treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
blob97cda501e7e8848978a0b40d2a3c0ceb72ee2413
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
62 * Rx buffer size. We use largish buffers if possible but settle for single
63 * pages under memory shortage.
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES 256
73 #define RX_PULL_LEN 128
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
79 #define RX_PKT_SKB_LEN 512
82 * Max number of Tx descriptors we clean up at a time. Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks. We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
86 * also match the CIDX Flush Threshold.
88 #define MAX_TX_RECLAIM 32
91 * Max number of Rx buffers we replenish at a time. Again keep this modest,
92 * allocating buffers isn't cheap either.
94 #define MAX_RX_REFILL 16U
97 * Period of the Rx queue check timer. This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
100 #define RX_QCHECK_PERIOD (HZ / 2)
103 * Period of the Tx queue check timer.
105 #define TX_QCHECK_PERIOD (HZ / 2)
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
110 #define MAX_TIMER_TX_RECLAIM 100
113 * Timer index used when backing off due to memory shortage.
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
118 * Suspension threshold for non-Ethernet Tx queues. We require enough room
119 * for a full sized WR.
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
127 #define MAX_IMM_TX_PKT_LEN 256
130 * Max size of a WR sent through a control Tx queue.
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
134 struct rx_sw_desc { /* SW state per Rx descriptor */
135 struct page *page;
136 dma_addr_t dma_addr;
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 unsigned int mtu)
151 struct sge *s = &adapter->sge;
153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array. We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings. All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
169 enum {
170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
175 * XXX We shouldn't depend on being able to use these indices.
176 * XXX Especially when some other Master PF has initialized the
177 * XXX adapter or we use the Firmware Configuration File. We
178 * XXX should really search through the Host Buffer Size register
179 * XXX array for the appropriately sized buffer indices.
181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK 1
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
198 return !(d->dma_addr & RX_UNMAPPED_BUF);
202 * txq_avail - return the number of available slots in a Tx queue
203 * @q: the Tx queue
205 * Returns the number of descriptors in a Tx queue available to write new
206 * packets.
208 static inline unsigned int txq_avail(const struct sge_txq *q)
210 return q->size - 1 - q->in_use;
214 * fl_cap - return the capacity of a free-buffer list
215 * @fl: the FL
217 * Returns the capacity of a free-buffer list. The capacity is less than
218 * the size because one descriptor needs to be left unpopulated, otherwise
219 * HW will think the FL is empty.
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
223 return fl->size - 8; /* 1 descriptor = 8 buffers */
227 * fl_starving - return whether a Free List is starving.
228 * @adapter: pointer to the adapter
229 * @fl: the Free List
231 * Tests specified Free List to see whether the number of buffers
232 * available to the hardware has falled below our "starvation"
233 * threshold.
235 static inline bool fl_starving(const struct adapter *adapter,
236 const struct sge_fl *fl)
238 const struct sge *s = &adapter->sge;
240 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 dma_addr_t *addr)
246 const skb_frag_t *fp, *end;
247 const struct skb_shared_info *si;
249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 if (dma_mapping_error(dev, *addr))
251 goto out_err;
253 si = skb_shinfo(skb);
254 end = &si->frags[si->nr_frags];
256 for (fp = si->frags; fp < end; fp++) {
257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 DMA_TO_DEVICE);
259 if (dma_mapping_error(dev, *addr))
260 goto unwind;
262 return 0;
264 unwind:
265 while (fp-- > si->frags)
266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 return -ENOMEM;
272 EXPORT_SYMBOL(cxgb4_map_skb);
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 const dma_addr_t *addr)
277 const skb_frag_t *fp, *end;
278 const struct skb_shared_info *si;
280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
282 si = skb_shinfo(skb);
283 end = &si->frags[si->nr_frags];
284 for (fp = si->frags; fp < end; fp++)
285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
290 * deferred_unmap_destructor - unmap a packet when it is freed
291 * @skb: the packet
293 * This is the packet destructor used for Tx packets that need to remain
294 * mapped until they are freed rather than until their Tx descriptors are
295 * freed.
297 static void deferred_unmap_destructor(struct sk_buff *skb)
299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
301 #endif
304 * free_tx_desc - reclaims Tx descriptors and their buffers
305 * @adapter: the adapter
306 * @q: the Tx queue to reclaim descriptors from
307 * @n: the number of descriptors to reclaim
308 * @unmap: whether the buffers should be unmapped for DMA
310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 * Tx buffers. Called with the Tx queue lock held.
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 unsigned int n, bool unmap)
316 unsigned int cidx = q->cidx;
317 struct tx_sw_desc *d;
319 d = &q->sdesc[cidx];
320 while (n--) {
321 if (d->skb) { /* an SGL is present */
322 if (unmap && d->addr[0]) {
323 unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 memset(d->addr, 0, sizeof(d->addr));
326 dev_consume_skb_any(d->skb);
327 d->skb = NULL;
329 ++d;
330 if (++cidx == q->size) {
331 cidx = 0;
332 d = q->sdesc;
335 q->cidx = cidx;
339 * Return the number of reclaimable descriptors in a Tx queue.
341 static inline int reclaimable(const struct sge_txq *q)
343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 hw_cidx -= q->cidx;
345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
349 * reclaim_completed_tx - reclaims completed TX Descriptors
350 * @adap: the adapter
351 * @q: the Tx queue to reclaim completed descriptors from
352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 * @unmap: whether the buffers should be unmapped for DMA
355 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 * and frees the associated buffers if possible. If @max == -1, then
357 * we'll use a defaiult maximum. Called with the TX Queue locked.
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 int maxreclaim, bool unmap)
362 int reclaim = reclaimable(q);
364 if (reclaim) {
366 * Limit the amount of clean up work we do at a time to keep
367 * the Tx lock hold time O(1).
369 if (maxreclaim < 0)
370 maxreclaim = MAX_TX_RECLAIM;
371 if (reclaim > maxreclaim)
372 reclaim = maxreclaim;
374 free_tx_desc(adap, q, reclaim, unmap);
375 q->in_use -= reclaim;
378 return reclaim;
382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 * @adap: the adapter
384 * @q: the Tx queue to reclaim completed descriptors from
385 * @unmap: whether the buffers should be unmapped for DMA
387 * Reclaims Tx descriptors that the SGE has indicated it has processed,
388 * and frees the associated buffers if possible. Called with the Tx
389 * queue locked.
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 bool unmap)
394 (void)reclaim_completed_tx(adap, q, -1, unmap);
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
398 static inline int get_buf_size(struct adapter *adapter,
399 const struct rx_sw_desc *d)
401 struct sge *s = &adapter->sge;
402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 int buf_size;
405 switch (rx_buf_size_idx) {
406 case RX_SMALL_PG_BUF:
407 buf_size = PAGE_SIZE;
408 break;
410 case RX_LARGE_PG_BUF:
411 buf_size = PAGE_SIZE << s->fl_pg_order;
412 break;
414 case RX_SMALL_MTU_BUF:
415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 break;
418 case RX_LARGE_MTU_BUF:
419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 break;
422 default:
423 BUG();
426 return buf_size;
430 * free_rx_bufs - free the Rx buffers on an SGE free list
431 * @adap: the adapter
432 * @q: the SGE free list to free buffers from
433 * @n: how many buffers to free
435 * Release the next @n buffers on an SGE free-buffer Rx queue. The
436 * buffers must be made inaccessible to HW before calling this function.
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
440 while (n--) {
441 struct rx_sw_desc *d = &q->sdesc[q->cidx];
443 if (is_buf_mapped(d))
444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 get_buf_size(adap, d),
446 PCI_DMA_FROMDEVICE);
447 put_page(d->page);
448 d->page = NULL;
449 if (++q->cidx == q->size)
450 q->cidx = 0;
451 q->avail--;
456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 * @adap: the adapter
458 * @q: the SGE free list
460 * Unmap the current buffer on an SGE free-buffer Rx queue. The
461 * buffer must be made inaccessible to HW before calling this function.
463 * This is similar to @free_rx_bufs above but does not free the buffer.
464 * Do note that the FL still loses any further access to the buffer.
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
468 struct rx_sw_desc *d = &q->sdesc[q->cidx];
470 if (is_buf_mapped(d))
471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 d->page = NULL;
474 if (++q->cidx == q->size)
475 q->cidx = 0;
476 q->avail--;
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
481 if (q->pend_cred >= 8) {
482 u32 val = adap->params.arch.sge_fl_db;
484 if (is_t4(adap->params.chip))
485 val |= PIDX_V(q->pend_cred / 8);
486 else
487 val |= PIDX_T5_V(q->pend_cred / 8);
489 /* Make sure all memory writes to the Free List queue are
490 * committed before we tell the hardware about them.
492 wmb();
494 /* If we don't have access to the new User Doorbell (T5+), use
495 * the old doorbell mechanism; otherwise use the new BAR2
496 * mechanism.
498 if (unlikely(q->bar2_addr == NULL)) {
499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 val | QID_V(q->cntxt_id));
501 } else {
502 writel(val | QID_V(q->bar2_qid),
503 q->bar2_addr + SGE_UDB_KDOORBELL);
505 /* This Write memory Barrier will force the write to
506 * the User Doorbell area to be flushed.
508 wmb();
510 q->pend_cred &= 7;
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 dma_addr_t mapping)
517 sd->page = pg;
518 sd->dma_addr = mapping; /* includes size low bits */
522 * refill_fl - refill an SGE Rx buffer ring
523 * @adap: the adapter
524 * @q: the ring to refill
525 * @n: the number of new buffers to allocate
526 * @gfp: the gfp flags for the allocations
528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 * allocated with the supplied gfp flags. The caller must assure that
530 * @n does not exceed the queue's capacity. If afterwards the queue is
531 * found critically low mark it as starving in the bitmap of starving FLs.
533 * Returns the number of buffers allocated.
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 gfp_t gfp)
538 struct sge *s = &adap->sge;
539 struct page *pg;
540 dma_addr_t mapping;
541 unsigned int cred = q->avail;
542 __be64 *d = &q->desc[q->pidx];
543 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 int node;
546 #ifdef CONFIG_DEBUG_FS
547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 goto out;
549 #endif
551 gfp |= __GFP_NOWARN;
552 node = dev_to_node(adap->pdev_dev);
554 if (s->fl_pg_order == 0)
555 goto alloc_small_pages;
558 * Prefer large buffers
560 while (n) {
561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 if (unlikely(!pg)) {
563 q->large_alloc_failed++;
564 break; /* fall back to single pages */
567 mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 PAGE_SIZE << s->fl_pg_order,
569 PCI_DMA_FROMDEVICE);
570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 __free_pages(pg, s->fl_pg_order);
572 q->mapping_err++;
573 goto out; /* do not try small pages for this error */
575 mapping |= RX_LARGE_PG_BUF;
576 *d++ = cpu_to_be64(mapping);
578 set_rx_sw_desc(sd, pg, mapping);
579 sd++;
581 q->avail++;
582 if (++q->pidx == q->size) {
583 q->pidx = 0;
584 sd = q->sdesc;
585 d = q->desc;
587 n--;
590 alloc_small_pages:
591 while (n--) {
592 pg = alloc_pages_node(node, gfp, 0);
593 if (unlikely(!pg)) {
594 q->alloc_failed++;
595 break;
598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 PCI_DMA_FROMDEVICE);
600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 put_page(pg);
602 q->mapping_err++;
603 goto out;
605 *d++ = cpu_to_be64(mapping);
607 set_rx_sw_desc(sd, pg, mapping);
608 sd++;
610 q->avail++;
611 if (++q->pidx == q->size) {
612 q->pidx = 0;
613 sd = q->sdesc;
614 d = q->desc;
618 out: cred = q->avail - cred;
619 q->pend_cred += cred;
620 ring_fl_db(adap, q);
622 if (unlikely(fl_starving(adap, q))) {
623 smp_wmb();
624 q->low++;
625 set_bit(q->cntxt_id - adap->sge.egr_start,
626 adap->sge.starving_fl);
629 return cred;
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 GFP_ATOMIC);
639 * alloc_ring - allocate resources for an SGE descriptor ring
640 * @dev: the PCI device's core device
641 * @nelem: the number of descriptors
642 * @elem_size: the size of each descriptor
643 * @sw_size: the size of the SW state associated with each ring element
644 * @phys: the physical address of the allocated ring
645 * @metadata: address of the array holding the SW state for the ring
646 * @stat_size: extra space in HW ring for status information
647 * @node: preferred node for memory allocations
649 * Allocates resources for an SGE descriptor ring, such as Tx queues,
650 * free buffer lists, or response queues. Each SGE ring requires
651 * space for its HW descriptors plus, optionally, space for the SW state
652 * associated with each HW entry (the metadata). The function returns
653 * three values: the virtual address for the HW ring (the return value
654 * of the function), the bus address of the HW ring, and the address
655 * of the SW ring.
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 size_t sw_size, dma_addr_t *phys, void *metadata,
659 size_t stat_size, int node)
661 size_t len = nelem * elem_size + stat_size;
662 void *s = NULL;
663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
665 if (!p)
666 return NULL;
667 if (sw_size) {
668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
670 if (!s) {
671 dma_free_coherent(dev, len, p, *phys);
672 return NULL;
675 if (metadata)
676 *(void **)metadata = s;
677 return p;
681 * sgl_len - calculates the size of an SGL of the given capacity
682 * @n: the number of SGL entries
684 * Calculates the number of flits needed for a scatter/gather list that
685 * can hold the given number of entries.
687 static inline unsigned int sgl_len(unsigned int n)
689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 * boundaries). If N is even, then Length[N+1] should be set to 0 and
695 * Address[N+1] is omitted.
697 * The following calculation incorporates all of the above. It's
698 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 * first two flits which include the DSGL header, Length0 and
700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 * (n-1) is odd ...
705 n--;
706 return (3 * n) / 2 + (n & 1) + 2;
710 * flits_to_desc - returns the num of Tx descriptors for the given flits
711 * @n: the number of flits
713 * Returns the number of Tx descriptors needed for the supplied number
714 * of flits.
716 static inline unsigned int flits_to_desc(unsigned int n)
718 BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 return DIV_ROUND_UP(n, 8);
723 * is_eth_imm - can an Ethernet packet be sent as immediate data?
724 * @skb: the packet
726 * Returns whether an Ethernet packet is small enough to fit as
727 * immediate data. Return value corresponds to headroom required.
729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 int hdrlen = 0;
733 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
734 chip_ver > CHELSIO_T5) {
735 hdrlen = sizeof(struct cpl_tx_tnl_lso);
736 hdrlen += sizeof(struct cpl_tx_pkt_core);
737 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
738 return 0;
739 } else {
740 hdrlen = skb_shinfo(skb)->gso_size ?
741 sizeof(struct cpl_tx_pkt_lso_core) : 0;
742 hdrlen += sizeof(struct cpl_tx_pkt);
744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
745 return hdrlen;
746 return 0;
750 * calc_tx_flits - calculate the number of flits for a packet Tx WR
751 * @skb: the packet
753 * Returns the number of flits needed for a Tx WR for the given Ethernet
754 * packet, including the needed WR and CPL headers.
756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
757 unsigned int chip_ver)
759 unsigned int flits;
760 int hdrlen = is_eth_imm(skb, chip_ver);
762 /* If the skb is small enough, we can pump it out as a work request
763 * with only immediate data. In that case we just have to have the
764 * TX Packet header plus the skb data in the Work Request.
767 if (hdrlen)
768 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
770 /* Otherwise, we're going to have to construct a Scatter gather list
771 * of the skb body and fragments. We also include the flits necessary
772 * for the TX Packet Work Request and CPL. We always have a firmware
773 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
774 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
775 * message or, if we're doing a Large Send Offload, an LSO CPL message
776 * with an embedded TX Packet Write CPL message.
778 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
779 if (skb_shinfo(skb)->gso_size) {
780 if (skb->encapsulation && chip_ver > CHELSIO_T5) {
781 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
782 sizeof(struct cpl_tx_tnl_lso);
783 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
784 u32 pkt_hdrlen;
786 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
787 skb_headlen(skb));
788 hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
789 round_up(pkt_hdrlen, 16);
790 } else {
791 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
792 sizeof(struct cpl_tx_pkt_lso_core);
795 hdrlen += sizeof(struct cpl_tx_pkt_core);
796 flits += (hdrlen / sizeof(__be64));
797 } else {
798 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
799 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
801 return flits;
805 * calc_tx_descs - calculate the number of Tx descriptors for a packet
806 * @skb: the packet
808 * Returns the number of Tx descriptors needed for the given Ethernet
809 * packet, including the needed WR and CPL headers.
811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
812 unsigned int chip_ver)
814 return flits_to_desc(calc_tx_flits(skb, chip_ver));
818 * cxgb4_write_sgl - populate a scatter/gather list for a packet
819 * @skb: the packet
820 * @q: the Tx queue we are writing into
821 * @sgl: starting location for writing the SGL
822 * @end: points right after the end of the SGL
823 * @start: start offset into skb main-body data to include in the SGL
824 * @addr: the list of bus addresses for the SGL elements
826 * Generates a gather list for the buffers that make up a packet.
827 * The caller must provide adequate space for the SGL that will be written.
828 * The SGL includes all of the packet's page fragments and the data in its
829 * main body except for the first @start bytes. @sgl must be 16-byte
830 * aligned and within a Tx descriptor with available space. @end points
831 * right after the end of the SGL but does not account for any potential
832 * wrap around, i.e., @end > @sgl.
834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
835 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
836 const dma_addr_t *addr)
838 unsigned int i, len;
839 struct ulptx_sge_pair *to;
840 const struct skb_shared_info *si = skb_shinfo(skb);
841 unsigned int nfrags = si->nr_frags;
842 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
844 len = skb_headlen(skb) - start;
845 if (likely(len)) {
846 sgl->len0 = htonl(len);
847 sgl->addr0 = cpu_to_be64(addr[0] + start);
848 nfrags++;
849 } else {
850 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
851 sgl->addr0 = cpu_to_be64(addr[1]);
854 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
855 ULPTX_NSGE_V(nfrags));
856 if (likely(--nfrags == 0))
857 return;
859 * Most of the complexity below deals with the possibility we hit the
860 * end of the queue in the middle of writing the SGL. For this case
861 * only we create the SGL in a temporary buffer and then copy it.
863 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
865 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
866 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
867 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
868 to->addr[0] = cpu_to_be64(addr[i]);
869 to->addr[1] = cpu_to_be64(addr[++i]);
871 if (nfrags) {
872 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
873 to->len[1] = cpu_to_be32(0);
874 to->addr[0] = cpu_to_be64(addr[i + 1]);
876 if (unlikely((u8 *)end > (u8 *)q->stat)) {
877 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
879 if (likely(part0))
880 memcpy(sgl->sge, buf, part0);
881 part1 = (u8 *)end - (u8 *)q->stat;
882 memcpy(q->desc, (u8 *)buf + part0, part1);
883 end = (void *)q->desc + part1;
885 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
886 *end = 0;
888 EXPORT_SYMBOL(cxgb4_write_sgl);
890 /* This function copies 64 byte coalesced work request to
891 * memory mapped BAR2 space. For coalesced WR SGE fetches
892 * data from the FIFO instead of from Host.
894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
896 int count = 8;
898 while (count) {
899 writeq(*src, dst);
900 src++;
901 dst++;
902 count--;
907 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
908 * @adap: the adapter
909 * @q: the Tx queue
910 * @n: number of new descriptors to give to HW
912 * Ring the doorbel for a Tx queue.
914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
916 /* Make sure that all writes to the TX Descriptors are committed
917 * before we tell the hardware about them.
919 wmb();
921 /* If we don't have access to the new User Doorbell (T5+), use the old
922 * doorbell mechanism; otherwise use the new BAR2 mechanism.
924 if (unlikely(q->bar2_addr == NULL)) {
925 u32 val = PIDX_V(n);
926 unsigned long flags;
928 /* For T4 we need to participate in the Doorbell Recovery
929 * mechanism.
931 spin_lock_irqsave(&q->db_lock, flags);
932 if (!q->db_disabled)
933 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
934 QID_V(q->cntxt_id) | val);
935 else
936 q->db_pidx_inc += n;
937 q->db_pidx = q->pidx;
938 spin_unlock_irqrestore(&q->db_lock, flags);
939 } else {
940 u32 val = PIDX_T5_V(n);
942 /* T4 and later chips share the same PIDX field offset within
943 * the doorbell, but T5 and later shrank the field in order to
944 * gain a bit for Doorbell Priority. The field was absurdly
945 * large in the first place (14 bits) so we just use the T5
946 * and later limits and warn if a Queue ID is too large.
948 WARN_ON(val & DBPRIO_F);
950 /* If we're only writing a single TX Descriptor and we can use
951 * Inferred QID registers, we can use the Write Combining
952 * Gather Buffer; otherwise we use the simple doorbell.
954 if (n == 1 && q->bar2_qid == 0) {
955 int index = (q->pidx
956 ? (q->pidx - 1)
957 : (q->size - 1));
958 u64 *wr = (u64 *)&q->desc[index];
960 cxgb_pio_copy((u64 __iomem *)
961 (q->bar2_addr + SGE_UDB_WCDOORBELL),
962 wr);
963 } else {
964 writel(val | QID_V(q->bar2_qid),
965 q->bar2_addr + SGE_UDB_KDOORBELL);
968 /* This Write Memory Barrier will force the write to the User
969 * Doorbell area to be flushed. This is needed to prevent
970 * writes on different CPUs for the same queue from hitting
971 * the adapter out of order. This is required when some Work
972 * Requests take the Write Combine Gather Buffer path (user
973 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
974 * take the traditional path where we simply increment the
975 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
976 * hardware DMA read the actual Work Request.
978 wmb();
981 EXPORT_SYMBOL(cxgb4_ring_tx_db);
984 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
985 * @skb: the packet
986 * @q: the Tx queue where the packet will be inlined
987 * @pos: starting position in the Tx queue where to inline the packet
989 * Inline a packet's contents directly into Tx descriptors, starting at
990 * the given position within the Tx DMA ring.
991 * Most of the complexity of this operation is dealing with wrap arounds
992 * in the middle of the packet we want to inline.
994 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
995 const struct sge_txq *q, void *pos)
997 int left = (void *)q->stat - pos;
998 u64 *p;
1000 if (likely(skb->len <= left)) {
1001 if (likely(!skb->data_len))
1002 skb_copy_from_linear_data(skb, pos, skb->len);
1003 else
1004 skb_copy_bits(skb, 0, pos, skb->len);
1005 pos += skb->len;
1006 } else {
1007 skb_copy_bits(skb, 0, pos, left);
1008 skb_copy_bits(skb, left, q->desc, skb->len - left);
1009 pos = (void *)q->desc + (skb->len - left);
1012 /* 0-pad to multiple of 16 */
1013 p = PTR_ALIGN(pos, 8);
1014 if ((uintptr_t)p & 8)
1015 *p = 0;
1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1019 static void *inline_tx_skb_header(const struct sk_buff *skb,
1020 const struct sge_txq *q, void *pos,
1021 int length)
1023 u64 *p;
1024 int left = (void *)q->stat - pos;
1026 if (likely(length <= left)) {
1027 memcpy(pos, skb->data, length);
1028 pos += length;
1029 } else {
1030 memcpy(pos, skb->data, left);
1031 memcpy(q->desc, skb->data + left, length - left);
1032 pos = (void *)q->desc + (length - left);
1034 /* 0-pad to multiple of 16 */
1035 p = PTR_ALIGN(pos, 8);
1036 if ((uintptr_t)p & 8) {
1037 *p = 0;
1038 return p + 1;
1040 return p;
1044 * Figure out what HW csum a packet wants and return the appropriate control
1045 * bits.
1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1049 int csum_type;
1050 bool inner_hdr_csum = false;
1051 u16 proto, ver;
1053 if (skb->encapsulation &&
1054 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1055 inner_hdr_csum = true;
1057 if (inner_hdr_csum) {
1058 ver = inner_ip_hdr(skb)->version;
1059 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1060 inner_ipv6_hdr(skb)->nexthdr;
1061 } else {
1062 ver = ip_hdr(skb)->version;
1063 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1064 ipv6_hdr(skb)->nexthdr;
1067 if (ver == 4) {
1068 if (proto == IPPROTO_TCP)
1069 csum_type = TX_CSUM_TCPIP;
1070 else if (proto == IPPROTO_UDP)
1071 csum_type = TX_CSUM_UDPIP;
1072 else {
1073 nocsum: /*
1074 * unknown protocol, disable HW csum
1075 * and hope a bad packet is detected
1077 return TXPKT_L4CSUM_DIS_F;
1079 } else {
1081 * this doesn't work with extension headers
1083 if (proto == IPPROTO_TCP)
1084 csum_type = TX_CSUM_TCPIP6;
1085 else if (proto == IPPROTO_UDP)
1086 csum_type = TX_CSUM_UDPIP6;
1087 else
1088 goto nocsum;
1091 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1092 int eth_hdr_len, l4_len;
1093 u64 hdr_len;
1095 if (inner_hdr_csum) {
1096 /* This allows checksum offload for all encapsulated
1097 * packets like GRE etc..
1099 l4_len = skb_inner_network_header_len(skb);
1100 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1101 } else {
1102 l4_len = skb_network_header_len(skb);
1103 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1105 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1109 else
1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1112 } else {
1113 int start = skb_transport_offset(skb);
1115 return TXPKT_CSUM_TYPE_V(csum_type) |
1116 TXPKT_CSUM_START_V(start) |
1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1121 static void eth_txq_stop(struct sge_eth_txq *q)
1123 netif_tx_stop_queue(q->txq);
1124 q->q.stops++;
1127 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1129 q->in_use += n;
1130 q->pidx += n;
1131 if (q->pidx >= q->size)
1132 q->pidx -= q->size;
1135 #ifdef CONFIG_CHELSIO_T4_FCOE
1136 static inline int
1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1138 const struct port_info *pi, u64 *cntrl)
1140 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1143 return 0;
1145 if (skb->protocol != htons(ETH_P_FCOE))
1146 return 0;
1148 skb_reset_mac_header(skb);
1149 skb->mac_len = sizeof(struct ethhdr);
1151 skb_set_network_header(skb, skb->mac_len);
1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1155 return -ENOTSUPP;
1157 /* FC CRC offload */
1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1163 return 0;
1165 #endif /* CONFIG_CHELSIO_T4_FCOE */
1167 /* Returns tunnel type if hardware supports offloading of the same.
1168 * It is called only for T5 and onwards.
1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1172 u8 l4_hdr = 0;
1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1174 struct port_info *pi = netdev_priv(skb->dev);
1175 struct adapter *adapter = pi->adapter;
1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1178 skb->inner_protocol != htons(ETH_P_TEB))
1179 return tnl_type;
1181 switch (vlan_get_protocol(skb)) {
1182 case htons(ETH_P_IP):
1183 l4_hdr = ip_hdr(skb)->protocol;
1184 break;
1185 case htons(ETH_P_IPV6):
1186 l4_hdr = ipv6_hdr(skb)->nexthdr;
1187 break;
1188 default:
1189 return tnl_type;
1192 switch (l4_hdr) {
1193 case IPPROTO_UDP:
1194 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1195 tnl_type = TX_TNL_TYPE_VXLAN;
1196 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1197 tnl_type = TX_TNL_TYPE_GENEVE;
1198 break;
1199 default:
1200 return tnl_type;
1203 return tnl_type;
1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1207 struct cpl_tx_tnl_lso *tnl_lso,
1208 enum cpl_tx_tnl_lso_type tnl_type)
1210 u32 val;
1211 int in_eth_xtra_len;
1212 int l3hdr_len = skb_network_header_len(skb);
1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1214 const struct skb_shared_info *ssi = skb_shinfo(skb);
1215 bool v6 = (ip_hdr(skb)->version == 6);
1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1218 CPL_TX_TNL_LSO_FIRST_F |
1219 CPL_TX_TNL_LSO_LAST_F |
1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1224 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1226 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1228 tnl_lso->IpIdOffsetOut = 0;
1230 /* Get the tunnel header length */
1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1232 in_eth_xtra_len = skb_inner_network_header(skb) -
1233 skb_inner_mac_header(skb) - ETH_HLEN;
1235 switch (tnl_type) {
1236 case TX_TNL_TYPE_VXLAN:
1237 case TX_TNL_TYPE_GENEVE:
1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1241 break;
1242 default:
1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1244 break;
1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1251 tnl_lso->r1 = 0;
1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1259 tnl_lso->IpIdOffset = htons(0);
1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1262 tnl_lso->TCPSeqOffset = htonl(0);
1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1267 struct cpl_tx_pkt_lso_core *lso)
1269 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1270 int l3hdr_len = skb_network_header_len(skb);
1271 const struct skb_shared_info *ssi;
1272 bool ipv6 = false;
1274 ssi = skb_shinfo(skb);
1275 if (ssi->gso_type & SKB_GSO_TCPV6)
1276 ipv6 = true;
1278 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1279 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1280 LSO_IPV6_V(ipv6) |
1281 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1282 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1283 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1284 lso->ipid_ofst = htons(0);
1285 lso->mss = htons(ssi->gso_size);
1286 lso->seqno_offset = htonl(0);
1287 if (is_t4(adap->params.chip))
1288 lso->len = htonl(skb->len);
1289 else
1290 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1292 return (void *)(lso + 1);
1296 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1297 * @adap: the adapter
1298 * @eq: the Ethernet TX Queue
1299 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1301 * We're typically called here to update the state of an Ethernet TX
1302 * Queue with respect to the hardware's progress in consuming the TX
1303 * Work Requests that we've put on that Egress Queue. This happens
1304 * when we get Egress Queue Update messages and also prophylactically
1305 * in regular timer-based Ethernet TX Queue maintenance.
1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1308 int maxreclaim)
1310 struct sge_txq *q = &eq->q;
1311 unsigned int reclaimed;
1313 if (!q->in_use || !__netif_tx_trylock(eq->txq))
1314 return 0;
1316 /* Reclaim pending completed TX Descriptors. */
1317 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1319 /* If the TX Queue is currently stopped and there's now more than half
1320 * the queue available, restart it. Otherwise bail out since the rest
1321 * of what we want do here is with the possibility of shipping any
1322 * currently buffered Coalesced TX Work Request.
1324 if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) {
1325 netif_tx_wake_queue(eq->txq);
1326 eq->q.restarts++;
1329 __netif_tx_unlock(eq->txq);
1330 return reclaimed;
1333 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1334 struct net_device *dev,
1335 u32 min_pkt_len)
1337 u32 max_pkt_len;
1339 /* The chip min packet length is 10 octets but some firmware
1340 * commands have a minimum packet length requirement. So, play
1341 * safe and reject anything shorter than @min_pkt_len.
1343 if (unlikely(skb->len < min_pkt_len))
1344 return -EINVAL;
1346 /* Discard the packet if the length is greater than mtu */
1347 max_pkt_len = ETH_HLEN + dev->mtu;
1349 if (skb_vlan_tagged(skb))
1350 max_pkt_len += VLAN_HLEN;
1352 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1353 return -EINVAL;
1355 return 0;
1358 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1359 u32 hdr_len)
1361 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1362 wr->u.udpseg.ethlen = skb_network_offset(skb);
1363 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1364 wr->u.udpseg.udplen = sizeof(struct udphdr);
1365 wr->u.udpseg.rtplen = 0;
1366 wr->u.udpseg.r4 = 0;
1367 if (skb_shinfo(skb)->gso_size)
1368 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1369 else
1370 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1371 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1372 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1374 return (void *)(wr + 1);
1378 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1379 * @skb: the packet
1380 * @dev: the egress net device
1382 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1384 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1386 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1387 bool ptp_enabled = is_ptp_enabled(skb, dev);
1388 unsigned int last_desc, flits, ndesc;
1389 u32 wr_mid, ctrl0, op, sgl_off = 0;
1390 const struct skb_shared_info *ssi;
1391 int len, qidx, credits, ret, left;
1392 struct tx_sw_desc *sgl_sdesc;
1393 struct fw_eth_tx_eo_wr *eowr;
1394 struct fw_eth_tx_pkt_wr *wr;
1395 struct cpl_tx_pkt_core *cpl;
1396 const struct port_info *pi;
1397 bool immediate = false;
1398 u64 cntrl, *end, *sgl;
1399 struct sge_eth_txq *q;
1400 unsigned int chip_ver;
1401 struct adapter *adap;
1403 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1404 if (ret)
1405 goto out_free;
1407 pi = netdev_priv(dev);
1408 adap = pi->adapter;
1409 ssi = skb_shinfo(skb);
1410 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1411 if (xfrm_offload(skb) && !ssi->gso_size)
1412 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1413 #endif /* CHELSIO_IPSEC_INLINE */
1415 qidx = skb_get_queue_mapping(skb);
1416 if (ptp_enabled) {
1417 spin_lock(&adap->ptp_lock);
1418 if (!(adap->ptp_tx_skb)) {
1419 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1420 adap->ptp_tx_skb = skb_get(skb);
1421 } else {
1422 spin_unlock(&adap->ptp_lock);
1423 goto out_free;
1425 q = &adap->sge.ptptxq;
1426 } else {
1427 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1429 skb_tx_timestamp(skb);
1431 reclaim_completed_tx(adap, &q->q, -1, true);
1432 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1434 #ifdef CONFIG_CHELSIO_T4_FCOE
1435 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1436 if (unlikely(ret == -ENOTSUPP)) {
1437 if (ptp_enabled)
1438 spin_unlock(&adap->ptp_lock);
1439 goto out_free;
1441 #endif /* CONFIG_CHELSIO_T4_FCOE */
1443 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1444 flits = calc_tx_flits(skb, chip_ver);
1445 ndesc = flits_to_desc(flits);
1446 credits = txq_avail(&q->q) - ndesc;
1448 if (unlikely(credits < 0)) {
1449 eth_txq_stop(q);
1450 dev_err(adap->pdev_dev,
1451 "%s: Tx ring %u full while queue awake!\n",
1452 dev->name, qidx);
1453 if (ptp_enabled)
1454 spin_unlock(&adap->ptp_lock);
1455 return NETDEV_TX_BUSY;
1458 if (is_eth_imm(skb, chip_ver))
1459 immediate = true;
1461 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1462 tnl_type = cxgb_encap_offload_supported(skb);
1464 last_desc = q->q.pidx + ndesc - 1;
1465 if (last_desc >= q->q.size)
1466 last_desc -= q->q.size;
1467 sgl_sdesc = &q->q.sdesc[last_desc];
1469 if (!immediate &&
1470 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1471 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1472 q->mapping_err++;
1473 if (ptp_enabled)
1474 spin_unlock(&adap->ptp_lock);
1475 goto out_free;
1478 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1479 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1480 /* After we're done injecting the Work Request for this
1481 * packet, we'll be below our "stop threshold" so stop the TX
1482 * Queue now and schedule a request for an SGE Egress Queue
1483 * Update message. The queue will get started later on when
1484 * the firmware processes this Work Request and sends us an
1485 * Egress Queue Status Update message indicating that space
1486 * has opened up.
1488 eth_txq_stop(q);
1490 /* If we're using the SGE Doorbell Queue Timer facility, we
1491 * don't need to ask the Firmware to send us Egress Queue CIDX
1492 * Updates: the Hardware will do this automatically. And
1493 * since we send the Ingress Queue CIDX Updates to the
1494 * corresponding Ethernet Response Queue, we'll get them very
1495 * quickly.
1497 if (!q->dbqt)
1498 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1501 wr = (void *)&q->q.desc[q->q.pidx];
1502 eowr = (void *)&q->q.desc[q->q.pidx];
1503 wr->equiq_to_len16 = htonl(wr_mid);
1504 wr->r3 = cpu_to_be64(0);
1505 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1506 end = (u64 *)eowr + flits;
1507 else
1508 end = (u64 *)wr + flits;
1510 len = immediate ? skb->len : 0;
1511 len += sizeof(*cpl);
1512 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1513 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1514 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1516 if (tnl_type)
1517 len += sizeof(*tnl_lso);
1518 else
1519 len += sizeof(*lso);
1521 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1522 FW_WR_IMMDLEN_V(len));
1523 if (tnl_type) {
1524 struct iphdr *iph = ip_hdr(skb);
1526 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1527 cpl = (void *)(tnl_lso + 1);
1528 /* Driver is expected to compute partial checksum that
1529 * does not include the IP Total Length.
1531 if (iph->version == 4) {
1532 iph->check = 0;
1533 iph->tot_len = 0;
1534 iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1535 iph->ihl));
1537 if (skb->ip_summed == CHECKSUM_PARTIAL)
1538 cntrl = hwcsum(adap->params.chip, skb);
1539 } else {
1540 cpl = write_tso_wr(adap, skb, lso);
1541 cntrl = hwcsum(adap->params.chip, skb);
1543 sgl = (u64 *)(cpl + 1); /* sgl start here */
1544 q->tso++;
1545 q->tx_cso += ssi->gso_segs;
1546 } else if (ssi->gso_size) {
1547 u64 *start;
1548 u32 hdrlen;
1550 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1551 len += hdrlen;
1552 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1553 FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1554 cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1555 cntrl = hwcsum(adap->params.chip, skb);
1557 start = (u64 *)(cpl + 1);
1558 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1559 hdrlen);
1560 if (unlikely(start > sgl)) {
1561 left = (u8 *)end - (u8 *)q->q.stat;
1562 end = (void *)q->q.desc + left;
1564 sgl_off = hdrlen;
1565 q->uso++;
1566 q->tx_cso += ssi->gso_segs;
1567 } else {
1568 if (ptp_enabled)
1569 op = FW_PTP_TX_PKT_WR;
1570 else
1571 op = FW_ETH_TX_PKT_WR;
1572 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1573 FW_WR_IMMDLEN_V(len));
1574 cpl = (void *)(wr + 1);
1575 sgl = (u64 *)(cpl + 1);
1576 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1577 cntrl = hwcsum(adap->params.chip, skb) |
1578 TXPKT_IPCSUM_DIS_F;
1579 q->tx_cso++;
1583 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1584 /* If current position is already at the end of the
1585 * txq, reset the current to point to start of the queue
1586 * and update the end ptr as well.
1588 left = (u8 *)end - (u8 *)q->q.stat;
1589 end = (void *)q->q.desc + left;
1590 sgl = (void *)q->q.desc;
1593 if (skb_vlan_tag_present(skb)) {
1594 q->vlan_ins++;
1595 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1596 #ifdef CONFIG_CHELSIO_T4_FCOE
1597 if (skb->protocol == htons(ETH_P_FCOE))
1598 cntrl |= TXPKT_VLAN_V(
1599 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1600 #endif /* CONFIG_CHELSIO_T4_FCOE */
1603 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1604 TXPKT_PF_V(adap->pf);
1605 if (ptp_enabled)
1606 ctrl0 |= TXPKT_TSTAMP_F;
1607 #ifdef CONFIG_CHELSIO_T4_DCB
1608 if (is_t4(adap->params.chip))
1609 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1610 else
1611 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1612 #endif
1613 cpl->ctrl0 = htonl(ctrl0);
1614 cpl->pack = htons(0);
1615 cpl->len = htons(skb->len);
1616 cpl->ctrl1 = cpu_to_be64(cntrl);
1618 if (immediate) {
1619 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1620 dev_consume_skb_any(skb);
1621 } else {
1622 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1623 sgl_sdesc->addr);
1624 skb_orphan(skb);
1625 sgl_sdesc->skb = skb;
1628 txq_advance(&q->q, ndesc);
1630 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1631 if (ptp_enabled)
1632 spin_unlock(&adap->ptp_lock);
1633 return NETDEV_TX_OK;
1635 out_free:
1636 dev_kfree_skb_any(skb);
1637 return NETDEV_TX_OK;
1640 /* Constants ... */
1641 enum {
1642 /* Egress Queue sizes, producer and consumer indices are all in units
1643 * of Egress Context Units bytes. Note that as far as the hardware is
1644 * concerned, the free list is an Egress Queue (the host produces free
1645 * buffers which the hardware consumes) and free list entries are
1646 * 64-bit PCI DMA addresses.
1648 EQ_UNIT = SGE_EQ_IDXSIZE,
1649 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1650 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1652 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1653 sizeof(struct cpl_tx_pkt_lso_core) +
1654 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1658 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1659 * @skb: the packet
1661 * Returns whether an Ethernet packet is small enough to fit completely as
1662 * immediate data.
1664 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1666 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1667 * which does not accommodate immediate data. We could dike out all
1668 * of the support code for immediate data but that would tie our hands
1669 * too much if we ever want to enhace the firmware. It would also
1670 * create more differences between the PF and VF Drivers.
1672 return false;
1676 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1677 * @skb: the packet
1679 * Returns the number of flits needed for a TX Work Request for the
1680 * given Ethernet packet, including the needed WR and CPL headers.
1682 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1684 unsigned int flits;
1686 /* If the skb is small enough, we can pump it out as a work request
1687 * with only immediate data. In that case we just have to have the
1688 * TX Packet header plus the skb data in the Work Request.
1690 if (t4vf_is_eth_imm(skb))
1691 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1692 sizeof(__be64));
1694 /* Otherwise, we're going to have to construct a Scatter gather list
1695 * of the skb body and fragments. We also include the flits necessary
1696 * for the TX Packet Work Request and CPL. We always have a firmware
1697 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1698 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1699 * message or, if we're doing a Large Send Offload, an LSO CPL message
1700 * with an embedded TX Packet Write CPL message.
1702 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1703 if (skb_shinfo(skb)->gso_size)
1704 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1705 sizeof(struct cpl_tx_pkt_lso_core) +
1706 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1707 else
1708 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1709 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1710 return flits;
1714 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1715 * @skb: the packet
1716 * @dev: the egress net device
1718 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1720 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1721 struct net_device *dev)
1723 unsigned int last_desc, flits, ndesc;
1724 const struct skb_shared_info *ssi;
1725 struct fw_eth_tx_pkt_vm_wr *wr;
1726 struct tx_sw_desc *sgl_sdesc;
1727 struct cpl_tx_pkt_core *cpl;
1728 const struct port_info *pi;
1729 struct sge_eth_txq *txq;
1730 struct adapter *adapter;
1731 int qidx, credits, ret;
1732 size_t fw_hdr_copy_len;
1733 u64 cntrl, *end;
1734 u32 wr_mid;
1736 /* The chip minimum packet length is 10 octets but the firmware
1737 * command that we are using requires that we copy the Ethernet header
1738 * (including the VLAN tag) into the header so we reject anything
1739 * smaller than that ...
1741 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1742 sizeof(wr->ethtype) + sizeof(wr->vlantci);
1743 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1744 if (ret)
1745 goto out_free;
1747 /* Figure out which TX Queue we're going to use. */
1748 pi = netdev_priv(dev);
1749 adapter = pi->adapter;
1750 qidx = skb_get_queue_mapping(skb);
1751 WARN_ON(qidx >= pi->nqsets);
1752 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1754 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1755 * transfers have completed.
1757 reclaim_completed_tx(adapter, &txq->q, -1, true);
1759 /* Calculate the number of flits and TX Descriptors we're going to
1760 * need along with how many TX Descriptors will be left over after
1761 * we inject our Work Request.
1763 flits = t4vf_calc_tx_flits(skb);
1764 ndesc = flits_to_desc(flits);
1765 credits = txq_avail(&txq->q) - ndesc;
1767 if (unlikely(credits < 0)) {
1768 /* Not enough room for this packet's Work Request. Stop the
1769 * TX Queue and return a "busy" condition. The queue will get
1770 * started later on when the firmware informs us that space
1771 * has opened up.
1773 eth_txq_stop(txq);
1774 dev_err(adapter->pdev_dev,
1775 "%s: TX ring %u full while queue awake!\n",
1776 dev->name, qidx);
1777 return NETDEV_TX_BUSY;
1780 last_desc = txq->q.pidx + ndesc - 1;
1781 if (last_desc >= txq->q.size)
1782 last_desc -= txq->q.size;
1783 sgl_sdesc = &txq->q.sdesc[last_desc];
1785 if (!t4vf_is_eth_imm(skb) &&
1786 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1787 sgl_sdesc->addr) < 0)) {
1788 /* We need to map the skb into PCI DMA space (because it can't
1789 * be in-lined directly into the Work Request) and the mapping
1790 * operation failed. Record the error and drop the packet.
1792 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1793 txq->mapping_err++;
1794 goto out_free;
1797 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1798 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1799 /* After we're done injecting the Work Request for this
1800 * packet, we'll be below our "stop threshold" so stop the TX
1801 * Queue now and schedule a request for an SGE Egress Queue
1802 * Update message. The queue will get started later on when
1803 * the firmware processes this Work Request and sends us an
1804 * Egress Queue Status Update message indicating that space
1805 * has opened up.
1807 eth_txq_stop(txq);
1809 /* If we're using the SGE Doorbell Queue Timer facility, we
1810 * don't need to ask the Firmware to send us Egress Queue CIDX
1811 * Updates: the Hardware will do this automatically. And
1812 * since we send the Ingress Queue CIDX Updates to the
1813 * corresponding Ethernet Response Queue, we'll get them very
1814 * quickly.
1816 if (!txq->dbqt)
1817 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1820 /* Start filling in our Work Request. Note that we do _not_ handle
1821 * the WR Header wrapping around the TX Descriptor Ring. If our
1822 * maximum header size ever exceeds one TX Descriptor, we'll need to
1823 * do something else here.
1825 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1826 wr = (void *)&txq->q.desc[txq->q.pidx];
1827 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1828 wr->r3[0] = cpu_to_be32(0);
1829 wr->r3[1] = cpu_to_be32(0);
1830 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1831 end = (u64 *)wr + flits;
1833 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1834 * message with an encapsulated TX Packet CPL message. Otherwise we
1835 * just use a TX Packet CPL message.
1837 ssi = skb_shinfo(skb);
1838 if (ssi->gso_size) {
1839 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1840 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1841 int l3hdr_len = skb_network_header_len(skb);
1842 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1844 wr->op_immdlen =
1845 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1846 FW_WR_IMMDLEN_V(sizeof(*lso) +
1847 sizeof(*cpl)));
1848 /* Fill in the LSO CPL message. */
1849 lso->lso_ctrl =
1850 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1851 LSO_FIRST_SLICE_F |
1852 LSO_LAST_SLICE_F |
1853 LSO_IPV6_V(v6) |
1854 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1855 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1856 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1857 lso->ipid_ofst = cpu_to_be16(0);
1858 lso->mss = cpu_to_be16(ssi->gso_size);
1859 lso->seqno_offset = cpu_to_be32(0);
1860 if (is_t4(adapter->params.chip))
1861 lso->len = cpu_to_be32(skb->len);
1862 else
1863 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1865 /* Set up TX Packet CPL pointer, control word and perform
1866 * accounting.
1868 cpl = (void *)(lso + 1);
1870 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1871 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1872 else
1873 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1875 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1876 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1877 TXPKT_IPHDR_LEN_V(l3hdr_len);
1878 txq->tso++;
1879 txq->tx_cso += ssi->gso_segs;
1880 } else {
1881 int len;
1883 len = (t4vf_is_eth_imm(skb)
1884 ? skb->len + sizeof(*cpl)
1885 : sizeof(*cpl));
1886 wr->op_immdlen =
1887 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1888 FW_WR_IMMDLEN_V(len));
1890 /* Set up TX Packet CPL pointer, control word and perform
1891 * accounting.
1893 cpl = (void *)(wr + 1);
1894 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1895 cntrl = hwcsum(adapter->params.chip, skb) |
1896 TXPKT_IPCSUM_DIS_F;
1897 txq->tx_cso++;
1898 } else {
1899 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1903 /* If there's a VLAN tag present, add that to the list of things to
1904 * do in this Work Request.
1906 if (skb_vlan_tag_present(skb)) {
1907 txq->vlan_ins++;
1908 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1911 /* Fill in the TX Packet CPL message header. */
1912 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1913 TXPKT_INTF_V(pi->port_id) |
1914 TXPKT_PF_V(0));
1915 cpl->pack = cpu_to_be16(0);
1916 cpl->len = cpu_to_be16(skb->len);
1917 cpl->ctrl1 = cpu_to_be64(cntrl);
1919 /* Fill in the body of the TX Packet CPL message with either in-lined
1920 * data or a Scatter/Gather List.
1922 if (t4vf_is_eth_imm(skb)) {
1923 /* In-line the packet's data and free the skb since we don't
1924 * need it any longer.
1926 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1927 dev_consume_skb_any(skb);
1928 } else {
1929 /* Write the skb's Scatter/Gather list into the TX Packet CPL
1930 * message and retain a pointer to the skb so we can free it
1931 * later when its DMA completes. (We store the skb pointer
1932 * in the Software Descriptor corresponding to the last TX
1933 * Descriptor used by the Work Request.)
1935 * The retained skb will be freed when the corresponding TX
1936 * Descriptors are reclaimed after their DMAs complete.
1937 * However, this could take quite a while since, in general,
1938 * the hardware is set up to be lazy about sending DMA
1939 * completion notifications to us and we mostly perform TX
1940 * reclaims in the transmit routine.
1942 * This is good for performamce but means that we rely on new
1943 * TX packets arriving to run the destructors of completed
1944 * packets, which open up space in their sockets' send queues.
1945 * Sometimes we do not get such new packets causing TX to
1946 * stall. A single UDP transmitter is a good example of this
1947 * situation. We have a clean up timer that periodically
1948 * reclaims completed packets but it doesn't run often enough
1949 * (nor do we want it to) to prevent lengthy stalls. A
1950 * solution to this problem is to run the destructor early,
1951 * after the packet is queued but before it's DMAd. A con is
1952 * that we lie to socket memory accounting, but the amount of
1953 * extra memory is reasonable (limited by the number of TX
1954 * descriptors), the packets do actually get freed quickly by
1955 * new packets almost always, and for protocols like TCP that
1956 * wait for acks to really free up the data the extra memory
1957 * is even less. On the positive side we run the destructors
1958 * on the sending CPU rather than on a potentially different
1959 * completing CPU, usually a good thing.
1961 * Run the destructor before telling the DMA engine about the
1962 * packet to make sure it doesn't complete and get freed
1963 * prematurely.
1965 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1966 struct sge_txq *tq = &txq->q;
1968 /* If the Work Request header was an exact multiple of our TX
1969 * Descriptor length, then it's possible that the starting SGL
1970 * pointer lines up exactly with the end of our TX Descriptor
1971 * ring. If that's the case, wrap around to the beginning
1972 * here ...
1974 if (unlikely((void *)sgl == (void *)tq->stat)) {
1975 sgl = (void *)tq->desc;
1976 end = (void *)((void *)tq->desc +
1977 ((void *)end - (void *)tq->stat));
1980 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1981 skb_orphan(skb);
1982 sgl_sdesc->skb = skb;
1985 /* Advance our internal TX Queue state, tell the hardware about
1986 * the new TX descriptors and return success.
1988 txq_advance(&txq->q, ndesc);
1990 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1991 return NETDEV_TX_OK;
1993 out_free:
1994 /* An error of some sort happened. Free the TX skb and tell the
1995 * OS that we've "dealt" with the packet ...
1997 dev_kfree_skb_any(skb);
1998 return NETDEV_TX_OK;
2002 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2003 * @q: the SGE control Tx queue
2005 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2006 * for Tx queues that send only immediate data (presently just
2007 * the control queues) and thus do not have any sk_buffs to release.
2009 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2011 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2012 int reclaim = hw_cidx - q->cidx;
2014 if (reclaim < 0)
2015 reclaim += q->size;
2017 q->in_use -= reclaim;
2018 q->cidx = hw_cidx;
2021 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2023 u32 val = *idx + n;
2025 if (val >= max)
2026 val -= max;
2028 *idx = val;
2031 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2032 struct sge_eosw_txq *eosw_txq, u32 ndesc)
2034 struct tx_sw_desc *d;
2036 d = &eosw_txq->desc[eosw_txq->last_cidx];
2037 while (ndesc--) {
2038 if (d->skb) {
2039 if (d->addr[0]) {
2040 unmap_skb(adap->pdev_dev, d->skb, d->addr);
2041 memset(d->addr, 0, sizeof(d->addr));
2043 dev_consume_skb_any(d->skb);
2044 d->skb = NULL;
2046 eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2047 eosw_txq->ndesc);
2048 d = &eosw_txq->desc[eosw_txq->last_cidx];
2052 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2054 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2055 eosw_txq->inuse += n;
2058 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2059 struct sk_buff *skb)
2061 if (eosw_txq->inuse == eosw_txq->ndesc)
2062 return -ENOMEM;
2064 eosw_txq->desc[eosw_txq->pidx].skb = skb;
2065 return 0;
2068 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2070 return eosw_txq->desc[eosw_txq->last_pidx].skb;
2073 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2074 struct sk_buff *skb, u32 hdr_len)
2076 u8 flits, nsgl = 0;
2077 u32 wrlen;
2079 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2080 if (skb_shinfo(skb)->gso_size &&
2081 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2082 wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2084 wrlen += roundup(hdr_len, 16);
2086 /* Packet headers + WR + CPLs */
2087 flits = DIV_ROUND_UP(wrlen, 8);
2089 if (skb_shinfo(skb)->nr_frags > 0) {
2090 if (skb_headlen(skb) - hdr_len)
2091 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2092 else
2093 nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2094 } else if (skb->len - hdr_len) {
2095 nsgl = sgl_len(1);
2098 return flits + nsgl;
2101 static inline void *write_eo_wr(struct adapter *adap,
2102 struct sge_eosw_txq *eosw_txq,
2103 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2104 u32 hdr_len, u32 wrlen)
2106 const struct skb_shared_info *ssi = skb_shinfo(skb);
2107 struct cpl_tx_pkt_core *cpl;
2108 u32 immd_len, wrlen16;
2109 bool compl = false;
2110 u8 ver, proto;
2112 ver = ip_hdr(skb)->version;
2113 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2115 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2116 immd_len = sizeof(struct cpl_tx_pkt_core);
2117 if (skb_shinfo(skb)->gso_size &&
2118 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2119 immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2120 immd_len += hdr_len;
2122 if (!eosw_txq->ncompl ||
2123 eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) {
2124 compl = true;
2125 eosw_txq->ncompl++;
2126 eosw_txq->last_compl = 0;
2129 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2130 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2131 FW_WR_COMPL_V(compl));
2132 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2133 FW_WR_FLOWID_V(eosw_txq->hwtid));
2134 wr->r3 = 0;
2135 if (proto == IPPROTO_UDP) {
2136 cpl = write_eo_udp_wr(skb, wr, hdr_len);
2137 } else {
2138 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2139 wr->u.tcpseg.ethlen = skb_network_offset(skb);
2140 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2141 wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2142 wr->u.tcpseg.tsclk_tsoff = 0;
2143 wr->u.tcpseg.r4 = 0;
2144 wr->u.tcpseg.r5 = 0;
2145 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2147 if (ssi->gso_size) {
2148 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2150 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2151 cpl = write_tso_wr(adap, skb, lso);
2152 } else {
2153 wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2154 cpl = (void *)(wr + 1);
2158 eosw_txq->cred -= wrlen16;
2159 eosw_txq->last_compl += wrlen16;
2160 return cpl;
2163 static void ethofld_hard_xmit(struct net_device *dev,
2164 struct sge_eosw_txq *eosw_txq)
2166 struct port_info *pi = netdev2pinfo(dev);
2167 struct adapter *adap = netdev2adap(dev);
2168 u32 wrlen, wrlen16, hdr_len, data_len;
2169 enum sge_eosw_state next_state;
2170 u64 cntrl, *start, *end, *sgl;
2171 struct sge_eohw_txq *eohw_txq;
2172 struct cpl_tx_pkt_core *cpl;
2173 struct fw_eth_tx_eo_wr *wr;
2174 bool skip_eotx_wr = false;
2175 struct tx_sw_desc *d;
2176 struct sk_buff *skb;
2177 u8 flits, ndesc;
2178 int left;
2180 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2181 spin_lock(&eohw_txq->lock);
2182 reclaim_completed_tx_imm(&eohw_txq->q);
2184 d = &eosw_txq->desc[eosw_txq->last_pidx];
2185 skb = d->skb;
2186 skb_tx_timestamp(skb);
2188 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2189 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2190 eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2191 hdr_len = skb->len;
2192 data_len = 0;
2193 flits = DIV_ROUND_UP(hdr_len, 8);
2194 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2195 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2196 else
2197 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2198 skip_eotx_wr = true;
2199 } else {
2200 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2201 data_len = skb->len - hdr_len;
2202 flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2204 ndesc = flits_to_desc(flits);
2205 wrlen = flits * 8;
2206 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2208 /* If there are no CPL credits, then wait for credits
2209 * to come back and retry again
2211 if (unlikely(wrlen16 > eosw_txq->cred))
2212 goto out_unlock;
2214 if (unlikely(skip_eotx_wr)) {
2215 start = (u64 *)wr;
2216 eosw_txq->state = next_state;
2217 goto write_wr_headers;
2220 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2221 cntrl = hwcsum(adap->params.chip, skb);
2222 if (skb_vlan_tag_present(skb))
2223 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2225 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2226 TXPKT_INTF_V(pi->tx_chan) |
2227 TXPKT_PF_V(adap->pf));
2228 cpl->pack = 0;
2229 cpl->len = cpu_to_be16(skb->len);
2230 cpl->ctrl1 = cpu_to_be64(cntrl);
2232 start = (u64 *)(cpl + 1);
2234 write_wr_headers:
2235 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2236 hdr_len);
2237 if (data_len) {
2238 if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) {
2239 memset(d->addr, 0, sizeof(d->addr));
2240 eohw_txq->mapping_err++;
2241 goto out_unlock;
2244 end = (u64 *)wr + flits;
2245 if (unlikely(start > sgl)) {
2246 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2247 end = (void *)eohw_txq->q.desc + left;
2250 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2251 /* If current position is already at the end of the
2252 * txq, reset the current to point to start of the queue
2253 * and update the end ptr as well.
2255 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2257 end = (void *)eohw_txq->q.desc + left;
2258 sgl = (void *)eohw_txq->q.desc;
2261 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2262 d->addr);
2265 if (skb_shinfo(skb)->gso_size) {
2266 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2267 eohw_txq->uso++;
2268 else
2269 eohw_txq->tso++;
2270 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2271 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2272 eohw_txq->tx_cso++;
2275 if (skb_vlan_tag_present(skb))
2276 eohw_txq->vlan_ins++;
2278 txq_advance(&eohw_txq->q, ndesc);
2279 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2280 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2282 out_unlock:
2283 spin_unlock(&eohw_txq->lock);
2286 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2288 struct sk_buff *skb;
2289 int pktcount;
2291 switch (eosw_txq->state) {
2292 case CXGB4_EO_STATE_ACTIVE:
2293 case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2294 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2295 pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2296 if (pktcount < 0)
2297 pktcount += eosw_txq->ndesc;
2298 break;
2299 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2300 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2301 case CXGB4_EO_STATE_CLOSED:
2302 default:
2303 return;
2306 while (pktcount--) {
2307 skb = eosw_txq_peek(eosw_txq);
2308 if (!skb) {
2309 eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2310 eosw_txq->ndesc);
2311 continue;
2314 ethofld_hard_xmit(dev, eosw_txq);
2318 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2319 struct net_device *dev)
2321 struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2322 struct port_info *pi = netdev2pinfo(dev);
2323 struct adapter *adap = netdev2adap(dev);
2324 struct sge_eosw_txq *eosw_txq;
2325 u32 qid;
2326 int ret;
2328 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2329 if (ret)
2330 goto out_free;
2332 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2333 qid = skb_get_queue_mapping(skb) - pi->nqsets;
2334 eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2335 spin_lock_bh(&eosw_txq->lock);
2336 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2337 goto out_unlock;
2339 ret = eosw_txq_enqueue(eosw_txq, skb);
2340 if (ret)
2341 goto out_unlock;
2343 /* SKB is queued for processing until credits are available.
2344 * So, call the destructor now and we'll free the skb later
2345 * after it has been successfully transmitted.
2347 skb_orphan(skb);
2349 eosw_txq_advance(eosw_txq, 1);
2350 ethofld_xmit(dev, eosw_txq);
2351 spin_unlock_bh(&eosw_txq->lock);
2352 return NETDEV_TX_OK;
2354 out_unlock:
2355 spin_unlock_bh(&eosw_txq->lock);
2356 out_free:
2357 dev_kfree_skb_any(skb);
2358 return NETDEV_TX_OK;
2361 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2363 struct port_info *pi = netdev_priv(dev);
2364 u16 qid = skb_get_queue_mapping(skb);
2366 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2367 return cxgb4_vf_eth_xmit(skb, dev);
2369 if (unlikely(qid >= pi->nqsets))
2370 return cxgb4_ethofld_xmit(skb, dev);
2372 return cxgb4_eth_xmit(skb, dev);
2376 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2377 * @dev - netdevice
2378 * @eotid - ETHOFLD tid to bind/unbind
2379 * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2381 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2382 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2383 * a traffic class.
2385 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2387 struct port_info *pi = netdev2pinfo(dev);
2388 struct adapter *adap = netdev2adap(dev);
2389 enum sge_eosw_state next_state;
2390 struct sge_eosw_txq *eosw_txq;
2391 u32 len, len16, nparams = 6;
2392 struct fw_flowc_wr *flowc;
2393 struct eotid_entry *entry;
2394 struct sge_ofld_rxq *rxq;
2395 struct sk_buff *skb;
2396 int ret = 0;
2398 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2399 len16 = DIV_ROUND_UP(len, 16);
2401 entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2402 if (!entry)
2403 return -ENOMEM;
2405 eosw_txq = (struct sge_eosw_txq *)entry->data;
2406 if (!eosw_txq)
2407 return -ENOMEM;
2409 skb = alloc_skb(len, GFP_KERNEL);
2410 if (!skb)
2411 return -ENOMEM;
2413 spin_lock_bh(&eosw_txq->lock);
2414 if (tc != FW_SCHED_CLS_NONE) {
2415 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2416 goto out_unlock;
2418 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2419 } else {
2420 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2421 goto out_unlock;
2423 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2426 flowc = __skb_put(skb, len);
2427 memset(flowc, 0, len);
2429 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2430 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2431 FW_WR_FLOWID_V(eosw_txq->hwtid));
2432 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2433 FW_FLOWC_WR_NPARAMS_V(nparams) |
2434 FW_WR_COMPL_V(1));
2435 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2436 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2437 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2438 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2439 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2440 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2441 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2442 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2443 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2444 flowc->mnemval[4].val = cpu_to_be32(tc);
2445 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2446 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2447 FW_FLOWC_MNEM_EOSTATE_CLOSING :
2448 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2450 eosw_txq->cred -= len16;
2451 eosw_txq->ncompl++;
2452 eosw_txq->last_compl = 0;
2454 ret = eosw_txq_enqueue(eosw_txq, skb);
2455 if (ret) {
2456 dev_consume_skb_any(skb);
2457 goto out_unlock;
2460 eosw_txq->state = next_state;
2461 eosw_txq->flowc_idx = eosw_txq->pidx;
2462 eosw_txq_advance(eosw_txq, 1);
2463 ethofld_xmit(dev, eosw_txq);
2465 out_unlock:
2466 spin_unlock_bh(&eosw_txq->lock);
2467 return ret;
2471 * is_imm - check whether a packet can be sent as immediate data
2472 * @skb: the packet
2474 * Returns true if a packet can be sent as a WR with immediate data.
2476 static inline int is_imm(const struct sk_buff *skb)
2478 return skb->len <= MAX_CTRL_WR_LEN;
2482 * ctrlq_check_stop - check if a control queue is full and should stop
2483 * @q: the queue
2484 * @wr: most recent WR written to the queue
2486 * Check if a control queue has become full and should be stopped.
2487 * We clean up control queue descriptors very lazily, only when we are out.
2488 * If the queue is still full after reclaiming any completed descriptors
2489 * we suspend it and have the last WR wake it up.
2491 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2493 reclaim_completed_tx_imm(&q->q);
2494 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2495 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2496 q->q.stops++;
2497 q->full = 1;
2502 * ctrl_xmit - send a packet through an SGE control Tx queue
2503 * @q: the control queue
2504 * @skb: the packet
2506 * Send a packet through an SGE control Tx queue. Packets sent through
2507 * a control queue must fit entirely as immediate data.
2509 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2511 unsigned int ndesc;
2512 struct fw_wr_hdr *wr;
2514 if (unlikely(!is_imm(skb))) {
2515 WARN_ON(1);
2516 dev_kfree_skb(skb);
2517 return NET_XMIT_DROP;
2520 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2521 spin_lock(&q->sendq.lock);
2523 if (unlikely(q->full)) {
2524 skb->priority = ndesc; /* save for restart */
2525 __skb_queue_tail(&q->sendq, skb);
2526 spin_unlock(&q->sendq.lock);
2527 return NET_XMIT_CN;
2530 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2531 cxgb4_inline_tx_skb(skb, &q->q, wr);
2533 txq_advance(&q->q, ndesc);
2534 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2535 ctrlq_check_stop(q, wr);
2537 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2538 spin_unlock(&q->sendq.lock);
2540 kfree_skb(skb);
2541 return NET_XMIT_SUCCESS;
2545 * restart_ctrlq - restart a suspended control queue
2546 * @data: the control queue to restart
2548 * Resumes transmission on a suspended Tx control queue.
2550 static void restart_ctrlq(unsigned long data)
2552 struct sk_buff *skb;
2553 unsigned int written = 0;
2554 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2556 spin_lock(&q->sendq.lock);
2557 reclaim_completed_tx_imm(&q->q);
2558 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2560 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2561 struct fw_wr_hdr *wr;
2562 unsigned int ndesc = skb->priority; /* previously saved */
2564 written += ndesc;
2565 /* Write descriptors and free skbs outside the lock to limit
2566 * wait times. q->full is still set so new skbs will be queued.
2568 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2569 txq_advance(&q->q, ndesc);
2570 spin_unlock(&q->sendq.lock);
2572 cxgb4_inline_tx_skb(skb, &q->q, wr);
2573 kfree_skb(skb);
2575 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2576 unsigned long old = q->q.stops;
2578 ctrlq_check_stop(q, wr);
2579 if (q->q.stops != old) { /* suspended anew */
2580 spin_lock(&q->sendq.lock);
2581 goto ringdb;
2584 if (written > 16) {
2585 cxgb4_ring_tx_db(q->adap, &q->q, written);
2586 written = 0;
2588 spin_lock(&q->sendq.lock);
2590 q->full = 0;
2591 ringdb:
2592 if (written)
2593 cxgb4_ring_tx_db(q->adap, &q->q, written);
2594 spin_unlock(&q->sendq.lock);
2598 * t4_mgmt_tx - send a management message
2599 * @adap: the adapter
2600 * @skb: the packet containing the management message
2602 * Send a management message through control queue 0.
2604 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2606 int ret;
2608 local_bh_disable();
2609 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2610 local_bh_enable();
2611 return ret;
2615 * is_ofld_imm - check whether a packet can be sent as immediate data
2616 * @skb: the packet
2618 * Returns true if a packet can be sent as an offload WR with immediate
2619 * data. We currently use the same limit as for Ethernet packets.
2621 static inline int is_ofld_imm(const struct sk_buff *skb)
2623 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2624 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2626 if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2627 return skb->len <= SGE_MAX_WR_LEN;
2628 else
2629 return skb->len <= MAX_IMM_TX_PKT_LEN;
2633 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2634 * @skb: the packet
2636 * Returns the number of flits needed for the given offload packet.
2637 * These packets are already fully constructed and no additional headers
2638 * will be added.
2640 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2642 unsigned int flits, cnt;
2644 if (is_ofld_imm(skb))
2645 return DIV_ROUND_UP(skb->len, 8);
2647 flits = skb_transport_offset(skb) / 8U; /* headers */
2648 cnt = skb_shinfo(skb)->nr_frags;
2649 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2650 cnt++;
2651 return flits + sgl_len(cnt);
2655 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2656 * @adap: the adapter
2657 * @q: the queue to stop
2659 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2660 * inability to map packets. A periodic timer attempts to restart
2661 * queues so marked.
2663 static void txq_stop_maperr(struct sge_uld_txq *q)
2665 q->mapping_err++;
2666 q->q.stops++;
2667 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2668 q->adap->sge.txq_maperr);
2672 * ofldtxq_stop - stop an offload Tx queue that has become full
2673 * @q: the queue to stop
2674 * @wr: the Work Request causing the queue to become full
2676 * Stops an offload Tx queue that has become full and modifies the packet
2677 * being written to request a wakeup.
2679 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2681 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2682 q->q.stops++;
2683 q->full = 1;
2687 * service_ofldq - service/restart a suspended offload queue
2688 * @q: the offload queue
2690 * Services an offload Tx queue by moving packets from its Pending Send
2691 * Queue to the Hardware TX ring. The function starts and ends with the
2692 * Send Queue locked, but drops the lock while putting the skb at the
2693 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2694 * allows more skbs to be added to the Send Queue by other threads.
2695 * The packet being processed at the head of the Pending Send Queue is
2696 * left on the queue in case we experience DMA Mapping errors, etc.
2697 * and need to give up and restart later.
2699 * service_ofldq() can be thought of as a task which opportunistically
2700 * uses other threads execution contexts. We use the Offload Queue
2701 * boolean "service_ofldq_running" to make sure that only one instance
2702 * is ever running at a time ...
2704 static void service_ofldq(struct sge_uld_txq *q)
2706 u64 *pos, *before, *end;
2707 int credits;
2708 struct sk_buff *skb;
2709 struct sge_txq *txq;
2710 unsigned int left;
2711 unsigned int written = 0;
2712 unsigned int flits, ndesc;
2714 /* If another thread is currently in service_ofldq() processing the
2715 * Pending Send Queue then there's nothing to do. Otherwise, flag
2716 * that we're doing the work and continue. Examining/modifying
2717 * the Offload Queue boolean "service_ofldq_running" must be done
2718 * while holding the Pending Send Queue Lock.
2720 if (q->service_ofldq_running)
2721 return;
2722 q->service_ofldq_running = true;
2724 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2725 /* We drop the lock while we're working with the skb at the
2726 * head of the Pending Send Queue. This allows more skbs to
2727 * be added to the Pending Send Queue while we're working on
2728 * this one. We don't need to lock to guard the TX Ring
2729 * updates because only one thread of execution is ever
2730 * allowed into service_ofldq() at a time.
2732 spin_unlock(&q->sendq.lock);
2734 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2736 flits = skb->priority; /* previously saved */
2737 ndesc = flits_to_desc(flits);
2738 credits = txq_avail(&q->q) - ndesc;
2739 BUG_ON(credits < 0);
2740 if (unlikely(credits < TXQ_STOP_THRES))
2741 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2743 pos = (u64 *)&q->q.desc[q->q.pidx];
2744 if (is_ofld_imm(skb))
2745 cxgb4_inline_tx_skb(skb, &q->q, pos);
2746 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2747 (dma_addr_t *)skb->head)) {
2748 txq_stop_maperr(q);
2749 spin_lock(&q->sendq.lock);
2750 break;
2751 } else {
2752 int last_desc, hdr_len = skb_transport_offset(skb);
2754 /* The WR headers may not fit within one descriptor.
2755 * So we need to deal with wrap-around here.
2757 before = (u64 *)pos;
2758 end = (u64 *)pos + flits;
2759 txq = &q->q;
2760 pos = (void *)inline_tx_skb_header(skb, &q->q,
2761 (void *)pos,
2762 hdr_len);
2763 if (before > (u64 *)pos) {
2764 left = (u8 *)end - (u8 *)txq->stat;
2765 end = (void *)txq->desc + left;
2768 /* If current position is already at the end of the
2769 * ofld queue, reset the current to point to
2770 * start of the queue and update the end ptr as well.
2772 if (pos == (u64 *)txq->stat) {
2773 left = (u8 *)end - (u8 *)txq->stat;
2774 end = (void *)txq->desc + left;
2775 pos = (void *)txq->desc;
2778 cxgb4_write_sgl(skb, &q->q, (void *)pos,
2779 end, hdr_len,
2780 (dma_addr_t *)skb->head);
2781 #ifdef CONFIG_NEED_DMA_MAP_STATE
2782 skb->dev = q->adap->port[0];
2783 skb->destructor = deferred_unmap_destructor;
2784 #endif
2785 last_desc = q->q.pidx + ndesc - 1;
2786 if (last_desc >= q->q.size)
2787 last_desc -= q->q.size;
2788 q->q.sdesc[last_desc].skb = skb;
2791 txq_advance(&q->q, ndesc);
2792 written += ndesc;
2793 if (unlikely(written > 32)) {
2794 cxgb4_ring_tx_db(q->adap, &q->q, written);
2795 written = 0;
2798 /* Reacquire the Pending Send Queue Lock so we can unlink the
2799 * skb we've just successfully transferred to the TX Ring and
2800 * loop for the next skb which may be at the head of the
2801 * Pending Send Queue.
2803 spin_lock(&q->sendq.lock);
2804 __skb_unlink(skb, &q->sendq);
2805 if (is_ofld_imm(skb))
2806 kfree_skb(skb);
2808 if (likely(written))
2809 cxgb4_ring_tx_db(q->adap, &q->q, written);
2811 /*Indicate that no thread is processing the Pending Send Queue
2812 * currently.
2814 q->service_ofldq_running = false;
2818 * ofld_xmit - send a packet through an offload queue
2819 * @q: the Tx offload queue
2820 * @skb: the packet
2822 * Send an offload packet through an SGE offload queue.
2824 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2826 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
2827 spin_lock(&q->sendq.lock);
2829 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
2830 * that results in this new skb being the only one on the queue, start
2831 * servicing it. If there are other skbs already on the list, then
2832 * either the queue is currently being processed or it's been stopped
2833 * for some reason and it'll be restarted at a later time. Restart
2834 * paths are triggered by events like experiencing a DMA Mapping Error
2835 * or filling the Hardware TX Ring.
2837 __skb_queue_tail(&q->sendq, skb);
2838 if (q->sendq.qlen == 1)
2839 service_ofldq(q);
2841 spin_unlock(&q->sendq.lock);
2842 return NET_XMIT_SUCCESS;
2846 * restart_ofldq - restart a suspended offload queue
2847 * @data: the offload queue to restart
2849 * Resumes transmission on a suspended Tx offload queue.
2851 static void restart_ofldq(unsigned long data)
2853 struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2855 spin_lock(&q->sendq.lock);
2856 q->full = 0; /* the queue actually is completely empty now */
2857 service_ofldq(q);
2858 spin_unlock(&q->sendq.lock);
2862 * skb_txq - return the Tx queue an offload packet should use
2863 * @skb: the packet
2865 * Returns the Tx queue an offload packet should use as indicated by bits
2866 * 1-15 in the packet's queue_mapping.
2868 static inline unsigned int skb_txq(const struct sk_buff *skb)
2870 return skb->queue_mapping >> 1;
2874 * is_ctrl_pkt - return whether an offload packet is a control packet
2875 * @skb: the packet
2877 * Returns whether an offload packet should use an OFLD or a CTRL
2878 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
2880 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2882 return skb->queue_mapping & 1;
2885 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2886 unsigned int tx_uld_type)
2888 struct sge_uld_txq_info *txq_info;
2889 struct sge_uld_txq *txq;
2890 unsigned int idx = skb_txq(skb);
2892 if (unlikely(is_ctrl_pkt(skb))) {
2893 /* Single ctrl queue is a requirement for LE workaround path */
2894 if (adap->tids.nsftids)
2895 idx = 0;
2896 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2899 txq_info = adap->sge.uld_txq_info[tx_uld_type];
2900 if (unlikely(!txq_info)) {
2901 WARN_ON(true);
2902 return NET_XMIT_DROP;
2905 txq = &txq_info->uldtxq[idx];
2906 return ofld_xmit(txq, skb);
2910 * t4_ofld_send - send an offload packet
2911 * @adap: the adapter
2912 * @skb: the packet
2914 * Sends an offload packet. We use the packet queue_mapping to select the
2915 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2916 * should be sent as regular or control, bits 1-15 select the queue.
2918 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2920 int ret;
2922 local_bh_disable();
2923 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2924 local_bh_enable();
2925 return ret;
2929 * cxgb4_ofld_send - send an offload packet
2930 * @dev: the net device
2931 * @skb: the packet
2933 * Sends an offload packet. This is an exported version of @t4_ofld_send,
2934 * intended for ULDs.
2936 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2938 return t4_ofld_send(netdev2adap(dev), skb);
2940 EXPORT_SYMBOL(cxgb4_ofld_send);
2942 static void *inline_tx_header(const void *src,
2943 const struct sge_txq *q,
2944 void *pos, int length)
2946 int left = (void *)q->stat - pos;
2947 u64 *p;
2949 if (likely(length <= left)) {
2950 memcpy(pos, src, length);
2951 pos += length;
2952 } else {
2953 memcpy(pos, src, left);
2954 memcpy(q->desc, src + left, length - left);
2955 pos = (void *)q->desc + (length - left);
2957 /* 0-pad to multiple of 16 */
2958 p = PTR_ALIGN(pos, 8);
2959 if ((uintptr_t)p & 8) {
2960 *p = 0;
2961 return p + 1;
2963 return p;
2967 * ofld_xmit_direct - copy a WR into offload queue
2968 * @q: the Tx offload queue
2969 * @src: location of WR
2970 * @len: WR length
2972 * Copy an immediate WR into an uncontended SGE offload queue.
2974 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2975 unsigned int len)
2977 unsigned int ndesc;
2978 int credits;
2979 u64 *pos;
2981 /* Use the lower limit as the cut-off */
2982 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2983 WARN_ON(1);
2984 return NET_XMIT_DROP;
2987 /* Don't return NET_XMIT_CN here as the current
2988 * implementation doesn't queue the request
2989 * using an skb when the following conditions not met
2991 if (!spin_trylock(&q->sendq.lock))
2992 return NET_XMIT_DROP;
2994 if (q->full || !skb_queue_empty(&q->sendq) ||
2995 q->service_ofldq_running) {
2996 spin_unlock(&q->sendq.lock);
2997 return NET_XMIT_DROP;
2999 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3000 credits = txq_avail(&q->q) - ndesc;
3001 pos = (u64 *)&q->q.desc[q->q.pidx];
3003 /* ofldtxq_stop modifies WR header in-situ */
3004 inline_tx_header(src, &q->q, pos, len);
3005 if (unlikely(credits < TXQ_STOP_THRES))
3006 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3007 txq_advance(&q->q, ndesc);
3008 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3010 spin_unlock(&q->sendq.lock);
3011 return NET_XMIT_SUCCESS;
3014 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3015 const void *src, unsigned int len)
3017 struct sge_uld_txq_info *txq_info;
3018 struct sge_uld_txq *txq;
3019 struct adapter *adap;
3020 int ret;
3022 adap = netdev2adap(dev);
3024 local_bh_disable();
3025 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3026 if (unlikely(!txq_info)) {
3027 WARN_ON(true);
3028 local_bh_enable();
3029 return NET_XMIT_DROP;
3031 txq = &txq_info->uldtxq[idx];
3033 ret = ofld_xmit_direct(txq, src, len);
3034 local_bh_enable();
3035 return net_xmit_eval(ret);
3037 EXPORT_SYMBOL(cxgb4_immdata_send);
3040 * t4_crypto_send - send crypto packet
3041 * @adap: the adapter
3042 * @skb: the packet
3044 * Sends crypto packet. We use the packet queue_mapping to select the
3045 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3046 * should be sent as regular or control, bits 1-15 select the queue.
3048 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3050 int ret;
3052 local_bh_disable();
3053 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3054 local_bh_enable();
3055 return ret;
3059 * cxgb4_crypto_send - send crypto packet
3060 * @dev: the net device
3061 * @skb: the packet
3063 * Sends crypto packet. This is an exported version of @t4_crypto_send,
3064 * intended for ULDs.
3066 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3068 return t4_crypto_send(netdev2adap(dev), skb);
3070 EXPORT_SYMBOL(cxgb4_crypto_send);
3072 static inline void copy_frags(struct sk_buff *skb,
3073 const struct pkt_gl *gl, unsigned int offset)
3075 int i;
3077 /* usually there's just one frag */
3078 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
3079 gl->frags[0].offset + offset,
3080 gl->frags[0].size - offset);
3081 skb_shinfo(skb)->nr_frags = gl->nfrags;
3082 for (i = 1; i < gl->nfrags; i++)
3083 __skb_fill_page_desc(skb, i, gl->frags[i].page,
3084 gl->frags[i].offset,
3085 gl->frags[i].size);
3087 /* get a reference to the last page, we don't own it */
3088 get_page(gl->frags[gl->nfrags - 1].page);
3092 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3093 * @gl: the gather list
3094 * @skb_len: size of sk_buff main body if it carries fragments
3095 * @pull_len: amount of data to move to the sk_buff's main body
3097 * Builds an sk_buff from the given packet gather list. Returns the
3098 * sk_buff or %NULL if sk_buff allocation failed.
3100 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3101 unsigned int skb_len, unsigned int pull_len)
3103 struct sk_buff *skb;
3106 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3107 * size, which is expected since buffers are at least PAGE_SIZEd.
3108 * In this case packets up to RX_COPY_THRES have only one fragment.
3110 if (gl->tot_len <= RX_COPY_THRES) {
3111 skb = dev_alloc_skb(gl->tot_len);
3112 if (unlikely(!skb))
3113 goto out;
3114 __skb_put(skb, gl->tot_len);
3115 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3116 } else {
3117 skb = dev_alloc_skb(skb_len);
3118 if (unlikely(!skb))
3119 goto out;
3120 __skb_put(skb, pull_len);
3121 skb_copy_to_linear_data(skb, gl->va, pull_len);
3123 copy_frags(skb, gl, pull_len);
3124 skb->len = gl->tot_len;
3125 skb->data_len = skb->len - pull_len;
3126 skb->truesize += skb->data_len;
3128 out: return skb;
3130 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3133 * t4_pktgl_free - free a packet gather list
3134 * @gl: the gather list
3136 * Releases the pages of a packet gather list. We do not own the last
3137 * page on the list and do not free it.
3139 static void t4_pktgl_free(const struct pkt_gl *gl)
3141 int n;
3142 const struct page_frag *p;
3144 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3145 put_page(p->page);
3149 * Process an MPS trace packet. Give it an unused protocol number so it won't
3150 * be delivered to anyone and send it to the stack for capture.
3152 static noinline int handle_trace_pkt(struct adapter *adap,
3153 const struct pkt_gl *gl)
3155 struct sk_buff *skb;
3157 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3158 if (unlikely(!skb)) {
3159 t4_pktgl_free(gl);
3160 return 0;
3163 if (is_t4(adap->params.chip))
3164 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
3165 else
3166 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3168 skb_reset_mac_header(skb);
3169 skb->protocol = htons(0xffff);
3170 skb->dev = adap->port[0];
3171 netif_receive_skb(skb);
3172 return 0;
3176 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3177 * @adap: the adapter
3178 * @hwtstamps: time stamp structure to update
3179 * @sgetstamp: 60bit iqe timestamp
3181 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3182 * which is in Core Clock ticks into ktime_t and assign it
3184 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3185 struct skb_shared_hwtstamps *hwtstamps,
3186 u64 sgetstamp)
3188 u64 ns;
3189 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3191 ns = div_u64(tmp, adap->params.vpd.cclk);
3193 memset(hwtstamps, 0, sizeof(*hwtstamps));
3194 hwtstamps->hwtstamp = ns_to_ktime(ns);
3197 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3198 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3200 struct adapter *adapter = rxq->rspq.adap;
3201 struct sge *s = &adapter->sge;
3202 struct port_info *pi;
3203 int ret;
3204 struct sk_buff *skb;
3206 skb = napi_get_frags(&rxq->rspq.napi);
3207 if (unlikely(!skb)) {
3208 t4_pktgl_free(gl);
3209 rxq->stats.rx_drops++;
3210 return;
3213 copy_frags(skb, gl, s->pktshift);
3214 if (tnl_hdr_len)
3215 skb->csum_level = 1;
3216 skb->len = gl->tot_len - s->pktshift;
3217 skb->data_len = skb->len;
3218 skb->truesize += skb->data_len;
3219 skb->ip_summed = CHECKSUM_UNNECESSARY;
3220 skb_record_rx_queue(skb, rxq->rspq.idx);
3221 pi = netdev_priv(skb->dev);
3222 if (pi->rxtstamp)
3223 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3224 gl->sgetstamp);
3225 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3226 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3227 PKT_HASH_TYPE_L3);
3229 if (unlikely(pkt->vlan_ex)) {
3230 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3231 rxq->stats.vlan_ex++;
3233 ret = napi_gro_frags(&rxq->rspq.napi);
3234 if (ret == GRO_HELD)
3235 rxq->stats.lro_pkts++;
3236 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3237 rxq->stats.lro_merged++;
3238 rxq->stats.pkts++;
3239 rxq->stats.rx_cso++;
3242 enum {
3243 RX_NON_PTP_PKT = 0,
3244 RX_PTP_PKT_SUC = 1,
3245 RX_PTP_PKT_ERR = 2
3249 * t4_systim_to_hwstamp - read hardware time stamp
3250 * @adap: the adapter
3251 * @skb: the packet
3253 * Read Time Stamp from MPS packet and insert in skb which
3254 * is forwarded to PTP application
3256 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3257 struct sk_buff *skb)
3259 struct skb_shared_hwtstamps *hwtstamps;
3260 struct cpl_rx_mps_pkt *cpl = NULL;
3261 unsigned char *data;
3262 int offset;
3264 cpl = (struct cpl_rx_mps_pkt *)skb->data;
3265 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3266 X_CPL_RX_MPS_PKT_TYPE_PTP))
3267 return RX_PTP_PKT_ERR;
3269 data = skb->data + sizeof(*cpl);
3270 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3271 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3272 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3273 return RX_PTP_PKT_ERR;
3275 hwtstamps = skb_hwtstamps(skb);
3276 memset(hwtstamps, 0, sizeof(*hwtstamps));
3277 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
3279 return RX_PTP_PKT_SUC;
3283 * t4_rx_hststamp - Recv PTP Event Message
3284 * @adap: the adapter
3285 * @rsp: the response queue descriptor holding the RX_PKT message
3286 * @skb: the packet
3288 * PTP enabled and MPS packet, read HW timestamp
3290 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3291 struct sge_eth_rxq *rxq, struct sk_buff *skb)
3293 int ret;
3295 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3296 !is_t4(adapter->params.chip))) {
3297 ret = t4_systim_to_hwstamp(adapter, skb);
3298 if (ret == RX_PTP_PKT_ERR) {
3299 kfree_skb(skb);
3300 rxq->stats.rx_drops++;
3302 return ret;
3304 return RX_NON_PTP_PKT;
3308 * t4_tx_hststamp - Loopback PTP Transmit Event Message
3309 * @adap: the adapter
3310 * @skb: the packet
3311 * @dev: the ingress net device
3313 * Read hardware timestamp for the loopback PTP Tx event message
3315 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3316 struct net_device *dev)
3318 struct port_info *pi = netdev_priv(dev);
3320 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3321 cxgb4_ptp_read_hwstamp(adapter, pi);
3322 kfree_skb(skb);
3323 return 0;
3325 return 1;
3329 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3330 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3331 * @rsp: Response Entry pointer into Response Queue
3332 * @gl: Gather List pointer
3334 * For adapters which support the SGE Doorbell Queue Timer facility,
3335 * we configure the Ethernet TX Queues to send CIDX Updates to the
3336 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3337 * messages. This adds a small load to PCIe Link RX bandwidth and,
3338 * potentially, higher CPU Interrupt load, but allows us to respond
3339 * much more quickly to the CIDX Updates. This is important for
3340 * Upper Layer Software which isn't willing to have a large amount
3341 * of TX Data outstanding before receiving DMA Completions.
3343 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3344 const __be64 *rsp,
3345 const struct pkt_gl *gl)
3347 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3348 struct port_info *pi = netdev_priv(rspq->netdev);
3349 struct adapter *adapter = rspq->adap;
3350 struct sge *s = &adapter->sge;
3351 struct sge_eth_txq *txq;
3353 /* skip RSS header */
3354 rsp++;
3356 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3358 if (unlikely(opcode == CPL_FW4_MSG &&
3359 ((const struct cpl_fw4_msg *)rsp)->type ==
3360 FW_TYPE_RSSCPL)) {
3361 rsp++;
3362 opcode = ((const struct rss_header *)rsp)->opcode;
3363 rsp++;
3366 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3367 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3368 __func__, opcode);
3369 return;
3372 txq = &s->ethtxq[pi->first_qset + rspq->idx];
3374 /* We've got the Hardware Consumer Index Update in the Egress Update
3375 * message. If we're using the SGE Doorbell Queue Timer mechanism,
3376 * these Egress Update messages will be our sole CIDX Updates we get
3377 * since we don't want to chew up PCIe bandwidth for both Ingress
3378 * Messages and Status Page writes. However, The code which manages
3379 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3380 * stored in the Status Page at the end of the TX Queue. It's easiest
3381 * to simply copy the CIDX Update value from the Egress Update message
3382 * to the Status Page. Also note that no Endian issues need to be
3383 * considered here since both are Big Endian and we're just copying
3384 * bytes consistently ...
3386 if (txq->dbqt) {
3387 struct cpl_sge_egr_update *egr;
3389 egr = (struct cpl_sge_egr_update *)rsp;
3390 WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3393 t4_sge_eth_txq_egress_update(adapter, txq, -1);
3397 * t4_ethrx_handler - process an ingress ethernet packet
3398 * @q: the response queue that received the packet
3399 * @rsp: the response queue descriptor holding the RX_PKT message
3400 * @si: the gather list of packet fragments
3402 * Process an ingress ethernet packet and deliver it to the stack.
3404 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3405 const struct pkt_gl *si)
3407 bool csum_ok;
3408 struct sk_buff *skb;
3409 const struct cpl_rx_pkt *pkt;
3410 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3411 struct adapter *adapter = q->adap;
3412 struct sge *s = &q->adap->sge;
3413 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3414 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3415 u16 err_vec, tnl_hdr_len = 0;
3416 struct port_info *pi;
3417 int ret = 0;
3419 /* If we're looking at TX Queue CIDX Update, handle that separately
3420 * and return.
3422 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3423 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3424 t4_tx_completion_handler(q, rsp, si);
3425 return 0;
3428 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3429 return handle_trace_pkt(q->adap, si);
3431 pkt = (const struct cpl_rx_pkt *)rsp;
3432 /* Compressed error vector is enabled for T6 only */
3433 if (q->adap->params.tp.rx_pkt_encap) {
3434 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3435 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3436 } else {
3437 err_vec = be16_to_cpu(pkt->err_vec);
3440 csum_ok = pkt->csum_calc && !err_vec &&
3441 (q->netdev->features & NETIF_F_RXCSUM);
3443 if (err_vec)
3444 rxq->stats.bad_rx_pkts++;
3446 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3447 tnl_hdr_len) &&
3448 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3449 do_gro(rxq, si, pkt, tnl_hdr_len);
3450 return 0;
3453 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3454 if (unlikely(!skb)) {
3455 t4_pktgl_free(si);
3456 rxq->stats.rx_drops++;
3457 return 0;
3459 pi = netdev_priv(q->netdev);
3461 /* Handle PTP Event Rx packet */
3462 if (unlikely(pi->ptp_enable)) {
3463 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3464 if (ret == RX_PTP_PKT_ERR)
3465 return 0;
3467 if (likely(!ret))
3468 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3470 /* Handle the PTP Event Tx Loopback packet */
3471 if (unlikely(pi->ptp_enable && !ret &&
3472 (pkt->l2info & htonl(RXF_UDP_F)) &&
3473 cxgb4_ptp_is_ptp_rx(skb))) {
3474 if (!t4_tx_hststamp(adapter, skb, q->netdev))
3475 return 0;
3478 skb->protocol = eth_type_trans(skb, q->netdev);
3479 skb_record_rx_queue(skb, q->idx);
3480 if (skb->dev->features & NETIF_F_RXHASH)
3481 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3482 PKT_HASH_TYPE_L3);
3484 rxq->stats.pkts++;
3486 if (pi->rxtstamp)
3487 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3488 si->sgetstamp);
3489 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3490 if (!pkt->ip_frag) {
3491 skb->ip_summed = CHECKSUM_UNNECESSARY;
3492 rxq->stats.rx_cso++;
3493 } else if (pkt->l2info & htonl(RXF_IP_F)) {
3494 __sum16 c = (__force __sum16)pkt->csum;
3495 skb->csum = csum_unfold(c);
3497 if (tnl_hdr_len) {
3498 skb->ip_summed = CHECKSUM_UNNECESSARY;
3499 skb->csum_level = 1;
3500 } else {
3501 skb->ip_summed = CHECKSUM_COMPLETE;
3503 rxq->stats.rx_cso++;
3505 } else {
3506 skb_checksum_none_assert(skb);
3507 #ifdef CONFIG_CHELSIO_T4_FCOE
3508 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3509 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3511 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3512 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3513 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3514 if (q->adap->params.tp.rx_pkt_encap)
3515 csum_ok = err_vec &
3516 T6_COMPR_RXERR_SUM_F;
3517 else
3518 csum_ok = err_vec & RXERR_CSUM_F;
3519 if (!csum_ok)
3520 skb->ip_summed = CHECKSUM_UNNECESSARY;
3524 #undef CPL_RX_PKT_FLAGS
3525 #endif /* CONFIG_CHELSIO_T4_FCOE */
3528 if (unlikely(pkt->vlan_ex)) {
3529 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3530 rxq->stats.vlan_ex++;
3532 skb_mark_napi_id(skb, &q->napi);
3533 netif_receive_skb(skb);
3534 return 0;
3538 * restore_rx_bufs - put back a packet's Rx buffers
3539 * @si: the packet gather list
3540 * @q: the SGE free list
3541 * @frags: number of FL buffers to restore
3543 * Puts back on an FL the Rx buffers associated with @si. The buffers
3544 * have already been unmapped and are left unmapped, we mark them so to
3545 * prevent further unmapping attempts.
3547 * This function undoes a series of @unmap_rx_buf calls when we find out
3548 * that the current packet can't be processed right away afterall and we
3549 * need to come back to it later. This is a very rare event and there's
3550 * no effort to make this particularly efficient.
3552 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3553 int frags)
3555 struct rx_sw_desc *d;
3557 while (frags--) {
3558 if (q->cidx == 0)
3559 q->cidx = q->size - 1;
3560 else
3561 q->cidx--;
3562 d = &q->sdesc[q->cidx];
3563 d->page = si->frags[frags].page;
3564 d->dma_addr |= RX_UNMAPPED_BUF;
3565 q->avail++;
3570 * is_new_response - check if a response is newly written
3571 * @r: the response descriptor
3572 * @q: the response queue
3574 * Returns true if a response descriptor contains a yet unprocessed
3575 * response.
3577 static inline bool is_new_response(const struct rsp_ctrl *r,
3578 const struct sge_rspq *q)
3580 return (r->type_gen >> RSPD_GEN_S) == q->gen;
3584 * rspq_next - advance to the next entry in a response queue
3585 * @q: the queue
3587 * Updates the state of a response queue to advance it to the next entry.
3589 static inline void rspq_next(struct sge_rspq *q)
3591 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3592 if (unlikely(++q->cidx == q->size)) {
3593 q->cidx = 0;
3594 q->gen ^= 1;
3595 q->cur_desc = q->desc;
3600 * process_responses - process responses from an SGE response queue
3601 * @q: the ingress queue to process
3602 * @budget: how many responses can be processed in this round
3604 * Process responses from an SGE response queue up to the supplied budget.
3605 * Responses include received packets as well as control messages from FW
3606 * or HW.
3608 * Additionally choose the interrupt holdoff time for the next interrupt
3609 * on this queue. If the system is under memory shortage use a fairly
3610 * long delay to help recovery.
3612 static int process_responses(struct sge_rspq *q, int budget)
3614 int ret, rsp_type;
3615 int budget_left = budget;
3616 const struct rsp_ctrl *rc;
3617 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3618 struct adapter *adapter = q->adap;
3619 struct sge *s = &adapter->sge;
3621 while (likely(budget_left)) {
3622 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3623 if (!is_new_response(rc, q)) {
3624 if (q->flush_handler)
3625 q->flush_handler(q);
3626 break;
3629 dma_rmb();
3630 rsp_type = RSPD_TYPE_G(rc->type_gen);
3631 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3632 struct page_frag *fp;
3633 struct pkt_gl si;
3634 const struct rx_sw_desc *rsd;
3635 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3637 if (len & RSPD_NEWBUF_F) {
3638 if (likely(q->offset > 0)) {
3639 free_rx_bufs(q->adap, &rxq->fl, 1);
3640 q->offset = 0;
3642 len = RSPD_LEN_G(len);
3644 si.tot_len = len;
3646 /* gather packet fragments */
3647 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3648 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3649 bufsz = get_buf_size(adapter, rsd);
3650 fp->page = rsd->page;
3651 fp->offset = q->offset;
3652 fp->size = min(bufsz, len);
3653 len -= fp->size;
3654 if (!len)
3655 break;
3656 unmap_rx_buf(q->adap, &rxq->fl);
3659 si.sgetstamp = SGE_TIMESTAMP_G(
3660 be64_to_cpu(rc->last_flit));
3662 * Last buffer remains mapped so explicitly make it
3663 * coherent for CPU access.
3665 dma_sync_single_for_cpu(q->adap->pdev_dev,
3666 get_buf_addr(rsd),
3667 fp->size, DMA_FROM_DEVICE);
3669 si.va = page_address(si.frags[0].page) +
3670 si.frags[0].offset;
3671 prefetch(si.va);
3673 si.nfrags = frags + 1;
3674 ret = q->handler(q, q->cur_desc, &si);
3675 if (likely(ret == 0))
3676 q->offset += ALIGN(fp->size, s->fl_align);
3677 else
3678 restore_rx_bufs(&si, &rxq->fl, frags);
3679 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3680 ret = q->handler(q, q->cur_desc, NULL);
3681 } else {
3682 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3685 if (unlikely(ret)) {
3686 /* couldn't process descriptor, back off for recovery */
3687 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3688 break;
3691 rspq_next(q);
3692 budget_left--;
3695 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3696 __refill_fl(q->adap, &rxq->fl);
3697 return budget - budget_left;
3701 * napi_rx_handler - the NAPI handler for Rx processing
3702 * @napi: the napi instance
3703 * @budget: how many packets we can process in this round
3705 * Handler for new data events when using NAPI. This does not need any
3706 * locking or protection from interrupts as data interrupts are off at
3707 * this point and other adapter interrupts do not interfere (the latter
3708 * in not a concern at all with MSI-X as non-data interrupts then have
3709 * a separate handler).
3711 static int napi_rx_handler(struct napi_struct *napi, int budget)
3713 unsigned int params;
3714 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3715 int work_done;
3716 u32 val;
3718 work_done = process_responses(q, budget);
3719 if (likely(work_done < budget)) {
3720 int timer_index;
3722 napi_complete_done(napi, work_done);
3723 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3725 if (q->adaptive_rx) {
3726 if (work_done > max(timer_pkt_quota[timer_index],
3727 MIN_NAPI_WORK))
3728 timer_index = (timer_index + 1);
3729 else
3730 timer_index = timer_index - 1;
3732 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3733 q->next_intr_params =
3734 QINTR_TIMER_IDX_V(timer_index) |
3735 QINTR_CNT_EN_V(0);
3736 params = q->next_intr_params;
3737 } else {
3738 params = q->next_intr_params;
3739 q->next_intr_params = q->intr_params;
3741 } else
3742 params = QINTR_TIMER_IDX_V(7);
3744 val = CIDXINC_V(work_done) | SEINTARM_V(params);
3746 /* If we don't have access to the new User GTS (T5+), use the old
3747 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3749 if (unlikely(q->bar2_addr == NULL)) {
3750 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3751 val | INGRESSQID_V((u32)q->cntxt_id));
3752 } else {
3753 writel(val | INGRESSQID_V(q->bar2_qid),
3754 q->bar2_addr + SGE_UDB_GTS);
3755 wmb();
3757 return work_done;
3760 void cxgb4_ethofld_restart(unsigned long data)
3762 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3763 int pktcount;
3765 spin_lock(&eosw_txq->lock);
3766 pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3767 if (pktcount < 0)
3768 pktcount += eosw_txq->ndesc;
3770 if (pktcount) {
3771 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3772 eosw_txq, pktcount);
3773 eosw_txq->inuse -= pktcount;
3776 /* There may be some packets waiting for completions. So,
3777 * attempt to send these packets now.
3779 ethofld_xmit(eosw_txq->netdev, eosw_txq);
3780 spin_unlock(&eosw_txq->lock);
3783 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3784 * @q: the response queue that received the packet
3785 * @rsp: the response queue descriptor holding the CPL message
3786 * @si: the gather list of packet fragments
3788 * Process a ETHOFLD Tx completion. Increment the cidx here, but
3789 * free up the descriptors in a tasklet later.
3791 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3792 const struct pkt_gl *si)
3794 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3796 /* skip RSS header */
3797 rsp++;
3799 if (opcode == CPL_FW4_ACK) {
3800 const struct cpl_fw4_ack *cpl;
3801 struct sge_eosw_txq *eosw_txq;
3802 struct eotid_entry *entry;
3803 struct sk_buff *skb;
3804 u32 hdr_len, eotid;
3805 u8 flits, wrlen16;
3806 int credits;
3808 cpl = (const struct cpl_fw4_ack *)rsp;
3809 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3810 q->adap->tids.eotid_base;
3811 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3812 if (!entry)
3813 goto out_done;
3815 eosw_txq = (struct sge_eosw_txq *)entry->data;
3816 if (!eosw_txq)
3817 goto out_done;
3819 spin_lock(&eosw_txq->lock);
3820 credits = cpl->credits;
3821 while (credits > 0) {
3822 skb = eosw_txq->desc[eosw_txq->cidx].skb;
3823 if (!skb)
3824 break;
3826 if (unlikely((eosw_txq->state ==
3827 CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3828 eosw_txq->state ==
3829 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3830 eosw_txq->cidx == eosw_txq->flowc_idx)) {
3831 flits = DIV_ROUND_UP(skb->len, 8);
3832 if (eosw_txq->state ==
3833 CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3834 eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3835 else
3836 eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3837 complete(&eosw_txq->completion);
3838 } else {
3839 hdr_len = eth_get_headlen(eosw_txq->netdev,
3840 skb->data,
3841 skb_headlen(skb));
3842 flits = ethofld_calc_tx_flits(q->adap, skb,
3843 hdr_len);
3845 eosw_txq_advance_index(&eosw_txq->cidx, 1,
3846 eosw_txq->ndesc);
3847 wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3848 credits -= wrlen16;
3851 eosw_txq->cred += cpl->credits;
3852 eosw_txq->ncompl--;
3854 spin_unlock(&eosw_txq->lock);
3856 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3857 * if there were packets waiting for completion.
3859 tasklet_schedule(&eosw_txq->qresume_tsk);
3862 out_done:
3863 return 0;
3867 * The MSI-X interrupt handler for an SGE response queue.
3869 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3871 struct sge_rspq *q = cookie;
3873 napi_schedule(&q->napi);
3874 return IRQ_HANDLED;
3878 * Process the indirect interrupt entries in the interrupt queue and kick off
3879 * NAPI for each queue that has generated an entry.
3881 static unsigned int process_intrq(struct adapter *adap)
3883 unsigned int credits;
3884 const struct rsp_ctrl *rc;
3885 struct sge_rspq *q = &adap->sge.intrq;
3886 u32 val;
3888 spin_lock(&adap->sge.intrq_lock);
3889 for (credits = 0; ; credits++) {
3890 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3891 if (!is_new_response(rc, q))
3892 break;
3894 dma_rmb();
3895 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3896 unsigned int qid = ntohl(rc->pldbuflen_qid);
3898 qid -= adap->sge.ingr_start;
3899 napi_schedule(&adap->sge.ingr_map[qid]->napi);
3902 rspq_next(q);
3905 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3907 /* If we don't have access to the new User GTS (T5+), use the old
3908 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3910 if (unlikely(q->bar2_addr == NULL)) {
3911 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3912 val | INGRESSQID_V(q->cntxt_id));
3913 } else {
3914 writel(val | INGRESSQID_V(q->bar2_qid),
3915 q->bar2_addr + SGE_UDB_GTS);
3916 wmb();
3918 spin_unlock(&adap->sge.intrq_lock);
3919 return credits;
3923 * The MSI interrupt handler, which handles data events from SGE response queues
3924 * as well as error and other async events as they all use the same MSI vector.
3926 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3928 struct adapter *adap = cookie;
3930 if (adap->flags & CXGB4_MASTER_PF)
3931 t4_slow_intr_handler(adap);
3932 process_intrq(adap);
3933 return IRQ_HANDLED;
3937 * Interrupt handler for legacy INTx interrupts.
3938 * Handles data events from SGE response queues as well as error and other
3939 * async events as they all use the same interrupt line.
3941 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3943 struct adapter *adap = cookie;
3945 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3946 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3947 process_intrq(adap))
3948 return IRQ_HANDLED;
3949 return IRQ_NONE; /* probably shared interrupt */
3953 * t4_intr_handler - select the top-level interrupt handler
3954 * @adap: the adapter
3956 * Selects the top-level interrupt handler based on the type of interrupts
3957 * (MSI-X, MSI, or INTx).
3959 irq_handler_t t4_intr_handler(struct adapter *adap)
3961 if (adap->flags & CXGB4_USING_MSIX)
3962 return t4_sge_intr_msix;
3963 if (adap->flags & CXGB4_USING_MSI)
3964 return t4_intr_msi;
3965 return t4_intr_intx;
3968 static void sge_rx_timer_cb(struct timer_list *t)
3970 unsigned long m;
3971 unsigned int i;
3972 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3973 struct sge *s = &adap->sge;
3975 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3976 for (m = s->starving_fl[i]; m; m &= m - 1) {
3977 struct sge_eth_rxq *rxq;
3978 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3979 struct sge_fl *fl = s->egr_map[id];
3981 clear_bit(id, s->starving_fl);
3982 smp_mb__after_atomic();
3984 if (fl_starving(adap, fl)) {
3985 rxq = container_of(fl, struct sge_eth_rxq, fl);
3986 if (napi_reschedule(&rxq->rspq.napi))
3987 fl->starving++;
3988 else
3989 set_bit(id, s->starving_fl);
3992 /* The remainder of the SGE RX Timer Callback routine is dedicated to
3993 * global Master PF activities like checking for chip ingress stalls,
3994 * etc.
3996 if (!(adap->flags & CXGB4_MASTER_PF))
3997 goto done;
3999 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4001 done:
4002 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4005 static void sge_tx_timer_cb(struct timer_list *t)
4007 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4008 struct sge *s = &adap->sge;
4009 unsigned long m, period;
4010 unsigned int i, budget;
4012 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4013 for (m = s->txq_maperr[i]; m; m &= m - 1) {
4014 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4015 struct sge_uld_txq *txq = s->egr_map[id];
4017 clear_bit(id, s->txq_maperr);
4018 tasklet_schedule(&txq->qresume_tsk);
4021 if (!is_t4(adap->params.chip)) {
4022 struct sge_eth_txq *q = &s->ptptxq;
4023 int avail;
4025 spin_lock(&adap->ptp_lock);
4026 avail = reclaimable(&q->q);
4028 if (avail) {
4029 free_tx_desc(adap, &q->q, avail, false);
4030 q->q.in_use -= avail;
4032 spin_unlock(&adap->ptp_lock);
4035 budget = MAX_TIMER_TX_RECLAIM;
4036 i = s->ethtxq_rover;
4037 do {
4038 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4039 budget);
4040 if (!budget)
4041 break;
4043 if (++i >= s->ethqsets)
4044 i = 0;
4045 } while (i != s->ethtxq_rover);
4046 s->ethtxq_rover = i;
4048 if (budget == 0) {
4049 /* If we found too many reclaimable packets schedule a timer
4050 * in the near future to continue where we left off.
4052 period = 2;
4053 } else {
4054 /* We reclaimed all reclaimable TX Descriptors, so reschedule
4055 * at the normal period.
4057 period = TX_QCHECK_PERIOD;
4060 mod_timer(&s->tx_timer, jiffies + period);
4064 * bar2_address - return the BAR2 address for an SGE Queue's Registers
4065 * @adapter: the adapter
4066 * @qid: the SGE Queue ID
4067 * @qtype: the SGE Queue Type (Egress or Ingress)
4068 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4070 * Returns the BAR2 address for the SGE Queue Registers associated with
4071 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
4072 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4073 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4074 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
4076 static void __iomem *bar2_address(struct adapter *adapter,
4077 unsigned int qid,
4078 enum t4_bar2_qtype qtype,
4079 unsigned int *pbar2_qid)
4081 u64 bar2_qoffset;
4082 int ret;
4084 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4085 &bar2_qoffset, pbar2_qid);
4086 if (ret)
4087 return NULL;
4089 return adapter->bar2 + bar2_qoffset;
4092 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4093 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4095 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4096 struct net_device *dev, int intr_idx,
4097 struct sge_fl *fl, rspq_handler_t hnd,
4098 rspq_flush_handler_t flush_hnd, int cong)
4100 int ret, flsz = 0;
4101 struct fw_iq_cmd c;
4102 struct sge *s = &adap->sge;
4103 struct port_info *pi = netdev_priv(dev);
4104 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4106 /* Size needs to be multiple of 16, including status entry. */
4107 iq->size = roundup(iq->size, 16);
4109 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4110 &iq->phys_addr, NULL, 0,
4111 dev_to_node(adap->pdev_dev));
4112 if (!iq->desc)
4113 return -ENOMEM;
4115 memset(&c, 0, sizeof(c));
4116 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4117 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4118 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4119 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4120 FW_LEN16(c));
4121 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4122 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4123 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4124 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4125 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4126 -intr_idx - 1));
4127 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4128 FW_IQ_CMD_IQGTSMODE_F |
4129 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4130 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4131 c.iqsize = htons(iq->size);
4132 c.iqaddr = cpu_to_be64(iq->phys_addr);
4133 if (cong >= 0)
4134 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4135 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4136 : FW_IQ_IQTYPE_OFLD));
4138 if (fl) {
4139 unsigned int chip_ver =
4140 CHELSIO_CHIP_VERSION(adap->params.chip);
4142 /* Allocate the ring for the hardware free list (with space
4143 * for its status page) along with the associated software
4144 * descriptor ring. The free list size needs to be a multiple
4145 * of the Egress Queue Unit and at least 2 Egress Units larger
4146 * than the SGE's Egress Congrestion Threshold
4147 * (fl_starve_thres - 1).
4149 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4150 fl->size = s->fl_starve_thres - 1 + 2 * 8;
4151 fl->size = roundup(fl->size, 8);
4152 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4153 sizeof(struct rx_sw_desc), &fl->addr,
4154 &fl->sdesc, s->stat_len,
4155 dev_to_node(adap->pdev_dev));
4156 if (!fl->desc)
4157 goto fl_nomem;
4159 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4160 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4161 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4162 FW_IQ_CMD_FL0DATARO_V(relaxed) |
4163 FW_IQ_CMD_FL0PADEN_F);
4164 if (cong >= 0)
4165 c.iqns_to_fl0congen |=
4166 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4167 FW_IQ_CMD_FL0CONGCIF_F |
4168 FW_IQ_CMD_FL0CONGEN_F);
4169 /* In T6, for egress queue type FL there is internal overhead
4170 * of 16B for header going into FLM module. Hence the maximum
4171 * allowed burst size is 448 bytes. For T4/T5, the hardware
4172 * doesn't coalesce fetch requests if more than 64 bytes of
4173 * Free List pointers are provided, so we use a 128-byte Fetch
4174 * Burst Minimum there (T6 implements coalescing so we can use
4175 * the smaller 64-byte value there).
4177 c.fl0dcaen_to_fl0cidxfthresh =
4178 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4179 FETCHBURSTMIN_128B_X :
4180 FETCHBURSTMIN_64B_T6_X) |
4181 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4182 FETCHBURSTMAX_512B_X :
4183 FETCHBURSTMAX_256B_X));
4184 c.fl0size = htons(flsz);
4185 c.fl0addr = cpu_to_be64(fl->addr);
4188 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4189 if (ret)
4190 goto err;
4192 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4193 iq->cur_desc = iq->desc;
4194 iq->cidx = 0;
4195 iq->gen = 1;
4196 iq->next_intr_params = iq->intr_params;
4197 iq->cntxt_id = ntohs(c.iqid);
4198 iq->abs_id = ntohs(c.physiqid);
4199 iq->bar2_addr = bar2_address(adap,
4200 iq->cntxt_id,
4201 T4_BAR2_QTYPE_INGRESS,
4202 &iq->bar2_qid);
4203 iq->size--; /* subtract status entry */
4204 iq->netdev = dev;
4205 iq->handler = hnd;
4206 iq->flush_handler = flush_hnd;
4208 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4209 skb_queue_head_init(&iq->lro_mgr.lroq);
4211 /* set offset to -1 to distinguish ingress queues without FL */
4212 iq->offset = fl ? 0 : -1;
4214 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4216 if (fl) {
4217 fl->cntxt_id = ntohs(c.fl0id);
4218 fl->avail = fl->pend_cred = 0;
4219 fl->pidx = fl->cidx = 0;
4220 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4221 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4223 /* Note, we must initialize the BAR2 Free List User Doorbell
4224 * information before refilling the Free List!
4226 fl->bar2_addr = bar2_address(adap,
4227 fl->cntxt_id,
4228 T4_BAR2_QTYPE_EGRESS,
4229 &fl->bar2_qid);
4230 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4233 /* For T5 and later we attempt to set up the Congestion Manager values
4234 * of the new RX Ethernet Queue. This should really be handled by
4235 * firmware because it's more complex than any host driver wants to
4236 * get involved with and it's different per chip and this is almost
4237 * certainly wrong. Firmware would be wrong as well, but it would be
4238 * a lot easier to fix in one place ... For now we do something very
4239 * simple (and hopefully less wrong).
4241 if (!is_t4(adap->params.chip) && cong >= 0) {
4242 u32 param, val, ch_map = 0;
4243 int i;
4244 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4246 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4247 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4248 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4249 if (cong == 0) {
4250 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4251 } else {
4252 val =
4253 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4254 for (i = 0; i < 4; i++) {
4255 if (cong & (1 << i))
4256 ch_map |= 1 << (i << cng_ch_bits_log);
4258 val |= CONMCTXT_CNGCHMAP_V(ch_map);
4260 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4261 &param, &val);
4262 if (ret)
4263 dev_warn(adap->pdev_dev, "Failed to set Congestion"
4264 " Manager Context for Ingress Queue %d: %d\n",
4265 iq->cntxt_id, -ret);
4268 return 0;
4270 fl_nomem:
4271 ret = -ENOMEM;
4272 err:
4273 if (iq->desc) {
4274 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4275 iq->desc, iq->phys_addr);
4276 iq->desc = NULL;
4278 if (fl && fl->desc) {
4279 kfree(fl->sdesc);
4280 fl->sdesc = NULL;
4281 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4282 fl->desc, fl->addr);
4283 fl->desc = NULL;
4285 return ret;
4288 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4290 q->cntxt_id = id;
4291 q->bar2_addr = bar2_address(adap,
4292 q->cntxt_id,
4293 T4_BAR2_QTYPE_EGRESS,
4294 &q->bar2_qid);
4295 q->in_use = 0;
4296 q->cidx = q->pidx = 0;
4297 q->stops = q->restarts = 0;
4298 q->stat = (void *)&q->desc[q->size];
4299 spin_lock_init(&q->db_lock);
4300 adap->sge.egr_map[id - adap->sge.egr_start] = q;
4304 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4305 * @adap: the adapter
4306 * @txq: the SGE Ethernet TX Queue to initialize
4307 * @dev: the Linux Network Device
4308 * @netdevq: the corresponding Linux TX Queue
4309 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
4310 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4312 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4313 struct net_device *dev, struct netdev_queue *netdevq,
4314 unsigned int iqid, u8 dbqt)
4316 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4317 struct port_info *pi = netdev_priv(dev);
4318 struct sge *s = &adap->sge;
4319 struct fw_eq_eth_cmd c;
4320 int ret, nentries;
4322 /* Add status entries */
4323 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4325 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4326 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4327 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4328 netdev_queue_numa_node_read(netdevq));
4329 if (!txq->q.desc)
4330 return -ENOMEM;
4332 memset(&c, 0, sizeof(c));
4333 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4334 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4335 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4336 FW_EQ_ETH_CMD_VFN_V(0));
4337 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4338 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4340 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4341 * mechanism, we use Ingress Queue messages for Hardware Consumer
4342 * Index Updates on the TX Queue. Otherwise we have the Hardware
4343 * write the CIDX Updates into the Status Page at the end of the
4344 * TX Queue.
4346 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4347 FW_EQ_ETH_CMD_VIID_V(pi->viid));
4349 c.fetchszm_to_iqid =
4350 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4351 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4352 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4354 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4355 c.dcaen_to_eqsize =
4356 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4357 ? FETCHBURSTMIN_64B_X
4358 : FETCHBURSTMIN_64B_T6_X) |
4359 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4360 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4361 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4363 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4365 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4366 * currently configured Timer Index. THis can be changed later via an
4367 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
4368 * Doorbell Queue mode is currently automatically enabled in the
4369 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4371 if (dbqt)
4372 c.timeren_timerix =
4373 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4374 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4376 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4377 if (ret) {
4378 kfree(txq->q.sdesc);
4379 txq->q.sdesc = NULL;
4380 dma_free_coherent(adap->pdev_dev,
4381 nentries * sizeof(struct tx_desc),
4382 txq->q.desc, txq->q.phys_addr);
4383 txq->q.desc = NULL;
4384 return ret;
4387 txq->q.q_type = CXGB4_TXQ_ETH;
4388 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4389 txq->txq = netdevq;
4390 txq->tso = 0;
4391 txq->uso = 0;
4392 txq->tx_cso = 0;
4393 txq->vlan_ins = 0;
4394 txq->mapping_err = 0;
4395 txq->dbqt = dbqt;
4397 return 0;
4400 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4401 struct net_device *dev, unsigned int iqid,
4402 unsigned int cmplqid)
4404 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4405 struct port_info *pi = netdev_priv(dev);
4406 struct sge *s = &adap->sge;
4407 struct fw_eq_ctrl_cmd c;
4408 int ret, nentries;
4410 /* Add status entries */
4411 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4413 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4414 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4415 NULL, 0, dev_to_node(adap->pdev_dev));
4416 if (!txq->q.desc)
4417 return -ENOMEM;
4419 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4420 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4421 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4422 FW_EQ_CTRL_CMD_VFN_V(0));
4423 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4424 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4425 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4426 c.physeqid_pkd = htonl(0);
4427 c.fetchszm_to_iqid =
4428 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4429 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4430 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4431 c.dcaen_to_eqsize =
4432 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4433 ? FETCHBURSTMIN_64B_X
4434 : FETCHBURSTMIN_64B_T6_X) |
4435 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4436 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4437 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4438 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4440 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4441 if (ret) {
4442 dma_free_coherent(adap->pdev_dev,
4443 nentries * sizeof(struct tx_desc),
4444 txq->q.desc, txq->q.phys_addr);
4445 txq->q.desc = NULL;
4446 return ret;
4449 txq->q.q_type = CXGB4_TXQ_CTRL;
4450 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4451 txq->adap = adap;
4452 skb_queue_head_init(&txq->sendq);
4453 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4454 txq->full = 0;
4455 return 0;
4458 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4459 unsigned int cmplqid)
4461 u32 param, val;
4463 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4464 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4465 FW_PARAMS_PARAM_YZ_V(eqid));
4466 val = cmplqid;
4467 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4470 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4471 struct net_device *dev, u32 cmd, u32 iqid)
4473 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4474 struct port_info *pi = netdev_priv(dev);
4475 struct sge *s = &adap->sge;
4476 struct fw_eq_ofld_cmd c;
4477 u32 fb_min, nentries;
4478 int ret;
4480 /* Add status entries */
4481 nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4482 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4483 sizeof(struct tx_sw_desc), &q->phys_addr,
4484 &q->sdesc, s->stat_len, NUMA_NO_NODE);
4485 if (!q->desc)
4486 return -ENOMEM;
4488 if (chip_ver <= CHELSIO_T5)
4489 fb_min = FETCHBURSTMIN_64B_X;
4490 else
4491 fb_min = FETCHBURSTMIN_64B_T6_X;
4493 memset(&c, 0, sizeof(c));
4494 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4495 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4496 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4497 FW_EQ_OFLD_CMD_VFN_V(0));
4498 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4499 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4500 c.fetchszm_to_iqid =
4501 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4502 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4503 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4504 c.dcaen_to_eqsize =
4505 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4506 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4507 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4508 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4509 c.eqaddr = cpu_to_be64(q->phys_addr);
4511 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4512 if (ret) {
4513 kfree(q->sdesc);
4514 q->sdesc = NULL;
4515 dma_free_coherent(adap->pdev_dev,
4516 nentries * sizeof(struct tx_desc),
4517 q->desc, q->phys_addr);
4518 q->desc = NULL;
4519 return ret;
4522 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4523 return 0;
4526 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4527 struct net_device *dev, unsigned int iqid,
4528 unsigned int uld_type)
4530 u32 cmd = FW_EQ_OFLD_CMD;
4531 int ret;
4533 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4534 cmd = FW_EQ_CTRL_CMD;
4536 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4537 if (ret)
4538 return ret;
4540 txq->q.q_type = CXGB4_TXQ_ULD;
4541 txq->adap = adap;
4542 skb_queue_head_init(&txq->sendq);
4543 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4544 txq->full = 0;
4545 txq->mapping_err = 0;
4546 return 0;
4549 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4550 struct net_device *dev, u32 iqid)
4552 int ret;
4554 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4555 if (ret)
4556 return ret;
4558 txq->q.q_type = CXGB4_TXQ_ULD;
4559 spin_lock_init(&txq->lock);
4560 txq->adap = adap;
4561 txq->tso = 0;
4562 txq->uso = 0;
4563 txq->tx_cso = 0;
4564 txq->vlan_ins = 0;
4565 txq->mapping_err = 0;
4566 return 0;
4569 void free_txq(struct adapter *adap, struct sge_txq *q)
4571 struct sge *s = &adap->sge;
4573 dma_free_coherent(adap->pdev_dev,
4574 q->size * sizeof(struct tx_desc) + s->stat_len,
4575 q->desc, q->phys_addr);
4576 q->cntxt_id = 0;
4577 q->sdesc = NULL;
4578 q->desc = NULL;
4581 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4582 struct sge_fl *fl)
4584 struct sge *s = &adap->sge;
4585 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4587 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4588 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4589 rq->cntxt_id, fl_id, 0xffff);
4590 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4591 rq->desc, rq->phys_addr);
4592 netif_napi_del(&rq->napi);
4593 rq->netdev = NULL;
4594 rq->cntxt_id = rq->abs_id = 0;
4595 rq->desc = NULL;
4597 if (fl) {
4598 free_rx_bufs(adap, fl, fl->avail);
4599 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4600 fl->desc, fl->addr);
4601 kfree(fl->sdesc);
4602 fl->sdesc = NULL;
4603 fl->cntxt_id = 0;
4604 fl->desc = NULL;
4609 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4610 * @adap: the adapter
4611 * @n: number of queues
4612 * @q: pointer to first queue
4614 * Release the resources of a consecutive block of offload Rx queues.
4616 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4618 for ( ; n; n--, q++)
4619 if (q->rspq.desc)
4620 free_rspq_fl(adap, &q->rspq,
4621 q->fl.size ? &q->fl : NULL);
4624 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4626 if (txq->q.desc) {
4627 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4628 txq->q.cntxt_id);
4629 free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4630 kfree(txq->q.sdesc);
4631 free_txq(adap, &txq->q);
4636 * t4_free_sge_resources - free SGE resources
4637 * @adap: the adapter
4639 * Frees resources used by the SGE queue sets.
4641 void t4_free_sge_resources(struct adapter *adap)
4643 int i;
4644 struct sge_eth_rxq *eq;
4645 struct sge_eth_txq *etq;
4647 /* stop all Rx queues in order to start them draining */
4648 for (i = 0; i < adap->sge.ethqsets; i++) {
4649 eq = &adap->sge.ethrxq[i];
4650 if (eq->rspq.desc)
4651 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4652 FW_IQ_TYPE_FL_INT_CAP,
4653 eq->rspq.cntxt_id,
4654 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4655 0xffff);
4658 /* clean up Ethernet Tx/Rx queues */
4659 for (i = 0; i < adap->sge.ethqsets; i++) {
4660 eq = &adap->sge.ethrxq[i];
4661 if (eq->rspq.desc)
4662 free_rspq_fl(adap, &eq->rspq,
4663 eq->fl.size ? &eq->fl : NULL);
4664 if (eq->msix) {
4665 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4666 eq->msix = NULL;
4669 etq = &adap->sge.ethtxq[i];
4670 if (etq->q.desc) {
4671 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4672 etq->q.cntxt_id);
4673 __netif_tx_lock_bh(etq->txq);
4674 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4675 __netif_tx_unlock_bh(etq->txq);
4676 kfree(etq->q.sdesc);
4677 free_txq(adap, &etq->q);
4681 /* clean up control Tx queues */
4682 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4683 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4685 if (cq->q.desc) {
4686 tasklet_kill(&cq->qresume_tsk);
4687 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4688 cq->q.cntxt_id);
4689 __skb_queue_purge(&cq->sendq);
4690 free_txq(adap, &cq->q);
4694 if (adap->sge.fw_evtq.desc) {
4695 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4696 if (adap->sge.fwevtq_msix_idx >= 0)
4697 cxgb4_free_msix_idx_in_bmap(adap,
4698 adap->sge.fwevtq_msix_idx);
4701 if (adap->sge.nd_msix_idx >= 0)
4702 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4704 if (adap->sge.intrq.desc)
4705 free_rspq_fl(adap, &adap->sge.intrq, NULL);
4707 if (!is_t4(adap->params.chip)) {
4708 etq = &adap->sge.ptptxq;
4709 if (etq->q.desc) {
4710 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4711 etq->q.cntxt_id);
4712 spin_lock_bh(&adap->ptp_lock);
4713 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4714 spin_unlock_bh(&adap->ptp_lock);
4715 kfree(etq->q.sdesc);
4716 free_txq(adap, &etq->q);
4720 /* clear the reverse egress queue map */
4721 memset(adap->sge.egr_map, 0,
4722 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4725 void t4_sge_start(struct adapter *adap)
4727 adap->sge.ethtxq_rover = 0;
4728 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4729 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4733 * t4_sge_stop - disable SGE operation
4734 * @adap: the adapter
4736 * Stop tasklets and timers associated with the DMA engine. Note that
4737 * this is effective only if measures have been taken to disable any HW
4738 * events that may restart them.
4740 void t4_sge_stop(struct adapter *adap)
4742 int i;
4743 struct sge *s = &adap->sge;
4745 if (in_interrupt()) /* actions below require waiting */
4746 return;
4748 if (s->rx_timer.function)
4749 del_timer_sync(&s->rx_timer);
4750 if (s->tx_timer.function)
4751 del_timer_sync(&s->tx_timer);
4753 if (is_offload(adap)) {
4754 struct sge_uld_txq_info *txq_info;
4756 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4757 if (txq_info) {
4758 struct sge_uld_txq *txq = txq_info->uldtxq;
4760 for_each_ofldtxq(&adap->sge, i) {
4761 if (txq->q.desc)
4762 tasklet_kill(&txq->qresume_tsk);
4767 if (is_pci_uld(adap)) {
4768 struct sge_uld_txq_info *txq_info;
4770 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4771 if (txq_info) {
4772 struct sge_uld_txq *txq = txq_info->uldtxq;
4774 for_each_ofldtxq(&adap->sge, i) {
4775 if (txq->q.desc)
4776 tasklet_kill(&txq->qresume_tsk);
4781 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4782 struct sge_ctrl_txq *cq = &s->ctrlq[i];
4784 if (cq->q.desc)
4785 tasklet_kill(&cq->qresume_tsk);
4790 * t4_sge_init_soft - grab core SGE values needed by SGE code
4791 * @adap: the adapter
4793 * We need to grab the SGE operating parameters that we need to have
4794 * in order to do our job and make sure we can live with them.
4797 static int t4_sge_init_soft(struct adapter *adap)
4799 struct sge *s = &adap->sge;
4800 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4801 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4802 u32 ingress_rx_threshold;
4805 * Verify that CPL messages are going to the Ingress Queue for
4806 * process_responses() and that only packet data is going to the
4807 * Free Lists.
4809 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4810 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4811 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4812 return -EINVAL;
4816 * Validate the Host Buffer Register Array indices that we want to
4817 * use ...
4819 * XXX Note that we should really read through the Host Buffer Size
4820 * XXX register array and find the indices of the Buffer Sizes which
4821 * XXX meet our needs!
4823 #define READ_FL_BUF(x) \
4824 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4826 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4827 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4828 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4829 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4831 /* We only bother using the Large Page logic if the Large Page Buffer
4832 * is larger than our Page Size Buffer.
4834 if (fl_large_pg <= fl_small_pg)
4835 fl_large_pg = 0;
4837 #undef READ_FL_BUF
4839 /* The Page Size Buffer must be exactly equal to our Page Size and the
4840 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4842 if (fl_small_pg != PAGE_SIZE ||
4843 (fl_large_pg & (fl_large_pg-1)) != 0) {
4844 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4845 fl_small_pg, fl_large_pg);
4846 return -EINVAL;
4848 if (fl_large_pg)
4849 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4851 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4852 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4853 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4854 fl_small_mtu, fl_large_mtu);
4855 return -EINVAL;
4859 * Retrieve our RX interrupt holdoff timer values and counter
4860 * threshold values from the SGE parameters.
4862 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4863 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4864 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4865 s->timer_val[0] = core_ticks_to_us(adap,
4866 TIMERVALUE0_G(timer_value_0_and_1));
4867 s->timer_val[1] = core_ticks_to_us(adap,
4868 TIMERVALUE1_G(timer_value_0_and_1));
4869 s->timer_val[2] = core_ticks_to_us(adap,
4870 TIMERVALUE2_G(timer_value_2_and_3));
4871 s->timer_val[3] = core_ticks_to_us(adap,
4872 TIMERVALUE3_G(timer_value_2_and_3));
4873 s->timer_val[4] = core_ticks_to_us(adap,
4874 TIMERVALUE4_G(timer_value_4_and_5));
4875 s->timer_val[5] = core_ticks_to_us(adap,
4876 TIMERVALUE5_G(timer_value_4_and_5));
4878 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4879 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4880 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4881 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4882 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4884 return 0;
4888 * t4_sge_init - initialize SGE
4889 * @adap: the adapter
4891 * Perform low-level SGE code initialization needed every time after a
4892 * chip reset.
4894 int t4_sge_init(struct adapter *adap)
4896 struct sge *s = &adap->sge;
4897 u32 sge_control, sge_conm_ctrl;
4898 int ret, egress_threshold;
4901 * Ingress Padding Boundary and Egress Status Page Size are set up by
4902 * t4_fixup_host_params().
4904 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4905 s->pktshift = PKTSHIFT_G(sge_control);
4906 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4908 s->fl_align = t4_fl_pkt_align(adap);
4909 ret = t4_sge_init_soft(adap);
4910 if (ret < 0)
4911 return ret;
4914 * A FL with <= fl_starve_thres buffers is starving and a periodic
4915 * timer will attempt to refill it. This needs to be larger than the
4916 * SGE's Egress Congestion Threshold. If it isn't, then we can get
4917 * stuck waiting for new packets while the SGE is waiting for us to
4918 * give it more Free List entries. (Note that the SGE's Egress
4919 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4920 * there was only a single field to control this. For T5 there's the
4921 * original field which now only applies to Unpacked Mode Free List
4922 * buffers and a new field which only applies to Packed Mode Free List
4923 * buffers.
4925 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4926 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4927 case CHELSIO_T4:
4928 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4929 break;
4930 case CHELSIO_T5:
4931 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4932 break;
4933 case CHELSIO_T6:
4934 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4935 break;
4936 default:
4937 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4938 CHELSIO_CHIP_VERSION(adap->params.chip));
4939 return -EINVAL;
4941 s->fl_starve_thres = 2*egress_threshold + 1;
4943 t4_idma_monitor_init(adap, &s->idma_monitor);
4945 /* Set up timers used for recuring callbacks to process RX and TX
4946 * administrative tasks.
4948 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4949 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4951 spin_lock_init(&s->intrq_lock);
4953 return 0;