1 // SPDX-License-Identifier: GPL-2.0-only
4 * Alchemy Au1x00 ethernet driver
6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
7 * Copyright 2002 TimeSys Corp.
8 * Added ethtool/mii-tool support,
9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
11 * or riemer@riemer-nt.de: fixed the link beat detection with
12 * ioctls (SIOCGMIIPHY)
13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
14 * converted to use linux-2.6.x's PHY framework
16 * Author: MontaVista Software, Inc.
17 * ppopov@mvista.com or source@mvista.com
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/capability.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/mii.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/phy.h>
41 #include <linux/platform_device.h>
42 #include <linux/cpu.h>
45 #include <asm/mipsregs.h>
47 #include <asm/processor.h>
50 #include <au1xxx_eth.h>
53 #include "au1000_eth.h"
55 #ifdef AU1000_ETH_DEBUG
56 static int au1000_debug
= 5;
58 static int au1000_debug
= 3;
61 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
65 #define DRV_NAME "au1000_eth"
66 #define DRV_VERSION "1.7"
67 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
68 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
70 MODULE_AUTHOR(DRV_AUTHOR
);
71 MODULE_DESCRIPTION(DRV_DESC
);
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_VERSION
);
75 /* AU1000 MAC registers and bits */
76 #define MAC_CONTROL 0x0
77 # define MAC_RX_ENABLE (1 << 2)
78 # define MAC_TX_ENABLE (1 << 3)
79 # define MAC_DEF_CHECK (1 << 5)
80 # define MAC_SET_BL(X) (((X) & 0x3) << 6)
81 # define MAC_AUTO_PAD (1 << 8)
82 # define MAC_DISABLE_RETRY (1 << 10)
83 # define MAC_DISABLE_BCAST (1 << 11)
84 # define MAC_LATE_COL (1 << 12)
85 # define MAC_HASH_MODE (1 << 13)
86 # define MAC_HASH_ONLY (1 << 15)
87 # define MAC_PASS_ALL (1 << 16)
88 # define MAC_INVERSE_FILTER (1 << 17)
89 # define MAC_PROMISCUOUS (1 << 18)
90 # define MAC_PASS_ALL_MULTI (1 << 19)
91 # define MAC_FULL_DUPLEX (1 << 20)
92 # define MAC_NORMAL_MODE 0
93 # define MAC_INT_LOOPBACK (1 << 21)
94 # define MAC_EXT_LOOPBACK (1 << 22)
95 # define MAC_DISABLE_RX_OWN (1 << 23)
96 # define MAC_BIG_ENDIAN (1 << 30)
97 # define MAC_RX_ALL (1 << 31)
98 #define MAC_ADDRESS_HIGH 0x4
99 #define MAC_ADDRESS_LOW 0x8
100 #define MAC_MCAST_HIGH 0xC
101 #define MAC_MCAST_LOW 0x10
102 #define MAC_MII_CNTRL 0x14
103 # define MAC_MII_BUSY (1 << 0)
104 # define MAC_MII_READ 0
105 # define MAC_MII_WRITE (1 << 1)
106 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
107 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
108 #define MAC_MII_DATA 0x18
109 #define MAC_FLOW_CNTRL 0x1C
110 # define MAC_FLOW_CNTRL_BUSY (1 << 0)
111 # define MAC_FLOW_CNTRL_ENABLE (1 << 1)
112 # define MAC_PASS_CONTROL (1 << 2)
113 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16)
114 #define MAC_VLAN1_TAG 0x20
115 #define MAC_VLAN2_TAG 0x24
117 /* Ethernet Controller Enable */
118 # define MAC_EN_CLOCK_ENABLE (1 << 0)
119 # define MAC_EN_RESET0 (1 << 1)
120 # define MAC_EN_TOSS (0 << 2)
121 # define MAC_EN_CACHEABLE (1 << 3)
122 # define MAC_EN_RESET1 (1 << 4)
123 # define MAC_EN_RESET2 (1 << 5)
124 # define MAC_DMA_RESET (1 << 6)
126 /* Ethernet Controller DMA Channels */
127 /* offsets from MAC_TX_RING_ADDR address */
128 #define MAC_TX_BUFF0_STATUS 0x0
129 # define TX_FRAME_ABORTED (1 << 0)
130 # define TX_JAB_TIMEOUT (1 << 1)
131 # define TX_NO_CARRIER (1 << 2)
132 # define TX_LOSS_CARRIER (1 << 3)
133 # define TX_EXC_DEF (1 << 4)
134 # define TX_LATE_COLL_ABORT (1 << 5)
135 # define TX_EXC_COLL (1 << 6)
136 # define TX_UNDERRUN (1 << 7)
137 # define TX_DEFERRED (1 << 8)
138 # define TX_LATE_COLL (1 << 9)
139 # define TX_COLL_CNT_MASK (0xF << 10)
140 # define TX_PKT_RETRY (1 << 31)
141 #define MAC_TX_BUFF0_ADDR 0x4
142 # define TX_DMA_ENABLE (1 << 0)
143 # define TX_T_DONE (1 << 1)
144 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
145 #define MAC_TX_BUFF0_LEN 0x8
146 #define MAC_TX_BUFF1_STATUS 0x10
147 #define MAC_TX_BUFF1_ADDR 0x14
148 #define MAC_TX_BUFF1_LEN 0x18
149 #define MAC_TX_BUFF2_STATUS 0x20
150 #define MAC_TX_BUFF2_ADDR 0x24
151 #define MAC_TX_BUFF2_LEN 0x28
152 #define MAC_TX_BUFF3_STATUS 0x30
153 #define MAC_TX_BUFF3_ADDR 0x34
154 #define MAC_TX_BUFF3_LEN 0x38
156 /* offsets from MAC_RX_RING_ADDR */
157 #define MAC_RX_BUFF0_STATUS 0x0
158 # define RX_FRAME_LEN_MASK 0x3fff
159 # define RX_WDOG_TIMER (1 << 14)
160 # define RX_RUNT (1 << 15)
161 # define RX_OVERLEN (1 << 16)
162 # define RX_COLL (1 << 17)
163 # define RX_ETHER (1 << 18)
164 # define RX_MII_ERROR (1 << 19)
165 # define RX_DRIBBLING (1 << 20)
166 # define RX_CRC_ERROR (1 << 21)
167 # define RX_VLAN1 (1 << 22)
168 # define RX_VLAN2 (1 << 23)
169 # define RX_LEN_ERROR (1 << 24)
170 # define RX_CNTRL_FRAME (1 << 25)
171 # define RX_U_CNTRL_FRAME (1 << 26)
172 # define RX_MCAST_FRAME (1 << 27)
173 # define RX_BCAST_FRAME (1 << 28)
174 # define RX_FILTER_FAIL (1 << 29)
175 # define RX_PACKET_FILTER (1 << 30)
176 # define RX_MISSED_FRAME (1 << 31)
178 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \
179 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
180 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
181 #define MAC_RX_BUFF0_ADDR 0x4
182 # define RX_DMA_ENABLE (1 << 0)
183 # define RX_T_DONE (1 << 1)
184 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
185 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0)
186 #define MAC_RX_BUFF1_STATUS 0x10
187 #define MAC_RX_BUFF1_ADDR 0x14
188 #define MAC_RX_BUFF2_STATUS 0x20
189 #define MAC_RX_BUFF2_ADDR 0x24
190 #define MAC_RX_BUFF3_STATUS 0x30
191 #define MAC_RX_BUFF3_ADDR 0x34
194 * Theory of operation
196 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
197 * There are four receive and four transmit descriptors. These
198 * descriptors are not in memory; rather, they are just a set of
199 * hardware registers.
201 * Since the Au1000 has a coherent data cache, the receive and
202 * transmit buffers are allocated from the KSEG0 segment. The
203 * hardware registers, however, are still mapped at KSEG1 to
204 * make sure there's no out-of-order writes, and that all writes
205 * complete immediately.
209 * board-specific configurations
211 * PHY detection algorithm
213 * If phy_static_config is undefined, the PHY setup is
216 * mii_probe() first searches the current MAC's MII bus for a PHY,
217 * selecting the first (or last, if phy_search_highest_addr is
218 * defined) PHY address not already claimed by another netdev.
220 * If nothing was found that way when searching for the 2nd ethernet
221 * controller's PHY and phy1_search_mac0 is defined, then
222 * the first MII bus is searched as well for an unclaimed PHY; this is
223 * needed in case of a dual-PHY accessible only through the MAC0's MII
226 * Finally, if no PHY is found, then the corresponding ethernet
227 * controller is not registered to the network subsystem.
230 /* autodetection defaults: phy1_search_mac0 */
234 * most boards PHY setup should be detectable properly with the
235 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
236 * you have a switch attached, or want to use the PHY's interrupt
237 * notification capabilities) you can provide a static PHY
240 * IRQs may only be set, if a PHY address was configured
241 * If a PHY address is given, also a bus id is required to be set
243 * ps: make sure the used irqs are configured properly in the board
247 static void au1000_enable_mac(struct net_device
*dev
, int force_reset
)
250 struct au1000_private
*aup
= netdev_priv(dev
);
252 spin_lock_irqsave(&aup
->lock
, flags
);
254 if (force_reset
|| (!aup
->mac_enabled
)) {
255 writel(MAC_EN_CLOCK_ENABLE
, aup
->enable
);
256 wmb(); /* drain writebuffer */
258 writel((MAC_EN_RESET0
| MAC_EN_RESET1
| MAC_EN_RESET2
259 | MAC_EN_CLOCK_ENABLE
), aup
->enable
);
260 wmb(); /* drain writebuffer */
263 aup
->mac_enabled
= 1;
266 spin_unlock_irqrestore(&aup
->lock
, flags
);
272 static int au1000_mdio_read(struct net_device
*dev
, int phy_addr
, int reg
)
274 struct au1000_private
*aup
= netdev_priv(dev
);
275 u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
276 u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
280 while (readl(mii_control_reg
) & MAC_MII_BUSY
) {
282 if (--timedout
== 0) {
283 netdev_err(dev
, "read_MII busy timeout!!\n");
288 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
289 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_READ
;
291 writel(mii_control
, mii_control_reg
);
294 while (readl(mii_control_reg
) & MAC_MII_BUSY
) {
296 if (--timedout
== 0) {
297 netdev_err(dev
, "mdio_read busy timeout!!\n");
301 return readl(mii_data_reg
);
304 static void au1000_mdio_write(struct net_device
*dev
, int phy_addr
,
307 struct au1000_private
*aup
= netdev_priv(dev
);
308 u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
309 u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
313 while (readl(mii_control_reg
) & MAC_MII_BUSY
) {
315 if (--timedout
== 0) {
316 netdev_err(dev
, "mdio_write busy timeout!!\n");
321 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
322 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_WRITE
;
324 writel(value
, mii_data_reg
);
325 writel(mii_control
, mii_control_reg
);
328 static int au1000_mdiobus_read(struct mii_bus
*bus
, int phy_addr
, int regnum
)
330 struct net_device
*const dev
= bus
->priv
;
332 /* make sure the MAC associated with this
335 au1000_enable_mac(dev
, 0);
337 return au1000_mdio_read(dev
, phy_addr
, regnum
);
340 static int au1000_mdiobus_write(struct mii_bus
*bus
, int phy_addr
, int regnum
,
343 struct net_device
*const dev
= bus
->priv
;
345 /* make sure the MAC associated with this
348 au1000_enable_mac(dev
, 0);
350 au1000_mdio_write(dev
, phy_addr
, regnum
, value
);
354 static int au1000_mdiobus_reset(struct mii_bus
*bus
)
356 struct net_device
*const dev
= bus
->priv
;
358 /* make sure the MAC associated with this
361 au1000_enable_mac(dev
, 0);
366 static void au1000_hard_stop(struct net_device
*dev
)
368 struct au1000_private
*aup
= netdev_priv(dev
);
371 netif_dbg(aup
, drv
, dev
, "hard stop\n");
373 reg
= readl(&aup
->mac
->control
);
374 reg
&= ~(MAC_RX_ENABLE
| MAC_TX_ENABLE
);
375 writel(reg
, &aup
->mac
->control
);
376 wmb(); /* drain writebuffer */
380 static void au1000_enable_rx_tx(struct net_device
*dev
)
382 struct au1000_private
*aup
= netdev_priv(dev
);
385 netif_dbg(aup
, hw
, dev
, "enable_rx_tx\n");
387 reg
= readl(&aup
->mac
->control
);
388 reg
|= (MAC_RX_ENABLE
| MAC_TX_ENABLE
);
389 writel(reg
, &aup
->mac
->control
);
390 wmb(); /* drain writebuffer */
395 au1000_adjust_link(struct net_device
*dev
)
397 struct au1000_private
*aup
= netdev_priv(dev
);
398 struct phy_device
*phydev
= dev
->phydev
;
402 int status_change
= 0;
406 spin_lock_irqsave(&aup
->lock
, flags
);
408 if (phydev
->link
&& (aup
->old_speed
!= phydev
->speed
)) {
411 switch (phydev
->speed
) {
416 netdev_warn(dev
, "Speed (%d) is not 10/100 ???\n",
421 aup
->old_speed
= phydev
->speed
;
426 if (phydev
->link
&& (aup
->old_duplex
!= phydev
->duplex
)) {
427 /* duplex mode changed */
429 /* switching duplex mode requires to disable rx and tx! */
430 au1000_hard_stop(dev
);
432 reg
= readl(&aup
->mac
->control
);
433 if (DUPLEX_FULL
== phydev
->duplex
) {
434 reg
|= MAC_FULL_DUPLEX
;
435 reg
&= ~MAC_DISABLE_RX_OWN
;
437 reg
&= ~MAC_FULL_DUPLEX
;
438 reg
|= MAC_DISABLE_RX_OWN
;
440 writel(reg
, &aup
->mac
->control
);
441 wmb(); /* drain writebuffer */
444 au1000_enable_rx_tx(dev
);
445 aup
->old_duplex
= phydev
->duplex
;
450 if (phydev
->link
!= aup
->old_link
) {
451 /* link state changed */
456 aup
->old_duplex
= -1;
459 aup
->old_link
= phydev
->link
;
463 spin_unlock_irqrestore(&aup
->lock
, flags
);
467 netdev_info(dev
, "link up (%d/%s)\n",
469 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
471 netdev_info(dev
, "link down\n");
475 static int au1000_mii_probe(struct net_device
*dev
)
477 struct au1000_private
*const aup
= netdev_priv(dev
);
478 struct phy_device
*phydev
= NULL
;
481 if (aup
->phy_static_config
) {
482 BUG_ON(aup
->mac_id
< 0 || aup
->mac_id
> 1);
485 phydev
= mdiobus_get_phy(aup
->mii_bus
, aup
->phy_addr
);
487 netdev_info(dev
, "using PHY-less setup\n");
491 /* find the first (lowest address) PHY
492 * on the current MAC's MII bus
494 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++)
495 if (mdiobus_get_phy(aup
->mii_bus
, phy_addr
)) {
496 phydev
= mdiobus_get_phy(aup
->mii_bus
, phy_addr
);
497 if (!aup
->phy_search_highest_addr
)
498 /* break out with first one found */
502 if (aup
->phy1_search_mac0
) {
503 /* try harder to find a PHY */
504 if (!phydev
&& (aup
->mac_id
== 1)) {
505 /* no PHY found, maybe we have a dual PHY? */
506 dev_info(&dev
->dev
, ": no PHY found on MAC1, "
507 "let's see if it's attached to MAC0...\n");
509 /* find the first (lowest address) non-attached
510 * PHY on the MAC0 MII bus
512 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++) {
513 struct phy_device
*const tmp_phydev
=
514 mdiobus_get_phy(aup
->mii_bus
,
517 if (aup
->mac_id
== 1)
524 /* already claimed by MAC0 */
525 if (tmp_phydev
->attached_dev
)
529 break; /* found it */
535 netdev_err(dev
, "no PHY found\n");
539 /* now we are supposed to have a proper phydev, to attach to... */
540 BUG_ON(phydev
->attached_dev
);
542 phydev
= phy_connect(dev
, phydev_name(phydev
),
543 &au1000_adjust_link
, PHY_INTERFACE_MODE_MII
);
545 if (IS_ERR(phydev
)) {
546 netdev_err(dev
, "Could not attach to PHY\n");
547 return PTR_ERR(phydev
);
550 phy_set_max_speed(phydev
, SPEED_100
);
554 aup
->old_duplex
= -1;
556 phy_attached_info(phydev
);
563 * Buffer allocation/deallocation routines. The buffer descriptor returned
564 * has the virtual and dma address of a buffer suitable for
565 * both, receive and transmit operations.
567 static struct db_dest
*au1000_GetFreeDB(struct au1000_private
*aup
)
573 aup
->pDBfree
= pDB
->pnext
;
578 void au1000_ReleaseDB(struct au1000_private
*aup
, struct db_dest
*pDB
)
580 struct db_dest
*pDBfree
= aup
->pDBfree
;
582 pDBfree
->pnext
= pDB
;
586 static void au1000_reset_mac_unlocked(struct net_device
*dev
)
588 struct au1000_private
*const aup
= netdev_priv(dev
);
591 au1000_hard_stop(dev
);
593 writel(MAC_EN_CLOCK_ENABLE
, aup
->enable
);
594 wmb(); /* drain writebuffer */
596 writel(0, aup
->enable
);
597 wmb(); /* drain writebuffer */
601 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
602 /* reset control bits */
603 aup
->rx_dma_ring
[i
]->buff_stat
&= ~0xf;
605 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
606 /* reset control bits */
607 aup
->tx_dma_ring
[i
]->buff_stat
&= ~0xf;
610 aup
->mac_enabled
= 0;
614 static void au1000_reset_mac(struct net_device
*dev
)
616 struct au1000_private
*const aup
= netdev_priv(dev
);
619 netif_dbg(aup
, hw
, dev
, "reset mac, aup %x\n",
622 spin_lock_irqsave(&aup
->lock
, flags
);
624 au1000_reset_mac_unlocked(dev
);
626 spin_unlock_irqrestore(&aup
->lock
, flags
);
630 * Setup the receive and transmit "rings". These pointers are the addresses
631 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
632 * these are not descriptors sitting in memory.
635 au1000_setup_hw_rings(struct au1000_private
*aup
, void __iomem
*tx_base
)
639 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
640 aup
->rx_dma_ring
[i
] = (struct rx_dma
*)
641 (tx_base
+ 0x100 + sizeof(struct rx_dma
) * i
);
643 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
644 aup
->tx_dma_ring
[i
] = (struct tx_dma
*)
645 (tx_base
+ sizeof(struct tx_dma
) * i
);
654 au1000_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
656 struct au1000_private
*aup
= netdev_priv(dev
);
658 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
659 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
660 snprintf(info
->bus_info
, sizeof(info
->bus_info
), "%s %d", DRV_NAME
,
664 static void au1000_set_msglevel(struct net_device
*dev
, u32 value
)
666 struct au1000_private
*aup
= netdev_priv(dev
);
667 aup
->msg_enable
= value
;
670 static u32
au1000_get_msglevel(struct net_device
*dev
)
672 struct au1000_private
*aup
= netdev_priv(dev
);
673 return aup
->msg_enable
;
676 static const struct ethtool_ops au1000_ethtool_ops
= {
677 .get_drvinfo
= au1000_get_drvinfo
,
678 .get_link
= ethtool_op_get_link
,
679 .get_msglevel
= au1000_get_msglevel
,
680 .set_msglevel
= au1000_set_msglevel
,
681 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
682 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
687 * Initialize the interface.
689 * When the device powers up, the clocks are disabled and the
690 * mac is in reset state. When the interface is closed, we
691 * do the same -- reset the device and disable the clocks to
692 * conserve power. Thus, whenever au1000_init() is called,
693 * the device should already be in reset state.
695 static int au1000_init(struct net_device
*dev
)
697 struct au1000_private
*aup
= netdev_priv(dev
);
702 netif_dbg(aup
, hw
, dev
, "au1000_init\n");
704 /* bring the device out of reset */
705 au1000_enable_mac(dev
, 1);
707 spin_lock_irqsave(&aup
->lock
, flags
);
709 writel(0, &aup
->mac
->control
);
710 aup
->tx_head
= (aup
->tx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
711 aup
->tx_tail
= aup
->tx_head
;
712 aup
->rx_head
= (aup
->rx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
714 writel(dev
->dev_addr
[5]<<8 | dev
->dev_addr
[4],
715 &aup
->mac
->mac_addr_high
);
716 writel(dev
->dev_addr
[3]<<24 | dev
->dev_addr
[2]<<16 |
717 dev
->dev_addr
[1]<<8 | dev
->dev_addr
[0],
718 &aup
->mac
->mac_addr_low
);
721 for (i
= 0; i
< NUM_RX_DMA
; i
++)
722 aup
->rx_dma_ring
[i
]->buff_stat
|= RX_DMA_ENABLE
;
724 wmb(); /* drain writebuffer */
726 control
= MAC_RX_ENABLE
| MAC_TX_ENABLE
;
727 #ifndef CONFIG_CPU_LITTLE_ENDIAN
728 control
|= MAC_BIG_ENDIAN
;
731 if (dev
->phydev
->link
&& (DUPLEX_FULL
== dev
->phydev
->duplex
))
732 control
|= MAC_FULL_DUPLEX
;
734 control
|= MAC_DISABLE_RX_OWN
;
735 } else { /* PHY-less op, assume full-duplex */
736 control
|= MAC_FULL_DUPLEX
;
739 writel(control
, &aup
->mac
->control
);
740 writel(0x8100, &aup
->mac
->vlan1_tag
); /* activate vlan support */
741 wmb(); /* drain writebuffer */
743 spin_unlock_irqrestore(&aup
->lock
, flags
);
747 static inline void au1000_update_rx_stats(struct net_device
*dev
, u32 status
)
749 struct net_device_stats
*ps
= &dev
->stats
;
752 if (status
& RX_MCAST_FRAME
)
755 if (status
& RX_ERROR
) {
757 if (status
& RX_MISSED_FRAME
)
758 ps
->rx_missed_errors
++;
759 if (status
& (RX_OVERLEN
| RX_RUNT
| RX_LEN_ERROR
))
760 ps
->rx_length_errors
++;
761 if (status
& RX_CRC_ERROR
)
763 if (status
& RX_COLL
)
766 ps
->rx_bytes
+= status
& RX_FRAME_LEN_MASK
;
771 * Au1000 receive routine.
773 static int au1000_rx(struct net_device
*dev
)
775 struct au1000_private
*aup
= netdev_priv(dev
);
778 u32 buff_stat
, status
;
782 netif_dbg(aup
, rx_status
, dev
, "au1000_rx head %d\n", aup
->rx_head
);
784 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
785 buff_stat
= prxd
->buff_stat
;
786 while (buff_stat
& RX_T_DONE
) {
787 status
= prxd
->status
;
788 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
789 au1000_update_rx_stats(dev
, status
);
790 if (!(status
& RX_ERROR
)) {
793 frmlen
= (status
& RX_FRAME_LEN_MASK
);
794 frmlen
-= 4; /* Remove FCS */
795 skb
= netdev_alloc_skb(dev
, frmlen
+ 2);
797 dev
->stats
.rx_dropped
++;
800 skb_reserve(skb
, 2); /* 16 byte IP header align */
801 skb_copy_to_linear_data(skb
,
802 (unsigned char *)pDB
->vaddr
, frmlen
);
803 skb_put(skb
, frmlen
);
804 skb
->protocol
= eth_type_trans(skb
, dev
);
805 netif_rx(skb
); /* pass the packet to upper layers */
807 if (au1000_debug
> 4) {
808 pr_err("rx_error(s):");
809 if (status
& RX_MISSED_FRAME
)
811 if (status
& RX_WDOG_TIMER
)
813 if (status
& RX_RUNT
)
815 if (status
& RX_OVERLEN
)
817 if (status
& RX_COLL
)
819 if (status
& RX_MII_ERROR
)
820 pr_cont(" mii error");
821 if (status
& RX_CRC_ERROR
)
822 pr_cont(" crc error");
823 if (status
& RX_LEN_ERROR
)
824 pr_cont(" len error");
825 if (status
& RX_U_CNTRL_FRAME
)
826 pr_cont(" u control frame");
830 prxd
->buff_stat
= (u32
)(pDB
->dma_addr
| RX_DMA_ENABLE
);
831 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_RX_DMA
- 1);
832 wmb(); /* drain writebuffer */
834 /* next descriptor */
835 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
836 buff_stat
= prxd
->buff_stat
;
841 static void au1000_update_tx_stats(struct net_device
*dev
, u32 status
)
843 struct net_device_stats
*ps
= &dev
->stats
;
845 if (status
& TX_FRAME_ABORTED
) {
846 if (!dev
->phydev
|| (DUPLEX_FULL
== dev
->phydev
->duplex
)) {
847 if (status
& (TX_JAB_TIMEOUT
| TX_UNDERRUN
)) {
848 /* any other tx errors are only valid
849 * in half duplex mode
852 ps
->tx_aborted_errors
++;
856 ps
->tx_aborted_errors
++;
857 if (status
& (TX_NO_CARRIER
| TX_LOSS_CARRIER
))
858 ps
->tx_carrier_errors
++;
864 * Called from the interrupt service routine to acknowledge
865 * the TX DONE bits. This is a must if the irq is setup as
868 static void au1000_tx_ack(struct net_device
*dev
)
870 struct au1000_private
*aup
= netdev_priv(dev
);
873 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
875 while (ptxd
->buff_stat
& TX_T_DONE
) {
876 au1000_update_tx_stats(dev
, ptxd
->status
);
877 ptxd
->buff_stat
&= ~TX_T_DONE
;
879 wmb(); /* drain writebuffer */
881 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_TX_DMA
- 1);
882 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
886 netif_wake_queue(dev
);
892 * Au1000 interrupt service routine.
894 static irqreturn_t
au1000_interrupt(int irq
, void *dev_id
)
896 struct net_device
*dev
= dev_id
;
898 /* Handle RX interrupts first to minimize chance of overrun */
902 return IRQ_RETVAL(1);
905 static int au1000_open(struct net_device
*dev
)
908 struct au1000_private
*aup
= netdev_priv(dev
);
910 netif_dbg(aup
, drv
, dev
, "open: dev=%p\n", dev
);
912 retval
= request_irq(dev
->irq
, au1000_interrupt
, 0,
915 netdev_err(dev
, "unable to get IRQ %d\n", dev
->irq
);
919 retval
= au1000_init(dev
);
921 netdev_err(dev
, "error in au1000_init\n");
922 free_irq(dev
->irq
, dev
);
927 phy_start(dev
->phydev
);
929 netif_start_queue(dev
);
931 netif_dbg(aup
, drv
, dev
, "open: Initialization done.\n");
936 static int au1000_close(struct net_device
*dev
)
939 struct au1000_private
*const aup
= netdev_priv(dev
);
941 netif_dbg(aup
, drv
, dev
, "close: dev=%p\n", dev
);
944 phy_stop(dev
->phydev
);
946 spin_lock_irqsave(&aup
->lock
, flags
);
948 au1000_reset_mac_unlocked(dev
);
950 /* stop the device */
951 netif_stop_queue(dev
);
953 /* disable the interrupt */
954 free_irq(dev
->irq
, dev
);
955 spin_unlock_irqrestore(&aup
->lock
, flags
);
961 * Au1000 transmit routine.
963 static netdev_tx_t
au1000_tx(struct sk_buff
*skb
, struct net_device
*dev
)
965 struct au1000_private
*aup
= netdev_priv(dev
);
966 struct net_device_stats
*ps
= &dev
->stats
;
972 netif_dbg(aup
, tx_queued
, dev
, "tx: aup %x len=%d, data=%p, head %d\n",
973 (unsigned)aup
, skb
->len
,
974 skb
->data
, aup
->tx_head
);
976 ptxd
= aup
->tx_dma_ring
[aup
->tx_head
];
977 buff_stat
= ptxd
->buff_stat
;
978 if (buff_stat
& TX_DMA_ENABLE
) {
979 /* We've wrapped around and the transmitter is still busy */
980 netif_stop_queue(dev
);
982 return NETDEV_TX_BUSY
;
983 } else if (buff_stat
& TX_T_DONE
) {
984 au1000_update_tx_stats(dev
, ptxd
->status
);
990 netif_wake_queue(dev
);
993 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
994 skb_copy_from_linear_data(skb
, (void *)pDB
->vaddr
, skb
->len
);
995 if (skb
->len
< ETH_ZLEN
) {
996 for (i
= skb
->len
; i
< ETH_ZLEN
; i
++)
997 ((char *)pDB
->vaddr
)[i
] = 0;
999 ptxd
->len
= ETH_ZLEN
;
1001 ptxd
->len
= skb
->len
;
1004 ps
->tx_bytes
+= ptxd
->len
;
1006 ptxd
->buff_stat
= pDB
->dma_addr
| TX_DMA_ENABLE
;
1007 wmb(); /* drain writebuffer */
1009 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_TX_DMA
- 1);
1010 return NETDEV_TX_OK
;
1014 * The Tx ring has been full longer than the watchdog timeout
1015 * value. The transmitter must be hung?
1017 static void au1000_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
1019 netdev_err(dev
, "au1000_tx_timeout: dev=%p\n", dev
);
1020 au1000_reset_mac(dev
);
1022 netif_trans_update(dev
); /* prevent tx timeout */
1023 netif_wake_queue(dev
);
1026 static void au1000_multicast_list(struct net_device
*dev
)
1028 struct au1000_private
*aup
= netdev_priv(dev
);
1031 netif_dbg(aup
, drv
, dev
, "%s: flags=%x\n", __func__
, dev
->flags
);
1032 reg
= readl(&aup
->mac
->control
);
1033 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1034 reg
|= MAC_PROMISCUOUS
;
1035 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1036 netdev_mc_count(dev
) > MULTICAST_FILTER_LIMIT
) {
1037 reg
|= MAC_PASS_ALL_MULTI
;
1038 reg
&= ~MAC_PROMISCUOUS
;
1039 netdev_info(dev
, "Pass all multicast\n");
1041 struct netdev_hw_addr
*ha
;
1042 u32 mc_filter
[2]; /* Multicast hash filter */
1044 mc_filter
[1] = mc_filter
[0] = 0;
1045 netdev_for_each_mc_addr(ha
, dev
)
1046 set_bit(ether_crc(ETH_ALEN
, ha
->addr
)>>26,
1048 writel(mc_filter
[1], &aup
->mac
->multi_hash_high
);
1049 writel(mc_filter
[0], &aup
->mac
->multi_hash_low
);
1050 reg
&= ~MAC_PROMISCUOUS
;
1051 reg
|= MAC_HASH_MODE
;
1053 writel(reg
, &aup
->mac
->control
);
1056 static const struct net_device_ops au1000_netdev_ops
= {
1057 .ndo_open
= au1000_open
,
1058 .ndo_stop
= au1000_close
,
1059 .ndo_start_xmit
= au1000_tx
,
1060 .ndo_set_rx_mode
= au1000_multicast_list
,
1061 .ndo_do_ioctl
= phy_do_ioctl_running
,
1062 .ndo_tx_timeout
= au1000_tx_timeout
,
1063 .ndo_set_mac_address
= eth_mac_addr
,
1064 .ndo_validate_addr
= eth_validate_addr
,
1067 static int au1000_probe(struct platform_device
*pdev
)
1069 struct au1000_private
*aup
= NULL
;
1070 struct au1000_eth_platform_data
*pd
;
1071 struct net_device
*dev
= NULL
;
1072 struct db_dest
*pDB
, *pDBfree
;
1073 int irq
, i
, err
= 0;
1074 struct resource
*base
, *macen
, *macdma
;
1076 base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1078 dev_err(&pdev
->dev
, "failed to retrieve base register\n");
1083 macen
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1085 dev_err(&pdev
->dev
, "failed to retrieve MAC Enable register\n");
1090 irq
= platform_get_irq(pdev
, 0);
1096 macdma
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
1098 dev_err(&pdev
->dev
, "failed to retrieve MACDMA registers\n");
1103 if (!request_mem_region(base
->start
, resource_size(base
),
1105 dev_err(&pdev
->dev
, "failed to request memory region for base registers\n");
1110 if (!request_mem_region(macen
->start
, resource_size(macen
),
1112 dev_err(&pdev
->dev
, "failed to request memory region for MAC enable register\n");
1117 if (!request_mem_region(macdma
->start
, resource_size(macdma
),
1119 dev_err(&pdev
->dev
, "failed to request MACDMA memory region\n");
1124 dev
= alloc_etherdev(sizeof(struct au1000_private
));
1130 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1131 platform_set_drvdata(pdev
, dev
);
1132 aup
= netdev_priv(dev
);
1134 spin_lock_init(&aup
->lock
);
1135 aup
->msg_enable
= (au1000_debug
< 4 ?
1136 AU1000_DEF_MSG_ENABLE
: au1000_debug
);
1138 /* Allocate the data buffers
1139 * Snooping works fine with eth on all au1xxx
1141 aup
->vaddr
= (u32
)dma_alloc_attrs(&pdev
->dev
, MAX_BUF_SIZE
*
1142 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1144 DMA_ATTR_NON_CONSISTENT
);
1146 dev_err(&pdev
->dev
, "failed to allocate data buffers\n");
1151 /* aup->mac is the base address of the MAC's registers */
1152 aup
->mac
= (struct mac_reg
*)
1153 ioremap(base
->start
, resource_size(base
));
1155 dev_err(&pdev
->dev
, "failed to ioremap MAC registers\n");
1160 /* Setup some variables for quick register address access */
1161 aup
->enable
= (u32
*)ioremap(macen
->start
,
1162 resource_size(macen
));
1164 dev_err(&pdev
->dev
, "failed to ioremap MAC enable register\n");
1168 aup
->mac_id
= pdev
->id
;
1170 aup
->macdma
= ioremap(macdma
->start
, resource_size(macdma
));
1172 dev_err(&pdev
->dev
, "failed to ioremap MACDMA registers\n");
1177 au1000_setup_hw_rings(aup
, aup
->macdma
);
1179 writel(0, aup
->enable
);
1180 aup
->mac_enabled
= 0;
1182 pd
= dev_get_platdata(&pdev
->dev
);
1184 dev_info(&pdev
->dev
, "no platform_data passed,"
1185 " PHY search on MAC0\n");
1186 aup
->phy1_search_mac0
= 1;
1188 if (is_valid_ether_addr(pd
->mac
)) {
1189 memcpy(dev
->dev_addr
, pd
->mac
, ETH_ALEN
);
1191 /* Set a random MAC since no valid provided by platform_data. */
1192 eth_hw_addr_random(dev
);
1195 aup
->phy_static_config
= pd
->phy_static_config
;
1196 aup
->phy_search_highest_addr
= pd
->phy_search_highest_addr
;
1197 aup
->phy1_search_mac0
= pd
->phy1_search_mac0
;
1198 aup
->phy_addr
= pd
->phy_addr
;
1199 aup
->phy_busid
= pd
->phy_busid
;
1200 aup
->phy_irq
= pd
->phy_irq
;
1203 if (aup
->phy_busid
> 0) {
1204 dev_err(&pdev
->dev
, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1206 goto err_mdiobus_alloc
;
1209 aup
->mii_bus
= mdiobus_alloc();
1210 if (aup
->mii_bus
== NULL
) {
1211 dev_err(&pdev
->dev
, "failed to allocate mdiobus structure\n");
1213 goto err_mdiobus_alloc
;
1216 aup
->mii_bus
->priv
= dev
;
1217 aup
->mii_bus
->read
= au1000_mdiobus_read
;
1218 aup
->mii_bus
->write
= au1000_mdiobus_write
;
1219 aup
->mii_bus
->reset
= au1000_mdiobus_reset
;
1220 aup
->mii_bus
->name
= "au1000_eth_mii";
1221 snprintf(aup
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
1222 pdev
->name
, aup
->mac_id
);
1224 /* if known, set corresponding PHY IRQs */
1225 if (aup
->phy_static_config
)
1226 if (aup
->phy_irq
&& aup
->phy_busid
== aup
->mac_id
)
1227 aup
->mii_bus
->irq
[aup
->phy_addr
] = aup
->phy_irq
;
1229 err
= mdiobus_register(aup
->mii_bus
);
1231 dev_err(&pdev
->dev
, "failed to register MDIO bus\n");
1232 goto err_mdiobus_reg
;
1235 err
= au1000_mii_probe(dev
);
1240 /* setup the data buffer descriptors and attach a buffer to each one */
1242 for (i
= 0; i
< (NUM_TX_BUFFS
+NUM_RX_BUFFS
); i
++) {
1243 pDB
->pnext
= pDBfree
;
1245 pDB
->vaddr
= (u32
*)((unsigned)aup
->vaddr
+ MAX_BUF_SIZE
*i
);
1246 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
1249 aup
->pDBfree
= pDBfree
;
1252 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1253 pDB
= au1000_GetFreeDB(aup
);
1257 aup
->rx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1258 aup
->rx_db_inuse
[i
] = pDB
;
1262 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1263 pDB
= au1000_GetFreeDB(aup
);
1267 aup
->tx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1268 aup
->tx_dma_ring
[i
]->len
= 0;
1269 aup
->tx_db_inuse
[i
] = pDB
;
1272 dev
->base_addr
= base
->start
;
1274 dev
->netdev_ops
= &au1000_netdev_ops
;
1275 dev
->ethtool_ops
= &au1000_ethtool_ops
;
1276 dev
->watchdog_timeo
= ETH_TX_TIMEOUT
;
1279 * The boot code uses the ethernet controller, so reset it to start
1280 * fresh. au1000_init() expects that the device is in reset state.
1282 au1000_reset_mac(dev
);
1284 err
= register_netdev(dev
);
1286 netdev_err(dev
, "Cannot register net device, aborting.\n");
1290 netdev_info(dev
, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1291 (unsigned long)base
->start
, irq
);
1293 pr_info_once("%s version %s %s\n", DRV_NAME
, DRV_VERSION
, DRV_AUTHOR
);
1298 if (aup
->mii_bus
!= NULL
)
1299 mdiobus_unregister(aup
->mii_bus
);
1301 /* here we should have a valid dev plus aup-> register addresses
1302 * so we can reset the mac properly.
1304 au1000_reset_mac(dev
);
1306 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1307 if (aup
->rx_db_inuse
[i
])
1308 au1000_ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
1310 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1311 if (aup
->tx_db_inuse
[i
])
1312 au1000_ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
1315 mdiobus_free(aup
->mii_bus
);
1317 iounmap(aup
->macdma
);
1319 iounmap(aup
->enable
);
1323 dma_free_attrs(&pdev
->dev
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1324 (void *)aup
->vaddr
, aup
->dma_addr
,
1325 DMA_ATTR_NON_CONSISTENT
);
1329 release_mem_region(macdma
->start
, resource_size(macdma
));
1331 release_mem_region(macen
->start
, resource_size(macen
));
1333 release_mem_region(base
->start
, resource_size(base
));
1338 static int au1000_remove(struct platform_device
*pdev
)
1340 struct net_device
*dev
= platform_get_drvdata(pdev
);
1341 struct au1000_private
*aup
= netdev_priv(dev
);
1343 struct resource
*base
, *macen
;
1345 unregister_netdev(dev
);
1346 mdiobus_unregister(aup
->mii_bus
);
1347 mdiobus_free(aup
->mii_bus
);
1349 for (i
= 0; i
< NUM_RX_DMA
; i
++)
1350 if (aup
->rx_db_inuse
[i
])
1351 au1000_ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
1353 for (i
= 0; i
< NUM_TX_DMA
; i
++)
1354 if (aup
->tx_db_inuse
[i
])
1355 au1000_ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
1357 dma_free_attrs(&pdev
->dev
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1358 (void *)aup
->vaddr
, aup
->dma_addr
,
1359 DMA_ATTR_NON_CONSISTENT
);
1361 iounmap(aup
->macdma
);
1363 iounmap(aup
->enable
);
1365 base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
1366 release_mem_region(base
->start
, resource_size(base
));
1368 base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1369 release_mem_region(base
->start
, resource_size(base
));
1371 macen
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1372 release_mem_region(macen
->start
, resource_size(macen
));
1379 static struct platform_driver au1000_eth_driver
= {
1380 .probe
= au1000_probe
,
1381 .remove
= au1000_remove
,
1383 .name
= "au1000-eth",
1387 module_platform_driver(au1000_eth_driver
);
1389 MODULE_ALIAS("platform:au1000-eth");