1 /* bnx2x_cmn.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
26 #include <linux/crash_dump.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
);
37 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
);
38 static int bnx2x_poll(struct napi_struct
*napi
, int budget
);
40 static void bnx2x_add_all_napi_cnic(struct bnx2x
*bp
)
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp
, i
) {
46 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
47 bnx2x_poll
, NAPI_POLL_WEIGHT
);
51 static void bnx2x_add_all_napi(struct bnx2x
*bp
)
55 /* Add NAPI objects */
56 for_each_eth_queue(bp
, i
) {
57 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
58 bnx2x_poll
, NAPI_POLL_WEIGHT
);
62 static int bnx2x_calc_num_queues(struct bnx2x
*bp
)
64 int nq
= bnx2x_num_queues
? : netif_get_num_default_rss_queues();
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
70 nq
= clamp(nq
, 1, BNX2X_MAX_QUEUES(bp
));
75 * bnx2x_move_fp - move content of the fastpath structure.
78 * @from: source FP index
79 * @to: destination FP index
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
87 static inline void bnx2x_move_fp(struct bnx2x
*bp
, int from
, int to
)
89 struct bnx2x_fastpath
*from_fp
= &bp
->fp
[from
];
90 struct bnx2x_fastpath
*to_fp
= &bp
->fp
[to
];
91 struct bnx2x_sp_objs
*from_sp_objs
= &bp
->sp_objs
[from
];
92 struct bnx2x_sp_objs
*to_sp_objs
= &bp
->sp_objs
[to
];
93 struct bnx2x_fp_stats
*from_fp_stats
= &bp
->fp_stats
[from
];
94 struct bnx2x_fp_stats
*to_fp_stats
= &bp
->fp_stats
[to
];
95 int old_max_eth_txqs
, new_max_eth_txqs
;
96 int old_txdata_index
= 0, new_txdata_index
= 0;
97 struct bnx2x_agg_info
*old_tpa_info
= to_fp
->tpa_info
;
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp
->napi
= to_fp
->napi
;
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp
, from_fp
, sizeof(*to_fp
));
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
109 to_fp
->tpa_info
= old_tpa_info
;
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs
, from_sp_objs
, sizeof(*to_sp_objs
));
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats
, from_fp_stats
, sizeof(*to_fp_stats
));
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
122 old_max_eth_txqs
= BNX2X_NUM_ETH_QUEUES(bp
) * (bp
)->max_cos
;
123 new_max_eth_txqs
= (BNX2X_NUM_ETH_QUEUES(bp
) - from
+ to
) *
125 if (from
== FCOE_IDX(bp
)) {
126 old_txdata_index
= old_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
127 new_txdata_index
= new_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
130 memcpy(&bp
->bnx2x_txq
[new_txdata_index
],
131 &bp
->bnx2x_txq
[old_txdata_index
],
132 sizeof(struct bnx2x_fp_txdata
));
133 to_fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[new_txdata_index
];
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
144 void bnx2x_fill_fw_str(struct bnx2x
*bp
, char *buf
, size_t buf_len
)
147 u8 phy_fw_ver
[PHY_FW_VER_LEN
];
149 phy_fw_ver
[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp
->link_params
,
151 phy_fw_ver
, PHY_FW_VER_LEN
);
152 strlcpy(buf
, bp
->fw_ver
, buf_len
);
153 snprintf(buf
+ strlen(bp
->fw_ver
), 32 - strlen(bp
->fw_ver
),
155 (bp
->common
.bc_ver
& 0xff0000) >> 16,
156 (bp
->common
.bc_ver
& 0xff00) >> 8,
157 (bp
->common
.bc_ver
& 0xff),
158 ((phy_fw_ver
[0] != '\0') ? " phy " : ""), phy_fw_ver
);
160 bnx2x_vf_fill_fw_str(bp
, buf
, buf_len
);
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
168 * @delta: number of eth queues which were not allocated
170 static void bnx2x_shrink_eth_fp(struct bnx2x
*bp
, int delta
)
172 int i
, cos
, old_eth_num
= BNX2X_NUM_ETH_QUEUES(bp
);
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
177 for (cos
= 1; cos
< bp
->max_cos
; cos
++) {
178 for (i
= 0; i
< old_eth_num
- delta
; i
++) {
179 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
180 int new_idx
= cos
* (old_eth_num
- delta
) + i
;
182 memcpy(&bp
->bnx2x_txq
[new_idx
], fp
->txdata_ptr
[cos
],
183 sizeof(struct bnx2x_fp_txdata
));
184 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[new_idx
];
189 int bnx2x_load_count
[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
194 static u16
bnx2x_free_tx_pkt(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
,
195 u16 idx
, unsigned int *pkts_compl
,
196 unsigned int *bytes_compl
)
198 struct sw_tx_bd
*tx_buf
= &txdata
->tx_buf_ring
[idx
];
199 struct eth_tx_start_bd
*tx_start_bd
;
200 struct eth_tx_bd
*tx_data_bd
;
201 struct sk_buff
*skb
= tx_buf
->skb
;
202 u16 bd_idx
= TX_BD(tx_buf
->first_bd
), new_cons
;
204 u16 split_bd_len
= 0;
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
209 DP(NETIF_MSG_TX_DONE
, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata
->txq_index
, idx
, tx_buf
, skb
);
212 tx_start_bd
= &txdata
->tx_desc_ring
[bd_idx
].start_bd
;
214 nbd
= le16_to_cpu(tx_start_bd
->nbd
) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd
- 1) > (MAX_SKB_FRAGS
+ 2)) {
217 BNX2X_ERR("BAD nbd!\n");
221 new_cons
= nbd
+ tx_buf
->first_bd
;
223 /* Get the next bd */
224 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
226 /* Skip a parse bd... */
228 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
230 if (tx_buf
->flags
& BNX2X_HAS_SECOND_PBD
) {
231 /* Skip second parse bd... */
233 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf
->flags
& BNX2X_TSO_SPLIT_BD
) {
238 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
239 split_bd_len
= BD_UNMAP_LEN(tx_data_bd
);
241 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
245 dma_unmap_single(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_start_bd
),
246 BD_UNMAP_LEN(tx_start_bd
) + split_bd_len
,
252 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
253 dma_unmap_page(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_data_bd
),
254 BD_UNMAP_LEN(tx_data_bd
), DMA_TO_DEVICE
);
256 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
263 (*bytes_compl
) += skb
->len
;
264 dev_kfree_skb_any(skb
);
267 tx_buf
->first_bd
= 0;
273 int bnx2x_tx_int(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
)
275 struct netdev_queue
*txq
;
276 u16 hw_cons
, sw_cons
, bd_cons
= txdata
->tx_bd_cons
;
277 unsigned int pkts_compl
= 0, bytes_compl
= 0;
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp
->panic
))
284 txq
= netdev_get_tx_queue(bp
->dev
, txdata
->txq_index
);
285 hw_cons
= le16_to_cpu(*txdata
->tx_cons_sb
);
286 sw_cons
= txdata
->tx_pkt_cons
;
288 /* Ensure subsequent loads occur after hw_cons */
291 while (sw_cons
!= hw_cons
) {
294 pkt_cons
= TX_BD(sw_cons
);
296 DP(NETIF_MSG_TX_DONE
,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata
->txq_index
, hw_cons
, sw_cons
, pkt_cons
);
300 bd_cons
= bnx2x_free_tx_pkt(bp
, txdata
, pkt_cons
,
301 &pkts_compl
, &bytes_compl
);
306 netdev_tx_completed_queue(txq
, pkts_compl
, bytes_compl
);
308 txdata
->tx_pkt_cons
= sw_cons
;
309 txdata
->tx_bd_cons
= bd_cons
;
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
322 if (unlikely(netif_tx_queue_stopped(txq
))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
333 __netif_tx_lock(txq
, smp_processor_id());
335 if ((netif_tx_queue_stopped(txq
)) &&
336 (bp
->state
== BNX2X_STATE_OPEN
) &&
337 (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
))
338 netif_tx_wake_queue(txq
);
340 __netif_tx_unlock(txq
);
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath
*fp
,
348 u16 last_max
= fp
->last_max_sge
;
350 if (SUB_S16(idx
, last_max
) > 0)
351 fp
->last_max_sge
= idx
;
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath
*fp
,
356 struct eth_end_agg_rx_cqe
*cqe
)
358 struct bnx2x
*bp
= fp
->bp
;
359 u16 last_max
, last_elem
, first_elem
;
366 /* First mark all used pages */
367 for (i
= 0; i
< sge_len
; i
++)
368 BIT_VEC64_CLEAR_BIT(fp
->sge_mask
,
369 RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[i
])));
371 DP(NETIF_MSG_RX_STATUS
, "fp_cqe->sgl[%d] = %d\n",
372 sge_len
- 1, le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp
->sge_mask
));
376 bnx2x_update_last_max_sge(fp
,
377 le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
379 last_max
= RX_SGE(fp
->last_max_sge
);
380 last_elem
= last_max
>> BIT_VEC64_ELEM_SHIFT
;
381 first_elem
= RX_SGE(fp
->rx_sge_prod
) >> BIT_VEC64_ELEM_SHIFT
;
383 /* If ring is not full */
384 if (last_elem
+ 1 != first_elem
)
387 /* Now update the prod */
388 for (i
= first_elem
; i
!= last_elem
; i
= NEXT_SGE_MASK_ELEM(i
)) {
389 if (likely(fp
->sge_mask
[i
]))
392 fp
->sge_mask
[i
] = BIT_VEC64_ELEM_ONE_MASK
;
393 delta
+= BIT_VEC64_ELEM_SZ
;
397 fp
->rx_sge_prod
+= delta
;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp
);
402 DP(NETIF_MSG_RX_STATUS
,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp
->last_max_sge
, fp
->rx_sge_prod
);
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
410 static u32
bnx2x_get_rxhash(const struct bnx2x
*bp
,
411 const struct eth_fast_path_rx_cqe
*cqe
,
412 enum pkt_hash_types
*rxhash_type
)
414 /* Get Toeplitz hash from CQE */
415 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
416 (cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG
)) {
417 enum eth_rss_hash_type htype
;
419 htype
= cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE
;
420 *rxhash_type
= ((htype
== TCP_IPV4_HASH_TYPE
) ||
421 (htype
== TCP_IPV6_HASH_TYPE
)) ?
422 PKT_HASH_TYPE_L4
: PKT_HASH_TYPE_L3
;
424 return le32_to_cpu(cqe
->rss_hash_result
);
426 *rxhash_type
= PKT_HASH_TYPE_NONE
;
430 static void bnx2x_tpa_start(struct bnx2x_fastpath
*fp
, u16 queue
,
432 struct eth_fast_path_rx_cqe
*cqe
)
434 struct bnx2x
*bp
= fp
->bp
;
435 struct sw_rx_bd
*cons_rx_buf
= &fp
->rx_buf_ring
[cons
];
436 struct sw_rx_bd
*prod_rx_buf
= &fp
->rx_buf_ring
[prod
];
437 struct eth_rx_bd
*prod_bd
= &fp
->rx_desc_ring
[prod
];
439 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[queue
];
440 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
442 /* print error if current state != stop */
443 if (tpa_info
->tpa_state
!= BNX2X_TPA_STOP
)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue
);
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping
= dma_map_single(&bp
->pdev
->dev
,
448 first_buf
->data
+ NET_SKB_PAD
,
449 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
456 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp
, cons
, prod
);
459 tpa_info
->tpa_state
= BNX2X_TPA_ERROR
;
463 /* move empty data from pool to prod */
464 prod_rx_buf
->data
= first_buf
->data
;
465 dma_unmap_addr_set(prod_rx_buf
, mapping
, mapping
);
466 /* point prod_bd to new data */
467 prod_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
468 prod_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf
= *cons_rx_buf
;
473 /* mark bin state as START */
474 tpa_info
->parsing_flags
=
475 le16_to_cpu(cqe
->pars_flags
.flags
);
476 tpa_info
->vlan_tag
= le16_to_cpu(cqe
->vlan_tag
);
477 tpa_info
->tpa_state
= BNX2X_TPA_START
;
478 tpa_info
->len_on_bd
= le16_to_cpu(cqe
->len_on_bd
);
479 tpa_info
->placement_offset
= cqe
->placement_offset
;
480 tpa_info
->rxhash
= bnx2x_get_rxhash(bp
, cqe
, &tpa_info
->rxhash_type
);
481 if (fp
->mode
== TPA_MODE_GRO
) {
482 u16 gro_size
= le16_to_cpu(cqe
->pkt_len_or_gro_seg_len
);
483 tpa_info
->full_page
= SGE_PAGES
/ gro_size
* gro_size
;
484 tpa_info
->gro_size
= gro_size
;
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp
->tpa_queue_used
|= (1 << queue
);
489 DP(NETIF_MSG_RX_STATUS
, "fp->tpa_queue_used = 0x%llx\n",
494 /* Timestamp option length allowed for TPA aggregation:
496 * nop nop kind length echo val
498 #define TPA_TSTAMP_OPT_LEN 12
500 * bnx2x_set_gro_params - compute GRO values
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
506 * @pkt_len: length of all segments
508 * Approximate value of the MSS for this aggregation calculated using
509 * the first packet of it.
510 * Compute number of aggregated segments, and gso_type.
512 static void bnx2x_set_gro_params(struct sk_buff
*skb
, u16 parsing_flags
,
513 u16 len_on_bd
, unsigned int pkt_len
,
514 u16 num_of_coalesced_segs
)
516 /* TPA aggregation won't have either IP options or TCP options
517 * other than timestamp or IPv6 extension headers.
519 u16 hdrs_len
= ETH_HLEN
+ sizeof(struct tcphdr
);
521 if (GET_FLAG(parsing_flags
, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL
) ==
522 PRS_FLAG_OVERETH_IPV6
) {
523 hdrs_len
+= sizeof(struct ipv6hdr
);
524 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV6
;
526 hdrs_len
+= sizeof(struct iphdr
);
527 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
530 /* Check if there was a TCP timestamp, if there is it's will
531 * always be 12 bytes length: nop nop kind length echo val.
533 * Otherwise FW would close the aggregation.
535 if (parsing_flags
& PARSING_FLAGS_TIME_STAMP_EXIST_FLAG
)
536 hdrs_len
+= TPA_TSTAMP_OPT_LEN
;
538 skb_shinfo(skb
)->gso_size
= len_on_bd
- hdrs_len
;
540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 * to skb_shinfo(skb)->gso_segs
543 NAPI_GRO_CB(skb
)->count
= num_of_coalesced_segs
;
546 static int bnx2x_alloc_rx_sge(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
547 u16 index
, gfp_t gfp_mask
)
549 struct sw_rx_page
*sw_buf
= &fp
->rx_page_ring
[index
];
550 struct eth_rx_sge
*sge
= &fp
->rx_sge_ring
[index
];
551 struct bnx2x_alloc_pool
*pool
= &fp
->page_pool
;
555 pool
->page
= alloc_pages(gfp_mask
, PAGES_PER_SGE_SHIFT
);
556 if (unlikely(!pool
->page
))
562 mapping
= dma_map_page(&bp
->pdev
->dev
, pool
->page
,
563 pool
->offset
, SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
564 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
565 BNX2X_ERR("Can't map sge\n");
569 sw_buf
->page
= pool
->page
;
570 sw_buf
->offset
= pool
->offset
;
572 dma_unmap_addr_set(sw_buf
, mapping
, mapping
);
574 sge
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
575 sge
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
577 pool
->offset
+= SGE_PAGE_SIZE
;
578 if (PAGE_SIZE
- pool
->offset
>= SGE_PAGE_SIZE
)
579 get_page(pool
->page
);
585 static int bnx2x_fill_frag_skb(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
586 struct bnx2x_agg_info
*tpa_info
,
589 struct eth_end_agg_rx_cqe
*cqe
,
592 struct sw_rx_page
*rx_pg
, old_rx_pg
;
593 u32 i
, frag_len
, frag_size
;
594 int err
, j
, frag_id
= 0;
595 u16 len_on_bd
= tpa_info
->len_on_bd
;
596 u16 full_page
= 0, gro_size
= 0;
598 frag_size
= le16_to_cpu(cqe
->pkt_len
) - len_on_bd
;
600 if (fp
->mode
== TPA_MODE_GRO
) {
601 gro_size
= tpa_info
->gro_size
;
602 full_page
= tpa_info
->full_page
;
605 /* This is needed in order to enable forwarding support */
607 bnx2x_set_gro_params(skb
, tpa_info
->parsing_flags
, len_on_bd
,
608 le16_to_cpu(cqe
->pkt_len
),
609 le16_to_cpu(cqe
->num_of_coalesced_segs
));
611 #ifdef BNX2X_STOP_ON_ERROR
612 if (pages
> min_t(u32
, 8, MAX_SKB_FRAGS
) * SGE_PAGES
) {
613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe
->pkt_len
);
621 /* Run through the SGL and compose the fragmented skb */
622 for (i
= 0, j
= 0; i
< pages
; i
+= PAGES_PER_SGE
, j
++) {
623 u16 sge_idx
= RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[j
]));
625 /* FW gives the indices of the SGE as if the ring is an array
626 (meaning that "next" element will consume 2 indices) */
627 if (fp
->mode
== TPA_MODE_GRO
)
628 frag_len
= min_t(u32
, frag_size
, (u32
)full_page
);
630 frag_len
= min_t(u32
, frag_size
, (u32
)SGE_PAGES
);
632 rx_pg
= &fp
->rx_page_ring
[sge_idx
];
635 /* If we fail to allocate a substitute page, we simply stop
636 where we are and drop the whole packet */
637 err
= bnx2x_alloc_rx_sge(bp
, fp
, sge_idx
, GFP_ATOMIC
);
639 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
643 dma_unmap_page(&bp
->pdev
->dev
,
644 dma_unmap_addr(&old_rx_pg
, mapping
),
645 SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
646 /* Add one frag and update the appropriate fields in the skb */
647 if (fp
->mode
== TPA_MODE_LRO
)
648 skb_fill_page_desc(skb
, j
, old_rx_pg
.page
,
649 old_rx_pg
.offset
, frag_len
);
653 for (rem
= frag_len
; rem
> 0; rem
-= gro_size
) {
654 int len
= rem
> gro_size
? gro_size
: rem
;
655 skb_fill_page_desc(skb
, frag_id
++,
657 old_rx_pg
.offset
+ offset
,
660 get_page(old_rx_pg
.page
);
665 skb
->data_len
+= frag_len
;
666 skb
->truesize
+= SGE_PAGES
;
667 skb
->len
+= frag_len
;
669 frag_size
-= frag_len
;
675 static void bnx2x_frag_free(const struct bnx2x_fastpath
*fp
, void *data
)
677 if (fp
->rx_frag_size
)
683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath
*fp
, gfp_t gfp_mask
)
685 if (fp
->rx_frag_size
) {
686 /* GFP_KERNEL allocations are used only during initialization */
687 if (unlikely(gfpflags_allow_blocking(gfp_mask
)))
688 return (void *)__get_free_page(gfp_mask
);
690 return napi_alloc_frag(fp
->rx_frag_size
);
693 return kmalloc(fp
->rx_buf_size
+ NET_SKB_PAD
, gfp_mask
);
697 static void bnx2x_gro_ip_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
699 const struct iphdr
*iph
= ip_hdr(skb
);
702 skb_set_transport_header(skb
, sizeof(struct iphdr
));
705 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
706 iph
->saddr
, iph
->daddr
, 0);
709 static void bnx2x_gro_ipv6_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
711 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
714 skb_set_transport_header(skb
, sizeof(struct ipv6hdr
));
717 th
->check
= ~tcp_v6_check(skb
->len
- skb_transport_offset(skb
),
718 &iph
->saddr
, &iph
->daddr
, 0);
721 static void bnx2x_gro_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
722 void (*gro_func
)(struct bnx2x
*, struct sk_buff
*))
724 skb_reset_network_header(skb
);
726 tcp_gro_complete(skb
);
730 static void bnx2x_gro_receive(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
734 if (skb_shinfo(skb
)->gso_size
) {
735 switch (be16_to_cpu(skb
->protocol
)) {
737 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ip_csum
);
740 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ipv6_csum
);
743 netdev_WARN_ONCE(bp
->dev
,
744 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 be16_to_cpu(skb
->protocol
));
749 skb_record_rx_queue(skb
, fp
->rx_queue
);
750 napi_gro_receive(&fp
->napi
, skb
);
753 static void bnx2x_tpa_stop(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
754 struct bnx2x_agg_info
*tpa_info
,
756 struct eth_end_agg_rx_cqe
*cqe
,
759 struct sw_rx_bd
*rx_buf
= &tpa_info
->first_buf
;
760 u8 pad
= tpa_info
->placement_offset
;
761 u16 len
= tpa_info
->len_on_bd
;
762 struct sk_buff
*skb
= NULL
;
763 u8
*new_data
, *data
= rx_buf
->data
;
764 u8 old_tpa_state
= tpa_info
->tpa_state
;
766 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
768 /* If we there was an error during the handling of the TPA_START -
769 * drop this aggregation.
771 if (old_tpa_state
== BNX2X_TPA_ERROR
)
774 /* Try to allocate the new data */
775 new_data
= bnx2x_frag_alloc(fp
, GFP_ATOMIC
);
776 /* Unmap skb in the pool anyway, as we are going to change
777 pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(rx_buf
, mapping
),
780 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
781 if (likely(new_data
))
782 skb
= build_skb(data
, fp
->rx_frag_size
);
785 #ifdef BNX2X_STOP_ON_ERROR
786 if (pad
+ len
> fp
->rx_buf_size
) {
787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
788 pad
, len
, fp
->rx_buf_size
);
794 skb_reserve(skb
, pad
+ NET_SKB_PAD
);
796 skb_set_hash(skb
, tpa_info
->rxhash
, tpa_info
->rxhash_type
);
798 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
799 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
801 if (!bnx2x_fill_frag_skb(bp
, fp
, tpa_info
, pages
,
802 skb
, cqe
, cqe_idx
)) {
803 if (tpa_info
->parsing_flags
& PARSING_FLAGS_VLAN
)
804 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tpa_info
->vlan_tag
);
805 bnx2x_gro_receive(bp
, fp
, skb
);
807 DP(NETIF_MSG_RX_STATUS
,
808 "Failed to allocate new pages - dropping packet!\n");
809 dev_kfree_skb_any(skb
);
812 /* put new data in bin */
813 rx_buf
->data
= new_data
;
818 bnx2x_frag_free(fp
, new_data
);
820 /* drop the packet and keep the buffer in the bin */
821 DP(NETIF_MSG_RX_STATUS
,
822 "Failed to allocate or map a new skb - dropping packet!\n");
823 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
++;
826 static int bnx2x_alloc_rx_data(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
827 u16 index
, gfp_t gfp_mask
)
830 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[index
];
831 struct eth_rx_bd
*rx_bd
= &fp
->rx_desc_ring
[index
];
834 data
= bnx2x_frag_alloc(fp
, gfp_mask
);
835 if (unlikely(data
== NULL
))
838 mapping
= dma_map_single(&bp
->pdev
->dev
, data
+ NET_SKB_PAD
,
841 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
842 bnx2x_frag_free(fp
, data
);
843 BNX2X_ERR("Can't map rx data\n");
848 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
850 rx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
851 rx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
857 void bnx2x_csum_validate(struct sk_buff
*skb
, union eth_rx_cqe
*cqe
,
858 struct bnx2x_fastpath
*fp
,
859 struct bnx2x_eth_q_stats
*qstats
)
861 /* Do nothing if no L4 csum validation was done.
862 * We do not check whether IP csum was validated. For IPv4 we assume
863 * that if the card got as far as validating the L4 csum, it also
864 * validated the IP csum. IPv6 has no IP csum.
866 if (cqe
->fast_path_cqe
.status_flags
&
867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG
)
870 /* If L4 validation was done, check if an error was found. */
872 if (cqe
->fast_path_cqe
.type_error_flags
&
873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG
|
874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG
))
875 qstats
->hw_csum_err
++;
877 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
880 static int bnx2x_rx_int(struct bnx2x_fastpath
*fp
, int budget
)
882 struct bnx2x
*bp
= fp
->bp
;
883 u16 bd_cons
, bd_prod
, bd_prod_fw
, comp_ring_cons
;
884 u16 sw_comp_cons
, sw_comp_prod
;
886 union eth_rx_cqe
*cqe
;
887 struct eth_fast_path_rx_cqe
*cqe_fp
;
889 #ifdef BNX2X_STOP_ON_ERROR
890 if (unlikely(bp
->panic
))
896 bd_cons
= fp
->rx_bd_cons
;
897 bd_prod
= fp
->rx_bd_prod
;
898 bd_prod_fw
= bd_prod
;
899 sw_comp_cons
= fp
->rx_comp_cons
;
900 sw_comp_prod
= fp
->rx_comp_prod
;
902 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
903 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
904 cqe_fp
= &cqe
->fast_path_cqe
;
906 DP(NETIF_MSG_RX_STATUS
,
907 "queue[%d]: sw_comp_cons %u\n", fp
->index
, sw_comp_cons
);
909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp
)) {
910 struct sw_rx_bd
*rx_buf
= NULL
;
913 enum eth_rx_cqe_type cqe_fp_type
;
917 enum pkt_hash_types rxhash_type
;
919 #ifdef BNX2X_STOP_ON_ERROR
920 if (unlikely(bp
->panic
))
924 bd_prod
= RX_BD(bd_prod
);
925 bd_cons
= RX_BD(bd_cons
);
927 /* A rmb() is required to ensure that the CQE is not read
928 * before it is written by the adapter DMA. PCI ordering
929 * rules will make sure the other fields are written before
930 * the marker at the end of struct eth_fast_path_rx_cqe
931 * but without rmb() a weakly ordered processor can process
932 * stale data. Without the barrier TPA state-machine might
933 * enter inconsistent state and kernel stack might be
934 * provided with incorrect packet description - these lead
935 * to various kernel crashed.
939 cqe_fp_flags
= cqe_fp
->type_error_flags
;
940 cqe_fp_type
= cqe_fp_flags
& ETH_FAST_PATH_RX_CQE_TYPE
;
942 DP(NETIF_MSG_RX_STATUS
,
943 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
944 CQE_TYPE(cqe_fp_flags
),
945 cqe_fp_flags
, cqe_fp
->status_flags
,
946 le32_to_cpu(cqe_fp
->rss_hash_result
),
947 le16_to_cpu(cqe_fp
->vlan_tag
),
948 le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
));
950 /* is this a slowpath msg? */
951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type
))) {
952 bnx2x_sp_event(fp
, cqe
);
956 rx_buf
= &fp
->rx_buf_ring
[bd_cons
];
959 if (!CQE_TYPE_FAST(cqe_fp_type
)) {
960 struct bnx2x_agg_info
*tpa_info
;
961 u16 frag_size
, pages
;
962 #ifdef BNX2X_STOP_ON_ERROR
964 if (fp
->mode
== TPA_MODE_DISABLED
&&
965 (CQE_TYPE_START(cqe_fp_type
) ||
966 CQE_TYPE_STOP(cqe_fp_type
)))
967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 CQE_TYPE(cqe_fp_type
));
971 if (CQE_TYPE_START(cqe_fp_type
)) {
972 u16 queue
= cqe_fp
->queue_index
;
973 DP(NETIF_MSG_RX_STATUS
,
974 "calling tpa_start on queue %d\n",
977 bnx2x_tpa_start(fp
, queue
,
983 queue
= cqe
->end_agg_cqe
.queue_index
;
984 tpa_info
= &fp
->tpa_info
[queue
];
985 DP(NETIF_MSG_RX_STATUS
,
986 "calling tpa_stop on queue %d\n",
989 frag_size
= le16_to_cpu(cqe
->end_agg_cqe
.pkt_len
) -
992 if (fp
->mode
== TPA_MODE_GRO
)
993 pages
= (frag_size
+ tpa_info
->full_page
- 1) /
996 pages
= SGE_PAGE_ALIGN(frag_size
) >>
999 bnx2x_tpa_stop(bp
, fp
, tpa_info
, pages
,
1000 &cqe
->end_agg_cqe
, comp_ring_cons
);
1001 #ifdef BNX2X_STOP_ON_ERROR
1006 bnx2x_update_sge_prod(fp
, pages
, &cqe
->end_agg_cqe
);
1010 len
= le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
);
1011 pad
= cqe_fp
->placement_offset
;
1012 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
1013 dma_unmap_addr(rx_buf
, mapping
),
1014 pad
+ RX_COPY_THRESH
,
1017 prefetch(data
+ pad
); /* speedup eth_type_trans() */
1018 /* is this an error packet? */
1019 if (unlikely(cqe_fp_flags
& ETH_RX_ERROR_FALGS
)) {
1020 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1021 "ERROR flags %x rx packet %u\n",
1022 cqe_fp_flags
, sw_comp_cons
);
1023 bnx2x_fp_qstats(bp
, fp
)->rx_err_discard_pkt
++;
1027 /* Since we don't have a jumbo ring
1028 * copy small packets if mtu > 1500
1030 if ((bp
->dev
->mtu
> ETH_MAX_PACKET_SIZE
) &&
1031 (len
<= RX_COPY_THRESH
)) {
1032 skb
= napi_alloc_skb(&fp
->napi
, len
);
1034 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1035 "ERROR packet dropped because of alloc failure\n");
1036 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1039 memcpy(skb
->data
, data
+ pad
, len
);
1040 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1042 if (likely(bnx2x_alloc_rx_data(bp
, fp
, bd_prod
,
1043 GFP_ATOMIC
) == 0)) {
1044 dma_unmap_single(&bp
->pdev
->dev
,
1045 dma_unmap_addr(rx_buf
, mapping
),
1048 skb
= build_skb(data
, fp
->rx_frag_size
);
1049 if (unlikely(!skb
)) {
1050 bnx2x_frag_free(fp
, data
);
1051 bnx2x_fp_qstats(bp
, fp
)->
1052 rx_skb_alloc_failed
++;
1055 skb_reserve(skb
, pad
);
1057 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1058 "ERROR packet dropped because of alloc failure\n");
1059 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1061 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1067 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1069 /* Set Toeplitz hash for a none-LRO skb */
1070 rxhash
= bnx2x_get_rxhash(bp
, cqe_fp
, &rxhash_type
);
1071 skb_set_hash(skb
, rxhash
, rxhash_type
);
1073 skb_checksum_none_assert(skb
);
1075 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
1076 bnx2x_csum_validate(skb
, cqe
, fp
,
1077 bnx2x_fp_qstats(bp
, fp
));
1079 skb_record_rx_queue(skb
, fp
->rx_queue
);
1081 /* Check if this packet was timestamped */
1082 if (unlikely(cqe
->fast_path_cqe
.type_error_flags
&
1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT
)))
1084 bnx2x_set_rx_ts(bp
, skb
);
1086 if (le16_to_cpu(cqe_fp
->pars_flags
.flags
) &
1088 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
1089 le16_to_cpu(cqe_fp
->vlan_tag
));
1091 napi_gro_receive(&fp
->napi
, skb
);
1093 rx_buf
->data
= NULL
;
1095 bd_cons
= NEXT_RX_IDX(bd_cons
);
1096 bd_prod
= NEXT_RX_IDX(bd_prod
);
1097 bd_prod_fw
= NEXT_RX_IDX(bd_prod_fw
);
1100 sw_comp_prod
= NEXT_RCQ_IDX(sw_comp_prod
);
1101 sw_comp_cons
= NEXT_RCQ_IDX(sw_comp_cons
);
1103 /* mark CQE as free */
1104 BNX2X_SEED_CQE(cqe_fp
);
1106 if (rx_pkt
== budget
)
1109 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
1110 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
1111 cqe_fp
= &cqe
->fast_path_cqe
;
1114 fp
->rx_bd_cons
= bd_cons
;
1115 fp
->rx_bd_prod
= bd_prod_fw
;
1116 fp
->rx_comp_cons
= sw_comp_cons
;
1117 fp
->rx_comp_prod
= sw_comp_prod
;
1119 /* Update producers */
1120 bnx2x_update_rx_prod(bp
, fp
, bd_prod_fw
, sw_comp_prod
,
1126 static irqreturn_t
bnx2x_msix_fp_int(int irq
, void *fp_cookie
)
1128 struct bnx2x_fastpath
*fp
= fp_cookie
;
1129 struct bnx2x
*bp
= fp
->bp
;
1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 fp
->index
, fp
->fw_sb_id
, fp
->igu_sb_id
);
1136 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0, IGU_INT_DISABLE
, 0);
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 if (unlikely(bp
->panic
))
1143 /* Handle Rx and Tx according to MSI-X vector */
1144 for_each_cos_in_tx_queue(fp
, cos
)
1145 prefetch(fp
->txdata_ptr
[cos
]->tx_cons_sb
);
1147 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1148 napi_schedule_irqoff(&bnx2x_fp(bp
, fp
->index
, napi
));
1153 /* HW Lock for shared dual port PHYs */
1154 void bnx2x_acquire_phy_lock(struct bnx2x
*bp
)
1156 mutex_lock(&bp
->port
.phy_mutex
);
1158 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1161 void bnx2x_release_phy_lock(struct bnx2x
*bp
)
1163 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1165 mutex_unlock(&bp
->port
.phy_mutex
);
1168 /* calculates MF speed according to current linespeed and MF configuration */
1169 u16
bnx2x_get_mf_speed(struct bnx2x
*bp
)
1171 u16 line_speed
= bp
->link_vars
.line_speed
;
1173 u16 maxCfg
= bnx2x_extract_max_cfg(bp
,
1174 bp
->mf_config
[BP_VN(bp
)]);
1176 /* Calculate the current MAX line speed limit for the MF
1179 if (IS_MF_PERCENT_BW(bp
))
1180 line_speed
= (line_speed
* maxCfg
) / 100;
1181 else { /* SD mode */
1182 u16 vn_max_rate
= maxCfg
* 100;
1184 if (vn_max_rate
< line_speed
)
1185 line_speed
= vn_max_rate
;
1193 * bnx2x_fill_report_data - fill link report data to report
1195 * @bp: driver handle
1196 * @data: link state to update
1198 * It uses a none-atomic bit operations because is called under the mutex.
1200 static void bnx2x_fill_report_data(struct bnx2x
*bp
,
1201 struct bnx2x_link_report_data
*data
)
1203 memset(data
, 0, sizeof(*data
));
1206 /* Fill the report data: effective line speed */
1207 data
->line_speed
= bnx2x_get_mf_speed(bp
);
1210 if (!bp
->link_vars
.link_up
|| (bp
->flags
& MF_FUNC_DIS
))
1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1212 &data
->link_report_flags
);
1214 if (!BNX2X_NUM_ETH_QUEUES(bp
))
1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1216 &data
->link_report_flags
);
1219 if (bp
->link_vars
.duplex
== DUPLEX_FULL
)
1220 __set_bit(BNX2X_LINK_REPORT_FD
,
1221 &data
->link_report_flags
);
1223 /* Rx Flow Control is ON */
1224 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_RX
)
1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1226 &data
->link_report_flags
);
1228 /* Tx Flow Control is ON */
1229 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1231 &data
->link_report_flags
);
1233 *data
= bp
->vf_link_vars
;
1238 * bnx2x_link_report - report link status to OS.
1240 * @bp: driver handle
1242 * Calls the __bnx2x_link_report() under the same locking scheme
1243 * as a link/PHY state managing code to ensure a consistent link
1247 void bnx2x_link_report(struct bnx2x
*bp
)
1249 bnx2x_acquire_phy_lock(bp
);
1250 __bnx2x_link_report(bp
);
1251 bnx2x_release_phy_lock(bp
);
1255 * __bnx2x_link_report - report link status to OS.
1257 * @bp: driver handle
1259 * None atomic implementation.
1260 * Should be called under the phy_lock.
1262 void __bnx2x_link_report(struct bnx2x
*bp
)
1264 struct bnx2x_link_report_data cur_data
;
1266 if (bp
->force_link_down
) {
1267 bp
->link_vars
.link_up
= 0;
1272 if (IS_PF(bp
) && !CHIP_IS_E1(bp
))
1273 bnx2x_read_mf_cfg(bp
);
1275 /* Read the current link report info */
1276 bnx2x_fill_report_data(bp
, &cur_data
);
1278 /* Don't report link down or exactly the same link status twice */
1279 if (!memcmp(&cur_data
, &bp
->last_reported_link
, sizeof(cur_data
)) ||
1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1281 &bp
->last_reported_link
.link_report_flags
) &&
1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1283 &cur_data
.link_report_flags
)))
1288 /* We are going to report a new link parameters now -
1289 * remember the current data for the next time.
1291 memcpy(&bp
->last_reported_link
, &cur_data
, sizeof(cur_data
));
1293 /* propagate status to VFs */
1295 bnx2x_iov_link_update(bp
);
1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1298 &cur_data
.link_report_flags
)) {
1299 netif_carrier_off(bp
->dev
);
1300 netdev_err(bp
->dev
, "NIC Link is Down\n");
1306 netif_carrier_on(bp
->dev
);
1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD
,
1309 &cur_data
.link_report_flags
))
1314 /* Handle the FC at the end so that only these flags would be
1315 * possibly set. This way we may easily check if there is no FC
1318 if (cur_data
.link_report_flags
) {
1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1320 &cur_data
.link_report_flags
)) {
1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1322 &cur_data
.link_report_flags
))
1323 flow
= "ON - receive & transmit";
1325 flow
= "ON - receive";
1327 flow
= "ON - transmit";
1332 netdev_info(bp
->dev
, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 cur_data
.line_speed
, duplex
, flow
);
1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath
*fp
)
1341 for (i
= 1; i
<= NUM_RX_SGE_PAGES
; i
++) {
1342 struct eth_rx_sge
*sge
;
1344 sge
= &fp
->rx_sge_ring
[RX_SGE_CNT
* i
- 2];
1346 cpu_to_le32(U64_HI(fp
->rx_sge_mapping
+
1347 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1350 cpu_to_le32(U64_LO(fp
->rx_sge_mapping
+
1351 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1355 static void bnx2x_free_tpa_pool(struct bnx2x
*bp
,
1356 struct bnx2x_fastpath
*fp
, int last
)
1360 for (i
= 0; i
< last
; i
++) {
1361 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[i
];
1362 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
1363 u8
*data
= first_buf
->data
;
1366 DP(NETIF_MSG_IFDOWN
, "tpa bin %d empty on free\n", i
);
1369 if (tpa_info
->tpa_state
== BNX2X_TPA_START
)
1370 dma_unmap_single(&bp
->pdev
->dev
,
1371 dma_unmap_addr(first_buf
, mapping
),
1372 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1373 bnx2x_frag_free(fp
, data
);
1374 first_buf
->data
= NULL
;
1378 void bnx2x_init_rx_rings_cnic(struct bnx2x
*bp
)
1382 for_each_rx_queue_cnic(bp
, j
) {
1383 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1387 /* Activate BD ring */
1389 * this will generate an interrupt (to the TSTORM)
1390 * must only be done after chip is initialized
1392 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1397 void bnx2x_init_rx_rings(struct bnx2x
*bp
)
1399 int func
= BP_FUNC(bp
);
1403 /* Allocate TPA resources */
1404 for_each_eth_queue(bp
, j
) {
1405 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1408 "mtu %d rx_buf_size %d\n", bp
->dev
->mtu
, fp
->rx_buf_size
);
1410 if (fp
->mode
!= TPA_MODE_DISABLED
) {
1411 /* Fill the per-aggregation pool */
1412 for (i
= 0; i
< MAX_AGG_QS(bp
); i
++) {
1413 struct bnx2x_agg_info
*tpa_info
=
1415 struct sw_rx_bd
*first_buf
=
1416 &tpa_info
->first_buf
;
1419 bnx2x_frag_alloc(fp
, GFP_KERNEL
);
1420 if (!first_buf
->data
) {
1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1423 bnx2x_free_tpa_pool(bp
, fp
, i
);
1424 fp
->mode
= TPA_MODE_DISABLED
;
1427 dma_unmap_addr_set(first_buf
, mapping
, 0);
1428 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
1431 /* "next page" elements initialization */
1432 bnx2x_set_next_page_sgl(fp
);
1434 /* set SGEs bit mask */
1435 bnx2x_init_sge_ring_bit_mask(fp
);
1437 /* Allocate SGEs and initialize the ring elements */
1438 for (i
= 0, ring_prod
= 0;
1439 i
< MAX_RX_SGE_CNT
*NUM_RX_SGE_PAGES
; i
++) {
1441 if (bnx2x_alloc_rx_sge(bp
, fp
, ring_prod
,
1443 BNX2X_ERR("was only able to allocate %d rx sges\n",
1445 BNX2X_ERR("disabling TPA for queue[%d]\n",
1447 /* Cleanup already allocated elements */
1448 bnx2x_free_rx_sge_range(bp
, fp
,
1450 bnx2x_free_tpa_pool(bp
, fp
,
1452 fp
->mode
= TPA_MODE_DISABLED
;
1456 ring_prod
= NEXT_SGE_IDX(ring_prod
);
1459 fp
->rx_sge_prod
= ring_prod
;
1463 for_each_eth_queue(bp
, j
) {
1464 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1468 /* Activate BD ring */
1470 * this will generate an interrupt (to the TSTORM)
1471 * must only be done after chip is initialized
1473 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1479 if (CHIP_IS_E1(bp
)) {
1480 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
),
1482 U64_LO(fp
->rx_comp_mapping
));
1483 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
) + 4,
1485 U64_HI(fp
->rx_comp_mapping
));
1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath
*fp
)
1493 struct bnx2x
*bp
= fp
->bp
;
1495 for_each_cos_in_tx_queue(fp
, cos
) {
1496 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
1497 unsigned pkts_compl
= 0, bytes_compl
= 0;
1499 u16 sw_prod
= txdata
->tx_pkt_prod
;
1500 u16 sw_cons
= txdata
->tx_pkt_cons
;
1502 while (sw_cons
!= sw_prod
) {
1503 bnx2x_free_tx_pkt(bp
, txdata
, TX_BD(sw_cons
),
1504 &pkts_compl
, &bytes_compl
);
1508 netdev_tx_reset_queue(
1509 netdev_get_tx_queue(bp
->dev
,
1510 txdata
->txq_index
));
1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x
*bp
)
1518 for_each_tx_queue_cnic(bp
, i
) {
1519 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1523 static void bnx2x_free_tx_skbs(struct bnx2x
*bp
)
1527 for_each_eth_queue(bp
, i
) {
1528 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath
*fp
)
1534 struct bnx2x
*bp
= fp
->bp
;
1537 /* ring wasn't allocated */
1538 if (fp
->rx_buf_ring
== NULL
)
1541 for (i
= 0; i
< NUM_RX_BD
; i
++) {
1542 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[i
];
1543 u8
*data
= rx_buf
->data
;
1547 dma_unmap_single(&bp
->pdev
->dev
,
1548 dma_unmap_addr(rx_buf
, mapping
),
1549 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1551 rx_buf
->data
= NULL
;
1552 bnx2x_frag_free(fp
, data
);
1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x
*bp
)
1560 for_each_rx_queue_cnic(bp
, j
) {
1561 bnx2x_free_rx_bds(&bp
->fp
[j
]);
1565 static void bnx2x_free_rx_skbs(struct bnx2x
*bp
)
1569 for_each_eth_queue(bp
, j
) {
1570 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1572 bnx2x_free_rx_bds(fp
);
1574 if (fp
->mode
!= TPA_MODE_DISABLED
)
1575 bnx2x_free_tpa_pool(bp
, fp
, MAX_AGG_QS(bp
));
1579 static void bnx2x_free_skbs_cnic(struct bnx2x
*bp
)
1581 bnx2x_free_tx_skbs_cnic(bp
);
1582 bnx2x_free_rx_skbs_cnic(bp
);
1585 void bnx2x_free_skbs(struct bnx2x
*bp
)
1587 bnx2x_free_tx_skbs(bp
);
1588 bnx2x_free_rx_skbs(bp
);
1591 void bnx2x_update_max_mf_config(struct bnx2x
*bp
, u32 value
)
1593 /* load old values */
1594 u32 mf_cfg
= bp
->mf_config
[BP_VN(bp
)];
1596 if (value
!= bnx2x_extract_max_cfg(bp
, mf_cfg
)) {
1597 /* leave all but MAX value */
1598 mf_cfg
&= ~FUNC_MF_CFG_MAX_BW_MASK
;
1600 /* set new MAX value */
1601 mf_cfg
|= (value
<< FUNC_MF_CFG_MAX_BW_SHIFT
)
1602 & FUNC_MF_CFG_MAX_BW_MASK
;
1604 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW
, mf_cfg
);
1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1611 * @bp: driver handle
1612 * @nvecs: number of vectors to be released
1614 static void bnx2x_free_msix_irqs(struct bnx2x
*bp
, int nvecs
)
1618 if (nvecs
== offset
)
1621 /* VFs don't have a default SB */
1623 free_irq(bp
->msix_table
[offset
].vector
, bp
->dev
);
1624 DP(NETIF_MSG_IFDOWN
, "released sp irq (%d)\n",
1625 bp
->msix_table
[offset
].vector
);
1629 if (CNIC_SUPPORT(bp
)) {
1630 if (nvecs
== offset
)
1635 for_each_eth_queue(bp
, i
) {
1636 if (nvecs
== offset
)
1638 DP(NETIF_MSG_IFDOWN
, "about to release fp #%d->%d irq\n",
1639 i
, bp
->msix_table
[offset
].vector
);
1641 free_irq(bp
->msix_table
[offset
++].vector
, &bp
->fp
[i
]);
1645 void bnx2x_free_irq(struct bnx2x
*bp
)
1647 if (bp
->flags
& USING_MSIX_FLAG
&&
1648 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1649 int nvecs
= BNX2X_NUM_ETH_QUEUES(bp
) + CNIC_SUPPORT(bp
);
1651 /* vfs don't have a default status block */
1655 bnx2x_free_msix_irqs(bp
, nvecs
);
1657 free_irq(bp
->dev
->irq
, bp
->dev
);
1661 int bnx2x_enable_msix(struct bnx2x
*bp
)
1663 int msix_vec
= 0, i
, rc
;
1665 /* VFs don't have a default status block */
1667 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 bp
->msix_table
[0].entry
);
1673 /* Cnic requires an msix vector for itself */
1674 if (CNIC_SUPPORT(bp
)) {
1675 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 msix_vec
, bp
->msix_table
[msix_vec
].entry
);
1681 /* We need separate vectors for ETH queues only (not FCoE) */
1682 for_each_eth_queue(bp
, i
) {
1683 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 msix_vec
, msix_vec
, i
);
1689 DP(BNX2X_MSG_SP
, "about to request enable msix with %d vectors\n",
1692 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0],
1693 BNX2X_MIN_MSIX_VEC_CNT(bp
), msix_vec
);
1695 * reconfigure number of tx/rx queues according to available
1698 if (rc
== -ENOSPC
) {
1699 /* Get by with single vector */
1700 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0], 1, 1);
1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1707 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 bp
->flags
|= USING_SINGLE_MSIX_FLAG
;
1710 BNX2X_DEV_INFO("set number of queues to 1\n");
1711 bp
->num_ethernet_queues
= 1;
1712 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1713 } else if (rc
< 0) {
1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc
);
1716 } else if (rc
< msix_vec
) {
1717 /* how less vectors we will have? */
1718 int diff
= msix_vec
- rc
;
1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc
);
1723 * decrease number of queues by number of unallocated entries
1725 bp
->num_ethernet_queues
-= diff
;
1726 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1728 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1732 bp
->flags
|= USING_MSIX_FLAG
;
1737 /* fall to INTx if not enough memory */
1739 bp
->flags
|= DISABLE_MSI_FLAG
;
1744 static int bnx2x_req_msix_irqs(struct bnx2x
*bp
)
1746 int i
, rc
, offset
= 0;
1748 /* no default status block for vf */
1750 rc
= request_irq(bp
->msix_table
[offset
++].vector
,
1751 bnx2x_msix_sp_int
, 0,
1752 bp
->dev
->name
, bp
->dev
);
1754 BNX2X_ERR("request sp irq failed\n");
1759 if (CNIC_SUPPORT(bp
))
1762 for_each_eth_queue(bp
, i
) {
1763 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1764 snprintf(fp
->name
, sizeof(fp
->name
), "%s-fp-%d",
1767 rc
= request_irq(bp
->msix_table
[offset
].vector
,
1768 bnx2x_msix_fp_int
, 0, fp
->name
, fp
);
1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i
,
1771 bp
->msix_table
[offset
].vector
, rc
);
1772 bnx2x_free_msix_irqs(bp
, offset
);
1779 i
= BNX2X_NUM_ETH_QUEUES(bp
);
1781 offset
= 1 + CNIC_SUPPORT(bp
);
1782 netdev_info(bp
->dev
,
1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1784 bp
->msix_table
[0].vector
,
1785 0, bp
->msix_table
[offset
].vector
,
1786 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1788 offset
= CNIC_SUPPORT(bp
);
1789 netdev_info(bp
->dev
,
1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 0, bp
->msix_table
[offset
].vector
,
1792 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1797 int bnx2x_enable_msi(struct bnx2x
*bp
)
1801 rc
= pci_enable_msi(bp
->pdev
);
1803 BNX2X_DEV_INFO("MSI is not attainable\n");
1806 bp
->flags
|= USING_MSI_FLAG
;
1811 static int bnx2x_req_irq(struct bnx2x
*bp
)
1813 unsigned long flags
;
1816 if (bp
->flags
& (USING_MSI_FLAG
| USING_MSIX_FLAG
))
1819 flags
= IRQF_SHARED
;
1821 if (bp
->flags
& USING_MSIX_FLAG
)
1822 irq
= bp
->msix_table
[0].vector
;
1824 irq
= bp
->pdev
->irq
;
1826 return request_irq(irq
, bnx2x_interrupt
, flags
, bp
->dev
->name
, bp
->dev
);
1829 static int bnx2x_setup_irqs(struct bnx2x
*bp
)
1832 if (bp
->flags
& USING_MSIX_FLAG
&&
1833 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1834 rc
= bnx2x_req_msix_irqs(bp
);
1838 rc
= bnx2x_req_irq(bp
);
1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc
);
1843 if (bp
->flags
& USING_MSI_FLAG
) {
1844 bp
->dev
->irq
= bp
->pdev
->irq
;
1845 netdev_info(bp
->dev
, "using MSI IRQ %d\n",
1848 if (bp
->flags
& USING_MSIX_FLAG
) {
1849 bp
->dev
->irq
= bp
->msix_table
[0].vector
;
1850 netdev_info(bp
->dev
, "using MSIX IRQ %d\n",
1858 static void bnx2x_napi_enable_cnic(struct bnx2x
*bp
)
1862 for_each_rx_queue_cnic(bp
, i
) {
1863 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1867 static void bnx2x_napi_enable(struct bnx2x
*bp
)
1871 for_each_eth_queue(bp
, i
) {
1872 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1876 static void bnx2x_napi_disable_cnic(struct bnx2x
*bp
)
1880 for_each_rx_queue_cnic(bp
, i
) {
1881 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1885 static void bnx2x_napi_disable(struct bnx2x
*bp
)
1889 for_each_eth_queue(bp
, i
) {
1890 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1894 void bnx2x_netif_start(struct bnx2x
*bp
)
1896 if (netif_running(bp
->dev
)) {
1897 bnx2x_napi_enable(bp
);
1898 if (CNIC_LOADED(bp
))
1899 bnx2x_napi_enable_cnic(bp
);
1900 bnx2x_int_enable(bp
);
1901 if (bp
->state
== BNX2X_STATE_OPEN
)
1902 netif_tx_wake_all_queues(bp
->dev
);
1906 void bnx2x_netif_stop(struct bnx2x
*bp
, int disable_hw
)
1908 bnx2x_int_disable_sync(bp
, disable_hw
);
1909 bnx2x_napi_disable(bp
);
1910 if (CNIC_LOADED(bp
))
1911 bnx2x_napi_disable_cnic(bp
);
1914 u16
bnx2x_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
1915 struct net_device
*sb_dev
)
1917 struct bnx2x
*bp
= netdev_priv(dev
);
1919 if (CNIC_LOADED(bp
) && !NO_FCOE(bp
)) {
1920 struct ethhdr
*hdr
= (struct ethhdr
*)skb
->data
;
1921 u16 ether_type
= ntohs(hdr
->h_proto
);
1923 /* Skip VLAN tag if present */
1924 if (ether_type
== ETH_P_8021Q
) {
1925 struct vlan_ethhdr
*vhdr
=
1926 (struct vlan_ethhdr
*)skb
->data
;
1928 ether_type
= ntohs(vhdr
->h_vlan_encapsulated_proto
);
1931 /* If ethertype is FCoE or FIP - use FCoE ring */
1932 if ((ether_type
== ETH_P_FCOE
) || (ether_type
== ETH_P_FIP
))
1933 return bnx2x_fcoe_tx(bp
, txq_index
);
1936 /* select a non-FCoE queue */
1937 return netdev_pick_tx(dev
, skb
, NULL
) %
1938 (BNX2X_NUM_ETH_QUEUES(bp
) * bp
->max_cos
);
1941 void bnx2x_set_num_queues(struct bnx2x
*bp
)
1944 bp
->num_ethernet_queues
= bnx2x_calc_num_queues(bp
);
1946 /* override in STORAGE SD modes */
1947 if (IS_MF_STORAGE_ONLY(bp
))
1948 bp
->num_ethernet_queues
= 1;
1950 /* Add special queues */
1951 bp
->num_cnic_queues
= CNIC_SUPPORT(bp
); /* For FCOE */
1952 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1954 BNX2X_DEV_INFO("set number of queues to %d\n", bp
->num_queues
);
1958 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1960 * @bp: Driver handle
1962 * We currently support for at most 16 Tx queues for each CoS thus we will
1963 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1966 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1967 * index after all ETH L2 indices.
1969 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1970 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1971 * 16..31,...) with indices that are not coupled with any real Tx queue.
1973 * The proper configuration of skb->queue_mapping is handled by
1974 * bnx2x_select_queue() and __skb_tx_hash().
1976 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1977 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1979 static int bnx2x_set_real_num_queues(struct bnx2x
*bp
, int include_cnic
)
1983 tx
= BNX2X_NUM_ETH_QUEUES(bp
) * bp
->max_cos
;
1984 rx
= BNX2X_NUM_ETH_QUEUES(bp
);
1986 /* account for fcoe queue */
1987 if (include_cnic
&& !NO_FCOE(bp
)) {
1992 rc
= netif_set_real_num_tx_queues(bp
->dev
, tx
);
1994 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc
);
1997 rc
= netif_set_real_num_rx_queues(bp
->dev
, rx
);
1999 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc
);
2003 DP(NETIF_MSG_IFUP
, "Setting real num queues to (tx, rx) (%d, %d)\n",
2009 static void bnx2x_set_rx_buf_size(struct bnx2x
*bp
)
2013 for_each_queue(bp
, i
) {
2014 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2017 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2020 * Although there are no IP frames expected to arrive to
2021 * this ring we still want to add an
2022 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2025 mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
2028 fp
->rx_buf_size
= BNX2X_FW_RX_ALIGN_START
+
2029 IP_HEADER_ALIGNMENT_PADDING
+
2032 BNX2X_FW_RX_ALIGN_END
;
2033 fp
->rx_buf_size
= SKB_DATA_ALIGN(fp
->rx_buf_size
);
2034 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2035 if (fp
->rx_buf_size
+ NET_SKB_PAD
<= PAGE_SIZE
)
2036 fp
->rx_frag_size
= fp
->rx_buf_size
+ NET_SKB_PAD
;
2038 fp
->rx_frag_size
= 0;
2042 static int bnx2x_init_rss(struct bnx2x
*bp
)
2045 u8 num_eth_queues
= BNX2X_NUM_ETH_QUEUES(bp
);
2047 /* Prepare the initial contents for the indirection table if RSS is
2050 for (i
= 0; i
< sizeof(bp
->rss_conf_obj
.ind_table
); i
++)
2051 bp
->rss_conf_obj
.ind_table
[i
] =
2053 ethtool_rxfh_indir_default(i
, num_eth_queues
);
2056 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2057 * per-port, so if explicit configuration is needed , do it only
2060 * For 57712 and newer on the other hand it's a per-function
2063 return bnx2x_config_rss_eth(bp
, bp
->port
.pmf
|| !CHIP_IS_E1x(bp
));
2066 int bnx2x_rss(struct bnx2x
*bp
, struct bnx2x_rss_config_obj
*rss_obj
,
2067 bool config_hash
, bool enable
)
2069 struct bnx2x_config_rss_params params
= {NULL
};
2071 /* Although RSS is meaningless when there is a single HW queue we
2072 * still need it enabled in order to have HW Rx hash generated.
2074 * if (!is_eth_multi(bp))
2075 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2078 params
.rss_obj
= rss_obj
;
2080 __set_bit(RAMROD_COMP_WAIT
, ¶ms
.ramrod_flags
);
2083 __set_bit(BNX2X_RSS_MODE_REGULAR
, ¶ms
.rss_flags
);
2085 /* RSS configuration */
2086 __set_bit(BNX2X_RSS_IPV4
, ¶ms
.rss_flags
);
2087 __set_bit(BNX2X_RSS_IPV4_TCP
, ¶ms
.rss_flags
);
2088 __set_bit(BNX2X_RSS_IPV6
, ¶ms
.rss_flags
);
2089 __set_bit(BNX2X_RSS_IPV6_TCP
, ¶ms
.rss_flags
);
2090 if (rss_obj
->udp_rss_v4
)
2091 __set_bit(BNX2X_RSS_IPV4_UDP
, ¶ms
.rss_flags
);
2092 if (rss_obj
->udp_rss_v6
)
2093 __set_bit(BNX2X_RSS_IPV6_UDP
, ¶ms
.rss_flags
);
2095 if (!CHIP_IS_E1x(bp
)) {
2096 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2097 __set_bit(BNX2X_RSS_IPV4_VXLAN
, ¶ms
.rss_flags
);
2098 __set_bit(BNX2X_RSS_IPV6_VXLAN
, ¶ms
.rss_flags
);
2100 /* valid only for TUNN_MODE_GRE tunnel mode */
2101 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS
, ¶ms
.rss_flags
);
2104 __set_bit(BNX2X_RSS_MODE_DISABLED
, ¶ms
.rss_flags
);
2108 params
.rss_result_mask
= MULTI_MASK
;
2110 memcpy(params
.ind_table
, rss_obj
->ind_table
, sizeof(params
.ind_table
));
2114 netdev_rss_key_fill(params
.rss_key
, T_ETH_RSS_KEY
* 4);
2115 __set_bit(BNX2X_RSS_SET_SRCH
, ¶ms
.rss_flags
);
2119 return bnx2x_config_rss(bp
, ¶ms
);
2121 return bnx2x_vfpf_config_rss(bp
, ¶ms
);
2124 static int bnx2x_init_hw(struct bnx2x
*bp
, u32 load_code
)
2126 struct bnx2x_func_state_params func_params
= {NULL
};
2128 /* Prepare parameters for function state transitions */
2129 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
2131 func_params
.f_obj
= &bp
->func_obj
;
2132 func_params
.cmd
= BNX2X_F_CMD_HW_INIT
;
2134 func_params
.params
.hw_init
.load_phase
= load_code
;
2136 return bnx2x_func_state_change(bp
, &func_params
);
2140 * Cleans the object that have internal lists without sending
2141 * ramrods. Should be run when interrupts are disabled.
2143 void bnx2x_squeeze_objects(struct bnx2x
*bp
)
2146 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
2147 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
2148 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->sp_objs
->mac_obj
;
2150 /***************** Cleanup MACs' object first *************************/
2152 /* Wait for completion of requested */
2153 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2154 /* Perform a dry cleanup */
2155 __set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod_flags
);
2157 /* Clean ETH primary MAC */
2158 __set_bit(BNX2X_ETH_MAC
, &vlan_mac_flags
);
2159 rc
= mac_obj
->delete_all(bp
, &bp
->sp_objs
->mac_obj
, &vlan_mac_flags
,
2162 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc
);
2164 /* Cleanup UC list */
2166 __set_bit(BNX2X_UC_LIST_MAC
, &vlan_mac_flags
);
2167 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
,
2170 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc
);
2172 /***************** Now clean mcast object *****************************/
2173 rparam
.mcast_obj
= &bp
->mcast_obj
;
2174 __set_bit(RAMROD_DRV_CLR_ONLY
, &rparam
.ramrod_flags
);
2176 /* Add a DEL command... - Since we're doing a driver cleanup only,
2177 * we take a lock surrounding both the initial send and the CONTs,
2178 * as we don't want a true completion to disrupt us in the middle.
2180 netif_addr_lock_bh(bp
->dev
);
2181 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
2183 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2186 /* ...and wait until all pending commands are cleared */
2187 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2190 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2192 netif_addr_unlock_bh(bp
->dev
);
2196 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2198 netif_addr_unlock_bh(bp
->dev
);
2201 #ifndef BNX2X_STOP_ON_ERROR
2202 #define LOAD_ERROR_EXIT(bp, label) \
2204 (bp)->state = BNX2X_STATE_ERROR; \
2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2210 bp->cnic_loaded = false; \
2213 #else /*BNX2X_STOP_ON_ERROR*/
2214 #define LOAD_ERROR_EXIT(bp, label) \
2216 (bp)->state = BNX2X_STATE_ERROR; \
2220 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2222 bp->cnic_loaded = false; \
2226 #endif /*BNX2X_STOP_ON_ERROR*/
2228 static void bnx2x_free_fw_stats_mem(struct bnx2x
*bp
)
2230 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
2231 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2235 static int bnx2x_alloc_fw_stats_mem(struct bnx2x
*bp
)
2237 int num_groups
, vf_headroom
= 0;
2238 int is_fcoe_stats
= NO_FCOE(bp
) ? 0 : 1;
2240 /* number of queues for statistics is number of eth queues + FCoE */
2241 u8 num_queue_stats
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe_stats
;
2243 /* Total number of FW statistics requests =
2244 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2245 * and fcoe l2 queue) stats + num of queues (which includes another 1
2246 * for fcoe l2 queue if applicable)
2248 bp
->fw_stats_num
= 2 + is_fcoe_stats
+ num_queue_stats
;
2250 /* vf stats appear in the request list, but their data is allocated by
2251 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2252 * it is used to determine where to place the vf stats queries in the
2256 vf_headroom
= bnx2x_vf_headroom(bp
);
2258 /* Request is built from stats_query_header and an array of
2259 * stats_query_cmd_group each of which contains
2260 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2261 * configured in the stats_query_header.
2264 (((bp
->fw_stats_num
+ vf_headroom
) / STATS_QUERY_CMD_COUNT
) +
2265 (((bp
->fw_stats_num
+ vf_headroom
) % STATS_QUERY_CMD_COUNT
) ?
2268 DP(BNX2X_MSG_SP
, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2269 bp
->fw_stats_num
, vf_headroom
, num_groups
);
2270 bp
->fw_stats_req_sz
= sizeof(struct stats_query_header
) +
2271 num_groups
* sizeof(struct stats_query_cmd_group
);
2273 /* Data for statistics requests + stats_counter
2274 * stats_counter holds per-STORM counters that are incremented
2275 * when STORM has finished with the current request.
2276 * memory for FCoE offloaded statistics are counted anyway,
2277 * even if they will not be sent.
2278 * VF stats are not accounted for here as the data of VF stats is stored
2279 * in memory allocated by the VF, not here.
2281 bp
->fw_stats_data_sz
= sizeof(struct per_port_stats
) +
2282 sizeof(struct per_pf_stats
) +
2283 sizeof(struct fcoe_statistics_params
) +
2284 sizeof(struct per_queue_stats
) * num_queue_stats
+
2285 sizeof(struct stats_counter
);
2287 bp
->fw_stats
= BNX2X_PCI_ALLOC(&bp
->fw_stats_mapping
,
2288 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2293 bp
->fw_stats_req
= (struct bnx2x_fw_stats_req
*)bp
->fw_stats
;
2294 bp
->fw_stats_req_mapping
= bp
->fw_stats_mapping
;
2295 bp
->fw_stats_data
= (struct bnx2x_fw_stats_data
*)
2296 ((u8
*)bp
->fw_stats
+ bp
->fw_stats_req_sz
);
2297 bp
->fw_stats_data_mapping
= bp
->fw_stats_mapping
+
2298 bp
->fw_stats_req_sz
;
2300 DP(BNX2X_MSG_SP
, "statistics request base address set to %x %x\n",
2301 U64_HI(bp
->fw_stats_req_mapping
),
2302 U64_LO(bp
->fw_stats_req_mapping
));
2303 DP(BNX2X_MSG_SP
, "statistics data base address set to %x %x\n",
2304 U64_HI(bp
->fw_stats_data_mapping
),
2305 U64_LO(bp
->fw_stats_data_mapping
));
2309 bnx2x_free_fw_stats_mem(bp
);
2310 BNX2X_ERR("Can't allocate FW stats memory\n");
2314 /* send load request to mcp and analyze response */
2315 static int bnx2x_nic_load_request(struct bnx2x
*bp
, u32
*load_code
)
2321 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
2322 DRV_MSG_SEQ_NUMBER_MASK
);
2323 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
2325 /* Get current FW pulse sequence */
2326 bp
->fw_drv_pulse_wr_seq
=
2327 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
) &
2328 DRV_PULSE_SEQ_MASK
);
2329 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp
->fw_drv_pulse_wr_seq
);
2331 param
= DRV_MSG_CODE_LOAD_REQ_WITH_LFA
;
2333 if (IS_MF_SD(bp
) && bnx2x_port_after_undi(bp
))
2334 param
|= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA
;
2337 (*load_code
) = bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_REQ
, param
);
2339 /* if mcp fails to respond we must abort */
2340 if (!(*load_code
)) {
2341 BNX2X_ERR("MCP response failure, aborting\n");
2345 /* If mcp refused (e.g. other port is in diagnostic mode) we
2348 if ((*load_code
) == FW_MSG_CODE_DRV_LOAD_REFUSED
) {
2349 BNX2X_ERR("MCP refused load request, aborting\n");
2355 /* check whether another PF has already loaded FW to chip. In
2356 * virtualized environments a pf from another VM may have already
2357 * initialized the device including loading FW
2359 int bnx2x_compare_fw_ver(struct bnx2x
*bp
, u32 load_code
, bool print_err
)
2361 /* is another pf loaded on this engine? */
2362 if (load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
&&
2363 load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON
) {
2364 /* build my FW version dword */
2365 u32 my_fw
= (BCM_5710_FW_MAJOR_VERSION
) +
2366 (BCM_5710_FW_MINOR_VERSION
<< 8) +
2367 (BCM_5710_FW_REVISION_VERSION
<< 16) +
2368 (BCM_5710_FW_ENGINEERING_VERSION
<< 24);
2370 /* read loaded FW from chip */
2371 u32 loaded_fw
= REG_RD(bp
, XSEM_REG_PRAM
);
2373 DP(BNX2X_MSG_SP
, "loaded fw %x, my fw %x\n",
2376 /* abort nic load if version mismatch */
2377 if (my_fw
!= loaded_fw
) {
2379 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2382 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2390 /* returns the "mcp load_code" according to global load_count array */
2391 static int bnx2x_nic_load_no_mcp(struct bnx2x
*bp
, int port
)
2393 int path
= BP_PATH(bp
);
2395 DP(NETIF_MSG_IFUP
, "NO MCP - load counts[%d] %d, %d, %d\n",
2396 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2397 bnx2x_load_count
[path
][2]);
2398 bnx2x_load_count
[path
][0]++;
2399 bnx2x_load_count
[path
][1 + port
]++;
2400 DP(NETIF_MSG_IFUP
, "NO MCP - new load counts[%d] %d, %d, %d\n",
2401 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2402 bnx2x_load_count
[path
][2]);
2403 if (bnx2x_load_count
[path
][0] == 1)
2404 return FW_MSG_CODE_DRV_LOAD_COMMON
;
2405 else if (bnx2x_load_count
[path
][1 + port
] == 1)
2406 return FW_MSG_CODE_DRV_LOAD_PORT
;
2408 return FW_MSG_CODE_DRV_LOAD_FUNCTION
;
2411 /* mark PMF if applicable */
2412 static void bnx2x_nic_load_pmf(struct bnx2x
*bp
, u32 load_code
)
2414 if ((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2415 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
) ||
2416 (load_code
== FW_MSG_CODE_DRV_LOAD_PORT
)) {
2418 /* We need the barrier to ensure the ordering between the
2419 * writing to bp->port.pmf here and reading it from the
2420 * bnx2x_periodic_task().
2427 DP(NETIF_MSG_LINK
, "pmf %d\n", bp
->port
.pmf
);
2430 static void bnx2x_nic_load_afex_dcc(struct bnx2x
*bp
, int load_code
)
2432 if (((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2433 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
)) &&
2434 (bp
->common
.shmem2_base
)) {
2435 if (SHMEM2_HAS(bp
, dcc_support
))
2436 SHMEM2_WR(bp
, dcc_support
,
2437 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV
|
2438 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV
));
2439 if (SHMEM2_HAS(bp
, afex_driver_support
))
2440 SHMEM2_WR(bp
, afex_driver_support
,
2441 SHMEM_AFEX_SUPPORTED_VERSION_ONE
);
2444 /* Set AFEX default VLAN tag to an invalid value */
2445 bp
->afex_def_vlan_tag
= -1;
2449 * bnx2x_bz_fp - zero content of the fastpath structure.
2451 * @bp: driver handle
2452 * @index: fastpath index to be zeroed
2454 * Makes sure the contents of the bp->fp[index].napi is kept
2457 static void bnx2x_bz_fp(struct bnx2x
*bp
, int index
)
2459 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
2461 struct napi_struct orig_napi
= fp
->napi
;
2462 struct bnx2x_agg_info
*orig_tpa_info
= fp
->tpa_info
;
2464 /* bzero bnx2x_fastpath contents */
2466 memset(fp
->tpa_info
, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2
*
2467 sizeof(struct bnx2x_agg_info
));
2468 memset(fp
, 0, sizeof(*fp
));
2470 /* Restore the NAPI object as it has been already initialized */
2471 fp
->napi
= orig_napi
;
2472 fp
->tpa_info
= orig_tpa_info
;
2476 fp
->max_cos
= bp
->max_cos
;
2478 /* Special queues support only one CoS */
2481 /* Init txdata pointers */
2483 fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[FCOE_TXQ_IDX(bp
)];
2485 for_each_cos_in_tx_queue(fp
, cos
)
2486 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[cos
*
2487 BNX2X_NUM_ETH_QUEUES(bp
) + index
];
2489 /* set the tpa flag for each queue. The tpa flag determines the queue
2490 * minimal size so it must be set prior to queue memory allocation
2492 if (bp
->dev
->features
& NETIF_F_LRO
)
2493 fp
->mode
= TPA_MODE_LRO
;
2494 else if (bp
->dev
->features
& NETIF_F_GRO_HW
)
2495 fp
->mode
= TPA_MODE_GRO
;
2497 fp
->mode
= TPA_MODE_DISABLED
;
2499 /* We don't want TPA if it's disabled in bp
2500 * or if this is an FCoE L2 ring.
2502 if (bp
->disable_tpa
|| IS_FCOE_FP(fp
))
2503 fp
->mode
= TPA_MODE_DISABLED
;
2506 void bnx2x_set_os_driver_state(struct bnx2x
*bp
, u32 state
)
2510 if (!IS_MF_BD(bp
) || !SHMEM2_HAS(bp
, os_driver_state
) || IS_VF(bp
))
2513 cur
= SHMEM2_RD(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)]);
2514 DP(NETIF_MSG_IFUP
, "Driver state %08x-->%08x\n",
2517 SHMEM2_WR(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)], state
);
2520 int bnx2x_load_cnic(struct bnx2x
*bp
)
2522 int i
, rc
, port
= BP_PORT(bp
);
2524 DP(NETIF_MSG_IFUP
, "Starting CNIC-related load\n");
2526 mutex_init(&bp
->cnic_mutex
);
2529 rc
= bnx2x_alloc_mem_cnic(bp
);
2531 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2532 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2536 rc
= bnx2x_alloc_fp_mem_cnic(bp
);
2538 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2539 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2542 /* Update the number of queues with the cnic queues */
2543 rc
= bnx2x_set_real_num_queues(bp
, 1);
2545 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2546 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2549 /* Add all CNIC NAPI objects */
2550 bnx2x_add_all_napi_cnic(bp
);
2551 DP(NETIF_MSG_IFUP
, "cnic napi added\n");
2552 bnx2x_napi_enable_cnic(bp
);
2554 rc
= bnx2x_init_hw_func_cnic(bp
);
2556 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic1
);
2558 bnx2x_nic_init_cnic(bp
);
2561 /* Enable Timer scan */
2562 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 1);
2564 /* setup cnic queues */
2565 for_each_cnic_queue(bp
, i
) {
2566 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], 0);
2568 BNX2X_ERR("Queue setup failed\n");
2569 LOAD_ERROR_EXIT(bp
, load_error_cnic2
);
2574 /* Initialize Rx filter. */
2575 bnx2x_set_rx_mode_inner(bp
);
2577 /* re-read iscsi info */
2578 bnx2x_get_iscsi_info(bp
);
2579 bnx2x_setup_cnic_irq_info(bp
);
2580 bnx2x_setup_cnic_info(bp
);
2581 bp
->cnic_loaded
= true;
2582 if (bp
->state
== BNX2X_STATE_OPEN
)
2583 bnx2x_cnic_notify(bp
, CNIC_CTL_START_CMD
);
2585 DP(NETIF_MSG_IFUP
, "Ending successfully CNIC-related load\n");
2589 #ifndef BNX2X_STOP_ON_ERROR
2591 /* Disable Timer scan */
2592 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
2595 bnx2x_napi_disable_cnic(bp
);
2596 /* Update the number of queues without the cnic queues */
2597 if (bnx2x_set_real_num_queues(bp
, 0))
2598 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2600 BNX2X_ERR("CNIC-related load failed\n");
2601 bnx2x_free_fp_mem_cnic(bp
);
2602 bnx2x_free_mem_cnic(bp
);
2604 #endif /* ! BNX2X_STOP_ON_ERROR */
2607 /* must be called with rtnl_lock */
2608 int bnx2x_nic_load(struct bnx2x
*bp
, int load_mode
)
2610 int port
= BP_PORT(bp
);
2611 int i
, rc
= 0, load_code
= 0;
2613 DP(NETIF_MSG_IFUP
, "Starting NIC load\n");
2615 "CNIC is %s\n", CNIC_ENABLED(bp
) ? "enabled" : "disabled");
2617 #ifdef BNX2X_STOP_ON_ERROR
2618 if (unlikely(bp
->panic
)) {
2619 BNX2X_ERR("Can't load NIC when there is panic\n");
2624 bp
->state
= BNX2X_STATE_OPENING_WAIT4_LOAD
;
2626 /* zero the structure w/o any lock, before SP handler is initialized */
2627 memset(&bp
->last_reported_link
, 0, sizeof(bp
->last_reported_link
));
2628 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
2629 &bp
->last_reported_link
.link_report_flags
);
2632 /* must be called before memory allocation and HW init */
2633 bnx2x_ilt_set_info(bp
);
2636 * Zero fastpath structures preserving invariants like napi, which are
2637 * allocated only once, fp index, max_cos, bp pointer.
2638 * Also set fp->mode and txdata_ptr.
2640 DP(NETIF_MSG_IFUP
, "num queues: %d", bp
->num_queues
);
2641 for_each_queue(bp
, i
)
2643 memset(bp
->bnx2x_txq
, 0, (BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+
2644 bp
->num_cnic_queues
) *
2645 sizeof(struct bnx2x_fp_txdata
));
2647 bp
->fcoe_init
= false;
2649 /* Set the receive queues buffer size */
2650 bnx2x_set_rx_buf_size(bp
);
2653 rc
= bnx2x_alloc_mem(bp
);
2655 BNX2X_ERR("Unable to allocate bp memory\n");
2660 /* need to be done after alloc mem, since it's self adjusting to amount
2661 * of memory available for RSS queues
2663 rc
= bnx2x_alloc_fp_mem(bp
);
2665 BNX2X_ERR("Unable to allocate memory for fps\n");
2666 LOAD_ERROR_EXIT(bp
, load_error0
);
2669 /* Allocated memory for FW statistics */
2670 if (bnx2x_alloc_fw_stats_mem(bp
))
2671 LOAD_ERROR_EXIT(bp
, load_error0
);
2673 /* request pf to initialize status blocks */
2675 rc
= bnx2x_vfpf_init(bp
);
2677 LOAD_ERROR_EXIT(bp
, load_error0
);
2680 /* As long as bnx2x_alloc_mem() may possibly update
2681 * bp->num_queues, bnx2x_set_real_num_queues() should always
2682 * come after it. At this stage cnic queues are not counted.
2684 rc
= bnx2x_set_real_num_queues(bp
, 0);
2686 BNX2X_ERR("Unable to set real_num_queues\n");
2687 LOAD_ERROR_EXIT(bp
, load_error0
);
2690 /* configure multi cos mappings in kernel.
2691 * this configuration may be overridden by a multi class queue
2692 * discipline or by a dcbx negotiation result.
2694 bnx2x_setup_tc(bp
->dev
, bp
->max_cos
);
2696 /* Add all NAPI objects */
2697 bnx2x_add_all_napi(bp
);
2698 DP(NETIF_MSG_IFUP
, "napi added\n");
2699 bnx2x_napi_enable(bp
);
2702 /* set pf load just before approaching the MCP */
2703 bnx2x_set_pf_load(bp
);
2705 /* if mcp exists send load request and analyze response */
2706 if (!BP_NOMCP(bp
)) {
2707 /* attempt to load pf */
2708 rc
= bnx2x_nic_load_request(bp
, &load_code
);
2710 LOAD_ERROR_EXIT(bp
, load_error1
);
2712 /* what did mcp say? */
2713 rc
= bnx2x_compare_fw_ver(bp
, load_code
, true);
2715 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2716 LOAD_ERROR_EXIT(bp
, load_error2
);
2719 load_code
= bnx2x_nic_load_no_mcp(bp
, port
);
2722 /* mark pmf if applicable */
2723 bnx2x_nic_load_pmf(bp
, load_code
);
2725 /* Init Function state controlling object */
2726 bnx2x__init_func_obj(bp
);
2729 rc
= bnx2x_init_hw(bp
, load_code
);
2731 BNX2X_ERR("HW init failed, aborting\n");
2732 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2733 LOAD_ERROR_EXIT(bp
, load_error2
);
2737 bnx2x_pre_irq_nic_init(bp
);
2739 /* Connect to IRQs */
2740 rc
= bnx2x_setup_irqs(bp
);
2742 BNX2X_ERR("setup irqs failed\n");
2744 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2745 LOAD_ERROR_EXIT(bp
, load_error2
);
2748 /* Init per-function objects */
2750 /* Setup NIC internals and enable interrupts */
2751 bnx2x_post_irq_nic_init(bp
, load_code
);
2753 bnx2x_init_bp_objs(bp
);
2754 bnx2x_iov_nic_init(bp
);
2756 /* Set AFEX default VLAN tag to an invalid value */
2757 bp
->afex_def_vlan_tag
= -1;
2758 bnx2x_nic_load_afex_dcc(bp
, load_code
);
2759 bp
->state
= BNX2X_STATE_OPENING_WAIT4_PORT
;
2760 rc
= bnx2x_func_start(bp
);
2762 BNX2X_ERR("Function start failed!\n");
2763 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2765 LOAD_ERROR_EXIT(bp
, load_error3
);
2768 /* Send LOAD_DONE command to MCP */
2769 if (!BP_NOMCP(bp
)) {
2770 load_code
= bnx2x_fw_command(bp
,
2771 DRV_MSG_CODE_LOAD_DONE
, 0);
2773 BNX2X_ERR("MCP response failure, aborting\n");
2775 LOAD_ERROR_EXIT(bp
, load_error3
);
2779 /* initialize FW coalescing state machines in RAM */
2780 bnx2x_update_coalesce(bp
);
2783 /* setup the leading queue */
2784 rc
= bnx2x_setup_leading(bp
);
2786 BNX2X_ERR("Setup leading failed!\n");
2787 LOAD_ERROR_EXIT(bp
, load_error3
);
2790 /* set up the rest of the queues */
2791 for_each_nondefault_eth_queue(bp
, i
) {
2793 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], false);
2795 rc
= bnx2x_vfpf_setup_q(bp
, &bp
->fp
[i
], false);
2797 BNX2X_ERR("Queue %d setup failed\n", i
);
2798 LOAD_ERROR_EXIT(bp
, load_error3
);
2803 rc
= bnx2x_init_rss(bp
);
2805 BNX2X_ERR("PF RSS init failed\n");
2806 LOAD_ERROR_EXIT(bp
, load_error3
);
2809 /* Now when Clients are configured we are ready to work */
2810 bp
->state
= BNX2X_STATE_OPEN
;
2812 /* Configure a ucast MAC */
2814 rc
= bnx2x_set_eth_mac(bp
, true);
2816 rc
= bnx2x_vfpf_config_mac(bp
, bp
->dev
->dev_addr
, bp
->fp
->index
,
2819 BNX2X_ERR("Setting Ethernet MAC failed\n");
2820 LOAD_ERROR_EXIT(bp
, load_error3
);
2823 if (IS_PF(bp
) && bp
->pending_max
) {
2824 bnx2x_update_max_mf_config(bp
, bp
->pending_max
);
2825 bp
->pending_max
= 0;
2828 bp
->force_link_down
= false;
2830 rc
= bnx2x_initial_phy_init(bp
, load_mode
);
2832 LOAD_ERROR_EXIT(bp
, load_error3
);
2834 bp
->link_params
.feature_config_flags
&= ~FEATURE_CONFIG_BOOT_FROM_SAN
;
2836 /* Start fast path */
2838 /* Re-configure vlan filters */
2839 rc
= bnx2x_vlan_reconfigure_vid(bp
);
2841 LOAD_ERROR_EXIT(bp
, load_error3
);
2843 /* Initialize Rx filter. */
2844 bnx2x_set_rx_mode_inner(bp
);
2846 if (bp
->flags
& PTP_SUPPORTED
) {
2847 bnx2x_register_phc(bp
);
2849 bnx2x_configure_ptp_filters(bp
);
2852 switch (load_mode
) {
2854 /* Tx queue should be only re-enabled */
2855 netif_tx_wake_all_queues(bp
->dev
);
2859 netif_tx_start_all_queues(bp
->dev
);
2860 smp_mb__after_atomic();
2864 case LOAD_LOOPBACK_EXT
:
2865 bp
->state
= BNX2X_STATE_DIAG
;
2873 bnx2x_update_drv_flags(bp
, 1 << DRV_FLAGS_PORT_MASK
, 0);
2875 bnx2x__link_status_update(bp
);
2877 /* start the timer */
2878 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
2880 if (CNIC_ENABLED(bp
))
2881 bnx2x_load_cnic(bp
);
2884 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
2886 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2887 /* mark driver is loaded in shmem2 */
2889 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2890 val
&= ~DRV_FLAGS_MTU_MASK
;
2891 val
|= (bp
->dev
->mtu
<< DRV_FLAGS_MTU_SHIFT
);
2892 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2893 val
| DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED
|
2894 DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2897 /* Wait for all pending SP commands to complete */
2898 if (IS_PF(bp
) && !bnx2x_wait_sp_comp(bp
, ~0x0UL
)) {
2899 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2900 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
2904 /* Update driver data for On-Chip MFW dump. */
2906 bnx2x_update_mfw_dump(bp
);
2908 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2909 if (bp
->port
.pmf
&& (bp
->state
!= BNX2X_STATE_DIAG
))
2910 bnx2x_dcbx_init(bp
, false);
2912 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2913 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_ACTIVE
);
2915 DP(NETIF_MSG_IFUP
, "Ending successfully NIC load\n");
2919 #ifndef BNX2X_STOP_ON_ERROR
2922 bnx2x_int_disable_sync(bp
, 1);
2924 /* Clean queueable objects */
2925 bnx2x_squeeze_objects(bp
);
2928 /* Free SKBs, SGEs, TPA pool and driver internals */
2929 bnx2x_free_skbs(bp
);
2930 for_each_rx_queue(bp
, i
)
2931 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
2936 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
2937 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
, 0);
2938 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
2943 bnx2x_napi_disable(bp
);
2944 bnx2x_del_all_napi(bp
);
2946 /* clear pf_load status, as it was already set */
2948 bnx2x_clear_pf_load(bp
);
2950 bnx2x_free_fw_stats_mem(bp
);
2951 bnx2x_free_fp_mem(bp
);
2955 #endif /* ! BNX2X_STOP_ON_ERROR */
2958 int bnx2x_drain_tx_queues(struct bnx2x
*bp
)
2962 /* Wait until tx fastpath tasks complete */
2963 for_each_tx_queue(bp
, i
) {
2964 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2966 for_each_cos_in_tx_queue(fp
, cos
)
2967 rc
= bnx2x_clean_tx_queue(bp
, fp
->txdata_ptr
[cos
]);
2974 /* must be called with rtnl_lock */
2975 int bnx2x_nic_unload(struct bnx2x
*bp
, int unload_mode
, bool keep_link
)
2978 bool global
= false;
2980 DP(NETIF_MSG_IFUP
, "Starting NIC unload\n");
2982 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2983 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_DISABLED
);
2985 /* mark driver is unloaded in shmem2 */
2986 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2988 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2989 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2990 val
& ~DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2993 if (IS_PF(bp
) && bp
->recovery_state
!= BNX2X_RECOVERY_DONE
&&
2994 (bp
->state
== BNX2X_STATE_CLOSED
||
2995 bp
->state
== BNX2X_STATE_ERROR
)) {
2996 /* We can get here if the driver has been unloaded
2997 * during parity error recovery and is either waiting for a
2998 * leader to complete or for other functions to unload and
2999 * then ifdown has been issued. In this case we want to
3000 * unload and let other functions to complete a recovery
3003 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
3005 bnx2x_release_leader_lock(bp
);
3008 DP(NETIF_MSG_IFDOWN
, "Releasing a leadership...\n");
3009 BNX2X_ERR("Can't unload in closed or error state\n");
3013 /* Nothing to do during unload if previous bnx2x_nic_load()
3014 * have not completed successfully - all resources are released.
3016 * we can get here only after unsuccessful ndo_* callback, during which
3017 * dev->IFF_UP flag is still on.
3019 if (bp
->state
== BNX2X_STATE_CLOSED
|| bp
->state
== BNX2X_STATE_ERROR
)
3022 /* It's important to set the bp->state to the value different from
3023 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3024 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3026 bp
->state
= BNX2X_STATE_CLOSING_WAIT4_HALT
;
3029 /* indicate to VFs that the PF is going down */
3030 bnx2x_iov_channel_down(bp
);
3032 if (CNIC_LOADED(bp
))
3033 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
3036 bnx2x_tx_disable(bp
);
3037 netdev_reset_tc(bp
->dev
);
3039 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
3041 del_timer_sync(&bp
->timer
);
3043 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
3044 /* Set ALWAYS_ALIVE bit in shmem */
3045 bp
->fw_drv_pulse_wr_seq
|= DRV_PULSE_ALWAYS_ALIVE
;
3046 bnx2x_drv_pulse(bp
);
3047 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
3048 bnx2x_save_statistics(bp
);
3051 /* wait till consumers catch up with producers in all queues.
3052 * If we're recovering, FW can't write to host so no reason
3053 * to wait for the queues to complete all Tx.
3055 if (unload_mode
!= UNLOAD_RECOVERY
)
3056 bnx2x_drain_tx_queues(bp
);
3058 /* if VF indicate to PF this function is going down (PF will delete sp
3059 * elements and clear initializations
3062 bnx2x_clear_vlan_info(bp
);
3063 bnx2x_vfpf_close_vf(bp
);
3064 } else if (unload_mode
!= UNLOAD_RECOVERY
) {
3065 /* if this is a normal/close unload need to clean up chip*/
3066 bnx2x_chip_cleanup(bp
, unload_mode
, keep_link
);
3068 /* Send the UNLOAD_REQUEST to the MCP */
3069 bnx2x_send_unload_req(bp
, unload_mode
);
3071 /* Prevent transactions to host from the functions on the
3072 * engine that doesn't reset global blocks in case of global
3073 * attention once global blocks are reset and gates are opened
3074 * (the engine which leader will perform the recovery
3077 if (!CHIP_IS_E1x(bp
))
3078 bnx2x_pf_disable(bp
);
3080 /* Disable HW interrupts, NAPI */
3081 bnx2x_netif_stop(bp
, 1);
3082 /* Delete all NAPI objects */
3083 bnx2x_del_all_napi(bp
);
3084 if (CNIC_LOADED(bp
))
3085 bnx2x_del_all_napi_cnic(bp
);
3089 /* Report UNLOAD_DONE to MCP */
3090 bnx2x_send_unload_done(bp
, false);
3094 * At this stage no more interrupts will arrive so we may safely clean
3095 * the queueable objects here in case they failed to get cleaned so far.
3098 bnx2x_squeeze_objects(bp
);
3100 /* There should be no more pending SP commands at this stage */
3105 /* clear pending work in rtnl task */
3106 bp
->sp_rtnl_state
= 0;
3109 /* Free SKBs, SGEs, TPA pool and driver internals */
3110 bnx2x_free_skbs(bp
);
3111 if (CNIC_LOADED(bp
))
3112 bnx2x_free_skbs_cnic(bp
);
3113 for_each_rx_queue(bp
, i
)
3114 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
3116 bnx2x_free_fp_mem(bp
);
3117 if (CNIC_LOADED(bp
))
3118 bnx2x_free_fp_mem_cnic(bp
);
3121 if (CNIC_LOADED(bp
))
3122 bnx2x_free_mem_cnic(bp
);
3126 bp
->state
= BNX2X_STATE_CLOSED
;
3127 bp
->cnic_loaded
= false;
3129 /* Clear driver version indication in shmem */
3130 if (IS_PF(bp
) && !BP_NOMCP(bp
))
3131 bnx2x_update_mng_version(bp
);
3133 /* Check if there are pending parity attentions. If there are - set
3134 * RECOVERY_IN_PROGRESS.
3136 if (IS_PF(bp
) && bnx2x_chk_parity_attn(bp
, &global
, false)) {
3137 bnx2x_set_reset_in_progress(bp
);
3139 /* Set RESET_IS_GLOBAL if needed */
3141 bnx2x_set_reset_global(bp
);
3144 /* The last driver must disable a "close the gate" if there is no
3145 * parity attention or "process kill" pending.
3148 !bnx2x_clear_pf_load(bp
) &&
3149 bnx2x_reset_is_done(bp
, BP_PATH(bp
)))
3150 bnx2x_disable_close_the_gate(bp
);
3152 DP(NETIF_MSG_IFUP
, "Ending NIC unload\n");
3157 int bnx2x_set_power_state(struct bnx2x
*bp
, pci_power_t state
)
3161 /* If there is no power capability, silently succeed */
3162 if (!bp
->pdev
->pm_cap
) {
3163 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3167 pci_read_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3171 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3172 ((pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3173 PCI_PM_CTRL_PME_STATUS
));
3175 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3176 /* delay required during transition out of D3hot */
3181 /* If there are other clients above don't
3182 shut down the power */
3183 if (atomic_read(&bp
->pdev
->enable_cnt
) != 1)
3185 /* Don't shut down the power for emulation and FPGA */
3186 if (CHIP_REV_IS_SLOW(bp
))
3189 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3193 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3195 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3198 /* No more memory access after this point until
3199 * device is brought back to D0.
3204 dev_err(&bp
->pdev
->dev
, "Can't support state = %d\n", state
);
3211 * net_device service functions
3213 static int bnx2x_poll(struct napi_struct
*napi
, int budget
)
3215 struct bnx2x_fastpath
*fp
= container_of(napi
, struct bnx2x_fastpath
,
3217 struct bnx2x
*bp
= fp
->bp
;
3221 #ifdef BNX2X_STOP_ON_ERROR
3222 if (unlikely(bp
->panic
)) {
3223 napi_complete(napi
);
3227 for_each_cos_in_tx_queue(fp
, cos
)
3228 if (bnx2x_tx_queue_has_work(fp
->txdata_ptr
[cos
]))
3229 bnx2x_tx_int(bp
, fp
->txdata_ptr
[cos
]);
3231 rx_work_done
= (bnx2x_has_rx_work(fp
)) ? bnx2x_rx_int(fp
, budget
) : 0;
3233 if (rx_work_done
< budget
) {
3234 /* No need to update SB for FCoE L2 ring as long as
3235 * it's connected to the default SB and the SB
3236 * has been updated when NAPI was scheduled.
3238 if (IS_FCOE_FP(fp
)) {
3239 napi_complete_done(napi
, rx_work_done
);
3241 bnx2x_update_fpsb_idx(fp
);
3242 /* bnx2x_has_rx_work() reads the status block,
3243 * thus we need to ensure that status block indices
3244 * have been actually read (bnx2x_update_fpsb_idx)
3245 * prior to this check (bnx2x_has_rx_work) so that
3246 * we won't write the "newer" value of the status block
3247 * to IGU (if there was a DMA right after
3248 * bnx2x_has_rx_work and if there is no rmb, the memory
3249 * reading (bnx2x_update_fpsb_idx) may be postponed
3250 * to right before bnx2x_ack_sb). In this case there
3251 * will never be another interrupt until there is
3252 * another update of the status block, while there
3253 * is still unhandled work.
3257 if (!(bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
3258 if (napi_complete_done(napi
, rx_work_done
)) {
3259 /* Re-enable interrupts */
3260 DP(NETIF_MSG_RX_STATUS
,
3261 "Update index to %d\n", fp
->fp_hc_idx
);
3262 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
,
3263 le16_to_cpu(fp
->fp_hc_idx
),
3267 rx_work_done
= budget
;
3272 return rx_work_done
;
3275 /* we split the first BD into headers and data BDs
3276 * to ease the pain of our fellow microcode engineers
3277 * we use one mapping for both BDs
3279 static u16
bnx2x_tx_split(struct bnx2x
*bp
,
3280 struct bnx2x_fp_txdata
*txdata
,
3281 struct sw_tx_bd
*tx_buf
,
3282 struct eth_tx_start_bd
**tx_bd
, u16 hlen
,
3285 struct eth_tx_start_bd
*h_tx_bd
= *tx_bd
;
3286 struct eth_tx_bd
*d_tx_bd
;
3288 int old_len
= le16_to_cpu(h_tx_bd
->nbytes
);
3290 /* first fix first BD */
3291 h_tx_bd
->nbytes
= cpu_to_le16(hlen
);
3293 DP(NETIF_MSG_TX_QUEUED
, "TSO split header size is %d (%x:%x)\n",
3294 h_tx_bd
->nbytes
, h_tx_bd
->addr_hi
, h_tx_bd
->addr_lo
);
3296 /* now get a new data BD
3297 * (after the pbd) and fill it */
3298 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3299 d_tx_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
3301 mapping
= HILO_U64(le32_to_cpu(h_tx_bd
->addr_hi
),
3302 le32_to_cpu(h_tx_bd
->addr_lo
)) + hlen
;
3304 d_tx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
3305 d_tx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
3306 d_tx_bd
->nbytes
= cpu_to_le16(old_len
- hlen
);
3308 /* this marks the BD as one that has no individual mapping */
3309 tx_buf
->flags
|= BNX2X_TSO_SPLIT_BD
;
3311 DP(NETIF_MSG_TX_QUEUED
,
3312 "TSO split data size is %d (%x:%x)\n",
3313 d_tx_bd
->nbytes
, d_tx_bd
->addr_hi
, d_tx_bd
->addr_lo
);
3316 *tx_bd
= (struct eth_tx_start_bd
*)d_tx_bd
;
3321 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3322 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3323 static __le16
bnx2x_csum_fix(unsigned char *t_header
, u16 csum
, s8 fix
)
3325 __sum16 tsum
= (__force __sum16
) csum
;
3328 tsum
= ~csum_fold(csum_sub((__force __wsum
) csum
,
3329 csum_partial(t_header
- fix
, fix
, 0)));
3332 tsum
= ~csum_fold(csum_add((__force __wsum
) csum
,
3333 csum_partial(t_header
, -fix
, 0)));
3335 return bswab16(tsum
);
3338 static u32
bnx2x_xmit_type(struct bnx2x
*bp
, struct sk_buff
*skb
)
3344 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3347 protocol
= vlan_get_protocol(skb
);
3348 if (protocol
== htons(ETH_P_IPV6
)) {
3350 prot
= ipv6_hdr(skb
)->nexthdr
;
3353 prot
= ip_hdr(skb
)->protocol
;
3356 if (!CHIP_IS_E1x(bp
) && skb
->encapsulation
) {
3357 if (inner_ip_hdr(skb
)->version
== 6) {
3358 rc
|= XMIT_CSUM_ENC_V6
;
3359 if (inner_ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3360 rc
|= XMIT_CSUM_TCP
;
3362 rc
|= XMIT_CSUM_ENC_V4
;
3363 if (inner_ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3364 rc
|= XMIT_CSUM_TCP
;
3367 if (prot
== IPPROTO_TCP
)
3368 rc
|= XMIT_CSUM_TCP
;
3370 if (skb_is_gso(skb
)) {
3371 if (skb_is_gso_v6(skb
)) {
3372 rc
|= (XMIT_GSO_V6
| XMIT_CSUM_TCP
);
3373 if (rc
& XMIT_CSUM_ENC
)
3374 rc
|= XMIT_GSO_ENC_V6
;
3376 rc
|= (XMIT_GSO_V4
| XMIT_CSUM_TCP
);
3377 if (rc
& XMIT_CSUM_ENC
)
3378 rc
|= XMIT_GSO_ENC_V4
;
3385 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3386 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3388 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3389 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3391 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3392 /* check if packet requires linearization (packet is too fragmented)
3393 no need to check fragmentation if page size > 8K (there will be no
3394 violation to FW restrictions) */
3395 static int bnx2x_pkt_req_lin(struct bnx2x
*bp
, struct sk_buff
*skb
,
3398 int first_bd_sz
= 0, num_tso_win_sub
= BNX2X_NUM_TSO_WIN_SUB_BDS
;
3399 int to_copy
= 0, hlen
= 0;
3401 if (xmit_type
& XMIT_GSO_ENC
)
3402 num_tso_win_sub
= BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS
;
3404 if (skb_shinfo(skb
)->nr_frags
>= (MAX_FETCH_BD
- num_tso_win_sub
)) {
3405 if (xmit_type
& XMIT_GSO
) {
3406 unsigned short lso_mss
= skb_shinfo(skb
)->gso_size
;
3407 int wnd_size
= MAX_FETCH_BD
- num_tso_win_sub
;
3408 /* Number of windows to check */
3409 int num_wnds
= skb_shinfo(skb
)->nr_frags
- wnd_size
;
3414 /* Headers length */
3415 if (xmit_type
& XMIT_GSO_ENC
)
3416 hlen
= (int)(skb_inner_transport_header(skb
) -
3418 inner_tcp_hdrlen(skb
);
3420 hlen
= (int)(skb_transport_header(skb
) -
3421 skb
->data
) + tcp_hdrlen(skb
);
3423 /* Amount of data (w/o headers) on linear part of SKB*/
3424 first_bd_sz
= skb_headlen(skb
) - hlen
;
3426 wnd_sum
= first_bd_sz
;
3428 /* Calculate the first sum - it's special */
3429 for (frag_idx
= 0; frag_idx
< wnd_size
- 1; frag_idx
++)
3431 skb_frag_size(&skb_shinfo(skb
)->frags
[frag_idx
]);
3433 /* If there was data on linear skb data - check it */
3434 if (first_bd_sz
> 0) {
3435 if (unlikely(wnd_sum
< lso_mss
)) {
3440 wnd_sum
-= first_bd_sz
;
3443 /* Others are easier: run through the frag list and
3444 check all windows */
3445 for (wnd_idx
= 0; wnd_idx
<= num_wnds
; wnd_idx
++) {
3447 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
+ wnd_size
- 1]);
3449 if (unlikely(wnd_sum
< lso_mss
)) {
3454 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
]);
3457 /* in non-LSO too fragmented packet should always
3464 if (unlikely(to_copy
))
3465 DP(NETIF_MSG_TX_QUEUED
,
3466 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3467 (xmit_type
& XMIT_GSO
) ? "LSO" : "non-LSO",
3468 skb_shinfo(skb
)->nr_frags
, hlen
, first_bd_sz
);
3475 * bnx2x_set_pbd_gso - update PBD in GSO case.
3479 * @xmit_type: xmit flags
3481 static void bnx2x_set_pbd_gso(struct sk_buff
*skb
,
3482 struct eth_tx_parse_bd_e1x
*pbd
,
3485 pbd
->lso_mss
= cpu_to_le16(skb_shinfo(skb
)->gso_size
);
3486 pbd
->tcp_send_seq
= bswab32(tcp_hdr(skb
)->seq
);
3487 pbd
->tcp_flags
= pbd_tcp_flags(tcp_hdr(skb
));
3489 if (xmit_type
& XMIT_GSO_V4
) {
3490 pbd
->ip_id
= bswab16(ip_hdr(skb
)->id
);
3491 pbd
->tcp_pseudo_csum
=
3492 bswab16(~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3494 0, IPPROTO_TCP
, 0));
3496 pbd
->tcp_pseudo_csum
=
3497 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3498 &ipv6_hdr(skb
)->daddr
,
3499 0, IPPROTO_TCP
, 0));
3503 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN
);
3507 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3509 * @bp: driver handle
3511 * @parsing_data: data to be updated
3512 * @xmit_type: xmit flags
3514 * 57712/578xx related, when skb has encapsulation
3516 static u8
bnx2x_set_pbd_csum_enc(struct bnx2x
*bp
, struct sk_buff
*skb
,
3517 u32
*parsing_data
, u32 xmit_type
)
3520 ((((u8
*)skb_inner_transport_header(skb
) - skb
->data
) >> 1) <<
3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3522 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3524 if (xmit_type
& XMIT_CSUM_TCP
) {
3525 *parsing_data
|= ((inner_tcp_hdrlen(skb
) / 4) <<
3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3527 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3529 return skb_inner_transport_header(skb
) +
3530 inner_tcp_hdrlen(skb
) - skb
->data
;
3533 /* We support checksum offload for TCP and UDP only.
3534 * No need to pass the UDP header length - it's a constant.
3536 return skb_inner_transport_header(skb
) +
3537 sizeof(struct udphdr
) - skb
->data
;
3541 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3543 * @bp: driver handle
3545 * @parsing_data: data to be updated
3546 * @xmit_type: xmit flags
3548 * 57712/578xx related
3550 static u8
bnx2x_set_pbd_csum_e2(struct bnx2x
*bp
, struct sk_buff
*skb
,
3551 u32
*parsing_data
, u32 xmit_type
)
3554 ((((u8
*)skb_transport_header(skb
) - skb
->data
) >> 1) <<
3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3556 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3558 if (xmit_type
& XMIT_CSUM_TCP
) {
3559 *parsing_data
|= ((tcp_hdrlen(skb
) / 4) <<
3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3561 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3563 return skb_transport_header(skb
) + tcp_hdrlen(skb
) - skb
->data
;
3565 /* We support checksum offload for TCP and UDP only.
3566 * No need to pass the UDP header length - it's a constant.
3568 return skb_transport_header(skb
) + sizeof(struct udphdr
) - skb
->data
;
3571 /* set FW indication according to inner or outer protocols if tunneled */
3572 static void bnx2x_set_sbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3573 struct eth_tx_start_bd
*tx_start_bd
,
3576 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_L4_CSUM
;
3578 if (xmit_type
& (XMIT_CSUM_ENC_V6
| XMIT_CSUM_V6
))
3579 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IPV6
;
3581 if (!(xmit_type
& XMIT_CSUM_TCP
))
3582 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IS_UDP
;
3586 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3588 * @bp: driver handle
3590 * @pbd: parse BD to be updated
3591 * @xmit_type: xmit flags
3593 static u8
bnx2x_set_pbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3594 struct eth_tx_parse_bd_e1x
*pbd
,
3597 u8 hlen
= (skb_network_header(skb
) - skb
->data
) >> 1;
3599 /* for now NS flag is not used in Linux */
3602 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3603 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT
));
3605 pbd
->ip_hlen_w
= (skb_transport_header(skb
) -
3606 skb_network_header(skb
)) >> 1;
3608 hlen
+= pbd
->ip_hlen_w
;
3610 /* We support checksum offload for TCP and UDP only */
3611 if (xmit_type
& XMIT_CSUM_TCP
)
3612 hlen
+= tcp_hdrlen(skb
) / 2;
3614 hlen
+= sizeof(struct udphdr
) / 2;
3616 pbd
->total_hlen_w
= cpu_to_le16(hlen
);
3619 if (xmit_type
& XMIT_CSUM_TCP
) {
3620 pbd
->tcp_pseudo_csum
= bswab16(tcp_hdr(skb
)->check
);
3623 s8 fix
= SKB_CS_OFF(skb
); /* signed! */
3625 DP(NETIF_MSG_TX_QUEUED
,
3626 "hlen %d fix %d csum before fix %x\n",
3627 le16_to_cpu(pbd
->total_hlen_w
), fix
, SKB_CS(skb
));
3629 /* HW bug: fixup the CSUM */
3630 pbd
->tcp_pseudo_csum
=
3631 bnx2x_csum_fix(skb_transport_header(skb
),
3634 DP(NETIF_MSG_TX_QUEUED
, "csum after fix %x\n",
3635 pbd
->tcp_pseudo_csum
);
3641 static void bnx2x_update_pbds_gso_enc(struct sk_buff
*skb
,
3642 struct eth_tx_parse_bd_e2
*pbd_e2
,
3643 struct eth_tx_parse_2nd_bd
*pbd2
,
3648 u8 outerip_off
, outerip_len
= 0;
3650 /* from outer IP to transport */
3651 hlen_w
= (skb_inner_transport_header(skb
) -
3652 skb_network_header(skb
)) >> 1;
3655 hlen_w
+= inner_tcp_hdrlen(skb
) >> 1;
3657 pbd2
->fw_ip_hdr_to_payload_w
= hlen_w
;
3659 /* outer IP header info */
3660 if (xmit_type
& XMIT_CSUM_V4
) {
3661 struct iphdr
*iph
= ip_hdr(skb
);
3662 u32 csum
= (__force u32
)(~iph
->check
) -
3663 (__force u32
)iph
->tot_len
-
3664 (__force u32
)iph
->frag_off
;
3666 outerip_len
= iph
->ihl
<< 1;
3668 pbd2
->fw_ip_csum_wo_len_flags_frag
=
3669 bswab16(csum_fold((__force __wsum
)csum
));
3671 pbd2
->fw_ip_hdr_to_payload_w
=
3672 hlen_w
- ((sizeof(struct ipv6hdr
)) >> 1);
3673 pbd_e2
->data
.tunnel_data
.flags
|=
3674 ETH_TUNNEL_DATA_IPV6_OUTER
;
3677 pbd2
->tcp_send_seq
= bswab32(inner_tcp_hdr(skb
)->seq
);
3679 pbd2
->tcp_flags
= pbd_tcp_flags(inner_tcp_hdr(skb
));
3681 /* inner IP header info */
3682 if (xmit_type
& XMIT_CSUM_ENC_V4
) {
3683 pbd2
->hw_ip_id
= bswab16(inner_ip_hdr(skb
)->id
);
3685 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3686 bswab16(~csum_tcpudp_magic(
3687 inner_ip_hdr(skb
)->saddr
,
3688 inner_ip_hdr(skb
)->daddr
,
3689 0, IPPROTO_TCP
, 0));
3691 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3692 bswab16(~csum_ipv6_magic(
3693 &inner_ipv6_hdr(skb
)->saddr
,
3694 &inner_ipv6_hdr(skb
)->daddr
,
3695 0, IPPROTO_TCP
, 0));
3698 outerip_off
= (skb_network_header(skb
) - skb
->data
) >> 1;
3703 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT
) |
3704 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3705 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT
);
3707 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
3708 SET_FLAG(*global_data
, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST
, 1);
3709 pbd2
->tunnel_udp_hdr_start_w
= skb_transport_offset(skb
) >> 1;
3713 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff
*skb
, u32
*parsing_data
,
3716 struct ipv6hdr
*ipv6
;
3718 if (!(xmit_type
& (XMIT_GSO_ENC_V6
| XMIT_GSO_V6
)))
3721 if (xmit_type
& XMIT_GSO_ENC_V6
)
3722 ipv6
= inner_ipv6_hdr(skb
);
3723 else /* XMIT_GSO_V6 */
3724 ipv6
= ipv6_hdr(skb
);
3726 if (ipv6
->nexthdr
== NEXTHDR_IPV6
)
3727 *parsing_data
|= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR
;
3730 /* called with netif_tx_lock
3731 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3732 * netif_wake_queue()
3734 netdev_tx_t
bnx2x_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3736 struct bnx2x
*bp
= netdev_priv(dev
);
3738 struct netdev_queue
*txq
;
3739 struct bnx2x_fp_txdata
*txdata
;
3740 struct sw_tx_bd
*tx_buf
;
3741 struct eth_tx_start_bd
*tx_start_bd
, *first_bd
;
3742 struct eth_tx_bd
*tx_data_bd
, *total_pkt_bd
= NULL
;
3743 struct eth_tx_parse_bd_e1x
*pbd_e1x
= NULL
;
3744 struct eth_tx_parse_bd_e2
*pbd_e2
= NULL
;
3745 struct eth_tx_parse_2nd_bd
*pbd2
= NULL
;
3746 u32 pbd_e2_parsing_data
= 0;
3747 u16 pkt_prod
, bd_prod
;
3750 u32 xmit_type
= bnx2x_xmit_type(bp
, skb
);
3753 __le16 pkt_size
= 0;
3755 u8 mac_type
= UNICAST_ADDRESS
;
3757 #ifdef BNX2X_STOP_ON_ERROR
3758 if (unlikely(bp
->panic
))
3759 return NETDEV_TX_BUSY
;
3762 txq_index
= skb_get_queue_mapping(skb
);
3763 txq
= netdev_get_tx_queue(dev
, txq_index
);
3765 BUG_ON(txq_index
>= MAX_ETH_TXQ_IDX(bp
) + (CNIC_LOADED(bp
) ? 1 : 0));
3767 txdata
= &bp
->bnx2x_txq
[txq_index
];
3769 /* enable this debug print to view the transmission queue being used
3770 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3771 txq_index, fp_index, txdata_index); */
3773 /* enable this debug print to view the transmission details
3774 DP(NETIF_MSG_TX_QUEUED,
3775 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3776 txdata->cid, fp_index, txdata_index, txdata, fp); */
3778 if (unlikely(bnx2x_tx_avail(bp
, txdata
) <
3779 skb_shinfo(skb
)->nr_frags
+
3781 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT
))) {
3782 /* Handle special storage cases separately */
3783 if (txdata
->tx_ring_size
== 0) {
3784 struct bnx2x_eth_q_stats
*q_stats
=
3785 bnx2x_fp_qstats(bp
, txdata
->parent_fp
);
3786 q_stats
->driver_filtered_tx_pkt
++;
3788 return NETDEV_TX_OK
;
3790 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
3791 netif_tx_stop_queue(txq
);
3792 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3794 return NETDEV_TX_BUSY
;
3797 DP(NETIF_MSG_TX_QUEUED
,
3798 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3799 txq_index
, skb
->ip_summed
, skb
->protocol
, ipv6_hdr(skb
)->nexthdr
,
3800 ip_hdr(skb
)->protocol
, skb_shinfo(skb
)->gso_type
, xmit_type
,
3803 eth
= (struct ethhdr
*)skb
->data
;
3805 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3806 if (unlikely(is_multicast_ether_addr(eth
->h_dest
))) {
3807 if (is_broadcast_ether_addr(eth
->h_dest
))
3808 mac_type
= BROADCAST_ADDRESS
;
3810 mac_type
= MULTICAST_ADDRESS
;
3813 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3814 /* First, check if we need to linearize the skb (due to FW
3815 restrictions). No need to check fragmentation if page size > 8K
3816 (there will be no violation to FW restrictions) */
3817 if (bnx2x_pkt_req_lin(bp
, skb
, xmit_type
)) {
3818 /* Statistics of linearization */
3820 if (skb_linearize(skb
) != 0) {
3821 DP(NETIF_MSG_TX_QUEUED
,
3822 "SKB linearization failed - silently dropping this SKB\n");
3823 dev_kfree_skb_any(skb
);
3824 return NETDEV_TX_OK
;
3828 /* Map skb linear data for DMA */
3829 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
,
3830 skb_headlen(skb
), DMA_TO_DEVICE
);
3831 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
3832 DP(NETIF_MSG_TX_QUEUED
,
3833 "SKB mapping failed - silently dropping this SKB\n");
3834 dev_kfree_skb_any(skb
);
3835 return NETDEV_TX_OK
;
3838 Please read carefully. First we use one BD which we mark as start,
3839 then we have a parsing info BD (used for TSO or xsum),
3840 and only then we have the rest of the TSO BDs.
3841 (don't forget to mark the last one as last,
3842 and to unmap only AFTER you write to the BD ...)
3843 And above all, all pdb sizes are in words - NOT DWORDS!
3846 /* get current pkt produced now - advance it just before sending packet
3847 * since mapping of pages may fail and cause packet to be dropped
3849 pkt_prod
= txdata
->tx_pkt_prod
;
3850 bd_prod
= TX_BD(txdata
->tx_bd_prod
);
3852 /* get a tx_buf and first BD
3853 * tx_start_bd may be changed during SPLIT,
3854 * but first_bd will always stay first
3856 tx_buf
= &txdata
->tx_buf_ring
[TX_BD(pkt_prod
)];
3857 tx_start_bd
= &txdata
->tx_desc_ring
[bd_prod
].start_bd
;
3858 first_bd
= tx_start_bd
;
3860 tx_start_bd
->bd_flags
.as_bitfield
= ETH_TX_BD_FLAGS_START_BD
;
3862 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)) {
3863 if (!(bp
->flags
& TX_TIMESTAMPING_EN
)) {
3864 bp
->eth_stats
.ptp_skip_tx_ts
++;
3865 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3866 } else if (bp
->ptp_tx_skb
) {
3867 bp
->eth_stats
.ptp_skip_tx_ts
++;
3868 netdev_err_once(bp
->dev
,
3869 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3871 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3872 /* schedule check for Tx timestamp */
3873 bp
->ptp_tx_skb
= skb_get(skb
);
3874 bp
->ptp_tx_start
= jiffies
;
3875 schedule_work(&bp
->ptp_task
);
3879 /* header nbd: indirectly zero other flags! */
3880 tx_start_bd
->general_data
= 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT
;
3882 /* remember the first BD of the packet */
3883 tx_buf
->first_bd
= txdata
->tx_bd_prod
;
3887 DP(NETIF_MSG_TX_QUEUED
,
3888 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3889 pkt_prod
, tx_buf
, txdata
->tx_pkt_prod
, bd_prod
, tx_start_bd
);
3891 if (skb_vlan_tag_present(skb
)) {
3892 tx_start_bd
->vlan_or_ethertype
=
3893 cpu_to_le16(skb_vlan_tag_get(skb
));
3894 tx_start_bd
->bd_flags
.as_bitfield
|=
3895 (X_ETH_OUTBAND_VLAN
<< ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3897 /* when transmitting in a vf, start bd must hold the ethertype
3898 * for fw to enforce it
3901 #ifndef BNX2X_STOP_ON_ERROR
3904 /* Still need to consider inband vlan for enforced */
3905 if (__vlan_get_tag(skb
, &vlan_tci
)) {
3906 tx_start_bd
->vlan_or_ethertype
=
3907 cpu_to_le16(ntohs(eth
->h_proto
));
3909 tx_start_bd
->bd_flags
.as_bitfield
|=
3910 (X_ETH_INBAND_VLAN
<<
3911 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3912 tx_start_bd
->vlan_or_ethertype
=
3913 cpu_to_le16(vlan_tci
);
3915 #ifndef BNX2X_STOP_ON_ERROR
3917 /* used by FW for packet accounting */
3918 tx_start_bd
->vlan_or_ethertype
= cpu_to_le16(pkt_prod
);
3923 nbd
= 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3925 /* turn on parsing and get a BD */
3926 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3928 if (xmit_type
& XMIT_CSUM
)
3929 bnx2x_set_sbd_csum(bp
, skb
, tx_start_bd
, xmit_type
);
3931 if (!CHIP_IS_E1x(bp
)) {
3932 pbd_e2
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e2
;
3933 memset(pbd_e2
, 0, sizeof(struct eth_tx_parse_bd_e2
));
3935 if (xmit_type
& XMIT_CSUM_ENC
) {
3936 u16 global_data
= 0;
3938 /* Set PBD in enc checksum offload case */
3939 hlen
= bnx2x_set_pbd_csum_enc(bp
, skb
,
3940 &pbd_e2_parsing_data
,
3943 /* turn on 2nd parsing and get a BD */
3944 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3946 pbd2
= &txdata
->tx_desc_ring
[bd_prod
].parse_2nd_bd
;
3948 memset(pbd2
, 0, sizeof(*pbd2
));
3950 pbd_e2
->data
.tunnel_data
.ip_hdr_start_inner_w
=
3951 (skb_inner_network_header(skb
) -
3954 if (xmit_type
& XMIT_GSO_ENC
)
3955 bnx2x_update_pbds_gso_enc(skb
, pbd_e2
, pbd2
,
3959 pbd2
->global_data
= cpu_to_le16(global_data
);
3961 /* add addition parse BD indication to start BD */
3962 SET_FLAG(tx_start_bd
->general_data
,
3963 ETH_TX_START_BD_PARSE_NBDS
, 1);
3964 /* set encapsulation flag in start BD */
3965 SET_FLAG(tx_start_bd
->general_data
,
3966 ETH_TX_START_BD_TUNNEL_EXIST
, 1);
3968 tx_buf
->flags
|= BNX2X_HAS_SECOND_PBD
;
3971 } else if (xmit_type
& XMIT_CSUM
) {
3972 /* Set PBD in checksum offload case w/o encapsulation */
3973 hlen
= bnx2x_set_pbd_csum_e2(bp
, skb
,
3974 &pbd_e2_parsing_data
,
3978 bnx2x_set_ipv6_ext_e2(skb
, &pbd_e2_parsing_data
, xmit_type
);
3979 /* Add the macs to the parsing BD if this is a vf or if
3980 * Tx Switching is enabled.
3983 /* override GRE parameters in BD */
3984 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
3985 &pbd_e2
->data
.mac_addr
.src_mid
,
3986 &pbd_e2
->data
.mac_addr
.src_lo
,
3989 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.dst_hi
,
3990 &pbd_e2
->data
.mac_addr
.dst_mid
,
3991 &pbd_e2
->data
.mac_addr
.dst_lo
,
3994 if (bp
->flags
& TX_SWITCHING
)
3995 bnx2x_set_fw_mac_addr(
3996 &pbd_e2
->data
.mac_addr
.dst_hi
,
3997 &pbd_e2
->data
.mac_addr
.dst_mid
,
3998 &pbd_e2
->data
.mac_addr
.dst_lo
,
4000 #ifdef BNX2X_STOP_ON_ERROR
4001 /* Enforce security is always set in Stop on Error -
4002 * source mac should be present in the parsing BD
4004 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
4005 &pbd_e2
->data
.mac_addr
.src_mid
,
4006 &pbd_e2
->data
.mac_addr
.src_lo
,
4011 SET_FLAG(pbd_e2_parsing_data
,
4012 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE
, mac_type
);
4014 u16 global_data
= 0;
4015 pbd_e1x
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e1x
;
4016 memset(pbd_e1x
, 0, sizeof(struct eth_tx_parse_bd_e1x
));
4017 /* Set PBD in checksum offload case */
4018 if (xmit_type
& XMIT_CSUM
)
4019 hlen
= bnx2x_set_pbd_csum(bp
, skb
, pbd_e1x
, xmit_type
);
4021 SET_FLAG(global_data
,
4022 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE
, mac_type
);
4023 pbd_e1x
->global_data
|= cpu_to_le16(global_data
);
4026 /* Setup the data pointer of the first BD of the packet */
4027 tx_start_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4028 tx_start_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4029 tx_start_bd
->nbytes
= cpu_to_le16(skb_headlen(skb
));
4030 pkt_size
= tx_start_bd
->nbytes
;
4032 DP(NETIF_MSG_TX_QUEUED
,
4033 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4034 tx_start_bd
, tx_start_bd
->addr_hi
, tx_start_bd
->addr_lo
,
4035 le16_to_cpu(tx_start_bd
->nbytes
),
4036 tx_start_bd
->bd_flags
.as_bitfield
,
4037 le16_to_cpu(tx_start_bd
->vlan_or_ethertype
));
4039 if (xmit_type
& XMIT_GSO
) {
4041 DP(NETIF_MSG_TX_QUEUED
,
4042 "TSO packet len %d hlen %d total len %d tso size %d\n",
4043 skb
->len
, hlen
, skb_headlen(skb
),
4044 skb_shinfo(skb
)->gso_size
);
4046 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_SW_LSO
;
4048 if (unlikely(skb_headlen(skb
) > hlen
)) {
4050 bd_prod
= bnx2x_tx_split(bp
, txdata
, tx_buf
,
4054 if (!CHIP_IS_E1x(bp
))
4055 pbd_e2_parsing_data
|=
4056 (skb_shinfo(skb
)->gso_size
<<
4057 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT
) &
4058 ETH_TX_PARSE_BD_E2_LSO_MSS
;
4060 bnx2x_set_pbd_gso(skb
, pbd_e1x
, xmit_type
);
4063 /* Set the PBD's parsing_data field if not zero
4064 * (for the chips newer than 57711).
4066 if (pbd_e2_parsing_data
)
4067 pbd_e2
->parsing_data
= cpu_to_le32(pbd_e2_parsing_data
);
4069 tx_data_bd
= (struct eth_tx_bd
*)tx_start_bd
;
4071 /* Handle fragmented skb */
4072 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
4073 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4075 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0,
4076 skb_frag_size(frag
), DMA_TO_DEVICE
);
4077 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
4078 unsigned int pkts_compl
= 0, bytes_compl
= 0;
4080 DP(NETIF_MSG_TX_QUEUED
,
4081 "Unable to map page - dropping packet...\n");
4083 /* we need unmap all buffers already mapped
4085 * first_bd->nbd need to be properly updated
4086 * before call to bnx2x_free_tx_pkt
4088 first_bd
->nbd
= cpu_to_le16(nbd
);
4089 bnx2x_free_tx_pkt(bp
, txdata
,
4090 TX_BD(txdata
->tx_pkt_prod
),
4091 &pkts_compl
, &bytes_compl
);
4092 return NETDEV_TX_OK
;
4095 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4096 tx_data_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4097 if (total_pkt_bd
== NULL
)
4098 total_pkt_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4100 tx_data_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4101 tx_data_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4102 tx_data_bd
->nbytes
= cpu_to_le16(skb_frag_size(frag
));
4103 le16_add_cpu(&pkt_size
, skb_frag_size(frag
));
4106 DP(NETIF_MSG_TX_QUEUED
,
4107 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4108 i
, tx_data_bd
, tx_data_bd
->addr_hi
, tx_data_bd
->addr_lo
,
4109 le16_to_cpu(tx_data_bd
->nbytes
));
4112 DP(NETIF_MSG_TX_QUEUED
, "last bd @%p\n", tx_data_bd
);
4114 /* update with actual num BDs */
4115 first_bd
->nbd
= cpu_to_le16(nbd
);
4117 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4119 /* now send a tx doorbell, counting the next BD
4120 * if the packet contains or ends with it
4122 if (TX_BD_POFF(bd_prod
) < nbd
)
4125 /* total_pkt_bytes should be set on the first data BD if
4126 * it's not an LSO packet and there is more than one
4127 * data BD. In this case pkt_size is limited by an MTU value.
4128 * However we prefer to set it for an LSO packet (while we don't
4129 * have to) in order to save some CPU cycles in a none-LSO
4130 * case, when we much more care about them.
4132 if (total_pkt_bd
!= NULL
)
4133 total_pkt_bd
->total_pkt_bytes
= pkt_size
;
4136 DP(NETIF_MSG_TX_QUEUED
,
4137 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4138 pbd_e1x
, pbd_e1x
->global_data
, pbd_e1x
->ip_hlen_w
,
4139 pbd_e1x
->ip_id
, pbd_e1x
->lso_mss
, pbd_e1x
->tcp_flags
,
4140 pbd_e1x
->tcp_pseudo_csum
, pbd_e1x
->tcp_send_seq
,
4141 le16_to_cpu(pbd_e1x
->total_hlen_w
));
4143 DP(NETIF_MSG_TX_QUEUED
,
4144 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4146 pbd_e2
->data
.mac_addr
.dst_hi
,
4147 pbd_e2
->data
.mac_addr
.dst_mid
,
4148 pbd_e2
->data
.mac_addr
.dst_lo
,
4149 pbd_e2
->data
.mac_addr
.src_hi
,
4150 pbd_e2
->data
.mac_addr
.src_mid
,
4151 pbd_e2
->data
.mac_addr
.src_lo
,
4152 pbd_e2
->parsing_data
);
4153 DP(NETIF_MSG_TX_QUEUED
, "doorbell: nbd %d bd %u\n", nbd
, bd_prod
);
4155 netdev_tx_sent_queue(txq
, skb
->len
);
4157 skb_tx_timestamp(skb
);
4159 txdata
->tx_pkt_prod
++;
4161 * Make sure that the BD data is updated before updating the producer
4162 * since FW might read the BD right after the producer is updated.
4163 * This is only applicable for weak-ordered memory model archs such
4164 * as IA-64. The following barrier is also mandatory since FW will
4165 * assumes packets must have BDs.
4169 txdata
->tx_db
.data
.prod
+= nbd
;
4170 /* make sure descriptor update is observed by HW */
4173 DOORBELL_RELAXED(bp
, txdata
->cid
, txdata
->tx_db
.raw
);
4175 txdata
->tx_bd_prod
+= nbd
;
4177 if (unlikely(bnx2x_tx_avail(bp
, txdata
) < MAX_DESC_PER_TX_PKT
)) {
4178 netif_tx_stop_queue(txq
);
4180 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4181 * ordering of set_bit() in netif_tx_stop_queue() and read of
4185 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
4186 if (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
)
4187 netif_tx_wake_queue(txq
);
4191 return NETDEV_TX_OK
;
4194 void bnx2x_get_c2s_mapping(struct bnx2x
*bp
, u8
*c2s_map
, u8
*c2s_default
)
4196 int mfw_vn
= BP_FW_MB_IDX(bp
);
4199 /* If the shmem shouldn't affect configuration, reflect */
4200 if (!IS_MF_BD(bp
)) {
4203 for (i
= 0; i
< BNX2X_MAX_PRIORITY
; i
++)
4210 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_lower
[mfw_vn
]);
4211 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4212 c2s_map
[0] = tmp
& 0xff;
4213 c2s_map
[1] = (tmp
>> 8) & 0xff;
4214 c2s_map
[2] = (tmp
>> 16) & 0xff;
4215 c2s_map
[3] = (tmp
>> 24) & 0xff;
4217 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_upper
[mfw_vn
]);
4218 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4219 c2s_map
[4] = tmp
& 0xff;
4220 c2s_map
[5] = (tmp
>> 8) & 0xff;
4221 c2s_map
[6] = (tmp
>> 16) & 0xff;
4222 c2s_map
[7] = (tmp
>> 24) & 0xff;
4224 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_default
[mfw_vn
]);
4225 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4226 *c2s_default
= (tmp
>> (8 * mfw_vn
)) & 0xff;
4230 * bnx2x_setup_tc - routine to configure net_device for multi tc
4232 * @netdev: net device to configure
4233 * @tc: number of traffic classes to enable
4235 * callback connected to the ndo_setup_tc function pointer
4237 int bnx2x_setup_tc(struct net_device
*dev
, u8 num_tc
)
4239 struct bnx2x
*bp
= netdev_priv(dev
);
4240 u8 c2s_map
[BNX2X_MAX_PRIORITY
], c2s_def
;
4241 int cos
, prio
, count
, offset
;
4243 /* setup tc must be called under rtnl lock */
4246 /* no traffic classes requested. Aborting */
4248 netdev_reset_tc(dev
);
4252 /* requested to support too many traffic classes */
4253 if (num_tc
> bp
->max_cos
) {
4254 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4255 num_tc
, bp
->max_cos
);
4259 /* declare amount of supported traffic classes */
4260 if (netdev_set_num_tc(dev
, num_tc
)) {
4261 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc
);
4265 bnx2x_get_c2s_mapping(bp
, c2s_map
, &c2s_def
);
4267 /* configure priority to traffic class mapping */
4268 for (prio
= 0; prio
< BNX2X_MAX_PRIORITY
; prio
++) {
4269 int outer_prio
= c2s_map
[prio
];
4271 netdev_set_prio_tc_map(dev
, prio
, bp
->prio_to_cos
[outer_prio
]);
4272 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4273 "mapping priority %d to tc %d\n",
4274 outer_prio
, bp
->prio_to_cos
[outer_prio
]);
4277 /* Use this configuration to differentiate tc0 from other COSes
4278 This can be used for ets or pfc, and save the effort of setting
4279 up a multio class queue disc or negotiating DCBX with a switch
4280 netdev_set_prio_tc_map(dev, 0, 0);
4281 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4282 for (prio = 1; prio < 16; prio++) {
4283 netdev_set_prio_tc_map(dev, prio, 1);
4284 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4287 /* configure traffic class to transmission queue mapping */
4288 for (cos
= 0; cos
< bp
->max_cos
; cos
++) {
4289 count
= BNX2X_NUM_ETH_QUEUES(bp
);
4290 offset
= cos
* BNX2X_NUM_NON_CNIC_QUEUES(bp
);
4291 netdev_set_tc_queue(dev
, cos
, count
, offset
);
4292 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4293 "mapping tc %d to offset %d count %d\n",
4294 cos
, offset
, count
);
4300 int __bnx2x_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
4303 struct tc_mqprio_qopt
*mqprio
= type_data
;
4305 if (type
!= TC_SETUP_QDISC_MQPRIO
)
4308 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
4310 return bnx2x_setup_tc(dev
, mqprio
->num_tc
);
4313 /* called with rtnl_lock */
4314 int bnx2x_change_mac_addr(struct net_device
*dev
, void *p
)
4316 struct sockaddr
*addr
= p
;
4317 struct bnx2x
*bp
= netdev_priv(dev
);
4320 if (!is_valid_ether_addr(addr
->sa_data
)) {
4321 BNX2X_ERR("Requested MAC address is not valid\n");
4325 if (IS_MF_STORAGE_ONLY(bp
)) {
4326 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4330 if (netif_running(dev
)) {
4331 rc
= bnx2x_set_eth_mac(bp
, false);
4336 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
4338 if (netif_running(dev
))
4339 rc
= bnx2x_set_eth_mac(bp
, true);
4341 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4342 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4347 static void bnx2x_free_fp_mem_at(struct bnx2x
*bp
, int fp_index
)
4349 union host_hc_status_block
*sb
= &bnx2x_fp(bp
, fp_index
, status_blk
);
4350 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_index
];
4355 if (IS_FCOE_IDX(fp_index
)) {
4356 memset(sb
, 0, sizeof(union host_hc_status_block
));
4357 fp
->status_blk_mapping
= 0;
4360 if (!CHIP_IS_E1x(bp
))
4361 BNX2X_PCI_FREE(sb
->e2_sb
,
4362 bnx2x_fp(bp
, fp_index
,
4363 status_blk_mapping
),
4364 sizeof(struct host_hc_status_block_e2
));
4366 BNX2X_PCI_FREE(sb
->e1x_sb
,
4367 bnx2x_fp(bp
, fp_index
,
4368 status_blk_mapping
),
4369 sizeof(struct host_hc_status_block_e1x
));
4373 if (!skip_rx_queue(bp
, fp_index
)) {
4374 bnx2x_free_rx_bds(fp
);
4376 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4377 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_buf_ring
));
4378 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_desc_ring
),
4379 bnx2x_fp(bp
, fp_index
, rx_desc_mapping
),
4380 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4382 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_comp_ring
),
4383 bnx2x_fp(bp
, fp_index
, rx_comp_mapping
),
4384 sizeof(struct eth_fast_path_rx_cqe
) *
4388 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_page_ring
));
4389 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_sge_ring
),
4390 bnx2x_fp(bp
, fp_index
, rx_sge_mapping
),
4391 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4395 if (!skip_tx_queue(bp
, fp_index
)) {
4396 /* fastpath tx rings: tx_buf tx_desc */
4397 for_each_cos_in_tx_queue(fp
, cos
) {
4398 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4400 DP(NETIF_MSG_IFDOWN
,
4401 "freeing tx memory of fp %d cos %d cid %d\n",
4402 fp_index
, cos
, txdata
->cid
);
4404 BNX2X_FREE(txdata
->tx_buf_ring
);
4405 BNX2X_PCI_FREE(txdata
->tx_desc_ring
,
4406 txdata
->tx_desc_mapping
,
4407 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4410 /* end of fastpath */
4413 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
)
4416 for_each_cnic_queue(bp
, i
)
4417 bnx2x_free_fp_mem_at(bp
, i
);
4420 void bnx2x_free_fp_mem(struct bnx2x
*bp
)
4423 for_each_eth_queue(bp
, i
)
4424 bnx2x_free_fp_mem_at(bp
, i
);
4427 static void set_sb_shortcuts(struct bnx2x
*bp
, int index
)
4429 union host_hc_status_block status_blk
= bnx2x_fp(bp
, index
, status_blk
);
4430 if (!CHIP_IS_E1x(bp
)) {
4431 bnx2x_fp(bp
, index
, sb_index_values
) =
4432 (__le16
*)status_blk
.e2_sb
->sb
.index_values
;
4433 bnx2x_fp(bp
, index
, sb_running_index
) =
4434 (__le16
*)status_blk
.e2_sb
->sb
.running_index
;
4436 bnx2x_fp(bp
, index
, sb_index_values
) =
4437 (__le16
*)status_blk
.e1x_sb
->sb
.index_values
;
4438 bnx2x_fp(bp
, index
, sb_running_index
) =
4439 (__le16
*)status_blk
.e1x_sb
->sb
.running_index
;
4443 /* Returns the number of actually allocated BDs */
4444 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath
*fp
,
4447 struct bnx2x
*bp
= fp
->bp
;
4448 u16 ring_prod
, cqe_ring_prod
;
4449 int i
, failure_cnt
= 0;
4451 fp
->rx_comp_cons
= 0;
4452 cqe_ring_prod
= ring_prod
= 0;
4454 /* This routine is called only during fo init so
4455 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4457 for (i
= 0; i
< rx_ring_size
; i
++) {
4458 if (bnx2x_alloc_rx_data(bp
, fp
, ring_prod
, GFP_KERNEL
) < 0) {
4462 ring_prod
= NEXT_RX_IDX(ring_prod
);
4463 cqe_ring_prod
= NEXT_RCQ_IDX(cqe_ring_prod
);
4464 WARN_ON(ring_prod
<= (i
- failure_cnt
));
4468 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4469 i
- failure_cnt
, fp
->index
);
4471 fp
->rx_bd_prod
= ring_prod
;
4472 /* Limit the CQE producer by the CQE ring size */
4473 fp
->rx_comp_prod
= min_t(u16
, NUM_RCQ_RINGS
*RCQ_DESC_CNT
,
4476 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
+= failure_cnt
;
4478 return i
- failure_cnt
;
4481 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath
*fp
)
4485 for (i
= 1; i
<= NUM_RCQ_RINGS
; i
++) {
4486 struct eth_rx_cqe_next_page
*nextpg
;
4488 nextpg
= (struct eth_rx_cqe_next_page
*)
4489 &fp
->rx_comp_ring
[RCQ_DESC_CNT
* i
- 1];
4491 cpu_to_le32(U64_HI(fp
->rx_comp_mapping
+
4492 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4494 cpu_to_le32(U64_LO(fp
->rx_comp_mapping
+
4495 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4499 static int bnx2x_alloc_fp_mem_at(struct bnx2x
*bp
, int index
)
4501 union host_hc_status_block
*sb
;
4502 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
4505 int rx_ring_size
= 0;
4507 if (!bp
->rx_ring_size
&& IS_MF_STORAGE_ONLY(bp
)) {
4508 rx_ring_size
= MIN_RX_SIZE_NONTPA
;
4509 bp
->rx_ring_size
= rx_ring_size
;
4510 } else if (!bp
->rx_ring_size
) {
4511 rx_ring_size
= MAX_RX_AVAIL
/BNX2X_NUM_RX_QUEUES(bp
);
4513 if (CHIP_IS_E3(bp
)) {
4514 u32 cfg
= SHMEM_RD(bp
,
4515 dev_info
.port_hw_config
[BP_PORT(bp
)].
4518 /* Decrease ring size for 1G functions */
4519 if ((cfg
& PORT_HW_CFG_NET_SERDES_IF_MASK
) ==
4520 PORT_HW_CFG_NET_SERDES_IF_SGMII
)
4524 /* allocate at least number of buffers required by FW */
4525 rx_ring_size
= max_t(int, bp
->disable_tpa
? MIN_RX_SIZE_NONTPA
:
4526 MIN_RX_SIZE_TPA
, rx_ring_size
);
4528 bp
->rx_ring_size
= rx_ring_size
;
4529 } else /* if rx_ring_size specified - use it */
4530 rx_ring_size
= bp
->rx_ring_size
;
4532 DP(BNX2X_MSG_SP
, "calculated rx_ring_size %d\n", rx_ring_size
);
4535 sb
= &bnx2x_fp(bp
, index
, status_blk
);
4537 if (!IS_FCOE_IDX(index
)) {
4539 if (!CHIP_IS_E1x(bp
)) {
4540 sb
->e2_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4541 sizeof(struct host_hc_status_block_e2
));
4545 sb
->e1x_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4546 sizeof(struct host_hc_status_block_e1x
));
4552 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4553 * set shortcuts for it.
4555 if (!IS_FCOE_IDX(index
))
4556 set_sb_shortcuts(bp
, index
);
4559 if (!skip_tx_queue(bp
, index
)) {
4560 /* fastpath tx rings: tx_buf tx_desc */
4561 for_each_cos_in_tx_queue(fp
, cos
) {
4562 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4565 "allocating tx memory of fp %d cos %d\n",
4568 txdata
->tx_buf_ring
= kcalloc(NUM_TX_BD
,
4569 sizeof(struct sw_tx_bd
),
4571 if (!txdata
->tx_buf_ring
)
4573 txdata
->tx_desc_ring
= BNX2X_PCI_ALLOC(&txdata
->tx_desc_mapping
,
4574 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4575 if (!txdata
->tx_desc_ring
)
4581 if (!skip_rx_queue(bp
, index
)) {
4582 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4583 bnx2x_fp(bp
, index
, rx_buf_ring
) =
4584 kcalloc(NUM_RX_BD
, sizeof(struct sw_rx_bd
), GFP_KERNEL
);
4585 if (!bnx2x_fp(bp
, index
, rx_buf_ring
))
4587 bnx2x_fp(bp
, index
, rx_desc_ring
) =
4588 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_desc_mapping
),
4589 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4590 if (!bnx2x_fp(bp
, index
, rx_desc_ring
))
4593 /* Seed all CQEs by 1s */
4594 bnx2x_fp(bp
, index
, rx_comp_ring
) =
4595 BNX2X_PCI_FALLOC(&bnx2x_fp(bp
, index
, rx_comp_mapping
),
4596 sizeof(struct eth_fast_path_rx_cqe
) * NUM_RCQ_BD
);
4597 if (!bnx2x_fp(bp
, index
, rx_comp_ring
))
4601 bnx2x_fp(bp
, index
, rx_page_ring
) =
4602 kcalloc(NUM_RX_SGE
, sizeof(struct sw_rx_page
),
4604 if (!bnx2x_fp(bp
, index
, rx_page_ring
))
4606 bnx2x_fp(bp
, index
, rx_sge_ring
) =
4607 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_sge_mapping
),
4608 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4609 if (!bnx2x_fp(bp
, index
, rx_sge_ring
))
4612 bnx2x_set_next_page_rx_bd(fp
);
4615 bnx2x_set_next_page_rx_cq(fp
);
4618 ring_size
= bnx2x_alloc_rx_bds(fp
, rx_ring_size
);
4619 if (ring_size
< rx_ring_size
)
4625 /* handles low memory cases */
4627 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4629 /* FW will drop all packets if queue is not big enough,
4630 * In these cases we disable the queue
4631 * Min size is different for OOO, TPA and non-TPA queues
4633 if (ring_size
< (fp
->mode
== TPA_MODE_DISABLED
?
4634 MIN_RX_SIZE_NONTPA
: MIN_RX_SIZE_TPA
)) {
4635 /* release memory allocated for this queue */
4636 bnx2x_free_fp_mem_at(bp
, index
);
4642 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
)
4646 if (bnx2x_alloc_fp_mem_at(bp
, FCOE_IDX(bp
)))
4647 /* we will fail load process instead of mark
4655 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
)
4659 /* 1. Allocate FP for leading - fatal if error
4660 * 2. Allocate RSS - fix number of queues if error
4664 if (bnx2x_alloc_fp_mem_at(bp
, 0))
4668 for_each_nondefault_eth_queue(bp
, i
)
4669 if (bnx2x_alloc_fp_mem_at(bp
, i
))
4672 /* handle memory failures */
4673 if (i
!= BNX2X_NUM_ETH_QUEUES(bp
)) {
4674 int delta
= BNX2X_NUM_ETH_QUEUES(bp
) - i
;
4677 bnx2x_shrink_eth_fp(bp
, delta
);
4678 if (CNIC_SUPPORT(bp
))
4679 /* move non eth FPs next to last eth FP
4680 * must be done in that order
4681 * FCOE_IDX < FWD_IDX < OOO_IDX
4684 /* move FCoE fp even NO_FCOE_FLAG is on */
4685 bnx2x_move_fp(bp
, FCOE_IDX(bp
), FCOE_IDX(bp
) - delta
);
4686 bp
->num_ethernet_queues
-= delta
;
4687 bp
->num_queues
= bp
->num_ethernet_queues
+
4688 bp
->num_cnic_queues
;
4689 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4690 bp
->num_queues
+ delta
, bp
->num_queues
);
4696 void bnx2x_free_mem_bp(struct bnx2x
*bp
)
4700 for (i
= 0; i
< bp
->fp_array_size
; i
++)
4701 kfree(bp
->fp
[i
].tpa_info
);
4704 kfree(bp
->fp_stats
);
4705 kfree(bp
->bnx2x_txq
);
4706 kfree(bp
->msix_table
);
4710 int bnx2x_alloc_mem_bp(struct bnx2x
*bp
)
4712 struct bnx2x_fastpath
*fp
;
4713 struct msix_entry
*tbl
;
4714 struct bnx2x_ilt
*ilt
;
4715 int msix_table_size
= 0;
4716 int fp_array_size
, txq_array_size
;
4720 * The biggest MSI-X table we might need is as a maximum number of fast
4721 * path IGU SBs plus default SB (for PF only).
4723 msix_table_size
= bp
->igu_sb_cnt
;
4726 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size
);
4728 /* fp array: RSS plus CNIC related L2 queues */
4729 fp_array_size
= BNX2X_MAX_RSS_COUNT(bp
) + CNIC_SUPPORT(bp
);
4730 bp
->fp_array_size
= fp_array_size
;
4731 BNX2X_DEV_INFO("fp_array_size %d\n", bp
->fp_array_size
);
4733 fp
= kcalloc(bp
->fp_array_size
, sizeof(*fp
), GFP_KERNEL
);
4736 for (i
= 0; i
< bp
->fp_array_size
; i
++) {
4738 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2
,
4739 sizeof(struct bnx2x_agg_info
), GFP_KERNEL
);
4740 if (!(fp
[i
].tpa_info
))
4746 /* allocate sp objs */
4747 bp
->sp_objs
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_sp_objs
),
4752 /* allocate fp_stats */
4753 bp
->fp_stats
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_fp_stats
),
4758 /* Allocate memory for the transmission queues array */
4760 BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+ CNIC_SUPPORT(bp
);
4761 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size
);
4763 bp
->bnx2x_txq
= kcalloc(txq_array_size
, sizeof(struct bnx2x_fp_txdata
),
4769 tbl
= kcalloc(msix_table_size
, sizeof(*tbl
), GFP_KERNEL
);
4772 bp
->msix_table
= tbl
;
4775 ilt
= kzalloc(sizeof(*ilt
), GFP_KERNEL
);
4782 bnx2x_free_mem_bp(bp
);
4786 int bnx2x_reload_if_running(struct net_device
*dev
)
4788 struct bnx2x
*bp
= netdev_priv(dev
);
4790 if (unlikely(!netif_running(dev
)))
4793 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
4794 return bnx2x_nic_load(bp
, LOAD_NORMAL
);
4797 int bnx2x_get_cur_phy_idx(struct bnx2x
*bp
)
4799 u32 sel_phy_idx
= 0;
4800 if (bp
->link_params
.num_phys
<= 1)
4803 if (bp
->link_vars
.link_up
) {
4804 sel_phy_idx
= EXT_PHY1
;
4805 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4806 if ((bp
->link_vars
.link_status
& LINK_STATUS_SERDES_LINK
) &&
4807 (bp
->link_params
.phy
[EXT_PHY2
].supported
& SUPPORTED_FIBRE
))
4808 sel_phy_idx
= EXT_PHY2
;
4811 switch (bnx2x_phy_selection(&bp
->link_params
)) {
4812 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT
:
4813 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY
:
4814 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY
:
4815 sel_phy_idx
= EXT_PHY1
;
4817 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY
:
4818 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY
:
4819 sel_phy_idx
= EXT_PHY2
;
4826 int bnx2x_get_link_cfg_idx(struct bnx2x
*bp
)
4828 u32 sel_phy_idx
= bnx2x_get_cur_phy_idx(bp
);
4830 * The selected activated PHY is always after swapping (in case PHY
4831 * swapping is enabled). So when swapping is enabled, we need to reverse
4835 if (bp
->link_params
.multi_phy_config
&
4836 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
4837 if (sel_phy_idx
== EXT_PHY1
)
4838 sel_phy_idx
= EXT_PHY2
;
4839 else if (sel_phy_idx
== EXT_PHY2
)
4840 sel_phy_idx
= EXT_PHY1
;
4842 return LINK_CONFIG_IDX(sel_phy_idx
);
4845 #ifdef NETDEV_FCOE_WWNN
4846 int bnx2x_fcoe_get_wwn(struct net_device
*dev
, u64
*wwn
, int type
)
4848 struct bnx2x
*bp
= netdev_priv(dev
);
4849 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
4852 case NETDEV_FCOE_WWNN
:
4853 *wwn
= HILO_U64(cp
->fcoe_wwn_node_name_hi
,
4854 cp
->fcoe_wwn_node_name_lo
);
4856 case NETDEV_FCOE_WWPN
:
4857 *wwn
= HILO_U64(cp
->fcoe_wwn_port_name_hi
,
4858 cp
->fcoe_wwn_port_name_lo
);
4861 BNX2X_ERR("Wrong WWN type requested - %d\n", type
);
4869 /* called with rtnl_lock */
4870 int bnx2x_change_mtu(struct net_device
*dev
, int new_mtu
)
4872 struct bnx2x
*bp
= netdev_priv(dev
);
4874 if (pci_num_vf(bp
->pdev
)) {
4875 DP(BNX2X_MSG_IOV
, "VFs are enabled, can not change MTU\n");
4879 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
4880 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4884 /* This does not race with packet allocation
4885 * because the actual alloc size is
4886 * only updated as part of load
4890 if (!bnx2x_mtu_allows_gro(new_mtu
))
4891 dev
->features
&= ~NETIF_F_GRO_HW
;
4893 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4894 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4896 return bnx2x_reload_if_running(dev
);
4899 netdev_features_t
bnx2x_fix_features(struct net_device
*dev
,
4900 netdev_features_t features
)
4902 struct bnx2x
*bp
= netdev_priv(dev
);
4904 if (pci_num_vf(bp
->pdev
)) {
4905 netdev_features_t changed
= dev
->features
^ features
;
4907 /* Revert the requested changes in features if they
4908 * would require internal reload of PF in bnx2x_set_features().
4910 if (!(features
& NETIF_F_RXCSUM
) && !bp
->disable_tpa
) {
4911 features
&= ~NETIF_F_RXCSUM
;
4912 features
|= dev
->features
& NETIF_F_RXCSUM
;
4915 if (changed
& NETIF_F_LOOPBACK
) {
4916 features
&= ~NETIF_F_LOOPBACK
;
4917 features
|= dev
->features
& NETIF_F_LOOPBACK
;
4921 /* TPA requires Rx CSUM offloading */
4922 if (!(features
& NETIF_F_RXCSUM
))
4923 features
&= ~NETIF_F_LRO
;
4925 if (!(features
& NETIF_F_GRO
) || !bnx2x_mtu_allows_gro(dev
->mtu
))
4926 features
&= ~NETIF_F_GRO_HW
;
4927 if (features
& NETIF_F_GRO_HW
)
4928 features
&= ~NETIF_F_LRO
;
4933 int bnx2x_set_features(struct net_device
*dev
, netdev_features_t features
)
4935 struct bnx2x
*bp
= netdev_priv(dev
);
4936 netdev_features_t changes
= features
^ dev
->features
;
4937 bool bnx2x_reload
= false;
4940 /* VFs or non SRIOV PFs should be able to change loopback feature */
4941 if (!pci_num_vf(bp
->pdev
)) {
4942 if (features
& NETIF_F_LOOPBACK
) {
4943 if (bp
->link_params
.loopback_mode
!= LOOPBACK_BMAC
) {
4944 bp
->link_params
.loopback_mode
= LOOPBACK_BMAC
;
4945 bnx2x_reload
= true;
4948 if (bp
->link_params
.loopback_mode
!= LOOPBACK_NONE
) {
4949 bp
->link_params
.loopback_mode
= LOOPBACK_NONE
;
4950 bnx2x_reload
= true;
4955 /* Don't care about GRO changes */
4956 changes
&= ~NETIF_F_GRO
;
4959 bnx2x_reload
= true;
4962 if (bp
->recovery_state
== BNX2X_RECOVERY_DONE
) {
4963 dev
->features
= features
;
4964 rc
= bnx2x_reload_if_running(dev
);
4967 /* else: bnx2x_nic_load() will be called at end of recovery */
4973 void bnx2x_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
4975 struct bnx2x
*bp
= netdev_priv(dev
);
4977 /* We want the information of the dump logged,
4978 * but calling bnx2x_panic() would kill all chances of recovery.
4981 #ifndef BNX2X_STOP_ON_ERROR
4982 bnx2x_panic_dump(bp
, false);
4987 /* This allows the netif to be shutdown gracefully before resetting */
4988 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_TX_TIMEOUT
, 0);
4991 int bnx2x_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4993 struct net_device
*dev
= pci_get_drvdata(pdev
);
4997 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5000 bp
= netdev_priv(dev
);
5004 pci_save_state(pdev
);
5006 if (!netif_running(dev
)) {
5011 netif_device_detach(dev
);
5013 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
5015 bnx2x_set_power_state(bp
, pci_choose_state(pdev
, state
));
5022 int bnx2x_resume(struct pci_dev
*pdev
)
5024 struct net_device
*dev
= pci_get_drvdata(pdev
);
5029 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5032 bp
= netdev_priv(dev
);
5034 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
5035 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5041 pci_restore_state(pdev
);
5043 if (!netif_running(dev
)) {
5048 bnx2x_set_power_state(bp
, PCI_D0
);
5049 netif_device_attach(dev
);
5051 rc
= bnx2x_nic_load(bp
, LOAD_OPEN
);
5058 void bnx2x_set_ctx_validation(struct bnx2x
*bp
, struct eth_context
*cxt
,
5062 BNX2X_ERR("bad context pointer %p\n", cxt
);
5066 /* ustorm cxt validation */
5067 cxt
->ustorm_ag_context
.cdu_usage
=
5068 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5069 CDU_REGION_NUMBER_UCM_AG
, ETH_CONNECTION_TYPE
);
5070 /* xcontext validation */
5071 cxt
->xstorm_ag_context
.cdu_reserved
=
5072 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5073 CDU_REGION_NUMBER_XCM_AG
, ETH_CONNECTION_TYPE
);
5076 static void storm_memset_hc_timeout(struct bnx2x
*bp
, u8 port
,
5077 u8 fw_sb_id
, u8 sb_index
,
5080 u32 addr
= BAR_CSTRORM_INTMEM
+
5081 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id
, sb_index
);
5082 REG_WR8(bp
, addr
, ticks
);
5084 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5085 port
, fw_sb_id
, sb_index
, ticks
);
5088 static void storm_memset_hc_disable(struct bnx2x
*bp
, u8 port
,
5089 u16 fw_sb_id
, u8 sb_index
,
5092 u32 enable_flag
= disable
? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT
);
5093 u32 addr
= BAR_CSTRORM_INTMEM
+
5094 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id
, sb_index
);
5095 u8 flags
= REG_RD8(bp
, addr
);
5097 flags
&= ~HC_INDEX_DATA_HC_ENABLED
;
5098 flags
|= enable_flag
;
5099 REG_WR8(bp
, addr
, flags
);
5101 "port %x fw_sb_id %d sb_index %d disable %d\n",
5102 port
, fw_sb_id
, sb_index
, disable
);
5105 void bnx2x_update_coalesce_sb_index(struct bnx2x
*bp
, u8 fw_sb_id
,
5106 u8 sb_index
, u8 disable
, u16 usec
)
5108 int port
= BP_PORT(bp
);
5109 u8 ticks
= usec
/ BNX2X_BTR
;
5111 storm_memset_hc_timeout(bp
, port
, fw_sb_id
, sb_index
, ticks
);
5113 disable
= disable
? 1 : (usec
? 0 : 1);
5114 storm_memset_hc_disable(bp
, port
, fw_sb_id
, sb_index
, disable
);
5117 void bnx2x_schedule_sp_rtnl(struct bnx2x
*bp
, enum sp_rtnl_flag flag
,
5120 smp_mb__before_atomic();
5121 set_bit(flag
, &bp
->sp_rtnl_state
);
5122 smp_mb__after_atomic();
5123 DP((BNX2X_MSG_SP
| verbose
), "Scheduling sp_rtnl task [Flag: %d]\n",
5125 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);