MAC_MII_DATA 0x18
109 #define MAC_FLOW_CNTRL 0x1C
110 # define MAC_FLOW_CNTRL_BUSY (1 << 0)
111 # define MAC_FLOW_CNTRL_ENABLE (1 << 1)
112 # define MAC_PASS_CONTROL (1 << 2)
113 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16)
114 #define MAC_VLAN1_TAG 0x20
115 #define MAC_VLAN2_TAG 0x24
117 /* Ethernet Controller Enable */
118 # define MAC_EN_CLOCK_ENABLE (1 << 0)
119 # define MAC_EN_RESET0 (1 << 1)
120 # define MAC_EN_TOSS (0 << 2)
121 # define MAC_EN_CACHEABLE (1 << 3)
122 # define MAC_EN_RESET1 (1 << 4)
123 # define MAC_EN_RESET2 (1 << 5)
124 # define MAC_DMA_RESET (1 << 6)
126 /* Ethernet Controller DMA Channels */
127 /* offsets from MAC_TX_RING_ADDR address */
128 #define MAC_TX_BUFF0_STATUS 0x0
129 # define TX_FRAME_ABORTED (1 << 0)
130 # define TX_JAB_TIMEOUT (1 << 1)
131 # define TX_NO_CARRIER (1 << 2)
132 # define TX_LOSS_CARRIER (1 << 3)
133 # define TX_EXC_DEF (1 << 4)
134 # define TX_LATE_COLL_ABORT (1 << 5)
135 # define TX_EXC_COLL (1 << 6)
136 # define TX_UNDERRUN (1 << 7)
137 # define TX_DEFERRED (1 << 8)
138 # define TX_LATE_COLL (1 << 9)
139 # define TX_COLL_CNT_MASK (0xF << 10)
140 # define TX_PKT_RETRY (1 << 31)
141 #define MAC_TX_BUFF0_ADDR 0x4
142 # define TX_DMA_ENABLE (1 << 0)
143 # define TX_T_DONE (1 << 1)
144 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
145 #define MAC_TX_BUFF0_LEN 0x8
146 #define MAC_TX_BUFF1_STATUS 0x10
147 #define MAC_TX_BUFF1_ADDR 0x14
148 #define MAC_TX_BUFF1_LEN 0x18
149 #define MAC_TX_BUFF2_STATUS 0x20
150 #define MAC_TX_BUFF2_ADDR 0x24
151 #define MAC_TX_BUFF2_LEN 0x28
152 #define MAC_TX_BUFF3_STATUS 0x30
153 #define MAC_TX_BUFF3_ADDR 0x34
154 #define MAC_TX_BUFF3_LEN 0x38
156 /* offsets from MAC_RX_RING_ADDR */
157 #define MAC_RX_BUFF0_STATUS 0x0
158 # define RX_FRAME_LEN_MASK 0x3fff
159 # define RX_WDOG_TIMER (1 << 14)
160 # define RX_RUNT (1 << 15)
161 # define RX_OVERLEN (1 << 16)
162 # define RX_COLL (1 << 17)
163 # define RX_ETHER (1 << 18)
164 # define RX_MII_ERROR (1 << 19)
165 # define RX_DRIBBLING (1 << 20)
166 # define RX_CRC_ERROR (1 << 21)
167 # define RX_VLAN1 (1 << 22)
168 # define RX_VLAN2 (1 << 23)
169 # define RX_LEN_ERROR (1 << 24)
170 # define RX_CNTRL_FRAME (1 << 25)
171 # define RX_U_CNTRL_FRAME (1 << 26)
172 # define RX_MCAST_FRAME (1 << 27)
173 # define RX_BCAST_FRAME (1 << 28)
174 # define RX_FILTER_FAIL (1 << 29)
175 # define RX_PACKET_FILTER (1 << 30)
176 # define RX_MISSED_FRAME (1 << 31)
178 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \
179 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
180 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
181 #define MAC_RX_BUFF0_ADDR 0x4
182 # define RX_DMA_ENABLE (1 << 0)
183 # define RX_T_DONE (1 << 1)
184 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
185 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0)
186 #define MAC_RX_BUFF1_STATUS 0x10
187 #define MAC_RX_BUFF1_ADDR 0x14
188 #define MAC_RX_BUFF2_STATUS 0x20
189 #define MAC_RX_BUFF2_ADDR 0x24
190 #define MAC_RX_BUFF3_STATUS 0x30
191 #define MAC_RX_BUFF3_ADDR 0x34
194 * Theory of operation
196 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
197 * There are four receive and four transmit descriptors. These
198 * descriptors are not in memory; rather, they are just a set of
199 * hardware registers.
201 * Since the Au1000 has a coherent data cache, the receive and
202 * transmit buffers are allocated from the KSEG0 segment. The
203 * hardware registers, however, are still mapped at KSEG1 to
204 * make sure there's no out-of-order writes, and that all writes
205 * complete immediately.
209 * board-specific configurations
211 * PHY detection algorithm
213 * If phy_static_config is undefined, the PHY setup is
214 * autodetected:
216 * mii_probe() first searches the current MAC's MII bus for a PHY,
217 * selecting the first (or last, if phy_search_highest_addr is
218 * defined) PHY address not already claimed by another netdev.
220 * If nothing was found that way when searching for the 2nd ethernet
221 * controller's PHY and phy1_search_mac0 is defined, then
222 * the first MII bus is searched as well for an unclaimed PHY; this is
223 * needed in case of a dual-PHY accessible only through the MAC0's MII
224 * bus.
226 * Finally, if no PHY is found, then the corresponding ethernet
227 * controller is not registered to the network subsystem.
230 /* autodetection defaults: phy1_search_mac0 */
232 /* static PHY setup
234 * most boards PHY setup should be detectable properly with the
235 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
236 * you have a switch attached, or want to use the PHY's interrupt
237 * notification capabilities) you can provide a static PHY
238 * configuration here
240 * IRQs may only be set, if a PHY address was configured
241 * If a PHY address is given, also a bus id is required to be set
243 * ps: make sure the used irqs are configured properly in the board
244 * specific irq-map
247 static void au1000_enable_mac(struct net_device *dev, int force_reset)
249 unsigned long flags;
250 struct au1000_private *aup = netdev_priv(dev);
252 spin_lock_irqsave(&aup->lock, flags);
254 if (force_reset || (!aup->mac_enabled)) {
255 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
256 wmb(); /* drain writebuffer */
257 mdelay(2);
258 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
259 | MAC_EN_CLOCK_ENABLE), aup->enable);
260 wmb(); /* drain writebuffer */
261 mdelay(2);
263 aup->mac_enabled = 1;
266 spin_unlock_irqrestore(&aup->lock, flags);
270 * MII operations
272 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
274 struct au1000_private *aup = netdev_priv(dev);
275 u32 *const mii_control_reg = &aup->mac->mii_control;
276 u32 *const mii_data_reg = &aup->mac->mii_data;
277 u32 timedout = 20;
278 u32 mii_control;
280 while (readl(mii_control_reg) & MAC_MII_BUSY) {
281 mdelay(1);
282 if (--timedout == 0) {
283 netdev_err(dev, "read_MII busy timeout!!\n");
284 return -1;
288 mii_control = MAC_SET_MII_SELECT_REG(reg) |
289 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
291 writel(mii_control, mii_control_reg);
293 timedout = 20;
294 while (readl(mii_control_reg) & MAC_MII_BUSY) {
295 mdelay(1);
296 if (--timedout == 0) {
297 netdev_err(dev, "mdio_read busy timeout!!\n");
298 return -1;
301 return readl(mii_data_reg);
304 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
305 int reg, u16 value)
307 struct au1000_private *aup = netdev_priv(dev);
308 u32 *const mii_control_reg = &aup->mac->mii_control;
309 u32 *const mii_data_reg = &aup->mac->mii_data;
310 u32 timedout = 20;
311 u32 mii_control;
313 while (readl(mii_control_reg) & MAC_MII_BUSY) {
314 mdelay(1);
315 if (--timedout == 0) {
316 netdev_err(dev, "mdio_write busy timeout!!\n");
317 return;
321 mii_control = MAC_SET_MII_SELECT_REG(reg) |
322 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
324 writel(value, mii_data_reg);
325 writel(mii_control, mii_control_reg);
328 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
330 struct net_device *const dev = bus->priv;
332 /* make sure the MAC associated with this
333 * mii_bus is enabled
335 au1000_enable_mac(dev, 0);
337 return au1000_mdio_read(dev, phy_addr, regnum);
340 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
341 u16 value)
343 struct net_device *const dev = bus->priv;
345 /* make sure the MAC associated with this
346 * mii_bus is enabled
348 au1000_enable_mac(dev, 0);
350 au1000_mdio_write(dev, phy_addr, regnum, value);
351 return 0;
354 static int au1000_mdiobus_reset(struct mii_bus *bus)
356 struct net_device *const dev = bus->priv;
358 /* make sure the MAC associated with this
359 * mii_bus is enabled
361 au1000_enable_mac(dev, 0);
363 return 0;
366 static void au1000_hard_stop(struct net_device *dev)
368 struct au1000_private *aup = netdev_priv(dev);
369 u32 reg;
371 netif_dbg(aup, drv, dev, "hard stop\n");
373 reg = readl(&aup->mac->control);
374 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
375 writel(reg, &aup->mac->control);
376 wmb(); /* drain writebuffer */
377 mdelay(10);
380 static void au1000_enable_rx_tx(struct net_device *dev)
382 struct au1000_private *aup = netdev_priv(dev);
383 u32 reg;
385 netif_dbg(aup, hw, dev, "enable_rx_tx\n");
387 reg = readl(&aup->mac->control);
388 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
389 writel(reg, &aup->mac->control);
390 wmb(); /* drain writebuffer */
391 mdelay(10);
394 static void
395 au1000_adjust_link(struct net_device *dev)
397 struct au1000_private *aup = netdev_priv(dev);
398 struct phy_device *phydev = dev->phydev;
399 unsigned long flags;
400 u32 reg;
402 int status_change = 0;
404 BUG_ON(!phydev);
406 spin_lock_irqsave(&aup->lock, flags);
408 if (phydev->link && (aup->old_speed != phydev->speed)) {
409 /* speed changed */
411 switch (phydev->speed) {
412 case SPEED_10:
413 case SPEED_100:
414 break;
415 default:
416 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
417 phydev->speed);
418 break;
421 aup->old_speed = phydev->speed;
423 status_change = 1;
426 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
427 /* duplex mode changed */
429 /* switching duplex mode requires to disable rx and tx! */
430 au1000_hard_stop(dev);
432 reg = readl(&aup->mac->control);
433 if (DUPLEX_FULL == phydev->duplex) {
434 reg |= MAC_FULL_DUPLEX;
435 reg &= ~MAC_DISABLE_RX_OWN;
436 } else {
437 reg &= ~MAC_FULL_DUPLEX;
438 reg |= MAC_DISABLE_RX_OWN;
440 writel(reg, &aup->mac->control);
441 wmb(); /* drain writebuffer */
442 mdelay(1);
444 au1000_enable_rx_tx(dev);
445 aup->old_duplex = phydev->duplex;
447 status_change = 1;
450 if (phydev->link != aup->old_link) {
451 /* link state changed */
453 if (!phydev->link) {
454 /* link went down */
455 aup->old_speed = 0;
456 aup->old_duplex = -1;
459 aup->old_link = phydev->link;
460 status_change = 1;
463 spin_unlock_irqrestore(&aup->lock, flags);
465 if (status_change) {
466 if (phydev->link)
467 netdev_info(dev, "link up (%d/%s)\n",
468 phydev->speed,
469 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
470 else
471 netdev_info(dev, "link down\n");
475 static int au1000_mii_probe(struct net_device *dev)
477 struct au1000_private *const aup = netdev_priv(dev);
478 struct phy_device *phydev = NULL;
479 int phy_addr;
481 if (aup->phy_static_config) {
482 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
484 if (aup->phy_addr)
485 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
486 else
487 netdev_info(dev, "using PHY-less setup\n");
488 return 0;
491 /* find the first (lowest address) PHY
492 * on the current MAC's MII bus
494 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
495 if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
496 phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
497 if (!aup->phy_search_highest_addr)
498 /* break out with first one found */
499 break;
502 if (aup->phy1_search_mac0) {
503 /* try harder to find a PHY */
504 if (!phydev && (aup->mac_id == 1)) {
505 /* no PHY found, maybe we have a dual PHY? */
506 dev_info(&dev->dev, ": no PHY found on MAC1, "
507 "let's see if it's attached to MAC0...\n");
509 /* find the first (lowest address) non-attached
510 * PHY on the MAC0 MII bus
512 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
513 struct phy_device *const tmp_phydev =
514 mdiobus_get_phy(aup->mii_bus,
515 phy_addr);
517 if (aup->mac_id == 1)
518 break;
520 /* no PHY here... */
521 if (!tmp_phydev)
522 continue;
524 /* already claimed by MAC0 */
525 if (tmp_phydev->attached_dev)
526 continue;
528 phydev = tmp_phydev;
529 break; /* found it */
534 if (!phydev) {
535 netdev_err(dev, "no PHY found\n");
536 return -1;
539 /* now we are supposed to have a proper phydev, to attach to... */
540 BUG_ON(phydev->attached_dev);
542 phydev = phy_connect(dev, phydev_name(phydev),
543 &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
545 if (IS_ERR(phydev)) {
546 netdev_err(dev, "Could not attach to PHY\n");
547 return PTR_ERR(phydev);
550 phy_set_max_speed(phydev, SPEED_100);
552 aup->old_link = 0;
553 aup->old_speed = 0;
554 aup->old_duplex = -1;
556 phy_attached_info(phydev);
558 return 0;
563 * Buffer allocation/deallocation routines. The buffer descriptor returned
564 * has the virtual and dma address of a buffer suitable for
565 * both, receive and transmit operations.
567 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
569 struct db_dest *pDB;
570 pDB = aup->pDBfree;
572 if (pDB)
573 aup->pDBfree = pDB->pnext;
575 return pDB;
578 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
580 struct db_dest *pDBfree = aup->pDBfree;
581 if (pDBfree)
582 pDBfree->pnext = pDB;
583 aup->pDBfree = pDB;
586 static void au1000_reset_mac_unlocked(struct net_device *dev)
588 struct au1000_private *const aup = netdev_priv(dev);
589 int i;
591 au1000_hard_stop(dev);
593 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
594 wmb(); /* drain writebuffer */
595 mdelay(2);
596 writel(0, aup->enable);
597 wmb(); /* drain writebuffer */
598 mdelay(2);
600 aup->tx_full = 0;
601 for (i = 0; i < NUM_RX_DMA; i++) {
602 /* reset control bits */
603 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
605 for (i = 0; i < NUM_TX_DMA; i++) {
606 /* reset control bits */
607 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
610 aup->mac_enabled = 0;
614 static void au1000_reset_mac(struct net_device *dev)
616 struct au1000_private *const aup = netdev_priv(dev);
617 unsigned long flags;
619 netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
620 (unsigned)aup);
622 spin_lock_irqsave(&aup->lock, flags);
624 au1000_reset_mac_unlocked(dev);
626 spin_unlock_irqrestore(&aup->lock, flags);
630 * Setup the receive and transmit "rings". These pointers are the addresses
631 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
632 * these are not descriptors sitting in memory.
634 static void
635 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
637 int i;
639 for (i = 0; i < NUM_RX_DMA; i++) {
640 aup->rx_dma_ring[i] = (struct rx_dma *)
641 (tx_base + 0x100 + sizeof(struct rx_dma) * i);
643 for (i = 0; i < NUM_TX_DMA; i++) {
644 aup->tx_dma_ring[i] = (struct tx_dma *)
645 (tx_base + sizeof(struct tx_dma) * i);
650 * ethtool operations
653 static void
654 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
656 struct au1000_private *aup = netdev_priv(dev);
658 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
659 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
660 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
661 aup->mac_id);
664 static void au1000_set_msglevel(struct net_device *dev, u32 value)
666 struct au1000_private *aup = netdev_priv(dev);
667 aup->msg_enable = value;
670 static u32 au1000_get_msglevel(struct net_device *dev)
672 struct au1000_private *aup = netdev_priv(dev);
673 return aup->msg_enable;
676 static const struct ethtool_ops au1000_ethtool_ops = {
677 .get_drvinfo = au1000_get_drvinfo,
678 .get_link = ethtool_op_get_link,
679 .get_msglevel = au1000_get_msglevel,
680 .set_msglevel = au1000_set_msglevel,
681 .get_link_ksettings = phy_ethtool_get_link_ksettings,
682 .set_link_ksettings = phy_ethtool_set_link_ksettings,
687 * Initialize the interface.
689 * When the device powers up, the clocks are disabled and the
690 * mac is in reset state. When the interface is closed, we
691 * do the same -- reset the device and disable the clocks to
692 * conserve power. Thus, whenever au1000_init() is called,
693 * the device should already be in reset state.
695 static int au1000_init(struct net_device *dev)
697 struct au1000_private *aup = netdev_priv(dev);
698 unsigned long flags;
699 int i;
700 u32 control;
702 netif_dbg(aup, hw, dev, "au1000_init\n");
704 /* bring the device out of reset */
705 au1000_enable_mac(dev, 1);
707 spin_lock_irqsave(&aup->lock, flags);
709 writel(0, &aup->mac->control);
710 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
711 aup->tx_tail = aup->tx_head;
712 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
714 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
715 &aup->mac->mac_addr_high);
716 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
717 dev->dev_addr[1]<<8 | dev->dev_addr[0],
718 &aup->mac->mac_addr_low);
721 for (i = 0; i < NUM_RX_DMA; i++)
722 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
724 wmb(); /* drain writebuffer */
726 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
727 #ifndef CONFIG_CPU_LITTLE_ENDIAN
728 control |= MAC_BIG_ENDIAN;
729 #endif
730 if (dev->phydev) {
731 if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
732 control |= MAC_FULL_DUPLEX;
733 else
734 control |= MAC_DISABLE_RX_OWN;
735 } else { /* PHY-less op, assume full-duplex */
736 control |= MAC_FULL_DUPLEX;
739 writel(control, &aup->mac->control);
740 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
741 wmb(); /* drain writebuffer */
743 spin_unlock_irqrestore(&aup->lock, flags);
744 return 0;
747 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
749 struct net_device_stats *ps = &dev->stats;
751 ps->rx_packets++;
752 if (status & RX_MCAST_FRAME)
753 ps->multicast++;
755 if (status & RX_ERROR) {
756 ps->rx_errors++;
757 if (status & RX_MISSED_FRAME)
758 ps->rx_missed_errors++;
759 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
760 ps->rx_length_errors++;
761 if (status & RX_CRC_ERROR)
762 ps->rx_crc_errors++;
763 if (status & RX_COLL)
764 ps->collisions++;
765 } else
766 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
771 * Au1000 receive routine.
773 static int au1000_rx(struct net_device *dev)
775 struct au1000_private *aup = netdev_priv(dev);
776 struct sk_buff *skb;
777 struct rx_dma *prxd;
778 u32 buff_stat, status;
779 struct db_dest *pDB;
780 u32 frmlen;
782 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
784 prxd = aup->rx_dma_ring[aup->rx_head];
785 buff_stat = prxd->buff_stat;
786 while (buff_stat & RX_T_DONE) {
787 status = prxd->status;
788 pDB = aup->rx_db_inuse[aup->rx_head];
789 au1000_update_rx_stats(dev, status);
790 if (!(status & RX_ERROR)) {
792 /* good frame */
793 frmlen = (status & RX_FRAME_LEN_MASK);
794 frmlen -= 4; /* Remove FCS */
795 skb = netdev_alloc_skb(dev, frmlen + 2);
796 if (skb == NULL) {
797 dev->stats.rx_dropped++;
798 continue;
800 skb_reserve(skb, 2); /* 16 byte IP header align */
801 skb_copy_to_linear_data(skb,
802 (unsigned char *)pDB->vaddr, frmlen);
803 skb_put(skb, frmlen);
804 skb->protocol = eth_type_trans(skb, dev);
805 netif_rx(skb); /* pass the packet to upper layers */
806 } else {
807 if (au1000_debug > 4) {
808 pr_err("rx_error(s):");
809 if (status & RX_MISSED_FRAME)
810 pr_cont(" miss");
811 if (status & RX_WDOG_TIMER)
812 pr_cont(" wdog");
813 if (status & RX_RUNT)
814 pr_cont(" runt");
815 if (status & RX_OVERLEN)
816 pr_cont(" overlen");
817 if (status & RX_COLL)
818 pr_cont(" coll");
819 if (status & RX_MII_ERROR)
820 pr_cont(" mii error");
821 if (status & RX_CRC_ERROR)
822 pr_cont(" crc error");
823 if (status & RX_LEN_ERROR)
824 pr_cont(" len error");
825 if (status & RX_U_CNTRL_FRAME)
826 pr_cont(" u control frame");
827 pr_cont("\n");
830 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
831 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
832 wmb(); /* drain writebuffer */
834 /* next descriptor */
835 prxd = aup->rx_dma_ring[aup->rx_head];
836 buff_stat = prxd->buff_stat;
838 return 0;
841 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
843 struct net_device_stats *ps = &dev->stats;
845 if (status & TX_FRAME_ABORTED) {
846 if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
847 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
848 /* any other tx errors are only valid
849 * in half duplex mode
851 ps->tx_errors++;
852 ps->tx_aborted_errors++;
854 } else {
855 ps->tx_errors++;
856 ps->tx_aborted_errors++;
857 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
858 ps->tx_carrier_errors++;
864 * Called from the interrupt service routine to acknowledge
865 * the TX DONE bits. This is a must if the irq is setup as
866 * edge triggered.
868 static void au1000_tx_ack(struct net_device *dev)
870 struct au1000_private *aup = netdev_priv(dev);
871 struct tx_dma *ptxd;
873 ptxd = aup->tx_dma_ring[aup->tx_tail];
875 while (ptxd->buff_stat & TX_T_DONE) {
876 au1000_update_tx_stats(dev, ptxd->status);
877 ptxd->buff_stat &= ~TX_T_DONE;
878 ptxd->len = 0;
879 wmb(); /* drain writebuffer */
881 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
882 ptxd = aup->tx_dma_ring[aup->tx_tail];
884 if (aup->tx_full) {
885 aup->tx_full = 0;
886 netif_wake_queue(dev);
892 * Au1000 interrupt service routine.
894 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
896 struct net_device *dev = dev_id;
898 /* Handle RX interrupts first to minimize chance of overrun */
900 au1000_rx(dev);
901 au1000_tx_ack(dev);
902 return IRQ_RETVAL(1);
905 static int au1000_open(struct net_device *dev)
907 int retval;
908 struct au1000_private *aup = netdev_priv(dev);
910 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
912 retval = request_irq(dev->irq, au1000_interrupt, 0,
913 dev->name, dev);
914 if (retval) {
915 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
916 return retval;
919 retval = au1000_init(dev);
920 if (retval) {
921 netdev_err(dev, "error in au1000_init\n");
922 free_irq(dev->irq, dev);
923 return retval;
926 if (dev->phydev)
927 phy_start(dev->phydev);
929 netif_start_queue(dev);
931 netif_dbg(aup, drv, dev, "open: Initialization done.\n");
933 return 0;
936 static int au1000_close(struct net_device *dev)
938 unsigned long flags;
939 struct au1000_private *const aup = netdev_priv(dev);
941 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
943 if (dev->phydev)
944 phy_stop(dev->phydev);
946 spin_lock_irqsave(&aup->lock, flags);
948 au1000_reset_mac_unlocked(dev);
950 /* stop the device */
951 netif_stop_queue(dev);
953 /* disable the interrupt */
954 free_irq(dev->irq, dev);
955 spin_unlock_irqrestore(&aup->lock, flags);
957 return 0;
961 * Au1000 transmit routine.
963 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
965 struct au1000_private *aup = netdev_priv(dev);
966 struct net_device_stats *ps = &dev->stats;
967 struct tx_dma *ptxd;
968 u32 buff_stat;
969 struct db_dest *pDB;
970 int i;
972 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
973 (unsigned)aup, skb->len,
974 skb->data, aup->tx_head);
976 ptxd = aup->tx_dma_ring[aup->tx_head];
977 buff_stat = ptxd->buff_stat;
978 if (buff_stat & TX_DMA_ENABLE) {
979 /* We've wrapped around and the transmitter is still busy */
980 netif_stop_queue(dev);
981 aup->tx_full = 1;
982 return NETDEV_TX_BUSY;
983 } else if (buff_stat & TX_T_DONE) {
984 au1000_update_tx_stats(dev, ptxd->status);
985 ptxd->len = 0;
988 if (aup->tx_full) {
989 aup->tx_full = 0;
990 netif_wake_queue(dev);
993 pDB = aup->tx_db_inuse[aup->tx_head];
994 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
995 if (skb->len < ETH_ZLEN) {
996 for (i = skb->len; i < ETH_ZLEN; i++)
997 ((char *)pDB->vaddr)[i] = 0;
999 ptxd->len = ETH_ZLEN;
1000 } else
1001 ptxd->len = skb->len;
1003 ps->tx_packets++;
1004 ps->tx_bytes += ptxd->len;
1006 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1007 wmb(); /* drain writebuffer */
1008 dev_kfree_skb(skb);
1009 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1010 return NETDEV_TX_OK;
1014 * The Tx ring has been full longer than the watchdog timeout
1015 * value. The transmitter must be hung?
1017 static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1019 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1020 au1000_reset_mac(dev);
1021 au1000_init(dev);
1022 netif_trans_update(dev); /* prevent tx timeout */
1023 netif_wake_queue(dev);
1026 static void au1000_multicast_list(struct net_device *dev)
1028 struct au1000_private *aup = netdev_priv(dev);
1029 u32 reg;
1031 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1032 reg = readl(&aup->mac->control);
1033 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1034 reg |= MAC_PROMISCUOUS;
1035 } else if ((dev->flags & IFF_ALLMULTI) ||
1036 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1037 reg |= MAC_PASS_ALL_MULTI;
1038 reg &= ~MAC_PROMISCUOUS;
1039 netdev_info(dev, "Pass all multicast\n");
1040 } else {
1041 struct netdev_hw_addr *ha;
1042 u32 mc_filter[2]; /* Multicast hash filter */
1044 mc_filter[1] = mc_filter[0] = 0;
1045 netdev_for_each_mc_addr(ha, dev)
1046 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1047 (long *)mc_filter);
1048 writel(mc_filter[1], &aup->mac->multi_hash_high);
1049 writel(mc_filter[0], &aup->mac->multi_hash_low);
1050 reg &= ~MAC_PROMISCUOUS;
1051 reg |= MAC_HASH_MODE;
1053 writel(reg, &aup->mac->control);
1056 static const struct net_device_ops au1000_netdev_ops = {
1057 .ndo_open = au1000_open,
1058 .ndo_stop = au1000_close,
1059 .ndo_start_xmit = au1000_tx,
1060 .ndo_set_rx_mode = au1000_multicast_list,
1061 .ndo_do_ioctl = phy_do_ioctl_running,
1062 .ndo_tx_timeout = au1000_tx_timeout,
1063 .ndo_set_mac_address = eth_mac_addr,
1064 .ndo_validate_addr = eth_validate_addr,
1067 static int au1000_probe(struct platform_device *pdev)
1069 struct au1000_private *aup = NULL;
1070 struct au1000_eth_platform_data *pd;
1071 struct net_device *dev = NULL;
1072 struct db_dest *pDB, *pDBfree;
1073 int irq, i, err = 0;
1074 struct resource *base, *macen, *macdma;
1076 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1077 if (!base) {
1078 dev_err(&pdev->dev, "failed to retrieve base register\n");
1079 err = -ENODEV;
1080 goto out;
1083 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1084 if (!macen) {
1085 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1086 err = -ENODEV;
1087 goto out;
1090 irq = platform_get_irq(pdev, 0);
1091 if (irq < 0) {
1092 err = -ENODEV;
1093 goto out;
1096 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1097 if (!macdma) {
1098 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1099 err = -ENODEV;
1100 goto out;
1103 if (!request_mem_region(base->start, resource_size(base),
1104 pdev->name)) {
1105 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1106 err = -ENXIO;
1107 goto out;
1110 if (!request_mem_region(macen->start, resource_size(macen),
1111 pdev->name)) {
1112 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1113 err = -ENXIO;
1114 goto err_request;
1117 if (!request_mem_region(macdma->start, resource_size(macdma),
1118 pdev->name)) {
1119 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1120 err = -ENXIO;
1121 goto err_macdma;
1124 dev = alloc_etherdev(sizeof(struct au1000_private));
1125 if (!dev) {
1126 err = -ENOMEM;
1127 goto err_alloc;
1130 SET_NETDEV_DEV(dev, &pdev->dev);
1131 platform_set_drvdata(pdev, dev);
1132 aup = netdev_priv(dev);
1134 spin_lock_init(&aup->lock);
1135 aup->msg_enable = (au1000_debug < 4 ?
1136 AU1000_DEF_MSG_ENABLE : au1000_debug);
1138 /* Allocate the data buffers
1139 * Snooping works fine with eth on all au1xxx
1141 aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1142 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1143 &aup->dma_addr, 0,
1144 DMA_ATTR_NON_CONSISTENT);
1145 if (!aup->vaddr) {
1146 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1147 err = -ENOMEM;
1148 goto err_vaddr;
1151 /* aup->mac is the base address of the MAC's registers */
1152 aup->mac = (struct mac_reg *)
1153 ioremap(base->start, resource_size(base));
1154 if (!aup->mac) {
1155 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1156 err = -ENXIO;
1157 goto err_remap1;
1160 /* Setup some variables for quick register address access */
1161 aup->enable = (u32 *)ioremap(macen->start,
1162 resource_size(macen));
1163 if (!aup->enable) {
1164 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1165 err = -ENXIO;
1166 goto err_remap2;
1168 aup->mac_id = pdev->id;
1170 aup->macdma = ioremap(macdma->start, resource_size(macdma));
1171 if (!aup->macdma) {
1172 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1173 err = -ENXIO;
1174 goto err_remap3;
1177 au1000_setup_hw_rings(aup, aup->macdma);
1179 writel(0, aup->enable);
1180 aup->mac_enabled = 0;
1182 pd = dev_get_platdata(&pdev->dev);
1183 if (!pd) {
1184 dev_info(&pdev->dev, "no platform_data passed,"
1185 " PHY search on MAC0\n");
1186 aup->phy1_search_mac0 = 1;
1187 } else {
1188 if (is_valid_ether_addr(pd->mac)) {
1189 memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1190 } else {
1191 /* Set a random MAC since no valid provided by platform_data. */
1192 eth_hw_addr_random(dev);
1195 aup->phy_static_config = pd->phy_static_config;
1196 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1197 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1198 aup->phy_addr = pd->phy_addr;
1199 aup->phy_busid = pd->phy_busid;
1200 aup->phy_irq = pd->phy_irq;
1203 if (aup->phy_busid > 0) {
1204 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1205 err = -ENODEV;
1206 goto err_mdiobus_alloc;
1209 aup->mii_bus = mdiobus_alloc();
1210 if (aup->mii_bus == NULL) {
1211 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1212 err = -ENOMEM;
1213 goto err_mdiobus_alloc;
1216 aup->mii_bus->priv = dev;
1217 aup->mii_bus->read = au1000_mdiobus_read;
1218 aup->mii_bus->write = au1000_mdiobus_write;
1219 aup->mii_bus->reset = au1000_mdiobus_reset;
1220 aup->mii_bus->name = "au1000_eth_mii";
1221 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1222 pdev->name, aup->mac_id);
1224 /* if known, set corresponding PHY IRQs */
1225 if (aup->phy_static_config)
1226 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1227 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1229 err = mdiobus_register(aup->mii_bus);
1230 if (err) {
1231 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1232 goto err_mdiobus_reg;
1235 err = au1000_mii_probe(dev);
1236 if (err != 0)
1237 goto err_out;
1239 pDBfree = NULL;
1240 /* setup the data buffer descriptors and attach a buffer to each one */
1241 pDB = aup->db;
1242 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1243 pDB->pnext = pDBfree;
1244 pDBfree = pDB;
1245 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1246 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1247 pDB++;
1249 aup->pDBfree = pDBfree;
1251 err = -ENODEV;
1252 for (i = 0; i < NUM_RX_DMA; i++) {
1253 pDB = au1000_GetFreeDB(aup);
1254 if (!pDB)
1255 goto err_out;
1257 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1258 aup->rx_db_inuse[i] = pDB;
1261 err = -ENODEV;
1262 for (i = 0; i < NUM_TX_DMA; i++) {
1263 pDB = au1000_GetFreeDB(aup);
1264 if (!pDB)
1265 goto err_out;
1267 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1268 aup->tx_dma_ring[i]->len = 0;
1269 aup->tx_db_inuse[i] = pDB;
1272 dev->base_addr = base->start;
1273 dev->irq = irq;
1274 dev->netdev_ops = &au1000_netdev_ops;
1275 dev->ethtool_ops = &au1000_ethtool_ops;
1276 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1279 * The boot code uses the ethernet controller, so reset it to start
1280 * fresh. au1000_init() expects that the device is in reset state.
1282 au1000_reset_mac(dev);
1284 err = register_netdev(dev);
1285 if (err) {
1286 netdev_err(dev, "Cannot register net device, aborting.\n");
1287 goto err_out;
1290 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1291 (unsigned long)base->start, irq);
1293 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1295 return 0;
1297 err_out:
1298 if (aup->mii_bus != NULL)
1299 mdiobus_unregister(aup->mii_bus);
1301 /* here we should have a valid dev plus aup-> register addresses
1302 * so we can reset the mac properly.
1304 au1000_reset_mac(dev);
1306 for (i = 0; i < NUM_RX_DMA; i++) {
1307 if (aup->rx_db_inuse[i])
1308 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1310 for (i = 0; i < NUM_TX_DMA; i++) {
1311 if (aup->tx_db_inuse[i])
1312 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1314 err_mdiobus_reg:
1315 mdiobus_free(aup->mii_bus);
1316 err_mdiobus_alloc:
1317 iounmap(aup->macdma);
1318 err_remap3:
1319 iounmap(aup->enable);
1320 err_remap2:
1321 iounmap(aup->mac);
1322 err_remap1:
1323 dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1324 (void *)aup->vaddr, aup->dma_addr,
1325 DMA_ATTR_NON_CONSISTENT);
1326 err_vaddr:
1327 free_netdev(dev);
1328 err_alloc:
1329 release_mem_region(macdma->start, resource_size(macdma));
1330 err_macdma:
1331 release_mem_region(macen->start, resource_size(macen));
1332 err_request:
1333 release_mem_region(base->start, resource_size(base));
1334 out:
1335 return err;
1338 static int au1000_remove(struct platform_device *pdev)
1340 struct net_device *dev = platform_get_drvdata(pdev);
1341 struct au1000_private *aup = netdev_priv(dev);
1342 int i;
1343 struct resource *base, *macen;
1345 unregister_netdev(dev);
1346 mdiobus_unregister(aup->mii_bus);
1347 mdiobus_free(aup->mii_bus);
1349 for (i = 0; i < NUM_RX_DMA; i++)
1350 if (aup->rx_db_inuse[i])
1351 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1353 for (i = 0; i < NUM_TX_DMA; i++)
1354 if (aup->tx_db_inuse[i])
1355 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1357 dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1358 (void *)aup->vaddr, aup->dma_addr,
1359 DMA_ATTR_NON_CONSISTENT);
1361 iounmap(aup->macdma);
1362 iounmap(aup->mac);
1363 iounmap(aup->enable);
1365 base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1366 release_mem_region(base->start, resource_size(base));
1368 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1369 release_mem_region(base->start, resource_size(base));
1371 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1372 release_mem_region(macen->start, resource_size(macen));
1374 free_netdev(dev);
1376 return 0;
1379 static struct platform_driver au1000_eth_driver = {
1380 .probe = au1000_probe,
1381 .remove = au1000_remove,
1382 .driver = {
1383 .name = "au1000-eth",
1387 module_platform_driver(au1000_eth_driver);
1389 MODULE_ALIAS("platform:au1000-eth");