2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/delay.h>
38 #include "t4_values.h"
40 #include "t4fw_version.h"
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
57 static int t4_wait_op_done_val(struct adapter
*adapter
, int reg
, u32 mask
,
58 int polarity
, int attempts
, int delay
, u32
*valp
)
61 u32 val
= t4_read_reg(adapter
, reg
);
63 if (!!(val
& mask
) == polarity
) {
75 static inline int t4_wait_op_done(struct adapter
*adapter
, int reg
, u32 mask
,
76 int polarity
, int attempts
, int delay
)
78 return t4_wait_op_done_val(adapter
, reg
, mask
, polarity
, attempts
,
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
89 * Sets a register field specified by the supplied mask to the
92 void t4_set_reg_field(struct adapter
*adapter
, unsigned int addr
, u32 mask
,
95 u32 v
= t4_read_reg(adapter
, addr
) & ~mask
;
97 t4_write_reg(adapter
, addr
, v
| val
);
98 (void) t4_read_reg(adapter
, addr
); /* flush */
102 * t4_read_indirect - read indirectly addressed registers
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
110 * Reads registers that are accessed indirectly through an address/data
113 void t4_read_indirect(struct adapter
*adap
, unsigned int addr_reg
,
114 unsigned int data_reg
, u32
*vals
,
115 unsigned int nregs
, unsigned int start_idx
)
118 t4_write_reg(adap
, addr_reg
, start_idx
);
119 *vals
++ = t4_read_reg(adap
, data_reg
);
125 * t4_write_indirect - write indirectly addressed registers
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
136 void t4_write_indirect(struct adapter
*adap
, unsigned int addr_reg
,
137 unsigned int data_reg
, const u32
*vals
,
138 unsigned int nregs
, unsigned int start_idx
)
141 t4_write_reg(adap
, addr_reg
, start_idx
++);
142 t4_write_reg(adap
, data_reg
, *vals
++);
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
152 void t4_hw_pci_read_cfg4(struct adapter
*adap
, int reg
, u32
*val
)
154 u32 req
= FUNCTION_V(adap
->pf
) | REGISTER_V(reg
);
156 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) <= CHELSIO_T5
)
161 if (is_t4(adap
->params
.chip
))
164 t4_write_reg(adap
, PCIE_CFG_SPACE_REQ_A
, req
);
165 *val
= t4_read_reg(adap
, PCIE_CFG_SPACE_DATA_A
);
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
172 t4_write_reg(adap
, PCIE_CFG_SPACE_REQ_A
, 0);
176 * t4_report_fw_error - report firmware error
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
183 static void t4_report_fw_error(struct adapter
*adap
)
185 static const char *const reason
[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
197 pcie_fw
= t4_read_reg(adap
, PCIE_FW_A
);
198 if (pcie_fw
& PCIE_FW_ERR_F
) {
199 dev_err(adap
->pdev_dev
, "Firmware reports adapter error: %s\n",
200 reason
[PCIE_FW_EVAL_G(pcie_fw
)]);
201 adap
->flags
&= ~CXGB4_FW_OK
;
206 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
208 static void get_mbox_rpl(struct adapter
*adap
, __be64
*rpl
, int nflit
,
211 for ( ; nflit
; nflit
--, mbox_addr
+= 8)
212 *rpl
++ = cpu_to_be64(t4_read_reg64(adap
, mbox_addr
));
216 * Handle a FW assertion reported in a mailbox.
218 static void fw_asrt(struct adapter
*adap
, u32 mbox_addr
)
220 struct fw_debug_cmd asrt
;
222 get_mbox_rpl(adap
, (__be64
*)&asrt
, sizeof(asrt
) / 8, mbox_addr
);
223 dev_alert(adap
->pdev_dev
,
224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 asrt
.u
.assert.filename_0_7
, be32_to_cpu(asrt
.u
.assert.line
),
226 be32_to_cpu(asrt
.u
.assert.x
), be32_to_cpu(asrt
.u
.assert.y
));
230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231 * @adapter: the adapter
232 * @cmd: the Firmware Mailbox Command or Reply
233 * @size: command length in bytes
234 * @access: the time (ms) needed to access the Firmware Mailbox
235 * @execute: the time (ms) the command spent being executed
237 static void t4_record_mbox(struct adapter
*adapter
,
238 const __be64
*cmd
, unsigned int size
,
239 int access
, int execute
)
241 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
242 struct mbox_cmd
*entry
;
245 entry
= mbox_cmd_log_entry(log
, log
->cursor
++);
246 if (log
->cursor
== log
->size
)
249 for (i
= 0; i
< size
/ 8; i
++)
250 entry
->cmd
[i
] = be64_to_cpu(cmd
[i
]);
251 while (i
< MBOX_LEN
/ 8)
253 entry
->timestamp
= jiffies
;
254 entry
->seqno
= log
->seqno
++;
255 entry
->access
= access
;
256 entry
->execute
= execute
;
260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
262 * @mbox: index of the mailbox to use
263 * @cmd: the command to write
264 * @size: command length in bytes
265 * @rpl: where to optionally store the reply
266 * @sleep_ok: if true we may sleep while awaiting command completion
267 * @timeout: time to wait for command to finish before timing out
269 * Sends the given command to FW through the selected mailbox and waits
270 * for the FW to execute the command. If @rpl is not %NULL it is used to
271 * store the FW's reply to the command. The command and its optional
272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
273 * to respond. @sleep_ok determines whether we may sleep while awaiting
274 * the response. If sleeping is allowed we use progressive backoff
277 * The return value is 0 on success or a negative errno on failure. A
278 * failure can happen either because we are not able to execute the
279 * command or FW executes it but signals an error. In the latter case
280 * the return value is the error code indicated by FW (negated).
282 int t4_wr_mbox_meat_timeout(struct adapter
*adap
, int mbox
, const void *cmd
,
283 int size
, void *rpl
, bool sleep_ok
, int timeout
)
285 static const int delay
[] = {
286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
289 struct mbox_list entry
;
294 int i
, ms
, delay_idx
, ret
;
295 const __be64
*p
= cmd
;
296 u32 data_reg
= PF_REG(mbox
, CIM_PF_MAILBOX_DATA_A
);
297 u32 ctl_reg
= PF_REG(mbox
, CIM_PF_MAILBOX_CTRL_A
);
298 __be64 cmd_rpl
[MBOX_LEN
/ 8];
301 if ((size
& 15) || size
> MBOX_LEN
)
305 * If the device is off-line, as in EEH, commands will time out.
306 * Fail them early so we don't waste time waiting.
308 if (adap
->pdev
->error_state
!= pci_channel_io_normal
)
311 /* If we have a negative timeout, that implies that we can't sleep. */
317 /* Queue ourselves onto the mailbox access list. When our entry is at
318 * the front of the list, we have rights to access the mailbox. So we
319 * wait [for a while] till we're at the front [or bail out with an
322 spin_lock_bh(&adap
->mbox_lock
);
323 list_add_tail(&entry
.list
, &adap
->mlist
.list
);
324 spin_unlock_bh(&adap
->mbox_lock
);
329 for (i
= 0; ; i
+= ms
) {
330 /* If we've waited too long, return a busy indication. This
331 * really ought to be based on our initial position in the
332 * mailbox access list but this is a start. We very rarely
333 * contend on access to the mailbox ...
335 pcie_fw
= t4_read_reg(adap
, PCIE_FW_A
);
336 if (i
> FW_CMD_MAX_TIMEOUT
|| (pcie_fw
& PCIE_FW_ERR_F
)) {
337 spin_lock_bh(&adap
->mbox_lock
);
338 list_del(&entry
.list
);
339 spin_unlock_bh(&adap
->mbox_lock
);
340 ret
= (pcie_fw
& PCIE_FW_ERR_F
) ? -ENXIO
: -EBUSY
;
341 t4_record_mbox(adap
, cmd
, size
, access
, ret
);
345 /* If we're at the head, break out and start the mailbox
348 if (list_first_entry(&adap
->mlist
.list
, struct mbox_list
,
352 /* Delay for a bit before checking again ... */
354 ms
= delay
[delay_idx
]; /* last element may repeat */
355 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
363 /* Loop trying to get ownership of the mailbox. Return an error
364 * if we can't gain ownership.
366 v
= MBOWNER_G(t4_read_reg(adap
, ctl_reg
));
367 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
368 v
= MBOWNER_G(t4_read_reg(adap
, ctl_reg
));
369 if (v
!= MBOX_OWNER_DRV
) {
370 spin_lock_bh(&adap
->mbox_lock
);
371 list_del(&entry
.list
);
372 spin_unlock_bh(&adap
->mbox_lock
);
373 ret
= (v
== MBOX_OWNER_FW
) ? -EBUSY
: -ETIMEDOUT
;
374 t4_record_mbox(adap
, cmd
, size
, access
, ret
);
378 /* Copy in the new mailbox command and send it on its way ... */
379 t4_record_mbox(adap
, cmd
, size
, access
, 0);
380 for (i
= 0; i
< size
; i
+= 8)
381 t4_write_reg64(adap
, data_reg
+ i
, be64_to_cpu(*p
++));
383 t4_write_reg(adap
, ctl_reg
, MBMSGVALID_F
| MBOWNER_V(MBOX_OWNER_FW
));
384 t4_read_reg(adap
, ctl_reg
); /* flush write */
390 !((pcie_fw
= t4_read_reg(adap
, PCIE_FW_A
)) & PCIE_FW_ERR_F
) &&
394 ms
= delay
[delay_idx
]; /* last element may repeat */
395 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
401 v
= t4_read_reg(adap
, ctl_reg
);
402 if (MBOWNER_G(v
) == MBOX_OWNER_DRV
) {
403 if (!(v
& MBMSGVALID_F
)) {
404 t4_write_reg(adap
, ctl_reg
, 0);
408 get_mbox_rpl(adap
, cmd_rpl
, MBOX_LEN
/ 8, data_reg
);
409 res
= be64_to_cpu(cmd_rpl
[0]);
411 if (FW_CMD_OP_G(res
>> 32) == FW_DEBUG_CMD
) {
412 fw_asrt(adap
, data_reg
);
413 res
= FW_CMD_RETVAL_V(EIO
);
415 memcpy(rpl
, cmd_rpl
, size
);
418 t4_write_reg(adap
, ctl_reg
, 0);
421 t4_record_mbox(adap
, cmd_rpl
,
422 MBOX_LEN
, access
, execute
);
423 spin_lock_bh(&adap
->mbox_lock
);
424 list_del(&entry
.list
);
425 spin_unlock_bh(&adap
->mbox_lock
);
426 return -FW_CMD_RETVAL_G((int)res
);
430 ret
= (pcie_fw
& PCIE_FW_ERR_F
) ? -ENXIO
: -ETIMEDOUT
;
431 t4_record_mbox(adap
, cmd
, size
, access
, ret
);
432 dev_err(adap
->pdev_dev
, "command %#x in mailbox %d timed out\n",
433 *(const u8
*)cmd
, mbox
);
434 t4_report_fw_error(adap
);
435 spin_lock_bh(&adap
->mbox_lock
);
436 list_del(&entry
.list
);
437 spin_unlock_bh(&adap
->mbox_lock
);
442 int t4_wr_mbox_meat(struct adapter
*adap
, int mbox
, const void *cmd
, int size
,
443 void *rpl
, bool sleep_ok
)
445 return t4_wr_mbox_meat_timeout(adap
, mbox
, cmd
, size
, rpl
, sleep_ok
,
449 static int t4_edc_err_read(struct adapter
*adap
, int idx
)
451 u32 edc_ecc_err_addr_reg
;
454 if (is_t4(adap
->params
.chip
)) {
455 CH_WARN(adap
, "%s: T4 NOT supported.\n", __func__
);
458 if (idx
!= 0 && idx
!= 1) {
459 CH_WARN(adap
, "%s: idx %d NOT supported.\n", __func__
, idx
);
463 edc_ecc_err_addr_reg
= EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A
, idx
);
464 rdata_reg
= EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A
, idx
);
467 "edc%d err addr 0x%x: 0x%x.\n",
468 idx
, edc_ecc_err_addr_reg
,
469 t4_read_reg(adap
, edc_ecc_err_addr_reg
));
471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
473 (unsigned long long)t4_read_reg64(adap
, rdata_reg
),
474 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 8),
475 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 16),
476 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 24),
477 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 32),
478 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 40),
479 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 48),
480 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 56),
481 (unsigned long long)t4_read_reg64(adap
, rdata_reg
+ 64));
487 * t4_memory_rw_init - Get memory window relative offset, base, and size.
489 * @win: PCI-E Memory Window to use
490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491 * @mem_off: memory relative offset with respect to @mtype.
492 * @mem_base: configured memory base address.
493 * @mem_aperture: configured memory window aperture.
495 * Get the configured memory window's relative offset, base, and size.
497 int t4_memory_rw_init(struct adapter
*adap
, int win
, int mtype
, u32
*mem_off
,
498 u32
*mem_base
, u32
*mem_aperture
)
500 u32 edc_size
, mc_size
, mem_reg
;
502 /* Offset into the region of memory which is being accessed
505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
509 edc_size
= EDRAM0_SIZE_G(t4_read_reg(adap
, MA_EDRAM0_BAR_A
));
510 if (mtype
== MEM_HMA
) {
511 *mem_off
= 2 * (edc_size
* 1024 * 1024);
512 } else if (mtype
!= MEM_MC1
) {
513 *mem_off
= (mtype
* (edc_size
* 1024 * 1024));
515 mc_size
= EXT_MEM0_SIZE_G(t4_read_reg(adap
,
516 MA_EXT_MEMORY0_BAR_A
));
517 *mem_off
= (MEM_MC0
* edc_size
+ mc_size
) * 1024 * 1024;
520 /* Each PCI-E Memory Window is programmed with a window size -- or
521 * "aperture" -- which controls the granularity of its mapping onto
522 * adapter memory. We need to grab that aperture in order to know
523 * how to use the specified window. The window is also programmed
524 * with the base address of the Memory Window in BAR0's address
525 * space. For T4 this is an absolute PCI-E Bus Address. For T5
526 * the address is relative to BAR0.
528 mem_reg
= t4_read_reg(adap
,
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A
,
531 /* a dead adapter will return 0xffffffff for PIO reads */
532 if (mem_reg
== 0xffffffff)
535 *mem_aperture
= 1 << (WINDOW_G(mem_reg
) + WINDOW_SHIFT_X
);
536 *mem_base
= PCIEOFST_G(mem_reg
) << PCIEOFST_SHIFT_X
;
537 if (is_t4(adap
->params
.chip
))
538 *mem_base
-= adap
->t4_bar0
;
544 * t4_memory_update_win - Move memory window to specified address.
546 * @win: PCI-E Memory Window to use
547 * @addr: location to move.
549 * Move memory window to specified address.
551 void t4_memory_update_win(struct adapter
*adap
, int win
, u32 addr
)
554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A
, win
),
556 /* Read it back to ensure that changes propagate before we
557 * attempt to use the new value.
560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A
, win
));
564 * t4_memory_rw_residual - Read/Write residual data.
566 * @off: relative offset within residual to start read/write.
567 * @addr: address within indicated memory type.
568 * @buf: host memory buffer
569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
571 * Read/Write residual data less than 32-bits.
573 void t4_memory_rw_residual(struct adapter
*adap
, u32 off
, u32 addr
, u8
*buf
,
583 if (dir
== T4_MEMORY_READ
) {
584 last
.word
= le32_to_cpu((__force __le32
)
585 t4_read_reg(adap
, addr
));
586 for (bp
= (unsigned char *)buf
, i
= off
; i
< 4; i
++)
587 bp
[i
] = last
.byte
[i
];
590 for (i
= off
; i
< 4; i
++)
592 t4_write_reg(adap
, addr
,
593 (__force u32
)cpu_to_le32(last
.word
));
598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
600 * @win: PCI-E Memory Window to use
601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602 * @addr: address within indicated memory type
603 * @len: amount of memory to transfer
604 * @hbuf: host memory buffer
605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
607 * Reads/writes an [almost] arbitrary memory region in the firmware: the
608 * firmware memory address and host buffer must be aligned on 32-bit
609 * boundaries; the length may be arbitrary. The memory is transferred as
610 * a raw byte sequence from/to the firmware's memory. If this memory
611 * contains data structures which contain multi-byte integers, it's the
612 * caller's responsibility to perform appropriate byte order conversions.
614 int t4_memory_rw(struct adapter
*adap
, int win
, int mtype
, u32 addr
,
615 u32 len
, void *hbuf
, int dir
)
617 u32 pos
, offset
, resid
, memoffset
;
618 u32 win_pf
, mem_aperture
, mem_base
;
622 /* Argument sanity checks ...
624 if (addr
& 0x3 || (uintptr_t)hbuf
& 0x3)
628 /* It's convenient to be able to handle lengths which aren't a
629 * multiple of 32-bits because we often end up transferring files to
630 * the firmware. So we'll handle that by normalizing the length here
631 * and then handling any residual transfer at the end.
636 ret
= t4_memory_rw_init(adap
, win
, mtype
, &memoffset
, &mem_base
,
641 /* Determine the PCIE_MEM_ACCESS_OFFSET */
642 addr
= addr
+ memoffset
;
644 win_pf
= is_t4(adap
->params
.chip
) ? 0 : PFNUM_V(adap
->pf
);
646 /* Calculate our initial PCI-E Memory Window Position and Offset into
649 pos
= addr
& ~(mem_aperture
- 1);
652 /* Set up initial PCI-E Memory Window to cover the start of our
655 t4_memory_update_win(adap
, win
, pos
| win_pf
);
657 /* Transfer data to/from the adapter as long as there's an integral
658 * number of 32-bit transfers to complete.
660 * A note on Endianness issues:
662 * The "register" reads and writes below from/to the PCI-E Memory
663 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 * Little-Endian "swizzel." As a result, if we have the following
665 * data in adapter memory:
667 * Memory: ... | b0 | b1 | b2 | b3 | ...
668 * Address: i+0 i+1 i+2 i+3
670 * Then a read of the adapter memory via the PCI-E Memory Window
675 * [ b3 | b2 | b1 | b0 ]
677 * If this value is stored into local memory on a Little-Endian system
678 * it will show up correctly in local memory as:
680 * ( ..., b0, b1, b2, b3, ... )
682 * But on a Big-Endian system, the store will show up in memory
683 * incorrectly swizzled as:
685 * ( ..., b3, b2, b1, b0, ... )
687 * So we need to account for this in the reads and writes to the
688 * PCI-E Memory Window below by undoing the register read/write
692 if (dir
== T4_MEMORY_READ
)
693 *buf
++ = le32_to_cpu((__force __le32
)t4_read_reg(adap
,
696 t4_write_reg(adap
, mem_base
+ offset
,
697 (__force u32
)cpu_to_le32(*buf
++));
698 offset
+= sizeof(__be32
);
699 len
-= sizeof(__be32
);
701 /* If we've reached the end of our current window aperture,
702 * move the PCI-E Memory Window on to the next. Note that
703 * doing this here after "len" may be 0 allows us to set up
704 * the PCI-E Memory Window for a possible final residual
707 if (offset
== mem_aperture
) {
710 t4_memory_update_win(adap
, win
, pos
| win_pf
);
714 /* If the original transfer had a length which wasn't a multiple of
715 * 32-bits, now's where we need to finish off the transfer of the
716 * residual amount. The PCI-E Memory Window has already been moved
717 * above (if necessary) to cover this final transfer.
720 t4_memory_rw_residual(adap
, resid
, mem_base
+ offset
,
726 /* Return the specified PCI-E Configuration Space register from our Physical
727 * Function. We try first via a Firmware LDST Command since we prefer to let
728 * the firmware own all of these registers, but if that fails we go for it
729 * directly ourselves.
731 u32
t4_read_pcie_cfg4(struct adapter
*adap
, int reg
)
733 u32 val
, ldst_addrspace
;
735 /* If fw_attach != 0, construct and send the Firmware LDST Command to
736 * retrieve the specified PCI-E Configuration Space register.
738 struct fw_ldst_cmd ldst_cmd
;
741 memset(&ldst_cmd
, 0, sizeof(ldst_cmd
));
742 ldst_addrspace
= FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE
);
743 ldst_cmd
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
747 ldst_cmd
.cycles_to_len16
= cpu_to_be32(FW_LEN16(ldst_cmd
));
748 ldst_cmd
.u
.pcie
.select_naccess
= FW_LDST_CMD_NACCESS_V(1);
749 ldst_cmd
.u
.pcie
.ctrl_to_fn
=
750 (FW_LDST_CMD_LC_F
| FW_LDST_CMD_FN_V(adap
->pf
));
751 ldst_cmd
.u
.pcie
.r
= reg
;
753 /* If the LDST Command succeeds, return the result, otherwise
754 * fall through to reading it directly ourselves ...
756 ret
= t4_wr_mbox(adap
, adap
->mbox
, &ldst_cmd
, sizeof(ldst_cmd
),
759 val
= be32_to_cpu(ldst_cmd
.u
.pcie
.data
[0]);
761 /* Read the desired Configuration Space register via the PCI-E
762 * Backdoor mechanism.
764 t4_hw_pci_read_cfg4(adap
, reg
, &val
);
768 /* Get the window based on base passed to it.
769 * Window aperture is currently unhandled, but there is no use case for it
772 static u32
t4_get_window(struct adapter
*adap
, u32 pci_base
, u64 pci_mask
,
777 if (is_t4(adap
->params
.chip
)) {
780 /* Truncation intentional: we only read the bottom 32-bits of
781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
782 * mechanism to read BAR0 instead of using
783 * pci_resource_start() because we could be operating from
784 * within a Virtual Machine which is trapping our accesses to
785 * our Configuration Space and we need to set up the PCI-E
786 * Memory Window decoders with the actual addresses which will
787 * be coming across the PCI-E link.
789 bar0
= t4_read_pcie_cfg4(adap
, pci_base
);
791 adap
->t4_bar0
= bar0
;
793 ret
= bar0
+ memwin_base
;
795 /* For T5, only relative offset inside the PCIe BAR is passed */
801 /* Get the default utility window (win0) used by everyone */
802 u32
t4_get_util_window(struct adapter
*adap
)
804 return t4_get_window(adap
, PCI_BASE_ADDRESS_0
,
805 PCI_BASE_ADDRESS_MEM_MASK
, MEMWIN0_BASE
);
808 /* Set up memory window for accessing adapter memory ranges. (Read
809 * back MA register to ensure that changes propagate before we attempt
810 * to use the new values.)
812 void t4_setup_memwin(struct adapter
*adap
, u32 memwin_base
, u32 window
)
815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A
, window
),
816 memwin_base
| BIR_V(0) |
817 WINDOW_V(ilog2(MEMWIN0_APERTURE
) - WINDOW_SHIFT_X
));
819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A
, window
));
823 * t4_get_regs_len - return the size of the chips register set
824 * @adapter: the adapter
826 * Returns the size of the chip's BAR0 register space.
828 unsigned int t4_get_regs_len(struct adapter
*adapter
)
830 unsigned int chip_version
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
);
832 switch (chip_version
) {
834 return T4_REGMAP_SIZE
;
838 return T5_REGMAP_SIZE
;
841 dev_err(adapter
->pdev_dev
,
842 "Unsupported chip version %d\n", chip_version
);
847 * t4_get_regs - read chip registers into provided buffer
849 * @buf: register buffer
850 * @buf_size: size (in bytes) of register buffer
852 * If the provided register buffer isn't large enough for the chip's
853 * full register range, the register dump will be truncated to the
854 * register buffer's size.
856 void t4_get_regs(struct adapter
*adap
, void *buf
, size_t buf_size
)
858 static const unsigned int t4_reg_ranges
[] = {
1317 static const unsigned int t5_reg_ranges
[] = {
2084 static const unsigned int t6_reg_ranges
[] = {
2645 u32
*buf_end
= (u32
*)((char *)buf
+ buf_size
);
2646 const unsigned int *reg_ranges
;
2647 int reg_ranges_size
, range
;
2648 unsigned int chip_version
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
2650 /* Select the right set of register ranges to dump depending on the
2651 * adapter chip type.
2653 switch (chip_version
) {
2655 reg_ranges
= t4_reg_ranges
;
2656 reg_ranges_size
= ARRAY_SIZE(t4_reg_ranges
);
2660 reg_ranges
= t5_reg_ranges
;
2661 reg_ranges_size
= ARRAY_SIZE(t5_reg_ranges
);
2665 reg_ranges
= t6_reg_ranges
;
2666 reg_ranges_size
= ARRAY_SIZE(t6_reg_ranges
);
2670 dev_err(adap
->pdev_dev
,
2671 "Unsupported chip version %d\n", chip_version
);
2675 /* Clear the register buffer and insert the appropriate register
2676 * values selected by the above register ranges.
2678 memset(buf
, 0, buf_size
);
2679 for (range
= 0; range
< reg_ranges_size
; range
+= 2) {
2680 unsigned int reg
= reg_ranges
[range
];
2681 unsigned int last_reg
= reg_ranges
[range
+ 1];
2682 u32
*bufp
= (u32
*)((char *)buf
+ reg
);
2684 /* Iterate across the register range filling in the register
2685 * buffer but don't write past the end of the register buffer.
2687 while (reg
<= last_reg
&& bufp
< buf_end
) {
2688 *bufp
++ = t4_read_reg(adap
, reg
);
2694 #define EEPROM_STAT_ADDR 0x7bfc
2695 #define VPD_BASE 0x400
2696 #define VPD_BASE_OLD 0
2697 #define VPD_LEN 1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702 * @phys_addr: the physical EEPROM address
2703 * @fn: the PCI function number
2704 * @sz: size of function-specific area
2706 * Translate a physical EEPROM address to virtual. The first 1K is
2707 * accessed through virtual addresses starting at 31K, the rest is
2708 * accessed through virtual addresses starting at 0.
2710 * The mapping is as follows:
2711 * [0..1K) -> [31K..32K)
2712 * [1K..1K+A) -> [31K-A..31K)
2713 * [1K+A..ES) -> [0..ES-A-1K)
2715 * where A = @fn * @sz, and ES = EEPROM size.
2717 int t4_eeprom_ptov(unsigned int phys_addr
, unsigned int fn
, unsigned int sz
)
2720 if (phys_addr
< 1024)
2721 return phys_addr
+ (31 << 10);
2722 if (phys_addr
< 1024 + fn
)
2723 return 31744 - fn
+ phys_addr
- 1024;
2724 if (phys_addr
< EEPROMSIZE
)
2725 return phys_addr
- 1024 - fn
;
2730 * t4_seeprom_wp - enable/disable EEPROM write protection
2731 * @adapter: the adapter
2732 * @enable: whether to enable or disable write protection
2734 * Enables or disables write protection on the serial EEPROM.
2736 int t4_seeprom_wp(struct adapter
*adapter
, bool enable
)
2738 unsigned int v
= enable
? 0xc : 0;
2739 int ret
= pci_write_vpd(adapter
->pdev
, EEPROM_STAT_ADDR
, 4, &v
);
2740 return ret
< 0 ? ret
: 0;
2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745 * @adapter: adapter to read
2746 * @p: where to store the parameters
2748 * Reads card parameters stored in VPD EEPROM.
2750 int t4_get_raw_vpd_params(struct adapter
*adapter
, struct vpd_params
*p
)
2752 int i
, ret
= 0, addr
;
2755 unsigned int vpdr_len
, kw_offset
, id_len
;
2757 vpd
= vmalloc(VPD_LEN
);
2761 /* Card information normally starts at VPD_BASE but early cards had
2764 ret
= pci_read_vpd(adapter
->pdev
, VPD_BASE
, sizeof(u32
), vpd
);
2768 /* The VPD shall have a unique identifier specified by the PCI SIG.
2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 * is expected to automatically put this entry at the
2772 * beginning of the VPD.
2774 addr
= *vpd
== CHELSIO_VPD_UNIQUE_ID
? VPD_BASE
: VPD_BASE_OLD
;
2776 ret
= pci_read_vpd(adapter
->pdev
, addr
, VPD_LEN
, vpd
);
2780 if (vpd
[0] != PCI_VPD_LRDT_ID_STRING
) {
2781 dev_err(adapter
->pdev_dev
, "missing VPD ID string\n");
2786 id_len
= pci_vpd_lrdt_size(vpd
);
2787 if (id_len
> ID_LEN
)
2790 i
= pci_vpd_find_tag(vpd
, 0, VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
2792 dev_err(adapter
->pdev_dev
, "missing VPD-R section\n");
2797 vpdr_len
= pci_vpd_lrdt_size(&vpd
[i
]);
2798 kw_offset
= i
+ PCI_VPD_LRDT_TAG_SIZE
;
2799 if (vpdr_len
+ kw_offset
> VPD_LEN
) {
2800 dev_err(adapter
->pdev_dev
, "bad VPD-R length %u\n", vpdr_len
);
2805 #define FIND_VPD_KW(var, name) do { \
2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2815 FIND_VPD_KW(i
, "RV");
2816 for (csum
= 0; i
>= 0; i
--)
2820 dev_err(adapter
->pdev_dev
,
2821 "corrupted VPD EEPROM, actual csum %u\n", csum
);
2826 FIND_VPD_KW(ec
, "EC");
2827 FIND_VPD_KW(sn
, "SN");
2828 FIND_VPD_KW(pn
, "PN");
2829 FIND_VPD_KW(na
, "NA");
2832 memcpy(p
->id
, vpd
+ PCI_VPD_LRDT_TAG_SIZE
, id_len
);
2834 memcpy(p
->ec
, vpd
+ ec
, EC_LEN
);
2836 i
= pci_vpd_info_field_size(vpd
+ sn
- PCI_VPD_INFO_FLD_HDR_SIZE
);
2837 memcpy(p
->sn
, vpd
+ sn
, min(i
, SERNUM_LEN
));
2839 i
= pci_vpd_info_field_size(vpd
+ pn
- PCI_VPD_INFO_FLD_HDR_SIZE
);
2840 memcpy(p
->pn
, vpd
+ pn
, min(i
, PN_LEN
));
2842 memcpy(p
->na
, vpd
+ na
, min(i
, MACADDR_LEN
));
2843 strim((char *)p
->na
);
2847 return ret
< 0 ? ret
: 0;
2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852 * @adapter: adapter to read
2853 * @p: where to store the parameters
2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2856 * Clock. This can only be called after a connection to the firmware
2859 int t4_get_vpd_params(struct adapter
*adapter
, struct vpd_params
*p
)
2861 u32 cclk_param
, cclk_val
;
2864 /* Grab the raw VPD parameters.
2866 ret
= t4_get_raw_vpd_params(adapter
, p
);
2870 /* Ask firmware for the Core Clock since it knows how to translate the
2871 * Reference Clock ('V2') VPD field into a Core Clock value ...
2873 cclk_param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK
));
2875 ret
= t4_query_params(adapter
, adapter
->mbox
, adapter
->pf
, 0,
2876 1, &cclk_param
, &cclk_val
);
2886 * t4_get_pfres - retrieve VF resource limits
2887 * @adapter: the adapter
2889 * Retrieves configured resource limits and capabilities for a physical
2890 * function. The results are stored in @adapter->pfres.
2892 int t4_get_pfres(struct adapter
*adapter
)
2894 struct pf_resources
*pfres
= &adapter
->params
.pfres
;
2895 struct fw_pfvf_cmd cmd
, rpl
;
2899 /* Execute PFVF Read command to get VF resource limits; bail out early
2900 * with error on command failure.
2902 memset(&cmd
, 0, sizeof(cmd
));
2903 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD
) |
2906 FW_PFVF_CMD_PFN_V(adapter
->pf
) |
2907 FW_PFVF_CMD_VFN_V(0));
2908 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
2909 v
= t4_wr_mbox(adapter
, adapter
->mbox
, &cmd
, sizeof(cmd
), &rpl
);
2910 if (v
!= FW_SUCCESS
)
2913 /* Extract PF resource limits and return success.
2915 word
= be32_to_cpu(rpl
.niqflint_niq
);
2916 pfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_G(word
);
2917 pfres
->niq
= FW_PFVF_CMD_NIQ_G(word
);
2919 word
= be32_to_cpu(rpl
.type_to_neq
);
2920 pfres
->neq
= FW_PFVF_CMD_NEQ_G(word
);
2921 pfres
->pmask
= FW_PFVF_CMD_PMASK_G(word
);
2923 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
2924 pfres
->tc
= FW_PFVF_CMD_TC_G(word
);
2925 pfres
->nvi
= FW_PFVF_CMD_NVI_G(word
);
2926 pfres
->nexactf
= FW_PFVF_CMD_NEXACTF_G(word
);
2928 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
2929 pfres
->r_caps
= FW_PFVF_CMD_R_CAPS_G(word
);
2930 pfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_G(word
);
2931 pfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_G(word
);
2936 /* serial flash and firmware constants */
2938 SF_ATTEMPTS
= 10, /* max retries for SF operations */
2940 /* flash command opcodes */
2941 SF_PROG_PAGE
= 2, /* program page */
2942 SF_WR_DISABLE
= 4, /* disable writes */
2943 SF_RD_STATUS
= 5, /* read status register */
2944 SF_WR_ENABLE
= 6, /* enable writes */
2945 SF_RD_DATA_FAST
= 0xb, /* read flash */
2946 SF_RD_ID
= 0x9f, /* read ID */
2947 SF_ERASE_SECTOR
= 0xd8, /* erase sector */
2951 * sf1_read - read data from the serial flash
2952 * @adapter: the adapter
2953 * @byte_cnt: number of bytes to read
2954 * @cont: whether another operation will be chained
2955 * @lock: whether to lock SF for PL access only
2956 * @valp: where to store the read data
2958 * Reads up to 4 bytes of data from the serial flash. The location of
2959 * the read needs to be specified prior to calling this by issuing the
2960 * appropriate commands to the serial flash.
2962 static int sf1_read(struct adapter
*adapter
, unsigned int byte_cnt
, int cont
,
2963 int lock
, u32
*valp
)
2967 if (!byte_cnt
|| byte_cnt
> 4)
2969 if (t4_read_reg(adapter
, SF_OP_A
) & SF_BUSY_F
)
2971 t4_write_reg(adapter
, SF_OP_A
, SF_LOCK_V(lock
) |
2972 SF_CONT_V(cont
) | BYTECNT_V(byte_cnt
- 1));
2973 ret
= t4_wait_op_done(adapter
, SF_OP_A
, SF_BUSY_F
, 0, SF_ATTEMPTS
, 5);
2975 *valp
= t4_read_reg(adapter
, SF_DATA_A
);
2980 * sf1_write - write data to the serial flash
2981 * @adapter: the adapter
2982 * @byte_cnt: number of bytes to write
2983 * @cont: whether another operation will be chained
2984 * @lock: whether to lock SF for PL access only
2985 * @val: value to write
2987 * Writes up to 4 bytes of data to the serial flash. The location of
2988 * the write needs to be specified prior to calling this by issuing the
2989 * appropriate commands to the serial flash.
2991 static int sf1_write(struct adapter
*adapter
, unsigned int byte_cnt
, int cont
,
2994 if (!byte_cnt
|| byte_cnt
> 4)
2996 if (t4_read_reg(adapter
, SF_OP_A
) & SF_BUSY_F
)
2998 t4_write_reg(adapter
, SF_DATA_A
, val
);
2999 t4_write_reg(adapter
, SF_OP_A
, SF_LOCK_V(lock
) |
3000 SF_CONT_V(cont
) | BYTECNT_V(byte_cnt
- 1) | OP_V(1));
3001 return t4_wait_op_done(adapter
, SF_OP_A
, SF_BUSY_F
, 0, SF_ATTEMPTS
, 5);
3005 * flash_wait_op - wait for a flash operation to complete
3006 * @adapter: the adapter
3007 * @attempts: max number of polls of the status register
3008 * @delay: delay between polls in ms
3010 * Wait for a flash operation to complete by polling the status register.
3012 static int flash_wait_op(struct adapter
*adapter
, int attempts
, int delay
)
3018 if ((ret
= sf1_write(adapter
, 1, 1, 1, SF_RD_STATUS
)) != 0 ||
3019 (ret
= sf1_read(adapter
, 1, 0, 1, &status
)) != 0)
3023 if (--attempts
== 0)
3031 * t4_read_flash - read words from serial flash
3032 * @adapter: the adapter
3033 * @addr: the start address for the read
3034 * @nwords: how many 32-bit words to read
3035 * @data: where to store the read data
3036 * @byte_oriented: whether to store data as bytes or as words
3038 * Read the specified number of 32-bit words from the serial flash.
3039 * If @byte_oriented is set the read data is stored as a byte array
3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's
3041 * natural endianness.
3043 int t4_read_flash(struct adapter
*adapter
, unsigned int addr
,
3044 unsigned int nwords
, u32
*data
, int byte_oriented
)
3048 if (addr
+ nwords
* sizeof(u32
) > adapter
->params
.sf_size
|| (addr
& 3))
3051 addr
= swab32(addr
) | SF_RD_DATA_FAST
;
3053 if ((ret
= sf1_write(adapter
, 4, 1, 0, addr
)) != 0 ||
3054 (ret
= sf1_read(adapter
, 1, 1, 0, data
)) != 0)
3057 for ( ; nwords
; nwords
--, data
++) {
3058 ret
= sf1_read(adapter
, 4, nwords
> 1, nwords
== 1, data
);
3060 t4_write_reg(adapter
, SF_OP_A
, 0); /* unlock SF */
3064 *data
= (__force __u32
)(cpu_to_be32(*data
));
3070 * t4_write_flash - write up to a page of data to the serial flash
3071 * @adapter: the adapter
3072 * @addr: the start address to write
3073 * @n: length of data to write in bytes
3074 * @data: the data to write
3076 * Writes up to a page of data (256 bytes) to the serial flash starting
3077 * at the given address. All the data must be written to the same page.
3079 static int t4_write_flash(struct adapter
*adapter
, unsigned int addr
,
3080 unsigned int n
, const u8
*data
)
3084 unsigned int i
, c
, left
, val
, offset
= addr
& 0xff;
3086 if (addr
>= adapter
->params
.sf_size
|| offset
+ n
> SF_PAGE_SIZE
)
3089 val
= swab32(addr
) | SF_PROG_PAGE
;
3091 if ((ret
= sf1_write(adapter
, 1, 0, 1, SF_WR_ENABLE
)) != 0 ||
3092 (ret
= sf1_write(adapter
, 4, 1, 1, val
)) != 0)
3095 for (left
= n
; left
; left
-= c
) {
3097 for (val
= 0, i
= 0; i
< c
; ++i
)
3098 val
= (val
<< 8) + *data
++;
3100 ret
= sf1_write(adapter
, c
, c
!= left
, 1, val
);
3104 ret
= flash_wait_op(adapter
, 8, 1);
3108 t4_write_reg(adapter
, SF_OP_A
, 0); /* unlock SF */
3110 /* Read the page to verify the write succeeded */
3111 ret
= t4_read_flash(adapter
, addr
& ~0xff, ARRAY_SIZE(buf
), buf
, 1);
3115 if (memcmp(data
- n
, (u8
*)buf
+ offset
, n
)) {
3116 dev_err(adapter
->pdev_dev
,
3117 "failed to correctly write the flash page at %#x\n",
3124 t4_write_reg(adapter
, SF_OP_A
, 0); /* unlock SF */
3129 * t4_get_fw_version - read the firmware version
3130 * @adapter: the adapter
3131 * @vers: where to place the version
3133 * Reads the FW version from flash.
3135 int t4_get_fw_version(struct adapter
*adapter
, u32
*vers
)
3137 return t4_read_flash(adapter
, FLASH_FW_START
+
3138 offsetof(struct fw_hdr
, fw_ver
), 1,
3143 * t4_get_bs_version - read the firmware bootstrap version
3144 * @adapter: the adapter
3145 * @vers: where to place the version
3147 * Reads the FW Bootstrap version from flash.
3149 int t4_get_bs_version(struct adapter
*adapter
, u32
*vers
)
3151 return t4_read_flash(adapter
, FLASH_FWBOOTSTRAP_START
+
3152 offsetof(struct fw_hdr
, fw_ver
), 1,
3157 * t4_get_tp_version - read the TP microcode version
3158 * @adapter: the adapter
3159 * @vers: where to place the version
3161 * Reads the TP microcode version from flash.
3163 int t4_get_tp_version(struct adapter
*adapter
, u32
*vers
)
3165 return t4_read_flash(adapter
, FLASH_FW_START
+
3166 offsetof(struct fw_hdr
, tp_microcode_ver
),
3171 * t4_get_exprom_version - return the Expansion ROM version (if any)
3172 * @adapter: the adapter
3173 * @vers: where to place the version
3175 * Reads the Expansion ROM header from FLASH and returns the version
3176 * number (if present) through the @vers return value pointer. We return
3177 * this in the Firmware Version Format since it's convenient. Return
3178 * 0 on success, -ENOENT if no Expansion ROM is present.
3180 int t4_get_exprom_version(struct adapter
*adap
, u32
*vers
)
3182 struct exprom_header
{
3183 unsigned char hdr_arr
[16]; /* must start with 0x55aa */
3184 unsigned char hdr_ver
[4]; /* Expansion ROM version */
3186 u32 exprom_header_buf
[DIV_ROUND_UP(sizeof(struct exprom_header
),
3190 ret
= t4_read_flash(adap
, FLASH_EXP_ROM_START
,
3191 ARRAY_SIZE(exprom_header_buf
), exprom_header_buf
,
3196 hdr
= (struct exprom_header
*)exprom_header_buf
;
3197 if (hdr
->hdr_arr
[0] != 0x55 || hdr
->hdr_arr
[1] != 0xaa)
3200 *vers
= (FW_HDR_FW_VER_MAJOR_V(hdr
->hdr_ver
[0]) |
3201 FW_HDR_FW_VER_MINOR_V(hdr
->hdr_ver
[1]) |
3202 FW_HDR_FW_VER_MICRO_V(hdr
->hdr_ver
[2]) |
3203 FW_HDR_FW_VER_BUILD_V(hdr
->hdr_ver
[3]));
3208 * t4_get_vpd_version - return the VPD version
3209 * @adapter: the adapter
3210 * @vers: where to place the version
3212 * Reads the VPD via the Firmware interface (thus this can only be called
3213 * once we're ready to issue Firmware commands). The format of the
3214 * VPD version is adapter specific. Returns 0 on success, an error on
3217 * Note that early versions of the Firmware didn't include the ability
3218 * to retrieve the VPD version, so we zero-out the return-value parameter
3219 * in that case to avoid leaving it with garbage in it.
3221 * Also note that the Firmware will return its cached copy of the VPD
3222 * Revision ID, not the actual Revision ID as written in the Serial
3223 * EEPROM. This is only an issue if a new VPD has been written and the
3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best
3225 * to defer calling this routine till after a FW_RESET_CMD has been issued
3226 * if the Host Driver will be performing a full adapter initialization.
3228 int t4_get_vpd_version(struct adapter
*adapter
, u32
*vers
)
3233 vpdrev_param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV
));
3235 ret
= t4_query_params(adapter
, adapter
->mbox
, adapter
->pf
, 0,
3236 1, &vpdrev_param
, vers
);
3243 * t4_get_scfg_version - return the Serial Configuration version
3244 * @adapter: the adapter
3245 * @vers: where to place the version
3247 * Reads the Serial Configuration Version via the Firmware interface
3248 * (thus this can only be called once we're ready to issue Firmware
3249 * commands). The format of the Serial Configuration version is
3250 * adapter specific. Returns 0 on success, an error on failure.
3252 * Note that early versions of the Firmware didn't include the ability
3253 * to retrieve the Serial Configuration version, so we zero-out the
3254 * return-value parameter in that case to avoid leaving it with
3257 * Also note that the Firmware will return its cached copy of the Serial
3258 * Initialization Revision ID, not the actual Revision ID as written in
3259 * the Serial EEPROM. This is only an issue if a new VPD has been written
3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So
3261 * it's best to defer calling this routine till after a FW_RESET_CMD has
3262 * been issued if the Host Driver will be performing a full adapter
3265 int t4_get_scfg_version(struct adapter
*adapter
, u32
*vers
)
3270 scfgrev_param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV
));
3272 ret
= t4_query_params(adapter
, adapter
->mbox
, adapter
->pf
, 0,
3273 1, &scfgrev_param
, vers
);
3280 * t4_get_version_info - extract various chip/firmware version information
3281 * @adapter: the adapter
3283 * Reads various chip/firmware version numbers and stores them into the
3284 * adapter Adapter Parameters structure. If any of the efforts fails
3285 * the first failure will be returned, but all of the version numbers
3288 int t4_get_version_info(struct adapter
*adapter
)
3292 #define FIRST_RET(__getvinfo) \
3294 int __ret = __getvinfo; \
3295 if (__ret && !ret) \
3299 FIRST_RET(t4_get_fw_version(adapter
, &adapter
->params
.fw_vers
));
3300 FIRST_RET(t4_get_bs_version(adapter
, &adapter
->params
.bs_vers
));
3301 FIRST_RET(t4_get_tp_version(adapter
, &adapter
->params
.tp_vers
));
3302 FIRST_RET(t4_get_exprom_version(adapter
, &adapter
->params
.er_vers
));
3303 FIRST_RET(t4_get_scfg_version(adapter
, &adapter
->params
.scfg_vers
));
3304 FIRST_RET(t4_get_vpd_version(adapter
, &adapter
->params
.vpd_vers
));
3311 * t4_dump_version_info - dump all of the adapter configuration IDs
3312 * @adapter: the adapter
3314 * Dumps all of the various bits of adapter configuration version/revision
3315 * IDs information. This is typically called at some point after
3316 * t4_get_version_info() has been called.
3318 void t4_dump_version_info(struct adapter
*adapter
)
3320 /* Device information */
3321 dev_info(adapter
->pdev_dev
, "Chelsio %s rev %d\n",
3322 adapter
->params
.vpd
.id
,
3323 CHELSIO_CHIP_RELEASE(adapter
->params
.chip
));
3324 dev_info(adapter
->pdev_dev
, "S/N: %s, P/N: %s\n",
3325 adapter
->params
.vpd
.sn
, adapter
->params
.vpd
.pn
);
3327 /* Firmware Version */
3328 if (!adapter
->params
.fw_vers
)
3329 dev_warn(adapter
->pdev_dev
, "No firmware loaded\n");
3331 dev_info(adapter
->pdev_dev
, "Firmware version: %u.%u.%u.%u\n",
3332 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.fw_vers
),
3333 FW_HDR_FW_VER_MINOR_G(adapter
->params
.fw_vers
),
3334 FW_HDR_FW_VER_MICRO_G(adapter
->params
.fw_vers
),
3335 FW_HDR_FW_VER_BUILD_G(adapter
->params
.fw_vers
));
3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338 * Firmware, so dev_info() is more appropriate here.)
3340 if (!adapter
->params
.bs_vers
)
3341 dev_info(adapter
->pdev_dev
, "No bootstrap loaded\n");
3343 dev_info(adapter
->pdev_dev
, "Bootstrap version: %u.%u.%u.%u\n",
3344 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.bs_vers
),
3345 FW_HDR_FW_VER_MINOR_G(adapter
->params
.bs_vers
),
3346 FW_HDR_FW_VER_MICRO_G(adapter
->params
.bs_vers
),
3347 FW_HDR_FW_VER_BUILD_G(adapter
->params
.bs_vers
));
3349 /* TP Microcode Version */
3350 if (!adapter
->params
.tp_vers
)
3351 dev_warn(adapter
->pdev_dev
, "No TP Microcode loaded\n");
3353 dev_info(adapter
->pdev_dev
,
3354 "TP Microcode version: %u.%u.%u.%u\n",
3355 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.tp_vers
),
3356 FW_HDR_FW_VER_MINOR_G(adapter
->params
.tp_vers
),
3357 FW_HDR_FW_VER_MICRO_G(adapter
->params
.tp_vers
),
3358 FW_HDR_FW_VER_BUILD_G(adapter
->params
.tp_vers
));
3360 /* Expansion ROM version */
3361 if (!adapter
->params
.er_vers
)
3362 dev_info(adapter
->pdev_dev
, "No Expansion ROM loaded\n");
3364 dev_info(adapter
->pdev_dev
,
3365 "Expansion ROM version: %u.%u.%u.%u\n",
3366 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.er_vers
),
3367 FW_HDR_FW_VER_MINOR_G(adapter
->params
.er_vers
),
3368 FW_HDR_FW_VER_MICRO_G(adapter
->params
.er_vers
),
3369 FW_HDR_FW_VER_BUILD_G(adapter
->params
.er_vers
));
3371 /* Serial Configuration version */
3372 dev_info(adapter
->pdev_dev
, "Serial Configuration version: %#x\n",
3373 adapter
->params
.scfg_vers
);
3376 dev_info(adapter
->pdev_dev
, "VPD version: %#x\n",
3377 adapter
->params
.vpd_vers
);
3381 * t4_check_fw_version - check if the FW is supported with this driver
3382 * @adap: the adapter
3384 * Checks if an adapter's FW is compatible with the driver. Returns 0
3385 * if there's exact match, a negative error if the version could not be
3386 * read or there's a major version mismatch
3388 int t4_check_fw_version(struct adapter
*adap
)
3390 int i
, ret
, major
, minor
, micro
;
3391 int exp_major
, exp_minor
, exp_micro
;
3392 unsigned int chip_version
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
3394 ret
= t4_get_fw_version(adap
, &adap
->params
.fw_vers
);
3395 /* Try multiple times before returning error */
3396 for (i
= 0; (ret
== -EBUSY
|| ret
== -EAGAIN
) && i
< 3; i
++)
3397 ret
= t4_get_fw_version(adap
, &adap
->params
.fw_vers
);
3402 major
= FW_HDR_FW_VER_MAJOR_G(adap
->params
.fw_vers
);
3403 minor
= FW_HDR_FW_VER_MINOR_G(adap
->params
.fw_vers
);
3404 micro
= FW_HDR_FW_VER_MICRO_G(adap
->params
.fw_vers
);
3406 switch (chip_version
) {
3408 exp_major
= T4FW_MIN_VERSION_MAJOR
;
3409 exp_minor
= T4FW_MIN_VERSION_MINOR
;
3410 exp_micro
= T4FW_MIN_VERSION_MICRO
;
3413 exp_major
= T5FW_MIN_VERSION_MAJOR
;
3414 exp_minor
= T5FW_MIN_VERSION_MINOR
;
3415 exp_micro
= T5FW_MIN_VERSION_MICRO
;
3418 exp_major
= T6FW_MIN_VERSION_MAJOR
;
3419 exp_minor
= T6FW_MIN_VERSION_MINOR
;
3420 exp_micro
= T6FW_MIN_VERSION_MICRO
;
3423 dev_err(adap
->pdev_dev
, "Unsupported chip type, %x\n",
3428 if (major
< exp_major
|| (major
== exp_major
&& minor
< exp_minor
) ||
3429 (major
== exp_major
&& minor
== exp_minor
&& micro
< exp_micro
)) {
3430 dev_err(adap
->pdev_dev
,
3431 "Card has firmware version %u.%u.%u, minimum "
3432 "supported firmware is %u.%u.%u.\n", major
, minor
,
3433 micro
, exp_major
, exp_minor
, exp_micro
);
3439 /* Is the given firmware API compatible with the one the driver was compiled
3442 static int fw_compatible(const struct fw_hdr
*hdr1
, const struct fw_hdr
*hdr2
)
3445 /* short circuit if it's the exact same firmware version */
3446 if (hdr1
->chip
== hdr2
->chip
&& hdr1
->fw_ver
== hdr2
->fw_ver
)
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450 if (hdr1
->chip
== hdr2
->chip
&& SAME_INTF(nic
) && SAME_INTF(vnic
) &&
3451 SAME_INTF(ri
) && SAME_INTF(iscsi
) && SAME_INTF(fcoe
))
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459 * This routine explains itself in detail if it indicates the filesystem
3460 * firmware should be installed.
3462 static int should_install_fs_fw(struct adapter
*adap
, int card_fw_usable
,
3467 if (!card_fw_usable
) {
3468 reason
= "incompatible or unusable";
3473 reason
= "older than the version supported with this driver";
3480 dev_err(adap
->pdev_dev
, "firmware on card (%u.%u.%u.%u) is %s, "
3481 "installing firmware %u.%u.%u.%u on card.\n",
3482 FW_HDR_FW_VER_MAJOR_G(c
), FW_HDR_FW_VER_MINOR_G(c
),
3483 FW_HDR_FW_VER_MICRO_G(c
), FW_HDR_FW_VER_BUILD_G(c
), reason
,
3484 FW_HDR_FW_VER_MAJOR_G(k
), FW_HDR_FW_VER_MINOR_G(k
),
3485 FW_HDR_FW_VER_MICRO_G(k
), FW_HDR_FW_VER_BUILD_G(k
));
3490 int t4_prep_fw(struct adapter
*adap
, struct fw_info
*fw_info
,
3491 const u8
*fw_data
, unsigned int fw_size
,
3492 struct fw_hdr
*card_fw
, enum dev_state state
,
3495 int ret
, card_fw_usable
, fs_fw_usable
;
3496 const struct fw_hdr
*fs_fw
;
3497 const struct fw_hdr
*drv_fw
;
3499 drv_fw
= &fw_info
->fw_hdr
;
3501 /* Read the header of the firmware on the card */
3502 ret
= -t4_read_flash(adap
, FLASH_FW_START
,
3503 sizeof(*card_fw
) / sizeof(uint32_t),
3504 (uint32_t *)card_fw
, 1);
3506 card_fw_usable
= fw_compatible(drv_fw
, (const void *)card_fw
);
3508 dev_err(adap
->pdev_dev
,
3509 "Unable to read card's firmware header: %d\n", ret
);
3513 if (fw_data
!= NULL
) {
3514 fs_fw
= (const void *)fw_data
;
3515 fs_fw_usable
= fw_compatible(drv_fw
, fs_fw
);
3521 if (card_fw_usable
&& card_fw
->fw_ver
== drv_fw
->fw_ver
&&
3522 (!fs_fw_usable
|| fs_fw
->fw_ver
== drv_fw
->fw_ver
)) {
3523 /* Common case: the firmware on the card is an exact match and
3524 * the filesystem one is an exact match too, or the filesystem
3525 * one is absent/incompatible.
3527 } else if (fs_fw_usable
&& state
== DEV_STATE_UNINIT
&&
3528 should_install_fs_fw(adap
, card_fw_usable
,
3529 be32_to_cpu(fs_fw
->fw_ver
),
3530 be32_to_cpu(card_fw
->fw_ver
))) {
3531 ret
= -t4_fw_upgrade(adap
, adap
->mbox
, fw_data
,
3534 dev_err(adap
->pdev_dev
,
3535 "failed to install firmware: %d\n", ret
);
3539 /* Installed successfully, update the cached header too. */
3542 *reset
= 0; /* already reset as part of load_fw */
3545 if (!card_fw_usable
) {
3548 d
= be32_to_cpu(drv_fw
->fw_ver
);
3549 c
= be32_to_cpu(card_fw
->fw_ver
);
3550 k
= fs_fw
? be32_to_cpu(fs_fw
->fw_ver
) : 0;
3552 dev_err(adap
->pdev_dev
, "Cannot find a usable firmware: "
3554 "driver compiled with %d.%d.%d.%d, "
3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3557 FW_HDR_FW_VER_MAJOR_G(d
), FW_HDR_FW_VER_MINOR_G(d
),
3558 FW_HDR_FW_VER_MICRO_G(d
), FW_HDR_FW_VER_BUILD_G(d
),
3559 FW_HDR_FW_VER_MAJOR_G(c
), FW_HDR_FW_VER_MINOR_G(c
),
3560 FW_HDR_FW_VER_MICRO_G(c
), FW_HDR_FW_VER_BUILD_G(c
),
3561 FW_HDR_FW_VER_MAJOR_G(k
), FW_HDR_FW_VER_MINOR_G(k
),
3562 FW_HDR_FW_VER_MICRO_G(k
), FW_HDR_FW_VER_BUILD_G(k
));
3567 /* We're using whatever's on the card and it's known to be good. */
3568 adap
->params
.fw_vers
= be32_to_cpu(card_fw
->fw_ver
);
3569 adap
->params
.tp_vers
= be32_to_cpu(card_fw
->tp_microcode_ver
);
3576 * t4_flash_erase_sectors - erase a range of flash sectors
3577 * @adapter: the adapter
3578 * @start: the first sector to erase
3579 * @end: the last sector to erase
3581 * Erases the sectors in the given inclusive range.
3583 static int t4_flash_erase_sectors(struct adapter
*adapter
, int start
, int end
)
3587 if (end
>= adapter
->params
.sf_nsec
)
3590 while (start
<= end
) {
3591 if ((ret
= sf1_write(adapter
, 1, 0, 1, SF_WR_ENABLE
)) != 0 ||
3592 (ret
= sf1_write(adapter
, 4, 0, 1,
3593 SF_ERASE_SECTOR
| (start
<< 8))) != 0 ||
3594 (ret
= flash_wait_op(adapter
, 14, 500)) != 0) {
3595 dev_err(adapter
->pdev_dev
,
3596 "erase of flash sector %d failed, error %d\n",
3602 t4_write_reg(adapter
, SF_OP_A
, 0); /* unlock SF */
3607 * t4_flash_cfg_addr - return the address of the flash configuration file
3608 * @adapter: the adapter
3610 * Return the address within the flash where the Firmware Configuration
3613 unsigned int t4_flash_cfg_addr(struct adapter
*adapter
)
3615 if (adapter
->params
.sf_size
== 0x100000)
3616 return FLASH_FPGA_CFG_START
;
3618 return FLASH_CFG_START
;
3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3623 * and emit an error message for mismatched firmware to save our caller the
3626 static bool t4_fw_matches_chip(const struct adapter
*adap
,
3627 const struct fw_hdr
*hdr
)
3629 /* The expression below will return FALSE for any unsupported adapter
3630 * which will keep us "honest" in the future ...
3632 if ((is_t4(adap
->params
.chip
) && hdr
->chip
== FW_HDR_CHIP_T4
) ||
3633 (is_t5(adap
->params
.chip
) && hdr
->chip
== FW_HDR_CHIP_T5
) ||
3634 (is_t6(adap
->params
.chip
) && hdr
->chip
== FW_HDR_CHIP_T6
))
3637 dev_err(adap
->pdev_dev
,
3638 "FW image (%d) is not suitable for this adapter (%d)\n",
3639 hdr
->chip
, CHELSIO_CHIP_VERSION(adap
->params
.chip
));
3644 * t4_load_fw - download firmware
3645 * @adap: the adapter
3646 * @fw_data: the firmware image to write
3649 * Write the supplied firmware image to the card's serial flash.
3651 int t4_load_fw(struct adapter
*adap
, const u8
*fw_data
, unsigned int size
)
3656 u8 first_page
[SF_PAGE_SIZE
];
3657 const __be32
*p
= (const __be32
*)fw_data
;
3658 const struct fw_hdr
*hdr
= (const struct fw_hdr
*)fw_data
;
3659 unsigned int sf_sec_size
= adap
->params
.sf_size
/ adap
->params
.sf_nsec
;
3660 unsigned int fw_start_sec
= FLASH_FW_START_SEC
;
3661 unsigned int fw_size
= FLASH_FW_MAX_SIZE
;
3662 unsigned int fw_start
= FLASH_FW_START
;
3665 dev_err(adap
->pdev_dev
, "FW image has no data\n");
3669 dev_err(adap
->pdev_dev
,
3670 "FW image size not multiple of 512 bytes\n");
3673 if ((unsigned int)be16_to_cpu(hdr
->len512
) * 512 != size
) {
3674 dev_err(adap
->pdev_dev
,
3675 "FW image size differs from size in FW header\n");
3678 if (size
> fw_size
) {
3679 dev_err(adap
->pdev_dev
, "FW image too large, max is %u bytes\n",
3683 if (!t4_fw_matches_chip(adap
, hdr
))
3686 for (csum
= 0, i
= 0; i
< size
/ sizeof(csum
); i
++)
3687 csum
+= be32_to_cpu(p
[i
]);
3689 if (csum
!= 0xffffffff) {
3690 dev_err(adap
->pdev_dev
,
3691 "corrupted firmware image, checksum %#x\n", csum
);
3695 i
= DIV_ROUND_UP(size
, sf_sec_size
); /* # of sectors spanned */
3696 ret
= t4_flash_erase_sectors(adap
, fw_start_sec
, fw_start_sec
+ i
- 1);
3701 * We write the correct version at the end so the driver can see a bad
3702 * version if the FW write fails. Start by writing a copy of the
3703 * first page with a bad version.
3705 memcpy(first_page
, fw_data
, SF_PAGE_SIZE
);
3706 ((struct fw_hdr
*)first_page
)->fw_ver
= cpu_to_be32(0xffffffff);
3707 ret
= t4_write_flash(adap
, fw_start
, SF_PAGE_SIZE
, first_page
);
3712 for (size
-= SF_PAGE_SIZE
; size
; size
-= SF_PAGE_SIZE
) {
3713 addr
+= SF_PAGE_SIZE
;
3714 fw_data
+= SF_PAGE_SIZE
;
3715 ret
= t4_write_flash(adap
, addr
, SF_PAGE_SIZE
, fw_data
);
3720 ret
= t4_write_flash(adap
,
3721 fw_start
+ offsetof(struct fw_hdr
, fw_ver
),
3722 sizeof(hdr
->fw_ver
), (const u8
*)&hdr
->fw_ver
);
3725 dev_err(adap
->pdev_dev
, "firmware download failed, error %d\n",
3728 ret
= t4_get_fw_version(adap
, &adap
->params
.fw_vers
);
3733 * t4_phy_fw_ver - return current PHY firmware version
3734 * @adap: the adapter
3735 * @phy_fw_ver: return value buffer for PHY firmware version
3737 * Returns the current version of external PHY firmware on the
3740 int t4_phy_fw_ver(struct adapter
*adap
, int *phy_fw_ver
)
3745 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW
) |
3747 FW_PARAMS_PARAM_Y_V(adap
->params
.portvec
) |
3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION
));
3749 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1,
3758 * t4_load_phy_fw - download port PHY firmware
3759 * @adap: the adapter
3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3761 * @win_lock: the lock to use to guard the memory copy
3762 * @phy_fw_version: function to check PHY firmware versions
3763 * @phy_fw_data: the PHY firmware image to write
3764 * @phy_fw_size: image size
3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3767 * @phy_fw_version is supplied, then it will be used to determine if
3768 * it's necessary to perform the transfer by comparing the version
3769 * of any existing adapter PHY firmware with that of the passed in
3770 * PHY firmware image. If @win_lock is non-NULL then it will be used
3771 * around the call to t4_memory_rw() which transfers the PHY firmware
3774 * A negative error number will be returned if an error occurs. If
3775 * version number support is available and there's no need to upgrade
3776 * the firmware, 0 will be returned. If firmware is successfully
3777 * transferred to the adapter, 1 will be returned.
3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3780 * a result, a RESET of the adapter would cause that RAM to lose its
3781 * contents. Thus, loading PHY firmware on such adapters must happen
3782 * after any FW_RESET_CMDs ...
3784 int t4_load_phy_fw(struct adapter
*adap
,
3785 int win
, spinlock_t
*win_lock
,
3786 int (*phy_fw_version
)(const u8
*, size_t),
3787 const u8
*phy_fw_data
, size_t phy_fw_size
)
3789 unsigned long mtype
= 0, maddr
= 0;
3791 int cur_phy_fw_ver
= 0, new_phy_fw_vers
= 0;
3794 /* If we have version number support, then check to see if the adapter
3795 * already has up-to-date PHY firmware loaded.
3797 if (phy_fw_version
) {
3798 new_phy_fw_vers
= phy_fw_version(phy_fw_data
, phy_fw_size
);
3799 ret
= t4_phy_fw_ver(adap
, &cur_phy_fw_ver
);
3803 if (cur_phy_fw_ver
>= new_phy_fw_vers
) {
3804 CH_WARN(adap
, "PHY Firmware already up-to-date, "
3805 "version %#x\n", cur_phy_fw_ver
);
3810 /* Ask the firmware where it wants us to copy the PHY firmware image.
3811 * The size of the file requires a special version of the READ command
3812 * which will pass the file size via the values field in PARAMS_CMD and
3813 * retrieve the return value from firmware and place it in the same
3816 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW
) |
3818 FW_PARAMS_PARAM_Y_V(adap
->params
.portvec
) |
3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD
));
3821 ret
= t4_query_params_rw(adap
, adap
->mbox
, adap
->pf
, 0, 1,
3822 ¶m
, &val
, 1, true);
3826 maddr
= (val
& 0xff) << 16;
3828 /* Copy the supplied PHY Firmware image to the adapter memory location
3829 * allocated by the adapter firmware.
3832 spin_lock_bh(win_lock
);
3833 ret
= t4_memory_rw(adap
, win
, mtype
, maddr
,
3834 phy_fw_size
, (__be32
*)phy_fw_data
,
3837 spin_unlock_bh(win_lock
);
3841 /* Tell the firmware that the PHY firmware image has been written to
3842 * RAM and it can now start copying it over to the PHYs. The chip
3843 * firmware will RESET the affected PHYs as part of this operation
3844 * leaving them running the new PHY firmware image.
3846 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW
) |
3848 FW_PARAMS_PARAM_Y_V(adap
->params
.portvec
) |
3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD
));
3850 ret
= t4_set_params_timeout(adap
, adap
->mbox
, adap
->pf
, 0, 1,
3851 ¶m
, &val
, 30000);
3853 /* If we have version number support, then check to see that the new
3854 * firmware got loaded properly.
3856 if (phy_fw_version
) {
3857 ret
= t4_phy_fw_ver(adap
, &cur_phy_fw_ver
);
3861 if (cur_phy_fw_ver
!= new_phy_fw_vers
) {
3862 CH_WARN(adap
, "PHY Firmware did not update: "
3863 "version on adapter %#x, "
3864 "version flashed %#x\n",
3865 cur_phy_fw_ver
, new_phy_fw_vers
);
3874 * t4_fwcache - firmware cache operation
3875 * @adap: the adapter
3876 * @op : the operation (flush or flush and invalidate)
3878 int t4_fwcache(struct adapter
*adap
, enum fw_params_param_dev_fwcache op
)
3880 struct fw_params_cmd c
;
3882 memset(&c
, 0, sizeof(c
));
3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
3885 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
3886 FW_PARAMS_CMD_PFN_V(adap
->pf
) |
3887 FW_PARAMS_CMD_VFN_V(0));
3888 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE
));
3892 c
.param
[0].val
= cpu_to_be32(op
);
3894 return t4_wr_mbox(adap
, adap
->mbox
, &c
, sizeof(c
), NULL
);
3897 void t4_cim_read_pif_la(struct adapter
*adap
, u32
*pif_req
, u32
*pif_rsp
,
3898 unsigned int *pif_req_wrptr
,
3899 unsigned int *pif_rsp_wrptr
)
3902 u32 cfg
, val
, req
, rsp
;
3904 cfg
= t4_read_reg(adap
, CIM_DEBUGCFG_A
);
3905 if (cfg
& LADBGEN_F
)
3906 t4_write_reg(adap
, CIM_DEBUGCFG_A
, cfg
^ LADBGEN_F
);
3908 val
= t4_read_reg(adap
, CIM_DEBUGSTS_A
);
3909 req
= POLADBGWRPTR_G(val
);
3910 rsp
= PILADBGWRPTR_G(val
);
3912 *pif_req_wrptr
= req
;
3914 *pif_rsp_wrptr
= rsp
;
3916 for (i
= 0; i
< CIM_PIFLA_SIZE
; i
++) {
3917 for (j
= 0; j
< 6; j
++) {
3918 t4_write_reg(adap
, CIM_DEBUGCFG_A
, POLADBGRDPTR_V(req
) |
3919 PILADBGRDPTR_V(rsp
));
3920 *pif_req
++ = t4_read_reg(adap
, CIM_PO_LA_DEBUGDATA_A
);
3921 *pif_rsp
++ = t4_read_reg(adap
, CIM_PI_LA_DEBUGDATA_A
);
3925 req
= (req
+ 2) & POLADBGRDPTR_M
;
3926 rsp
= (rsp
+ 2) & PILADBGRDPTR_M
;
3928 t4_write_reg(adap
, CIM_DEBUGCFG_A
, cfg
);
3931 void t4_cim_read_ma_la(struct adapter
*adap
, u32
*ma_req
, u32
*ma_rsp
)
3936 cfg
= t4_read_reg(adap
, CIM_DEBUGCFG_A
);
3937 if (cfg
& LADBGEN_F
)
3938 t4_write_reg(adap
, CIM_DEBUGCFG_A
, cfg
^ LADBGEN_F
);
3940 for (i
= 0; i
< CIM_MALA_SIZE
; i
++) {
3941 for (j
= 0; j
< 5; j
++) {
3943 t4_write_reg(adap
, CIM_DEBUGCFG_A
, POLADBGRDPTR_V(idx
) |
3944 PILADBGRDPTR_V(idx
));
3945 *ma_req
++ = t4_read_reg(adap
, CIM_PO_LA_MADEBUGDATA_A
);
3946 *ma_rsp
++ = t4_read_reg(adap
, CIM_PI_LA_MADEBUGDATA_A
);
3949 t4_write_reg(adap
, CIM_DEBUGCFG_A
, cfg
);
3952 void t4_ulprx_read_la(struct adapter
*adap
, u32
*la_buf
)
3956 for (i
= 0; i
< 8; i
++) {
3957 u32
*p
= la_buf
+ i
;
3959 t4_write_reg(adap
, ULP_RX_LA_CTL_A
, i
);
3960 j
= t4_read_reg(adap
, ULP_RX_LA_WRPTR_A
);
3961 t4_write_reg(adap
, ULP_RX_LA_RDPTR_A
, j
);
3962 for (j
= 0; j
< ULPRX_LA_SIZE
; j
++, p
+= 8)
3963 *p
= t4_read_reg(adap
, ULP_RX_LA_RDDATA_A
);
3967 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3968 * Capabilities which we control with separate controls -- see, for instance,
3969 * Pause Frames and Forward Error Correction. In order to determine what the
3970 * full set of Advertised Port Capabilities are, the base Advertised Port
3971 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3972 * Port Capabilities associated with those other controls. See
3973 * t4_link_acaps() for how this is done.
3975 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3979 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3980 * @caps16: a 16-bit Port Capabilities value
3982 * Returns the equivalent 32-bit Port Capabilities value.
3984 static fw_port_cap32_t
fwcaps16_to_caps32(fw_port_cap16_t caps16
)
3986 fw_port_cap32_t caps32
= 0;
3988 #define CAP16_TO_CAP32(__cap) \
3990 if (caps16 & FW_PORT_CAP_##__cap) \
3991 caps32 |= FW_PORT_CAP32_##__cap; \
3994 CAP16_TO_CAP32(SPEED_100M
);
3995 CAP16_TO_CAP32(SPEED_1G
);
3996 CAP16_TO_CAP32(SPEED_25G
);
3997 CAP16_TO_CAP32(SPEED_10G
);
3998 CAP16_TO_CAP32(SPEED_40G
);
3999 CAP16_TO_CAP32(SPEED_100G
);
4000 CAP16_TO_CAP32(FC_RX
);
4001 CAP16_TO_CAP32(FC_TX
);
4002 CAP16_TO_CAP32(ANEG
);
4003 CAP16_TO_CAP32(FORCE_PAUSE
);
4004 CAP16_TO_CAP32(MDIAUTO
);
4005 CAP16_TO_CAP32(MDISTRAIGHT
);
4006 CAP16_TO_CAP32(FEC_RS
);
4007 CAP16_TO_CAP32(FEC_BASER_RS
);
4008 CAP16_TO_CAP32(802_3_PAUSE
);
4009 CAP16_TO_CAP32(802_3_ASM_DIR
);
4011 #undef CAP16_TO_CAP32
4017 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4018 * @caps32: a 32-bit Port Capabilities value
4020 * Returns the equivalent 16-bit Port Capabilities value. Note that
4021 * not all 32-bit Port Capabilities can be represented in the 16-bit
4022 * Port Capabilities and some fields/values may not make it.
4024 static fw_port_cap16_t
fwcaps32_to_caps16(fw_port_cap32_t caps32
)
4026 fw_port_cap16_t caps16
= 0;
4028 #define CAP32_TO_CAP16(__cap) \
4030 if (caps32 & FW_PORT_CAP32_##__cap) \
4031 caps16 |= FW_PORT_CAP_##__cap; \
4034 CAP32_TO_CAP16(SPEED_100M
);
4035 CAP32_TO_CAP16(SPEED_1G
);
4036 CAP32_TO_CAP16(SPEED_10G
);
4037 CAP32_TO_CAP16(SPEED_25G
);
4038 CAP32_TO_CAP16(SPEED_40G
);
4039 CAP32_TO_CAP16(SPEED_100G
);
4040 CAP32_TO_CAP16(FC_RX
);
4041 CAP32_TO_CAP16(FC_TX
);
4042 CAP32_TO_CAP16(802_3_PAUSE
);
4043 CAP32_TO_CAP16(802_3_ASM_DIR
);
4044 CAP32_TO_CAP16(ANEG
);
4045 CAP32_TO_CAP16(FORCE_PAUSE
);
4046 CAP32_TO_CAP16(MDIAUTO
);
4047 CAP32_TO_CAP16(MDISTRAIGHT
);
4048 CAP32_TO_CAP16(FEC_RS
);
4049 CAP32_TO_CAP16(FEC_BASER_RS
);
4051 #undef CAP32_TO_CAP16
4056 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4057 static inline enum cc_pause
fwcap_to_cc_pause(fw_port_cap32_t fw_pause
)
4059 enum cc_pause cc_pause
= 0;
4061 if (fw_pause
& FW_PORT_CAP32_FC_RX
)
4062 cc_pause
|= PAUSE_RX
;
4063 if (fw_pause
& FW_PORT_CAP32_FC_TX
)
4064 cc_pause
|= PAUSE_TX
;
4069 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4070 static inline fw_port_cap32_t
cc_to_fwcap_pause(enum cc_pause cc_pause
)
4072 /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4075 fw_port_cap32_t fw_pause
= 0;
4077 if (cc_pause
& PAUSE_RX
)
4078 fw_pause
|= FW_PORT_CAP32_FC_RX
;
4079 if (cc_pause
& PAUSE_TX
)
4080 fw_pause
|= FW_PORT_CAP32_FC_TX
;
4081 if (!(cc_pause
& PAUSE_AUTONEG
))
4082 fw_pause
|= FW_PORT_CAP32_FORCE_PAUSE
;
4084 /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4085 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4086 * Note that these bits are ignored in L1 Configure commands.
4088 if (cc_pause
& PAUSE_RX
) {
4089 if (cc_pause
& PAUSE_TX
)
4090 fw_pause
|= FW_PORT_CAP32_802_3_PAUSE
;
4092 fw_pause
|= FW_PORT_CAP32_802_3_ASM_DIR
|
4093 FW_PORT_CAP32_802_3_PAUSE
;
4094 } else if (cc_pause
& PAUSE_TX
) {
4095 fw_pause
|= FW_PORT_CAP32_802_3_ASM_DIR
;
4101 /* Translate Firmware Forward Error Correction specification to Common Code */
4102 static inline enum cc_fec
fwcap_to_cc_fec(fw_port_cap32_t fw_fec
)
4104 enum cc_fec cc_fec
= 0;
4106 if (fw_fec
& FW_PORT_CAP32_FEC_RS
)
4108 if (fw_fec
& FW_PORT_CAP32_FEC_BASER_RS
)
4109 cc_fec
|= FEC_BASER_RS
;
4114 /* Translate Common Code Forward Error Correction specification to Firmware */
4115 static inline fw_port_cap32_t
cc_to_fwcap_fec(enum cc_fec cc_fec
)
4117 fw_port_cap32_t fw_fec
= 0;
4119 if (cc_fec
& FEC_RS
)
4120 fw_fec
|= FW_PORT_CAP32_FEC_RS
;
4121 if (cc_fec
& FEC_BASER_RS
)
4122 fw_fec
|= FW_PORT_CAP32_FEC_BASER_RS
;
4128 * t4_link_acaps - compute Link Advertised Port Capabilities
4129 * @adapter: the adapter
4130 * @port: the Port ID
4131 * @lc: the Port's Link Configuration
4133 * Synthesize the Advertised Port Capabilities we'll be using based on
4134 * the base Advertised Port Capabilities (which have been filtered by
4135 * ADVERT_MASK) plus the individual controls for things like Pause
4136 * Frames, Forward Error Correction, MDI, etc.
4138 fw_port_cap32_t
t4_link_acaps(struct adapter
*adapter
, unsigned int port
,
4139 struct link_config
*lc
)
4141 fw_port_cap32_t fw_fc
, fw_fec
, acaps
;
4142 unsigned int fw_mdi
;
4145 fw_mdi
= (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO
) & lc
->pcaps
);
4147 /* Convert driver coding of Pause Frame Flow Control settings into the
4150 fw_fc
= cc_to_fwcap_pause(lc
->requested_fc
);
4152 /* Convert Common Code Forward Error Control settings into the
4153 * Firmware's API. If the current Requested FEC has "Automatic"
4154 * (IEEE 802.3) specified, then we use whatever the Firmware
4155 * sent us as part of its IEEE 802.3-based interpretation of
4156 * the Transceiver Module EPROM FEC parameters. Otherwise we
4157 * use whatever is in the current Requested FEC settings.
4159 if (lc
->requested_fec
& FEC_AUTO
)
4160 cc_fec
= fwcap_to_cc_fec(lc
->def_acaps
);
4162 cc_fec
= lc
->requested_fec
;
4163 fw_fec
= cc_to_fwcap_fec(cc_fec
);
4165 /* Figure out what our Requested Port Capabilities are going to be.
4166 * Note parallel structure in t4_handle_get_port_info() and
4167 * init_link_config().
4169 if (!(lc
->pcaps
& FW_PORT_CAP32_ANEG
)) {
4170 acaps
= lc
->acaps
| fw_fc
| fw_fec
;
4171 lc
->fc
= lc
->requested_fc
& ~PAUSE_AUTONEG
;
4173 } else if (lc
->autoneg
== AUTONEG_DISABLE
) {
4174 acaps
= lc
->speed_caps
| fw_fc
| fw_fec
| fw_mdi
;
4175 lc
->fc
= lc
->requested_fc
& ~PAUSE_AUTONEG
;
4178 acaps
= lc
->acaps
| fw_fc
| fw_fec
| fw_mdi
;
4181 /* Some Requested Port Capabilities are trivially wrong if they exceed
4182 * the Physical Port Capabilities. We can check that here and provide
4183 * moderately useful feedback in the system log.
4185 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4186 * we need to exclude this from this check in order to maintain
4189 if ((acaps
& ~lc
->pcaps
) & ~FW_PORT_CAP32_FORCE_PAUSE
) {
4190 dev_err(adapter
->pdev_dev
, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4199 * t4_link_l1cfg_core - apply link configuration to MAC/PHY
4200 * @adapter: the adapter
4201 * @mbox: the Firmware Mailbox to use
4202 * @port: the Port ID
4203 * @lc: the Port's Link Configuration
4204 * @sleep_ok: if true we may sleep while awaiting command completion
4205 * @timeout: time to wait for command to finish before timing out
4206 * (negative implies @sleep_ok=false)
4208 * Set up a port's MAC and PHY according to a desired link configuration.
4209 * - If the PHY can auto-negotiate first decide what to advertise, then
4210 * enable/disable auto-negotiation as desired, and reset.
4211 * - If the PHY does not auto-negotiate just reset it.
4212 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4213 * otherwise do it later based on the outcome of auto-negotiation.
4215 int t4_link_l1cfg_core(struct adapter
*adapter
, unsigned int mbox
,
4216 unsigned int port
, struct link_config
*lc
,
4217 u8 sleep_ok
, int timeout
)
4219 unsigned int fw_caps
= adapter
->params
.fw_caps_support
;
4220 struct fw_port_cmd cmd
;
4221 fw_port_cap32_t rcap
;
4224 if (!(lc
->pcaps
& FW_PORT_CAP32_ANEG
) &&
4225 lc
->autoneg
== AUTONEG_ENABLE
) {
4229 /* Compute our Requested Port Capabilities and send that on to the
4232 rcap
= t4_link_acaps(adapter
, port
, lc
);
4233 memset(&cmd
, 0, sizeof(cmd
));
4234 cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
4235 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
4236 FW_PORT_CMD_PORTID_V(port
));
4237 cmd
.action_to_len16
=
4238 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
4239 ? FW_PORT_ACTION_L1_CFG
4240 : FW_PORT_ACTION_L1_CFG32
) |
4242 if (fw_caps
== FW_CAPS16
)
4243 cmd
.u
.l1cfg
.rcap
= cpu_to_be32(fwcaps32_to_caps16(rcap
));
4245 cmd
.u
.l1cfg32
.rcap32
= cpu_to_be32(rcap
);
4247 ret
= t4_wr_mbox_meat_timeout(adapter
, mbox
, &cmd
, sizeof(cmd
), NULL
,
4250 /* Unfortunately, even if the Requested Port Capabilities "fit" within
4251 * the Physical Port Capabilities, some combinations of features may
4252 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward
4253 * Error Correction. So if the Firmware rejects the L1 Configure
4254 * request, flag that here.
4257 dev_err(adapter
->pdev_dev
,
4258 "Requested Port Capabilities %#x rejected, error %d\n",
4266 * t4_restart_aneg - restart autonegotiation
4267 * @adap: the adapter
4268 * @mbox: mbox to use for the FW command
4269 * @port: the port id
4271 * Restarts autonegotiation for the selected port.
4273 int t4_restart_aneg(struct adapter
*adap
, unsigned int mbox
, unsigned int port
)
4275 unsigned int fw_caps
= adap
->params
.fw_caps_support
;
4276 struct fw_port_cmd c
;
4278 memset(&c
, 0, sizeof(c
));
4279 c
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
4280 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
4281 FW_PORT_CMD_PORTID_V(port
));
4283 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
4284 ? FW_PORT_ACTION_L1_CFG
4285 : FW_PORT_ACTION_L1_CFG32
) |
4287 if (fw_caps
== FW_CAPS16
)
4288 c
.u
.l1cfg
.rcap
= cpu_to_be32(FW_PORT_CAP_ANEG
);
4290 c
.u
.l1cfg32
.rcap32
= cpu_to_be32(FW_PORT_CAP32_ANEG
);
4291 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
4294 typedef void (*int_handler_t
)(struct adapter
*adap
);
4297 unsigned int mask
; /* bits to check in interrupt status */
4298 const char *msg
; /* message to print or NULL */
4299 short stat_idx
; /* stat counter to increment or -1 */
4300 unsigned short fatal
; /* whether the condition reported is fatal */
4301 int_handler_t int_handler
; /* platform-specific int handler */
4305 * t4_handle_intr_status - table driven interrupt handler
4306 * @adapter: the adapter that generated the interrupt
4307 * @reg: the interrupt status register to process
4308 * @acts: table of interrupt actions
4310 * A table driven interrupt handler that applies a set of masks to an
4311 * interrupt status word and performs the corresponding actions if the
4312 * interrupts described by the mask have occurred. The actions include
4313 * optionally emitting a warning or alert message. The table is terminated
4314 * by an entry specifying mask 0. Returns the number of fatal interrupt
4317 static int t4_handle_intr_status(struct adapter
*adapter
, unsigned int reg
,
4318 const struct intr_info
*acts
)
4321 unsigned int mask
= 0;
4322 unsigned int status
= t4_read_reg(adapter
, reg
);
4324 for ( ; acts
->mask
; ++acts
) {
4325 if (!(status
& acts
->mask
))
4329 dev_alert(adapter
->pdev_dev
, "%s (0x%x)\n", acts
->msg
,
4330 status
& acts
->mask
);
4331 } else if (acts
->msg
&& printk_ratelimit())
4332 dev_warn(adapter
->pdev_dev
, "%s (0x%x)\n", acts
->msg
,
4333 status
& acts
->mask
);
4334 if (acts
->int_handler
)
4335 acts
->int_handler(adapter
);
4339 if (status
) /* clear processed interrupts */
4340 t4_write_reg(adapter
, reg
, status
);
4345 * Interrupt handler for the PCIE module.
4347 static void pcie_intr_handler(struct adapter
*adapter
)
4349 static const struct intr_info sysbus_intr_info
[] = {
4350 { RNPP_F
, "RXNP array parity error", -1, 1 },
4351 { RPCP_F
, "RXPC array parity error", -1, 1 },
4352 { RCIP_F
, "RXCIF array parity error", -1, 1 },
4353 { RCCP_F
, "Rx completions control array parity error", -1, 1 },
4354 { RFTP_F
, "RXFT array parity error", -1, 1 },
4357 static const struct intr_info pcie_port_intr_info
[] = {
4358 { TPCP_F
, "TXPC array parity error", -1, 1 },
4359 { TNPP_F
, "TXNP array parity error", -1, 1 },
4360 { TFTP_F
, "TXFT array parity error", -1, 1 },
4361 { TCAP_F
, "TXCA array parity error", -1, 1 },
4362 { TCIP_F
, "TXCIF array parity error", -1, 1 },
4363 { RCAP_F
, "RXCA array parity error", -1, 1 },
4364 { OTDD_F
, "outbound request TLP discarded", -1, 1 },
4365 { RDPE_F
, "Rx data parity error", -1, 1 },
4366 { TDUE_F
, "Tx uncorrectable data error", -1, 1 },
4369 static const struct intr_info pcie_intr_info
[] = {
4370 { MSIADDRLPERR_F
, "MSI AddrL parity error", -1, 1 },
4371 { MSIADDRHPERR_F
, "MSI AddrH parity error", -1, 1 },
4372 { MSIDATAPERR_F
, "MSI data parity error", -1, 1 },
4373 { MSIXADDRLPERR_F
, "MSI-X AddrL parity error", -1, 1 },
4374 { MSIXADDRHPERR_F
, "MSI-X AddrH parity error", -1, 1 },
4375 { MSIXDATAPERR_F
, "MSI-X data parity error", -1, 1 },
4376 { MSIXDIPERR_F
, "MSI-X DI parity error", -1, 1 },
4377 { PIOCPLPERR_F
, "PCI PIO completion FIFO parity error", -1, 1 },
4378 { PIOREQPERR_F
, "PCI PIO request FIFO parity error", -1, 1 },
4379 { TARTAGPERR_F
, "PCI PCI target tag FIFO parity error", -1, 1 },
4380 { CCNTPERR_F
, "PCI CMD channel count parity error", -1, 1 },
4381 { CREQPERR_F
, "PCI CMD channel request parity error", -1, 1 },
4382 { CRSPPERR_F
, "PCI CMD channel response parity error", -1, 1 },
4383 { DCNTPERR_F
, "PCI DMA channel count parity error", -1, 1 },
4384 { DREQPERR_F
, "PCI DMA channel request parity error", -1, 1 },
4385 { DRSPPERR_F
, "PCI DMA channel response parity error", -1, 1 },
4386 { HCNTPERR_F
, "PCI HMA channel count parity error", -1, 1 },
4387 { HREQPERR_F
, "PCI HMA channel request parity error", -1, 1 },
4388 { HRSPPERR_F
, "PCI HMA channel response parity error", -1, 1 },
4389 { CFGSNPPERR_F
, "PCI config snoop FIFO parity error", -1, 1 },
4390 { FIDPERR_F
, "PCI FID parity error", -1, 1 },
4391 { INTXCLRPERR_F
, "PCI INTx clear parity error", -1, 1 },
4392 { MATAGPERR_F
, "PCI MA tag parity error", -1, 1 },
4393 { PIOTAGPERR_F
, "PCI PIO tag parity error", -1, 1 },
4394 { RXCPLPERR_F
, "PCI Rx completion parity error", -1, 1 },
4395 { RXWRPERR_F
, "PCI Rx write parity error", -1, 1 },
4396 { RPLPERR_F
, "PCI replay buffer parity error", -1, 1 },
4397 { PCIESINT_F
, "PCI core secondary fault", -1, 1 },
4398 { PCIEPINT_F
, "PCI core primary fault", -1, 1 },
4399 { UNXSPLCPLERR_F
, "PCI unexpected split completion error",
4404 static struct intr_info t5_pcie_intr_info
[] = {
4405 { MSTGRPPERR_F
, "Master Response Read Queue parity error",
4407 { MSTTIMEOUTPERR_F
, "Master Timeout FIFO parity error", -1, 1 },
4408 { MSIXSTIPERR_F
, "MSI-X STI SRAM parity error", -1, 1 },
4409 { MSIXADDRLPERR_F
, "MSI-X AddrL parity error", -1, 1 },
4410 { MSIXADDRHPERR_F
, "MSI-X AddrH parity error", -1, 1 },
4411 { MSIXDATAPERR_F
, "MSI-X data parity error", -1, 1 },
4412 { MSIXDIPERR_F
, "MSI-X DI parity error", -1, 1 },
4413 { PIOCPLGRPPERR_F
, "PCI PIO completion Group FIFO parity error",
4415 { PIOREQGRPPERR_F
, "PCI PIO request Group FIFO parity error",
4417 { TARTAGPERR_F
, "PCI PCI target tag FIFO parity error", -1, 1 },
4418 { MSTTAGQPERR_F
, "PCI master tag queue parity error", -1, 1 },
4419 { CREQPERR_F
, "PCI CMD channel request parity error", -1, 1 },
4420 { CRSPPERR_F
, "PCI CMD channel response parity error", -1, 1 },
4421 { DREQWRPERR_F
, "PCI DMA channel write request parity error",
4423 { DREQPERR_F
, "PCI DMA channel request parity error", -1, 1 },
4424 { DRSPPERR_F
, "PCI DMA channel response parity error", -1, 1 },
4425 { HREQWRPERR_F
, "PCI HMA channel count parity error", -1, 1 },
4426 { HREQPERR_F
, "PCI HMA channel request parity error", -1, 1 },
4427 { HRSPPERR_F
, "PCI HMA channel response parity error", -1, 1 },
4428 { CFGSNPPERR_F
, "PCI config snoop FIFO parity error", -1, 1 },
4429 { FIDPERR_F
, "PCI FID parity error", -1, 1 },
4430 { VFIDPERR_F
, "PCI INTx clear parity error", -1, 1 },
4431 { MAGRPPERR_F
, "PCI MA group FIFO parity error", -1, 1 },
4432 { PIOTAGPERR_F
, "PCI PIO tag parity error", -1, 1 },
4433 { IPRXHDRGRPPERR_F
, "PCI IP Rx header group parity error",
4435 { IPRXDATAGRPPERR_F
, "PCI IP Rx data group parity error",
4437 { RPLPERR_F
, "PCI IP replay buffer parity error", -1, 1 },
4438 { IPSOTPERR_F
, "PCI IP SOT buffer parity error", -1, 1 },
4439 { TRGT1GRPPERR_F
, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4440 { READRSPERR_F
, "Outbound read error", -1, 0 },
4446 if (is_t4(adapter
->params
.chip
))
4447 fat
= t4_handle_intr_status(adapter
,
4448 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A
,
4450 t4_handle_intr_status(adapter
,
4451 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A
,
4452 pcie_port_intr_info
) +
4453 t4_handle_intr_status(adapter
, PCIE_INT_CAUSE_A
,
4456 fat
= t4_handle_intr_status(adapter
, PCIE_INT_CAUSE_A
,
4460 t4_fatal_err(adapter
);
4464 * TP interrupt handler.
4466 static void tp_intr_handler(struct adapter
*adapter
)
4468 static const struct intr_info tp_intr_info
[] = {
4469 { 0x3fffffff, "TP parity error", -1, 1 },
4470 { FLMTXFLSTEMPTY_F
, "TP out of Tx pages", -1, 1 },
4474 if (t4_handle_intr_status(adapter
, TP_INT_CAUSE_A
, tp_intr_info
))
4475 t4_fatal_err(adapter
);
4479 * SGE interrupt handler.
4481 static void sge_intr_handler(struct adapter
*adapter
)
4486 static const struct intr_info sge_intr_info
[] = {
4487 { ERR_CPL_EXCEED_IQE_SIZE_F
,
4488 "SGE received CPL exceeding IQE size", -1, 1 },
4489 { ERR_INVALID_CIDX_INC_F
,
4490 "SGE GTS CIDX increment too large", -1, 0 },
4491 { ERR_CPL_OPCODE_0_F
, "SGE received 0-length CPL", -1, 0 },
4492 { DBFIFO_LP_INT_F
, NULL
, -1, 0, t4_db_full
},
4493 { ERR_DATA_CPL_ON_HIGH_QID1_F
| ERR_DATA_CPL_ON_HIGH_QID0_F
,
4494 "SGE IQID > 1023 received CPL for FL", -1, 0 },
4495 { ERR_BAD_DB_PIDX3_F
, "SGE DBP 3 pidx increment too large", -1,
4497 { ERR_BAD_DB_PIDX2_F
, "SGE DBP 2 pidx increment too large", -1,
4499 { ERR_BAD_DB_PIDX1_F
, "SGE DBP 1 pidx increment too large", -1,
4501 { ERR_BAD_DB_PIDX0_F
, "SGE DBP 0 pidx increment too large", -1,
4503 { ERR_ING_CTXT_PRIO_F
,
4504 "SGE too many priority ingress contexts", -1, 0 },
4505 { INGRESS_SIZE_ERR_F
, "SGE illegal ingress QID", -1, 0 },
4506 { EGRESS_SIZE_ERR_F
, "SGE illegal egress QID", -1, 0 },
4510 static struct intr_info t4t5_sge_intr_info
[] = {
4511 { ERR_DROPPED_DB_F
, NULL
, -1, 0, t4_db_dropped
},
4512 { DBFIFO_HP_INT_F
, NULL
, -1, 0, t4_db_full
},
4513 { ERR_EGR_CTXT_PRIO_F
,
4514 "SGE too many priority egress contexts", -1, 0 },
4518 v
= (u64
)t4_read_reg(adapter
, SGE_INT_CAUSE1_A
) |
4519 ((u64
)t4_read_reg(adapter
, SGE_INT_CAUSE2_A
) << 32);
4521 dev_alert(adapter
->pdev_dev
, "SGE parity error (%#llx)\n",
4522 (unsigned long long)v
);
4523 t4_write_reg(adapter
, SGE_INT_CAUSE1_A
, v
);
4524 t4_write_reg(adapter
, SGE_INT_CAUSE2_A
, v
>> 32);
4527 v
|= t4_handle_intr_status(adapter
, SGE_INT_CAUSE3_A
, sge_intr_info
);
4528 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
4529 v
|= t4_handle_intr_status(adapter
, SGE_INT_CAUSE3_A
,
4530 t4t5_sge_intr_info
);
4532 err
= t4_read_reg(adapter
, SGE_ERROR_STATS_A
);
4533 if (err
& ERROR_QID_VALID_F
) {
4534 dev_err(adapter
->pdev_dev
, "SGE error for queue %u\n",
4536 if (err
& UNCAPTURED_ERROR_F
)
4537 dev_err(adapter
->pdev_dev
,
4538 "SGE UNCAPTURED_ERROR set (clearing)\n");
4539 t4_write_reg(adapter
, SGE_ERROR_STATS_A
, ERROR_QID_VALID_F
|
4540 UNCAPTURED_ERROR_F
);
4544 t4_fatal_err(adapter
);
4547 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4548 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4549 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4550 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4553 * CIM interrupt handler.
4555 static void cim_intr_handler(struct adapter
*adapter
)
4557 static const struct intr_info cim_intr_info
[] = {
4558 { PREFDROPINT_F
, "CIM control register prefetch drop", -1, 1 },
4559 { CIM_OBQ_INTR
, "CIM OBQ parity error", -1, 1 },
4560 { CIM_IBQ_INTR
, "CIM IBQ parity error", -1, 1 },
4561 { MBUPPARERR_F
, "CIM mailbox uP parity error", -1, 1 },
4562 { MBHOSTPARERR_F
, "CIM mailbox host parity error", -1, 1 },
4563 { TIEQINPARERRINT_F
, "CIM TIEQ outgoing parity error", -1, 1 },
4564 { TIEQOUTPARERRINT_F
, "CIM TIEQ incoming parity error", -1, 1 },
4565 { TIMER0INT_F
, "CIM TIMER0 interrupt", -1, 1 },
4568 static const struct intr_info cim_upintr_info
[] = {
4569 { RSVDSPACEINT_F
, "CIM reserved space access", -1, 1 },
4570 { ILLTRANSINT_F
, "CIM illegal transaction", -1, 1 },
4571 { ILLWRINT_F
, "CIM illegal write", -1, 1 },
4572 { ILLRDINT_F
, "CIM illegal read", -1, 1 },
4573 { ILLRDBEINT_F
, "CIM illegal read BE", -1, 1 },
4574 { ILLWRBEINT_F
, "CIM illegal write BE", -1, 1 },
4575 { SGLRDBOOTINT_F
, "CIM single read from boot space", -1, 1 },
4576 { SGLWRBOOTINT_F
, "CIM single write to boot space", -1, 1 },
4577 { BLKWRBOOTINT_F
, "CIM block write to boot space", -1, 1 },
4578 { SGLRDFLASHINT_F
, "CIM single read from flash space", -1, 1 },
4579 { SGLWRFLASHINT_F
, "CIM single write to flash space", -1, 1 },
4580 { BLKWRFLASHINT_F
, "CIM block write to flash space", -1, 1 },
4581 { SGLRDEEPROMINT_F
, "CIM single EEPROM read", -1, 1 },
4582 { SGLWREEPROMINT_F
, "CIM single EEPROM write", -1, 1 },
4583 { BLKRDEEPROMINT_F
, "CIM block EEPROM read", -1, 1 },
4584 { BLKWREEPROMINT_F
, "CIM block EEPROM write", -1, 1 },
4585 { SGLRDCTLINT_F
, "CIM single read from CTL space", -1, 1 },
4586 { SGLWRCTLINT_F
, "CIM single write to CTL space", -1, 1 },
4587 { BLKRDCTLINT_F
, "CIM block read from CTL space", -1, 1 },
4588 { BLKWRCTLINT_F
, "CIM block write to CTL space", -1, 1 },
4589 { SGLRDPLINT_F
, "CIM single read from PL space", -1, 1 },
4590 { SGLWRPLINT_F
, "CIM single write to PL space", -1, 1 },
4591 { BLKRDPLINT_F
, "CIM block read from PL space", -1, 1 },
4592 { BLKWRPLINT_F
, "CIM block write to PL space", -1, 1 },
4593 { REQOVRLOOKUPINT_F
, "CIM request FIFO overwrite", -1, 1 },
4594 { RSPOVRLOOKUPINT_F
, "CIM response FIFO overwrite", -1, 1 },
4595 { TIMEOUTINT_F
, "CIM PIF timeout", -1, 1 },
4596 { TIMEOUTMAINT_F
, "CIM PIF MA timeout", -1, 1 },
4603 fw_err
= t4_read_reg(adapter
, PCIE_FW_A
);
4604 if (fw_err
& PCIE_FW_ERR_F
)
4605 t4_report_fw_error(adapter
);
4607 /* When the Firmware detects an internal error which normally
4608 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4609 * in order to make sure the Host sees the Firmware Crash. So
4610 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4611 * ignore the Timer0 interrupt.
4614 val
= t4_read_reg(adapter
, CIM_HOST_INT_CAUSE_A
);
4615 if (val
& TIMER0INT_F
)
4616 if (!(fw_err
& PCIE_FW_ERR_F
) ||
4617 (PCIE_FW_EVAL_G(fw_err
) != PCIE_FW_EVAL_CRASH
))
4618 t4_write_reg(adapter
, CIM_HOST_INT_CAUSE_A
,
4621 fat
= t4_handle_intr_status(adapter
, CIM_HOST_INT_CAUSE_A
,
4623 t4_handle_intr_status(adapter
, CIM_HOST_UPACC_INT_CAUSE_A
,
4626 t4_fatal_err(adapter
);
4630 * ULP RX interrupt handler.
4632 static void ulprx_intr_handler(struct adapter
*adapter
)
4634 static const struct intr_info ulprx_intr_info
[] = {
4635 { 0x1800000, "ULPRX context error", -1, 1 },
4636 { 0x7fffff, "ULPRX parity error", -1, 1 },
4640 if (t4_handle_intr_status(adapter
, ULP_RX_INT_CAUSE_A
, ulprx_intr_info
))
4641 t4_fatal_err(adapter
);
4645 * ULP TX interrupt handler.
4647 static void ulptx_intr_handler(struct adapter
*adapter
)
4649 static const struct intr_info ulptx_intr_info
[] = {
4650 { PBL_BOUND_ERR_CH3_F
, "ULPTX channel 3 PBL out of bounds", -1,
4652 { PBL_BOUND_ERR_CH2_F
, "ULPTX channel 2 PBL out of bounds", -1,
4654 { PBL_BOUND_ERR_CH1_F
, "ULPTX channel 1 PBL out of bounds", -1,
4656 { PBL_BOUND_ERR_CH0_F
, "ULPTX channel 0 PBL out of bounds", -1,
4658 { 0xfffffff, "ULPTX parity error", -1, 1 },
4662 if (t4_handle_intr_status(adapter
, ULP_TX_INT_CAUSE_A
, ulptx_intr_info
))
4663 t4_fatal_err(adapter
);
4667 * PM TX interrupt handler.
4669 static void pmtx_intr_handler(struct adapter
*adapter
)
4671 static const struct intr_info pmtx_intr_info
[] = {
4672 { PCMD_LEN_OVFL0_F
, "PMTX channel 0 pcmd too large", -1, 1 },
4673 { PCMD_LEN_OVFL1_F
, "PMTX channel 1 pcmd too large", -1, 1 },
4674 { PCMD_LEN_OVFL2_F
, "PMTX channel 2 pcmd too large", -1, 1 },
4675 { ZERO_C_CMD_ERROR_F
, "PMTX 0-length pcmd", -1, 1 },
4676 { PMTX_FRAMING_ERROR_F
, "PMTX framing error", -1, 1 },
4677 { OESPI_PAR_ERROR_F
, "PMTX oespi parity error", -1, 1 },
4678 { DB_OPTIONS_PAR_ERROR_F
, "PMTX db_options parity error",
4680 { ICSPI_PAR_ERROR_F
, "PMTX icspi parity error", -1, 1 },
4681 { PMTX_C_PCMD_PAR_ERROR_F
, "PMTX c_pcmd parity error", -1, 1},
4685 if (t4_handle_intr_status(adapter
, PM_TX_INT_CAUSE_A
, pmtx_intr_info
))
4686 t4_fatal_err(adapter
);
4690 * PM RX interrupt handler.
4692 static void pmrx_intr_handler(struct adapter
*adapter
)
4694 static const struct intr_info pmrx_intr_info
[] = {
4695 { ZERO_E_CMD_ERROR_F
, "PMRX 0-length pcmd", -1, 1 },
4696 { PMRX_FRAMING_ERROR_F
, "PMRX framing error", -1, 1 },
4697 { OCSPI_PAR_ERROR_F
, "PMRX ocspi parity error", -1, 1 },
4698 { DB_OPTIONS_PAR_ERROR_F
, "PMRX db_options parity error",
4700 { IESPI_PAR_ERROR_F
, "PMRX iespi parity error", -1, 1 },
4701 { PMRX_E_PCMD_PAR_ERROR_F
, "PMRX e_pcmd parity error", -1, 1},
4705 if (t4_handle_intr_status(adapter
, PM_RX_INT_CAUSE_A
, pmrx_intr_info
))
4706 t4_fatal_err(adapter
);
4710 * CPL switch interrupt handler.
4712 static void cplsw_intr_handler(struct adapter
*adapter
)
4714 static const struct intr_info cplsw_intr_info
[] = {
4715 { CIM_OP_MAP_PERR_F
, "CPLSW CIM op_map parity error", -1, 1 },
4716 { CIM_OVFL_ERROR_F
, "CPLSW CIM overflow", -1, 1 },
4717 { TP_FRAMING_ERROR_F
, "CPLSW TP framing error", -1, 1 },
4718 { SGE_FRAMING_ERROR_F
, "CPLSW SGE framing error", -1, 1 },
4719 { CIM_FRAMING_ERROR_F
, "CPLSW CIM framing error", -1, 1 },
4720 { ZERO_SWITCH_ERROR_F
, "CPLSW no-switch error", -1, 1 },
4724 if (t4_handle_intr_status(adapter
, CPL_INTR_CAUSE_A
, cplsw_intr_info
))
4725 t4_fatal_err(adapter
);
4729 * LE interrupt handler.
4731 static void le_intr_handler(struct adapter
*adap
)
4733 enum chip_type chip
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
4734 static const struct intr_info le_intr_info
[] = {
4735 { LIPMISS_F
, "LE LIP miss", -1, 0 },
4736 { LIP0_F
, "LE 0 LIP error", -1, 0 },
4737 { PARITYERR_F
, "LE parity error", -1, 1 },
4738 { UNKNOWNCMD_F
, "LE unknown command", -1, 1 },
4739 { REQQPARERR_F
, "LE request queue parity error", -1, 1 },
4743 static struct intr_info t6_le_intr_info
[] = {
4744 { T6_LIPMISS_F
, "LE LIP miss", -1, 0 },
4745 { T6_LIP0_F
, "LE 0 LIP error", -1, 0 },
4746 { TCAMINTPERR_F
, "LE parity error", -1, 1 },
4747 { T6_UNKNOWNCMD_F
, "LE unknown command", -1, 1 },
4748 { SSRAMINTPERR_F
, "LE request queue parity error", -1, 1 },
4752 if (t4_handle_intr_status(adap
, LE_DB_INT_CAUSE_A
,
4753 (chip
<= CHELSIO_T5
) ?
4754 le_intr_info
: t6_le_intr_info
))
4759 * MPS interrupt handler.
4761 static void mps_intr_handler(struct adapter
*adapter
)
4763 static const struct intr_info mps_rx_intr_info
[] = {
4764 { 0xffffff, "MPS Rx parity error", -1, 1 },
4767 static const struct intr_info mps_tx_intr_info
[] = {
4768 { TPFIFO_V(TPFIFO_M
), "MPS Tx TP FIFO parity error", -1, 1 },
4769 { NCSIFIFO_F
, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4770 { TXDATAFIFO_V(TXDATAFIFO_M
), "MPS Tx data FIFO parity error",
4772 { TXDESCFIFO_V(TXDESCFIFO_M
), "MPS Tx desc FIFO parity error",
4774 { BUBBLE_F
, "MPS Tx underflow", -1, 1 },
4775 { SECNTERR_F
, "MPS Tx SOP/EOP error", -1, 1 },
4776 { FRMERR_F
, "MPS Tx framing error", -1, 1 },
4779 static const struct intr_info t6_mps_tx_intr_info
[] = {
4780 { TPFIFO_V(TPFIFO_M
), "MPS Tx TP FIFO parity error", -1, 1 },
4781 { NCSIFIFO_F
, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4782 { TXDATAFIFO_V(TXDATAFIFO_M
), "MPS Tx data FIFO parity error",
4784 { TXDESCFIFO_V(TXDESCFIFO_M
), "MPS Tx desc FIFO parity error",
4786 /* MPS Tx Bubble is normal for T6 */
4787 { SECNTERR_F
, "MPS Tx SOP/EOP error", -1, 1 },
4788 { FRMERR_F
, "MPS Tx framing error", -1, 1 },
4791 static const struct intr_info mps_trc_intr_info
[] = {
4792 { FILTMEM_V(FILTMEM_M
), "MPS TRC filter parity error", -1, 1 },
4793 { PKTFIFO_V(PKTFIFO_M
), "MPS TRC packet FIFO parity error",
4795 { MISCPERR_F
, "MPS TRC misc parity error", -1, 1 },
4798 static const struct intr_info mps_stat_sram_intr_info
[] = {
4799 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4802 static const struct intr_info mps_stat_tx_intr_info
[] = {
4803 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4806 static const struct intr_info mps_stat_rx_intr_info
[] = {
4807 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4810 static const struct intr_info mps_cls_intr_info
[] = {
4811 { MATCHSRAM_F
, "MPS match SRAM parity error", -1, 1 },
4812 { MATCHTCAM_F
, "MPS match TCAM parity error", -1, 1 },
4813 { HASHSRAM_F
, "MPS hash SRAM parity error", -1, 1 },
4819 fat
= t4_handle_intr_status(adapter
, MPS_RX_PERR_INT_CAUSE_A
,
4821 t4_handle_intr_status(adapter
, MPS_TX_INT_CAUSE_A
,
4822 is_t6(adapter
->params
.chip
)
4823 ? t6_mps_tx_intr_info
4824 : mps_tx_intr_info
) +
4825 t4_handle_intr_status(adapter
, MPS_TRC_INT_CAUSE_A
,
4826 mps_trc_intr_info
) +
4827 t4_handle_intr_status(adapter
, MPS_STAT_PERR_INT_CAUSE_SRAM_A
,
4828 mps_stat_sram_intr_info
) +
4829 t4_handle_intr_status(adapter
, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A
,
4830 mps_stat_tx_intr_info
) +
4831 t4_handle_intr_status(adapter
, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A
,
4832 mps_stat_rx_intr_info
) +
4833 t4_handle_intr_status(adapter
, MPS_CLS_INT_CAUSE_A
,
4836 t4_write_reg(adapter
, MPS_INT_CAUSE_A
, 0);
4837 t4_read_reg(adapter
, MPS_INT_CAUSE_A
); /* flush */
4839 t4_fatal_err(adapter
);
4842 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4846 * EDC/MC interrupt handler.
4848 static void mem_intr_handler(struct adapter
*adapter
, int idx
)
4850 static const char name
[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4852 unsigned int addr
, cnt_addr
, v
;
4854 if (idx
<= MEM_EDC1
) {
4855 addr
= EDC_REG(EDC_INT_CAUSE_A
, idx
);
4856 cnt_addr
= EDC_REG(EDC_ECC_STATUS_A
, idx
);
4857 } else if (idx
== MEM_MC
) {
4858 if (is_t4(adapter
->params
.chip
)) {
4859 addr
= MC_INT_CAUSE_A
;
4860 cnt_addr
= MC_ECC_STATUS_A
;
4862 addr
= MC_P_INT_CAUSE_A
;
4863 cnt_addr
= MC_P_ECC_STATUS_A
;
4866 addr
= MC_REG(MC_P_INT_CAUSE_A
, 1);
4867 cnt_addr
= MC_REG(MC_P_ECC_STATUS_A
, 1);
4870 v
= t4_read_reg(adapter
, addr
) & MEM_INT_MASK
;
4871 if (v
& PERR_INT_CAUSE_F
)
4872 dev_alert(adapter
->pdev_dev
, "%s FIFO parity error\n",
4874 if (v
& ECC_CE_INT_CAUSE_F
) {
4875 u32 cnt
= ECC_CECNT_G(t4_read_reg(adapter
, cnt_addr
));
4877 t4_edc_err_read(adapter
, idx
);
4879 t4_write_reg(adapter
, cnt_addr
, ECC_CECNT_V(ECC_CECNT_M
));
4880 if (printk_ratelimit())
4881 dev_warn(adapter
->pdev_dev
,
4882 "%u %s correctable ECC data error%s\n",
4883 cnt
, name
[idx
], cnt
> 1 ? "s" : "");
4885 if (v
& ECC_UE_INT_CAUSE_F
)
4886 dev_alert(adapter
->pdev_dev
,
4887 "%s uncorrectable ECC data error\n", name
[idx
]);
4889 t4_write_reg(adapter
, addr
, v
);
4890 if (v
& (PERR_INT_CAUSE_F
| ECC_UE_INT_CAUSE_F
))
4891 t4_fatal_err(adapter
);
4895 * MA interrupt handler.
4897 static void ma_intr_handler(struct adapter
*adap
)
4899 u32 v
, status
= t4_read_reg(adap
, MA_INT_CAUSE_A
);
4901 if (status
& MEM_PERR_INT_CAUSE_F
) {
4902 dev_alert(adap
->pdev_dev
,
4903 "MA parity error, parity status %#x\n",
4904 t4_read_reg(adap
, MA_PARITY_ERROR_STATUS1_A
));
4905 if (is_t5(adap
->params
.chip
))
4906 dev_alert(adap
->pdev_dev
,
4907 "MA parity error, parity status %#x\n",
4909 MA_PARITY_ERROR_STATUS2_A
));
4911 if (status
& MEM_WRAP_INT_CAUSE_F
) {
4912 v
= t4_read_reg(adap
, MA_INT_WRAP_STATUS_A
);
4913 dev_alert(adap
->pdev_dev
, "MA address wrap-around error by "
4914 "client %u to address %#x\n",
4915 MEM_WRAP_CLIENT_NUM_G(v
),
4916 MEM_WRAP_ADDRESS_G(v
) << 4);
4918 t4_write_reg(adap
, MA_INT_CAUSE_A
, status
);
4923 * SMB interrupt handler.
4925 static void smb_intr_handler(struct adapter
*adap
)
4927 static const struct intr_info smb_intr_info
[] = {
4928 { MSTTXFIFOPARINT_F
, "SMB master Tx FIFO parity error", -1, 1 },
4929 { MSTRXFIFOPARINT_F
, "SMB master Rx FIFO parity error", -1, 1 },
4930 { SLVFIFOPARINT_F
, "SMB slave FIFO parity error", -1, 1 },
4934 if (t4_handle_intr_status(adap
, SMB_INT_CAUSE_A
, smb_intr_info
))
4939 * NC-SI interrupt handler.
4941 static void ncsi_intr_handler(struct adapter
*adap
)
4943 static const struct intr_info ncsi_intr_info
[] = {
4944 { CIM_DM_PRTY_ERR_F
, "NC-SI CIM parity error", -1, 1 },
4945 { MPS_DM_PRTY_ERR_F
, "NC-SI MPS parity error", -1, 1 },
4946 { TXFIFO_PRTY_ERR_F
, "NC-SI Tx FIFO parity error", -1, 1 },
4947 { RXFIFO_PRTY_ERR_F
, "NC-SI Rx FIFO parity error", -1, 1 },
4951 if (t4_handle_intr_status(adap
, NCSI_INT_CAUSE_A
, ncsi_intr_info
))
4956 * XGMAC interrupt handler.
4958 static void xgmac_intr_handler(struct adapter
*adap
, int port
)
4960 u32 v
, int_cause_reg
;
4962 if (is_t4(adap
->params
.chip
))
4963 int_cause_reg
= PORT_REG(port
, XGMAC_PORT_INT_CAUSE_A
);
4965 int_cause_reg
= T5_PORT_REG(port
, MAC_PORT_INT_CAUSE_A
);
4967 v
= t4_read_reg(adap
, int_cause_reg
);
4969 v
&= TXFIFO_PRTY_ERR_F
| RXFIFO_PRTY_ERR_F
;
4973 if (v
& TXFIFO_PRTY_ERR_F
)
4974 dev_alert(adap
->pdev_dev
, "XGMAC %d Tx FIFO parity error\n",
4976 if (v
& RXFIFO_PRTY_ERR_F
)
4977 dev_alert(adap
->pdev_dev
, "XGMAC %d Rx FIFO parity error\n",
4979 t4_write_reg(adap
, PORT_REG(port
, XGMAC_PORT_INT_CAUSE_A
), v
);
4984 * PL interrupt handler.
4986 static void pl_intr_handler(struct adapter
*adap
)
4988 static const struct intr_info pl_intr_info
[] = {
4989 { FATALPERR_F
, "T4 fatal parity error", -1, 1 },
4990 { PERRVFID_F
, "PL VFID_MAP parity error", -1, 1 },
4994 if (t4_handle_intr_status(adap
, PL_PL_INT_CAUSE_A
, pl_intr_info
))
4998 #define PF_INTR_MASK (PFSW_F)
4999 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5000 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5001 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5004 * t4_slow_intr_handler - control path interrupt handler
5005 * @adapter: the adapter
5007 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
5008 * The designation 'slow' is because it involves register reads, while
5009 * data interrupts typically don't involve any MMIOs.
5011 int t4_slow_intr_handler(struct adapter
*adapter
)
5013 /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5014 * set when the corresponding PL_INT_ENABLE bit isn't set. It's
5015 * easiest just to mask that case here.
5017 u32 raw_cause
= t4_read_reg(adapter
, PL_INT_CAUSE_A
);
5018 u32 enable
= t4_read_reg(adapter
, PL_INT_ENABLE_A
);
5019 u32 cause
= raw_cause
& enable
;
5021 if (!(cause
& GLBL_INTR_MASK
))
5024 cim_intr_handler(adapter
);
5026 mps_intr_handler(adapter
);
5028 ncsi_intr_handler(adapter
);
5030 pl_intr_handler(adapter
);
5032 smb_intr_handler(adapter
);
5033 if (cause
& XGMAC0_F
)
5034 xgmac_intr_handler(adapter
, 0);
5035 if (cause
& XGMAC1_F
)
5036 xgmac_intr_handler(adapter
, 1);
5037 if (cause
& XGMAC_KR0_F
)
5038 xgmac_intr_handler(adapter
, 2);
5039 if (cause
& XGMAC_KR1_F
)
5040 xgmac_intr_handler(adapter
, 3);
5042 pcie_intr_handler(adapter
);
5044 mem_intr_handler(adapter
, MEM_MC
);
5045 if (is_t5(adapter
->params
.chip
) && (cause
& MC1_F
))
5046 mem_intr_handler(adapter
, MEM_MC1
);
5048 mem_intr_handler(adapter
, MEM_EDC0
);
5050 mem_intr_handler(adapter
, MEM_EDC1
);
5052 le_intr_handler(adapter
);
5054 tp_intr_handler(adapter
);
5056 ma_intr_handler(adapter
);
5057 if (cause
& PM_TX_F
)
5058 pmtx_intr_handler(adapter
);
5059 if (cause
& PM_RX_F
)
5060 pmrx_intr_handler(adapter
);
5061 if (cause
& ULP_RX_F
)
5062 ulprx_intr_handler(adapter
);
5063 if (cause
& CPL_SWITCH_F
)
5064 cplsw_intr_handler(adapter
);
5066 sge_intr_handler(adapter
);
5067 if (cause
& ULP_TX_F
)
5068 ulptx_intr_handler(adapter
);
5070 /* Clear the interrupts just processed for which we are the master. */
5071 t4_write_reg(adapter
, PL_INT_CAUSE_A
, raw_cause
& GLBL_INTR_MASK
);
5072 (void)t4_read_reg(adapter
, PL_INT_CAUSE_A
); /* flush */
5077 * t4_intr_enable - enable interrupts
5078 * @adapter: the adapter whose interrupts should be enabled
5080 * Enable PF-specific interrupts for the calling function and the top-level
5081 * interrupt concentrator for global interrupts. Interrupts are already
5082 * enabled at each module, here we just enable the roots of the interrupt
5085 * Note: this function should be called only when the driver manages
5086 * non PF-specific interrupts from the various HW modules. Only one PCI
5087 * function at a time should be doing this.
5089 void t4_intr_enable(struct adapter
*adapter
)
5092 u32 whoami
= t4_read_reg(adapter
, PL_WHOAMI_A
);
5093 u32 pf
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
?
5094 SOURCEPF_G(whoami
) : T6_SOURCEPF_G(whoami
);
5096 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
5097 val
= ERR_DROPPED_DB_F
| ERR_EGR_CTXT_PRIO_F
| DBFIFO_HP_INT_F
;
5098 t4_write_reg(adapter
, SGE_INT_ENABLE3_A
, ERR_CPL_EXCEED_IQE_SIZE_F
|
5099 ERR_INVALID_CIDX_INC_F
| ERR_CPL_OPCODE_0_F
|
5100 ERR_DATA_CPL_ON_HIGH_QID1_F
| INGRESS_SIZE_ERR_F
|
5101 ERR_DATA_CPL_ON_HIGH_QID0_F
| ERR_BAD_DB_PIDX3_F
|
5102 ERR_BAD_DB_PIDX2_F
| ERR_BAD_DB_PIDX1_F
|
5103 ERR_BAD_DB_PIDX0_F
| ERR_ING_CTXT_PRIO_F
|
5104 DBFIFO_LP_INT_F
| EGRESS_SIZE_ERR_F
| val
);
5105 t4_write_reg(adapter
, MYPF_REG(PL_PF_INT_ENABLE_A
), PF_INTR_MASK
);
5106 t4_set_reg_field(adapter
, PL_INT_MAP0_A
, 0, 1 << pf
);
5110 * t4_intr_disable - disable interrupts
5111 * @adapter: the adapter whose interrupts should be disabled
5113 * Disable interrupts. We only disable the top-level interrupt
5114 * concentrators. The caller must be a PCI function managing global
5117 void t4_intr_disable(struct adapter
*adapter
)
5121 if (pci_channel_offline(adapter
->pdev
))
5124 whoami
= t4_read_reg(adapter
, PL_WHOAMI_A
);
5125 pf
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
?
5126 SOURCEPF_G(whoami
) : T6_SOURCEPF_G(whoami
);
5128 t4_write_reg(adapter
, MYPF_REG(PL_PF_INT_ENABLE_A
), 0);
5129 t4_set_reg_field(adapter
, PL_INT_MAP0_A
, 1 << pf
, 0);
5132 unsigned int t4_chip_rss_size(struct adapter
*adap
)
5134 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) <= CHELSIO_T5
)
5135 return RSS_NENTRIES
;
5137 return T6_RSS_NENTRIES
;
5141 * t4_config_rss_range - configure a portion of the RSS mapping table
5142 * @adapter: the adapter
5143 * @mbox: mbox to use for the FW command
5144 * @viid: virtual interface whose RSS subtable is to be written
5145 * @start: start entry in the table to write
5146 * @n: how many table entries to write
5147 * @rspq: values for the response queue lookup table
5148 * @nrspq: number of values in @rspq
5150 * Programs the selected part of the VI's RSS mapping table with the
5151 * provided values. If @nrspq < @n the supplied values are used repeatedly
5152 * until the full table range is populated.
5154 * The caller must ensure the values in @rspq are in the range allowed for
5157 int t4_config_rss_range(struct adapter
*adapter
, int mbox
, unsigned int viid
,
5158 int start
, int n
, const u16
*rspq
, unsigned int nrspq
)
5161 const u16
*rsp
= rspq
;
5162 const u16
*rsp_end
= rspq
+ nrspq
;
5163 struct fw_rss_ind_tbl_cmd cmd
;
5165 memset(&cmd
, 0, sizeof(cmd
));
5166 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD
) |
5167 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
5168 FW_RSS_IND_TBL_CMD_VIID_V(viid
));
5169 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
5171 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5173 int nq
= min(n
, 32);
5174 __be32
*qp
= &cmd
.iq0_to_iq2
;
5176 cmd
.niqid
= cpu_to_be16(nq
);
5177 cmd
.startidx
= cpu_to_be16(start
);
5185 v
= FW_RSS_IND_TBL_CMD_IQ0_V(*rsp
);
5186 if (++rsp
>= rsp_end
)
5188 v
|= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp
);
5189 if (++rsp
>= rsp_end
)
5191 v
|= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp
);
5192 if (++rsp
>= rsp_end
)
5195 *qp
++ = cpu_to_be32(v
);
5199 ret
= t4_wr_mbox(adapter
, mbox
, &cmd
, sizeof(cmd
), NULL
);
5207 * t4_config_glbl_rss - configure the global RSS mode
5208 * @adapter: the adapter
5209 * @mbox: mbox to use for the FW command
5210 * @mode: global RSS mode
5211 * @flags: mode-specific flags
5213 * Sets the global RSS mode.
5215 int t4_config_glbl_rss(struct adapter
*adapter
, int mbox
, unsigned int mode
,
5218 struct fw_rss_glb_config_cmd c
;
5220 memset(&c
, 0, sizeof(c
));
5221 c
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD
) |
5222 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
);
5223 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
5224 if (mode
== FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL
) {
5225 c
.u
.manual
.mode_pkd
=
5226 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode
));
5227 } else if (mode
== FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
) {
5228 c
.u
.basicvirtual
.mode_pkd
=
5229 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode
));
5230 c
.u
.basicvirtual
.synmapen_to_hashtoeplitz
= cpu_to_be32(flags
);
5233 return t4_wr_mbox(adapter
, mbox
, &c
, sizeof(c
), NULL
);
5237 * t4_config_vi_rss - configure per VI RSS settings
5238 * @adapter: the adapter
5239 * @mbox: mbox to use for the FW command
5242 * @defq: id of the default RSS queue for the VI.
5244 * Configures VI-specific RSS properties.
5246 int t4_config_vi_rss(struct adapter
*adapter
, int mbox
, unsigned int viid
,
5247 unsigned int flags
, unsigned int defq
)
5249 struct fw_rss_vi_config_cmd c
;
5251 memset(&c
, 0, sizeof(c
));
5252 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD
) |
5253 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
5254 FW_RSS_VI_CONFIG_CMD_VIID_V(viid
));
5255 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
5256 c
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(flags
|
5257 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq
));
5258 return t4_wr_mbox(adapter
, mbox
, &c
, sizeof(c
), NULL
);
5261 /* Read an RSS table row */
5262 static int rd_rss_row(struct adapter
*adap
, int row
, u32
*val
)
5264 t4_write_reg(adap
, TP_RSS_LKP_TABLE_A
, 0xfff00000 | row
);
5265 return t4_wait_op_done_val(adap
, TP_RSS_LKP_TABLE_A
, LKPTBLROWVLD_F
, 1,
5270 * t4_read_rss - read the contents of the RSS mapping table
5271 * @adapter: the adapter
5272 * @map: holds the contents of the RSS mapping table
5274 * Reads the contents of the RSS hash->queue mapping table.
5276 int t4_read_rss(struct adapter
*adapter
, u16
*map
)
5278 int i
, ret
, nentries
;
5281 nentries
= t4_chip_rss_size(adapter
);
5282 for (i
= 0; i
< nentries
/ 2; ++i
) {
5283 ret
= rd_rss_row(adapter
, i
, &val
);
5286 *map
++ = LKPTBLQUEUE0_G(val
);
5287 *map
++ = LKPTBLQUEUE1_G(val
);
5292 static unsigned int t4_use_ldst(struct adapter
*adap
)
5294 return (adap
->flags
& CXGB4_FW_OK
) && !adap
->use_bd
;
5298 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5299 * @adap: the adapter
5300 * @cmd: TP fw ldst address space type
5301 * @vals: where the indirect register values are stored/written
5302 * @nregs: how many indirect registers to read/write
5303 * @start_idx: index of first indirect register to read/write
5304 * @rw: Read (1) or Write (0)
5305 * @sleep_ok: if true we may sleep while awaiting command completion
5307 * Access TP indirect registers through LDST
5309 static int t4_tp_fw_ldst_rw(struct adapter
*adap
, int cmd
, u32
*vals
,
5310 unsigned int nregs
, unsigned int start_index
,
5311 unsigned int rw
, bool sleep_ok
)
5315 struct fw_ldst_cmd c
;
5317 for (i
= 0; i
< nregs
; i
++) {
5318 memset(&c
, 0, sizeof(c
));
5319 c
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
5321 (rw
? FW_CMD_READ_F
:
5323 FW_LDST_CMD_ADDRSPACE_V(cmd
));
5324 c
.cycles_to_len16
= cpu_to_be32(FW_LEN16(c
));
5326 c
.u
.addrval
.addr
= cpu_to_be32(start_index
+ i
);
5327 c
.u
.addrval
.val
= rw
? 0 : cpu_to_be32(vals
[i
]);
5328 ret
= t4_wr_mbox_meat(adap
, adap
->mbox
, &c
, sizeof(c
), &c
,
5334 vals
[i
] = be32_to_cpu(c
.u
.addrval
.val
);
5340 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5341 * @adap: the adapter
5342 * @reg_addr: Address Register
5343 * @reg_data: Data register
5344 * @buff: where the indirect register values are stored/written
5345 * @nregs: how many indirect registers to read/write
5346 * @start_index: index of first indirect register to read/write
5347 * @rw: READ(1) or WRITE(0)
5348 * @sleep_ok: if true we may sleep while awaiting command completion
5350 * Read/Write TP indirect registers through LDST if possible.
5351 * Else, use backdoor access
5353 static void t4_tp_indirect_rw(struct adapter
*adap
, u32 reg_addr
, u32 reg_data
,
5354 u32
*buff
, u32 nregs
, u32 start_index
, int rw
,
5362 cmd
= FW_LDST_ADDRSPC_TP_PIO
;
5364 case TP_TM_PIO_ADDR_A
:
5365 cmd
= FW_LDST_ADDRSPC_TP_TM_PIO
;
5367 case TP_MIB_INDEX_A
:
5368 cmd
= FW_LDST_ADDRSPC_TP_MIB
;
5371 goto indirect_access
;
5374 if (t4_use_ldst(adap
))
5375 rc
= t4_tp_fw_ldst_rw(adap
, cmd
, buff
, nregs
, start_index
, rw
,
5382 t4_read_indirect(adap
, reg_addr
, reg_data
, buff
, nregs
,
5385 t4_write_indirect(adap
, reg_addr
, reg_data
, buff
, nregs
,
5391 * t4_tp_pio_read - Read TP PIO registers
5392 * @adap: the adapter
5393 * @buff: where the indirect register values are written
5394 * @nregs: how many indirect registers to read
5395 * @start_index: index of first indirect register to read
5396 * @sleep_ok: if true we may sleep while awaiting command completion
5398 * Read TP PIO Registers
5400 void t4_tp_pio_read(struct adapter
*adap
, u32
*buff
, u32 nregs
,
5401 u32 start_index
, bool sleep_ok
)
5403 t4_tp_indirect_rw(adap
, TP_PIO_ADDR_A
, TP_PIO_DATA_A
, buff
, nregs
,
5404 start_index
, 1, sleep_ok
);
5408 * t4_tp_pio_write - Write TP PIO registers
5409 * @adap: the adapter
5410 * @buff: where the indirect register values are stored
5411 * @nregs: how many indirect registers to write
5412 * @start_index: index of first indirect register to write
5413 * @sleep_ok: if true we may sleep while awaiting command completion
5415 * Write TP PIO Registers
5417 static void t4_tp_pio_write(struct adapter
*adap
, u32
*buff
, u32 nregs
,
5418 u32 start_index
, bool sleep_ok
)
5420 t4_tp_indirect_rw(adap
, TP_PIO_ADDR_A
, TP_PIO_DATA_A
, buff
, nregs
,
5421 start_index
, 0, sleep_ok
);
5425 * t4_tp_tm_pio_read - Read TP TM PIO registers
5426 * @adap: the adapter
5427 * @buff: where the indirect register values are written
5428 * @nregs: how many indirect registers to read
5429 * @start_index: index of first indirect register to read
5430 * @sleep_ok: if true we may sleep while awaiting command completion
5432 * Read TP TM PIO Registers
5434 void t4_tp_tm_pio_read(struct adapter
*adap
, u32
*buff
, u32 nregs
,
5435 u32 start_index
, bool sleep_ok
)
5437 t4_tp_indirect_rw(adap
, TP_TM_PIO_ADDR_A
, TP_TM_PIO_DATA_A
, buff
,
5438 nregs
, start_index
, 1, sleep_ok
);
5442 * t4_tp_mib_read - Read TP MIB registers
5443 * @adap: the adapter
5444 * @buff: where the indirect register values are written
5445 * @nregs: how many indirect registers to read
5446 * @start_index: index of first indirect register to read
5447 * @sleep_ok: if true we may sleep while awaiting command completion
5449 * Read TP MIB Registers
5451 void t4_tp_mib_read(struct adapter
*adap
, u32
*buff
, u32 nregs
, u32 start_index
,
5454 t4_tp_indirect_rw(adap
, TP_MIB_INDEX_A
, TP_MIB_DATA_A
, buff
, nregs
,
5455 start_index
, 1, sleep_ok
);
5459 * t4_read_rss_key - read the global RSS key
5460 * @adap: the adapter
5461 * @key: 10-entry array holding the 320-bit RSS key
5462 * @sleep_ok: if true we may sleep while awaiting command completion
5464 * Reads the global 320-bit RSS key.
5466 void t4_read_rss_key(struct adapter
*adap
, u32
*key
, bool sleep_ok
)
5468 t4_tp_pio_read(adap
, key
, 10, TP_RSS_SECRET_KEY0_A
, sleep_ok
);
5472 * t4_write_rss_key - program one of the RSS keys
5473 * @adap: the adapter
5474 * @key: 10-entry array holding the 320-bit RSS key
5475 * @idx: which RSS key to write
5476 * @sleep_ok: if true we may sleep while awaiting command completion
5478 * Writes one of the RSS keys with the given 320-bit value. If @idx is
5479 * 0..15 the corresponding entry in the RSS key table is written,
5480 * otherwise the global RSS key is written.
5482 void t4_write_rss_key(struct adapter
*adap
, const u32
*key
, int idx
,
5485 u8 rss_key_addr_cnt
= 16;
5486 u32 vrt
= t4_read_reg(adap
, TP_RSS_CONFIG_VRT_A
);
5488 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5489 * allows access to key addresses 16-63 by using KeyWrAddrX
5490 * as index[5:4](upper 2) into key table
5492 if ((CHELSIO_CHIP_VERSION(adap
->params
.chip
) > CHELSIO_T5
) &&
5493 (vrt
& KEYEXTEND_F
) && (KEYMODE_G(vrt
) == 3))
5494 rss_key_addr_cnt
= 32;
5496 t4_tp_pio_write(adap
, (void *)key
, 10, TP_RSS_SECRET_KEY0_A
, sleep_ok
);
5498 if (idx
>= 0 && idx
< rss_key_addr_cnt
) {
5499 if (rss_key_addr_cnt
> 16)
5500 t4_write_reg(adap
, TP_RSS_CONFIG_VRT_A
,
5501 KEYWRADDRX_V(idx
>> 4) |
5502 T6_VFWRADDR_V(idx
) | KEYWREN_F
);
5504 t4_write_reg(adap
, TP_RSS_CONFIG_VRT_A
,
5505 KEYWRADDR_V(idx
) | KEYWREN_F
);
5510 * t4_read_rss_pf_config - read PF RSS Configuration Table
5511 * @adapter: the adapter
5512 * @index: the entry in the PF RSS table to read
5513 * @valp: where to store the returned value
5514 * @sleep_ok: if true we may sleep while awaiting command completion
5516 * Reads the PF RSS Configuration Table at the specified index and returns
5517 * the value found there.
5519 void t4_read_rss_pf_config(struct adapter
*adapter
, unsigned int index
,
5520 u32
*valp
, bool sleep_ok
)
5522 t4_tp_pio_read(adapter
, valp
, 1, TP_RSS_PF0_CONFIG_A
+ index
, sleep_ok
);
5526 * t4_read_rss_vf_config - read VF RSS Configuration Table
5527 * @adapter: the adapter
5528 * @index: the entry in the VF RSS table to read
5529 * @vfl: where to store the returned VFL
5530 * @vfh: where to store the returned VFH
5531 * @sleep_ok: if true we may sleep while awaiting command completion
5533 * Reads the VF RSS Configuration Table at the specified index and returns
5534 * the (VFL, VFH) values found there.
5536 void t4_read_rss_vf_config(struct adapter
*adapter
, unsigned int index
,
5537 u32
*vfl
, u32
*vfh
, bool sleep_ok
)
5539 u32 vrt
, mask
, data
;
5541 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
) {
5542 mask
= VFWRADDR_V(VFWRADDR_M
);
5543 data
= VFWRADDR_V(index
);
5545 mask
= T6_VFWRADDR_V(T6_VFWRADDR_M
);
5546 data
= T6_VFWRADDR_V(index
);
5549 /* Request that the index'th VF Table values be read into VFL/VFH.
5551 vrt
= t4_read_reg(adapter
, TP_RSS_CONFIG_VRT_A
);
5552 vrt
&= ~(VFRDRG_F
| VFWREN_F
| KEYWREN_F
| mask
);
5553 vrt
|= data
| VFRDEN_F
;
5554 t4_write_reg(adapter
, TP_RSS_CONFIG_VRT_A
, vrt
);
5556 /* Grab the VFL/VFH values ...
5558 t4_tp_pio_read(adapter
, vfl
, 1, TP_RSS_VFL_CONFIG_A
, sleep_ok
);
5559 t4_tp_pio_read(adapter
, vfh
, 1, TP_RSS_VFH_CONFIG_A
, sleep_ok
);
5563 * t4_read_rss_pf_map - read PF RSS Map
5564 * @adapter: the adapter
5565 * @sleep_ok: if true we may sleep while awaiting command completion
5567 * Reads the PF RSS Map register and returns its value.
5569 u32
t4_read_rss_pf_map(struct adapter
*adapter
, bool sleep_ok
)
5573 t4_tp_pio_read(adapter
, &pfmap
, 1, TP_RSS_PF_MAP_A
, sleep_ok
);
5578 * t4_read_rss_pf_mask - read PF RSS Mask
5579 * @adapter: the adapter
5580 * @sleep_ok: if true we may sleep while awaiting command completion
5582 * Reads the PF RSS Mask register and returns its value.
5584 u32
t4_read_rss_pf_mask(struct adapter
*adapter
, bool sleep_ok
)
5588 t4_tp_pio_read(adapter
, &pfmask
, 1, TP_RSS_PF_MSK_A
, sleep_ok
);
5593 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
5594 * @adap: the adapter
5595 * @v4: holds the TCP/IP counter values
5596 * @v6: holds the TCP/IPv6 counter values
5597 * @sleep_ok: if true we may sleep while awaiting command completion
5599 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5600 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5602 void t4_tp_get_tcp_stats(struct adapter
*adap
, struct tp_tcp_stats
*v4
,
5603 struct tp_tcp_stats
*v6
, bool sleep_ok
)
5605 u32 val
[TP_MIB_TCP_RXT_SEG_LO_A
- TP_MIB_TCP_OUT_RST_A
+ 1];
5607 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5608 #define STAT(x) val[STAT_IDX(x)]
5609 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5612 t4_tp_mib_read(adap
, val
, ARRAY_SIZE(val
),
5613 TP_MIB_TCP_OUT_RST_A
, sleep_ok
);
5614 v4
->tcp_out_rsts
= STAT(OUT_RST
);
5615 v4
->tcp_in_segs
= STAT64(IN_SEG
);
5616 v4
->tcp_out_segs
= STAT64(OUT_SEG
);
5617 v4
->tcp_retrans_segs
= STAT64(RXT_SEG
);
5620 t4_tp_mib_read(adap
, val
, ARRAY_SIZE(val
),
5621 TP_MIB_TCP_V6OUT_RST_A
, sleep_ok
);
5622 v6
->tcp_out_rsts
= STAT(OUT_RST
);
5623 v6
->tcp_in_segs
= STAT64(IN_SEG
);
5624 v6
->tcp_out_segs
= STAT64(OUT_SEG
);
5625 v6
->tcp_retrans_segs
= STAT64(RXT_SEG
);
5633 * t4_tp_get_err_stats - read TP's error MIB counters
5634 * @adap: the adapter
5635 * @st: holds the counter values
5636 * @sleep_ok: if true we may sleep while awaiting command completion
5638 * Returns the values of TP's error counters.
5640 void t4_tp_get_err_stats(struct adapter
*adap
, struct tp_err_stats
*st
,
5643 int nchan
= adap
->params
.arch
.nchan
;
5645 t4_tp_mib_read(adap
, st
->mac_in_errs
, nchan
, TP_MIB_MAC_IN_ERR_0_A
,
5647 t4_tp_mib_read(adap
, st
->hdr_in_errs
, nchan
, TP_MIB_HDR_IN_ERR_0_A
,
5649 t4_tp_mib_read(adap
, st
->tcp_in_errs
, nchan
, TP_MIB_TCP_IN_ERR_0_A
,
5651 t4_tp_mib_read(adap
, st
->tnl_cong_drops
, nchan
,
5652 TP_MIB_TNL_CNG_DROP_0_A
, sleep_ok
);
5653 t4_tp_mib_read(adap
, st
->ofld_chan_drops
, nchan
,
5654 TP_MIB_OFD_CHN_DROP_0_A
, sleep_ok
);
5655 t4_tp_mib_read(adap
, st
->tnl_tx_drops
, nchan
, TP_MIB_TNL_DROP_0_A
,
5657 t4_tp_mib_read(adap
, st
->ofld_vlan_drops
, nchan
,
5658 TP_MIB_OFD_VLN_DROP_0_A
, sleep_ok
);
5659 t4_tp_mib_read(adap
, st
->tcp6_in_errs
, nchan
,
5660 TP_MIB_TCP_V6IN_ERR_0_A
, sleep_ok
);
5661 t4_tp_mib_read(adap
, &st
->ofld_no_neigh
, 2, TP_MIB_OFD_ARP_DROP_A
,
5666 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
5667 * @adap: the adapter
5668 * @st: holds the counter values
5669 * @sleep_ok: if true we may sleep while awaiting command completion
5671 * Returns the values of TP's CPL counters.
5673 void t4_tp_get_cpl_stats(struct adapter
*adap
, struct tp_cpl_stats
*st
,
5676 int nchan
= adap
->params
.arch
.nchan
;
5678 t4_tp_mib_read(adap
, st
->req
, nchan
, TP_MIB_CPL_IN_REQ_0_A
, sleep_ok
);
5680 t4_tp_mib_read(adap
, st
->rsp
, nchan
, TP_MIB_CPL_OUT_RSP_0_A
, sleep_ok
);
5684 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5685 * @adap: the adapter
5686 * @st: holds the counter values
5687 * @sleep_ok: if true we may sleep while awaiting command completion
5689 * Returns the values of TP's RDMA counters.
5691 void t4_tp_get_rdma_stats(struct adapter
*adap
, struct tp_rdma_stats
*st
,
5694 t4_tp_mib_read(adap
, &st
->rqe_dfr_pkt
, 2, TP_MIB_RQE_DFR_PKT_A
,
5699 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5700 * @adap: the adapter
5701 * @idx: the port index
5702 * @st: holds the counter values
5703 * @sleep_ok: if true we may sleep while awaiting command completion
5705 * Returns the values of TP's FCoE counters for the selected port.
5707 void t4_get_fcoe_stats(struct adapter
*adap
, unsigned int idx
,
5708 struct tp_fcoe_stats
*st
, bool sleep_ok
)
5712 t4_tp_mib_read(adap
, &st
->frames_ddp
, 1, TP_MIB_FCOE_DDP_0_A
+ idx
,
5715 t4_tp_mib_read(adap
, &st
->frames_drop
, 1,
5716 TP_MIB_FCOE_DROP_0_A
+ idx
, sleep_ok
);
5718 t4_tp_mib_read(adap
, val
, 2, TP_MIB_FCOE_BYTE_0_HI_A
+ 2 * idx
,
5721 st
->octets_ddp
= ((u64
)val
[0] << 32) | val
[1];
5725 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5726 * @adap: the adapter
5727 * @st: holds the counter values
5728 * @sleep_ok: if true we may sleep while awaiting command completion
5730 * Returns the values of TP's counters for non-TCP directly-placed packets.
5732 void t4_get_usm_stats(struct adapter
*adap
, struct tp_usm_stats
*st
,
5737 t4_tp_mib_read(adap
, val
, 4, TP_MIB_USM_PKTS_A
, sleep_ok
);
5738 st
->frames
= val
[0];
5740 st
->octets
= ((u64
)val
[2] << 32) | val
[3];
5744 * t4_read_mtu_tbl - returns the values in the HW path MTU table
5745 * @adap: the adapter
5746 * @mtus: where to store the MTU values
5747 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
5749 * Reads the HW path MTU table.
5751 void t4_read_mtu_tbl(struct adapter
*adap
, u16
*mtus
, u8
*mtu_log
)
5756 for (i
= 0; i
< NMTUS
; ++i
) {
5757 t4_write_reg(adap
, TP_MTU_TABLE_A
,
5758 MTUINDEX_V(0xff) | MTUVALUE_V(i
));
5759 v
= t4_read_reg(adap
, TP_MTU_TABLE_A
);
5760 mtus
[i
] = MTUVALUE_G(v
);
5762 mtu_log
[i
] = MTUWIDTH_G(v
);
5767 * t4_read_cong_tbl - reads the congestion control table
5768 * @adap: the adapter
5769 * @incr: where to store the alpha values
5771 * Reads the additive increments programmed into the HW congestion
5774 void t4_read_cong_tbl(struct adapter
*adap
, u16 incr
[NMTUS
][NCCTRL_WIN
])
5776 unsigned int mtu
, w
;
5778 for (mtu
= 0; mtu
< NMTUS
; ++mtu
)
5779 for (w
= 0; w
< NCCTRL_WIN
; ++w
) {
5780 t4_write_reg(adap
, TP_CCTRL_TABLE_A
,
5781 ROWINDEX_V(0xffff) | (mtu
<< 5) | w
);
5782 incr
[mtu
][w
] = (u16
)t4_read_reg(adap
,
5783 TP_CCTRL_TABLE_A
) & 0x1fff;
5788 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5789 * @adap: the adapter
5790 * @addr: the indirect TP register address
5791 * @mask: specifies the field within the register to modify
5792 * @val: new value for the field
5794 * Sets a field of an indirect TP register to the given value.
5796 void t4_tp_wr_bits_indirect(struct adapter
*adap
, unsigned int addr
,
5797 unsigned int mask
, unsigned int val
)
5799 t4_write_reg(adap
, TP_PIO_ADDR_A
, addr
);
5800 val
|= t4_read_reg(adap
, TP_PIO_DATA_A
) & ~mask
;
5801 t4_write_reg(adap
, TP_PIO_DATA_A
, val
);
5805 * init_cong_ctrl - initialize congestion control parameters
5806 * @a: the alpha values for congestion control
5807 * @b: the beta values for congestion control
5809 * Initialize the congestion control parameters.
5811 static void init_cong_ctrl(unsigned short *a
, unsigned short *b
)
5813 a
[0] = a
[1] = a
[2] = a
[3] = a
[4] = a
[5] = a
[6] = a
[7] = a
[8] = 1;
5838 b
[0] = b
[1] = b
[2] = b
[3] = b
[4] = b
[5] = b
[6] = b
[7] = b
[8] = 0;
5841 b
[13] = b
[14] = b
[15] = b
[16] = 3;
5842 b
[17] = b
[18] = b
[19] = b
[20] = b
[21] = 4;
5843 b
[22] = b
[23] = b
[24] = b
[25] = b
[26] = b
[27] = 5;
5848 /* The minimum additive increment value for the congestion control table */
5849 #define CC_MIN_INCR 2U
5852 * t4_load_mtus - write the MTU and congestion control HW tables
5853 * @adap: the adapter
5854 * @mtus: the values for the MTU table
5855 * @alpha: the values for the congestion control alpha parameter
5856 * @beta: the values for the congestion control beta parameter
5858 * Write the HW MTU table with the supplied MTUs and the high-speed
5859 * congestion control table with the supplied alpha, beta, and MTUs.
5860 * We write the two tables together because the additive increments
5861 * depend on the MTUs.
5863 void t4_load_mtus(struct adapter
*adap
, const unsigned short *mtus
,
5864 const unsigned short *alpha
, const unsigned short *beta
)
5866 static const unsigned int avg_pkts
[NCCTRL_WIN
] = {
5867 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5868 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5869 28672, 40960, 57344, 81920, 114688, 163840, 229376
5874 for (i
= 0; i
< NMTUS
; ++i
) {
5875 unsigned int mtu
= mtus
[i
];
5876 unsigned int log2
= fls(mtu
);
5878 if (!(mtu
& ((1 << log2
) >> 2))) /* round */
5880 t4_write_reg(adap
, TP_MTU_TABLE_A
, MTUINDEX_V(i
) |
5881 MTUWIDTH_V(log2
) | MTUVALUE_V(mtu
));
5883 for (w
= 0; w
< NCCTRL_WIN
; ++w
) {
5886 inc
= max(((mtu
- 40) * alpha
[w
]) / avg_pkts
[w
],
5889 t4_write_reg(adap
, TP_CCTRL_TABLE_A
, (i
<< 21) |
5890 (w
<< 16) | (beta
[w
] << 13) | inc
);
5895 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5896 * clocks. The formula is
5898 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5900 * which is equivalent to
5902 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5904 static u64
chan_rate(struct adapter
*adap
, unsigned int bytes256
)
5906 u64 v
= bytes256
* adap
->params
.vpd
.cclk
;
5908 return v
* 62 + v
/ 2;
5912 * t4_get_chan_txrate - get the current per channel Tx rates
5913 * @adap: the adapter
5914 * @nic_rate: rates for NIC traffic
5915 * @ofld_rate: rates for offloaded traffic
5917 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5920 void t4_get_chan_txrate(struct adapter
*adap
, u64
*nic_rate
, u64
*ofld_rate
)
5924 v
= t4_read_reg(adap
, TP_TX_TRATE_A
);
5925 nic_rate
[0] = chan_rate(adap
, TNLRATE0_G(v
));
5926 nic_rate
[1] = chan_rate(adap
, TNLRATE1_G(v
));
5927 if (adap
->params
.arch
.nchan
== NCHAN
) {
5928 nic_rate
[2] = chan_rate(adap
, TNLRATE2_G(v
));
5929 nic_rate
[3] = chan_rate(adap
, TNLRATE3_G(v
));
5932 v
= t4_read_reg(adap
, TP_TX_ORATE_A
);
5933 ofld_rate
[0] = chan_rate(adap
, OFDRATE0_G(v
));
5934 ofld_rate
[1] = chan_rate(adap
, OFDRATE1_G(v
));
5935 if (adap
->params
.arch
.nchan
== NCHAN
) {
5936 ofld_rate
[2] = chan_rate(adap
, OFDRATE2_G(v
));
5937 ofld_rate
[3] = chan_rate(adap
, OFDRATE3_G(v
));
5942 * t4_set_trace_filter - configure one of the tracing filters
5943 * @adap: the adapter
5944 * @tp: the desired trace filter parameters
5945 * @idx: which filter to configure
5946 * @enable: whether to enable or disable the filter
5948 * Configures one of the tracing filters available in HW. If @enable is
5949 * %0 @tp is not examined and may be %NULL. The user is responsible to
5950 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5952 int t4_set_trace_filter(struct adapter
*adap
, const struct trace_params
*tp
,
5953 int idx
, int enable
)
5955 int i
, ofst
= idx
* 4;
5956 u32 data_reg
, mask_reg
, cfg
;
5959 t4_write_reg(adap
, MPS_TRC_FILTER_MATCH_CTL_A_A
+ ofst
, 0);
5963 cfg
= t4_read_reg(adap
, MPS_TRC_CFG_A
);
5964 if (cfg
& TRCMULTIFILTER_F
) {
5965 /* If multiple tracers are enabled, then maximum
5966 * capture size is 2.5KB (FIFO size of a single channel)
5967 * minus 2 flits for CPL_TRACE_PKT header.
5969 if (tp
->snap_len
> ((10 * 1024 / 4) - (2 * 8)))
5972 /* If multiple tracers are disabled, to avoid deadlocks
5973 * maximum packet capture size of 9600 bytes is recommended.
5974 * Also in this mode, only trace0 can be enabled and running.
5976 if (tp
->snap_len
> 9600 || idx
)
5980 if (tp
->port
> (is_t4(adap
->params
.chip
) ? 11 : 19) || tp
->invert
> 1 ||
5981 tp
->skip_len
> TFLENGTH_M
|| tp
->skip_ofst
> TFOFFSET_M
||
5982 tp
->min_len
> TFMINPKTSIZE_M
)
5985 /* stop the tracer we'll be changing */
5986 t4_write_reg(adap
, MPS_TRC_FILTER_MATCH_CTL_A_A
+ ofst
, 0);
5988 idx
*= (MPS_TRC_FILTER1_MATCH_A
- MPS_TRC_FILTER0_MATCH_A
);
5989 data_reg
= MPS_TRC_FILTER0_MATCH_A
+ idx
;
5990 mask_reg
= MPS_TRC_FILTER0_DONT_CARE_A
+ idx
;
5992 for (i
= 0; i
< TRACE_LEN
/ 4; i
++, data_reg
+= 4, mask_reg
+= 4) {
5993 t4_write_reg(adap
, data_reg
, tp
->data
[i
]);
5994 t4_write_reg(adap
, mask_reg
, ~tp
->mask
[i
]);
5996 t4_write_reg(adap
, MPS_TRC_FILTER_MATCH_CTL_B_A
+ ofst
,
5997 TFCAPTUREMAX_V(tp
->snap_len
) |
5998 TFMINPKTSIZE_V(tp
->min_len
));
5999 t4_write_reg(adap
, MPS_TRC_FILTER_MATCH_CTL_A_A
+ ofst
,
6000 TFOFFSET_V(tp
->skip_ofst
) | TFLENGTH_V(tp
->skip_len
) |
6001 (is_t4(adap
->params
.chip
) ?
6002 TFPORT_V(tp
->port
) | TFEN_F
| TFINVERTMATCH_V(tp
->invert
) :
6003 T5_TFPORT_V(tp
->port
) | T5_TFEN_F
|
6004 T5_TFINVERTMATCH_V(tp
->invert
)));
6010 * t4_get_trace_filter - query one of the tracing filters
6011 * @adap: the adapter
6012 * @tp: the current trace filter parameters
6013 * @idx: which trace filter to query
6014 * @enabled: non-zero if the filter is enabled
6016 * Returns the current settings of one of the HW tracing filters.
6018 void t4_get_trace_filter(struct adapter
*adap
, struct trace_params
*tp
, int idx
,
6022 int i
, ofst
= idx
* 4;
6023 u32 data_reg
, mask_reg
;
6025 ctla
= t4_read_reg(adap
, MPS_TRC_FILTER_MATCH_CTL_A_A
+ ofst
);
6026 ctlb
= t4_read_reg(adap
, MPS_TRC_FILTER_MATCH_CTL_B_A
+ ofst
);
6028 if (is_t4(adap
->params
.chip
)) {
6029 *enabled
= !!(ctla
& TFEN_F
);
6030 tp
->port
= TFPORT_G(ctla
);
6031 tp
->invert
= !!(ctla
& TFINVERTMATCH_F
);
6033 *enabled
= !!(ctla
& T5_TFEN_F
);
6034 tp
->port
= T5_TFPORT_G(ctla
);
6035 tp
->invert
= !!(ctla
& T5_TFINVERTMATCH_F
);
6037 tp
->snap_len
= TFCAPTUREMAX_G(ctlb
);
6038 tp
->min_len
= TFMINPKTSIZE_G(ctlb
);
6039 tp
->skip_ofst
= TFOFFSET_G(ctla
);
6040 tp
->skip_len
= TFLENGTH_G(ctla
);
6042 ofst
= (MPS_TRC_FILTER1_MATCH_A
- MPS_TRC_FILTER0_MATCH_A
) * idx
;
6043 data_reg
= MPS_TRC_FILTER0_MATCH_A
+ ofst
;
6044 mask_reg
= MPS_TRC_FILTER0_DONT_CARE_A
+ ofst
;
6046 for (i
= 0; i
< TRACE_LEN
/ 4; i
++, data_reg
+= 4, mask_reg
+= 4) {
6047 tp
->mask
[i
] = ~t4_read_reg(adap
, mask_reg
);
6048 tp
->data
[i
] = t4_read_reg(adap
, data_reg
) & tp
->mask
[i
];
6053 * t4_pmtx_get_stats - returns the HW stats from PMTX
6054 * @adap: the adapter
6055 * @cnt: where to store the count statistics
6056 * @cycles: where to store the cycle statistics
6058 * Returns performance statistics from PMTX.
6060 void t4_pmtx_get_stats(struct adapter
*adap
, u32 cnt
[], u64 cycles
[])
6065 for (i
= 0; i
< adap
->params
.arch
.pm_stats_cnt
; i
++) {
6066 t4_write_reg(adap
, PM_TX_STAT_CONFIG_A
, i
+ 1);
6067 cnt
[i
] = t4_read_reg(adap
, PM_TX_STAT_COUNT_A
);
6068 if (is_t4(adap
->params
.chip
)) {
6069 cycles
[i
] = t4_read_reg64(adap
, PM_TX_STAT_LSB_A
);
6071 t4_read_indirect(adap
, PM_TX_DBG_CTRL_A
,
6072 PM_TX_DBG_DATA_A
, data
, 2,
6073 PM_TX_DBG_STAT_MSB_A
);
6074 cycles
[i
] = (((u64
)data
[0] << 32) | data
[1]);
6080 * t4_pmrx_get_stats - returns the HW stats from PMRX
6081 * @adap: the adapter
6082 * @cnt: where to store the count statistics
6083 * @cycles: where to store the cycle statistics
6085 * Returns performance statistics from PMRX.
6087 void t4_pmrx_get_stats(struct adapter
*adap
, u32 cnt
[], u64 cycles
[])
6092 for (i
= 0; i
< adap
->params
.arch
.pm_stats_cnt
; i
++) {
6093 t4_write_reg(adap
, PM_RX_STAT_CONFIG_A
, i
+ 1);
6094 cnt
[i
] = t4_read_reg(adap
, PM_RX_STAT_COUNT_A
);
6095 if (is_t4(adap
->params
.chip
)) {
6096 cycles
[i
] = t4_read_reg64(adap
, PM_RX_STAT_LSB_A
);
6098 t4_read_indirect(adap
, PM_RX_DBG_CTRL_A
,
6099 PM_RX_DBG_DATA_A
, data
, 2,
6100 PM_RX_DBG_STAT_MSB_A
);
6101 cycles
[i
] = (((u64
)data
[0] << 32) | data
[1]);
6107 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6108 * @adap: the adapter
6109 * @pidx: the port index
6111 * Computes and returns a bitmap indicating which MPS buffer groups are
6112 * associated with the given Port. Bit i is set if buffer group i is
6115 static inline unsigned int compute_mps_bg_map(struct adapter
*adapter
,
6118 unsigned int chip_version
, nports
;
6120 chip_version
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
);
6121 nports
= 1 << NUMPORTS_G(t4_read_reg(adapter
, MPS_CMN_CTL_A
));
6123 switch (chip_version
) {
6128 case 2: return 3 << (2 * pidx
);
6129 case 4: return 1 << pidx
;
6135 case 2: return 1 << (2 * pidx
);
6140 dev_err(adapter
->pdev_dev
, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6141 chip_version
, nports
);
6147 * t4_get_mps_bg_map - return the buffer groups associated with a port
6148 * @adapter: the adapter
6149 * @pidx: the port index
6151 * Returns a bitmap indicating which MPS buffer groups are associated
6152 * with the given Port. Bit i is set if buffer group i is used by the
6155 unsigned int t4_get_mps_bg_map(struct adapter
*adapter
, int pidx
)
6158 unsigned int nports
;
6160 nports
= 1 << NUMPORTS_G(t4_read_reg(adapter
, MPS_CMN_CTL_A
));
6161 if (pidx
>= nports
) {
6162 CH_WARN(adapter
, "MPS Port Index %d >= Nports %d\n",
6167 /* If we've already retrieved/computed this, just return the result.
6169 mps_bg_map
= adapter
->params
.mps_bg_map
;
6170 if (mps_bg_map
[pidx
])
6171 return mps_bg_map
[pidx
];
6173 /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6174 * If we're talking to such Firmware, let it tell us. If the new
6175 * API isn't supported, revert back to old hardcoded way. The value
6176 * obtained from Firmware is encoded in below format:
6178 * val = (( MPSBGMAP[Port 3] << 24 ) |
6179 * ( MPSBGMAP[Port 2] << 16 ) |
6180 * ( MPSBGMAP[Port 1] << 8 ) |
6181 * ( MPSBGMAP[Port 0] << 0 ))
6183 if (adapter
->flags
& CXGB4_FW_OK
) {
6187 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
6188 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP
));
6189 ret
= t4_query_params_ns(adapter
, adapter
->mbox
, adapter
->pf
,
6190 0, 1, ¶m
, &val
);
6194 /* Store the BG Map for all of the Ports in order to
6195 * avoid more calls to the Firmware in the future.
6197 for (p
= 0; p
< MAX_NPORTS
; p
++, val
>>= 8)
6198 mps_bg_map
[p
] = val
& 0xff;
6200 return mps_bg_map
[pidx
];
6204 /* Either we're not talking to the Firmware or we're dealing with
6205 * older Firmware which doesn't support the new API to get the MPS
6206 * Buffer Group Map. Fall back to computing it ourselves.
6208 mps_bg_map
[pidx
] = compute_mps_bg_map(adapter
, pidx
);
6209 return mps_bg_map
[pidx
];
6213 * t4_get_tp_e2c_map - return the E2C channel map associated with a port
6214 * @adapter: the adapter
6215 * @pidx: the port index
6217 static unsigned int t4_get_tp_e2c_map(struct adapter
*adapter
, int pidx
)
6219 unsigned int nports
;
6223 nports
= 1 << NUMPORTS_G(t4_read_reg(adapter
, MPS_CMN_CTL_A
));
6224 if (pidx
>= nports
) {
6225 CH_WARN(adapter
, "TP E2C Channel Port Index %d >= Nports %d\n",
6230 /* FW version >= 1.16.44.0 can determine E2C channel map using
6231 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6233 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
6234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP
));
6235 ret
= t4_query_params_ns(adapter
, adapter
->mbox
, adapter
->pf
,
6236 0, 1, ¶m
, &val
);
6238 return (val
>> (8 * pidx
)) & 0xff;
6244 * t4_get_tp_ch_map - return TP ingress channels associated with a port
6245 * @adapter: the adapter
6246 * @pidx: the port index
6248 * Returns a bitmap indicating which TP Ingress Channels are associated
6249 * with a given Port. Bit i is set if TP Ingress Channel i is used by
6252 unsigned int t4_get_tp_ch_map(struct adapter
*adap
, int pidx
)
6254 unsigned int chip_version
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
6255 unsigned int nports
= 1 << NUMPORTS_G(t4_read_reg(adap
, MPS_CMN_CTL_A
));
6257 if (pidx
>= nports
) {
6258 dev_warn(adap
->pdev_dev
, "TP Port Index %d >= Nports %d\n",
6263 switch (chip_version
) {
6266 /* Note that this happens to be the same values as the MPS
6267 * Buffer Group Map for these Chips. But we replicate the code
6268 * here because they're really separate concepts.
6272 case 2: return 3 << (2 * pidx
);
6273 case 4: return 1 << pidx
;
6280 case 2: return 1 << pidx
;
6285 dev_err(adap
->pdev_dev
, "Need TP Channel Map for Chip %0x, Nports %d\n",
6286 chip_version
, nports
);
6291 * t4_get_port_type_description - return Port Type string description
6292 * @port_type: firmware Port Type enumeration
6294 const char *t4_get_port_type_description(enum fw_port_type port_type
)
6296 static const char *const port_type_description
[] = {
6322 if (port_type
< ARRAY_SIZE(port_type_description
))
6323 return port_type_description
[port_type
];
6328 * t4_get_port_stats_offset - collect port stats relative to a previous
6330 * @adap: The adapter
6332 * @stats: Current stats to fill
6333 * @offset: Previous stats snapshot
6335 void t4_get_port_stats_offset(struct adapter
*adap
, int idx
,
6336 struct port_stats
*stats
,
6337 struct port_stats
*offset
)
6342 t4_get_port_stats(adap
, idx
, stats
);
6343 for (i
= 0, s
= (u64
*)stats
, o
= (u64
*)offset
;
6344 i
< (sizeof(struct port_stats
) / sizeof(u64
));
6350 * t4_get_port_stats - collect port statistics
6351 * @adap: the adapter
6352 * @idx: the port index
6353 * @p: the stats structure to fill
6355 * Collect statistics related to the given port from HW.
6357 void t4_get_port_stats(struct adapter
*adap
, int idx
, struct port_stats
*p
)
6359 u32 bgmap
= t4_get_mps_bg_map(adap
, idx
);
6360 u32 stat_ctl
= t4_read_reg(adap
, MPS_STAT_CTL_A
);
6362 #define GET_STAT(name) \
6363 t4_read_reg64(adap, \
6364 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6365 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6366 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6368 p
->tx_octets
= GET_STAT(TX_PORT_BYTES
);
6369 p
->tx_frames
= GET_STAT(TX_PORT_FRAMES
);
6370 p
->tx_bcast_frames
= GET_STAT(TX_PORT_BCAST
);
6371 p
->tx_mcast_frames
= GET_STAT(TX_PORT_MCAST
);
6372 p
->tx_ucast_frames
= GET_STAT(TX_PORT_UCAST
);
6373 p
->tx_error_frames
= GET_STAT(TX_PORT_ERROR
);
6374 p
->tx_frames_64
= GET_STAT(TX_PORT_64B
);
6375 p
->tx_frames_65_127
= GET_STAT(TX_PORT_65B_127B
);
6376 p
->tx_frames_128_255
= GET_STAT(TX_PORT_128B_255B
);
6377 p
->tx_frames_256_511
= GET_STAT(TX_PORT_256B_511B
);
6378 p
->tx_frames_512_1023
= GET_STAT(TX_PORT_512B_1023B
);
6379 p
->tx_frames_1024_1518
= GET_STAT(TX_PORT_1024B_1518B
);
6380 p
->tx_frames_1519_max
= GET_STAT(TX_PORT_1519B_MAX
);
6381 p
->tx_drop
= GET_STAT(TX_PORT_DROP
);
6382 p
->tx_pause
= GET_STAT(TX_PORT_PAUSE
);
6383 p
->tx_ppp0
= GET_STAT(TX_PORT_PPP0
);
6384 p
->tx_ppp1
= GET_STAT(TX_PORT_PPP1
);
6385 p
->tx_ppp2
= GET_STAT(TX_PORT_PPP2
);
6386 p
->tx_ppp3
= GET_STAT(TX_PORT_PPP3
);
6387 p
->tx_ppp4
= GET_STAT(TX_PORT_PPP4
);
6388 p
->tx_ppp5
= GET_STAT(TX_PORT_PPP5
);
6389 p
->tx_ppp6
= GET_STAT(TX_PORT_PPP6
);
6390 p
->tx_ppp7
= GET_STAT(TX_PORT_PPP7
);
6392 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) >= CHELSIO_T5
) {
6393 if (stat_ctl
& COUNTPAUSESTATTX_F
)
6394 p
->tx_frames_64
-= p
->tx_pause
;
6395 if (stat_ctl
& COUNTPAUSEMCTX_F
)
6396 p
->tx_mcast_frames
-= p
->tx_pause
;
6398 p
->rx_octets
= GET_STAT(RX_PORT_BYTES
);
6399 p
->rx_frames
= GET_STAT(RX_PORT_FRAMES
);
6400 p
->rx_bcast_frames
= GET_STAT(RX_PORT_BCAST
);
6401 p
->rx_mcast_frames
= GET_STAT(RX_PORT_MCAST
);
6402 p
->rx_ucast_frames
= GET_STAT(RX_PORT_UCAST
);
6403 p
->rx_too_long
= GET_STAT(RX_PORT_MTU_ERROR
);
6404 p
->rx_jabber
= GET_STAT(RX_PORT_MTU_CRC_ERROR
);
6405 p
->rx_fcs_err
= GET_STAT(RX_PORT_CRC_ERROR
);
6406 p
->rx_len_err
= GET_STAT(RX_PORT_LEN_ERROR
);
6407 p
->rx_symbol_err
= GET_STAT(RX_PORT_SYM_ERROR
);
6408 p
->rx_runt
= GET_STAT(RX_PORT_LESS_64B
);
6409 p
->rx_frames_64
= GET_STAT(RX_PORT_64B
);
6410 p
->rx_frames_65_127
= GET_STAT(RX_PORT_65B_127B
);
6411 p
->rx_frames_128_255
= GET_STAT(RX_PORT_128B_255B
);
6412 p
->rx_frames_256_511
= GET_STAT(RX_PORT_256B_511B
);
6413 p
->rx_frames_512_1023
= GET_STAT(RX_PORT_512B_1023B
);
6414 p
->rx_frames_1024_1518
= GET_STAT(RX_PORT_1024B_1518B
);
6415 p
->rx_frames_1519_max
= GET_STAT(RX_PORT_1519B_MAX
);
6416 p
->rx_pause
= GET_STAT(RX_PORT_PAUSE
);
6417 p
->rx_ppp0
= GET_STAT(RX_PORT_PPP0
);
6418 p
->rx_ppp1
= GET_STAT(RX_PORT_PPP1
);
6419 p
->rx_ppp2
= GET_STAT(RX_PORT_PPP2
);
6420 p
->rx_ppp3
= GET_STAT(RX_PORT_PPP3
);
6421 p
->rx_ppp4
= GET_STAT(RX_PORT_PPP4
);
6422 p
->rx_ppp5
= GET_STAT(RX_PORT_PPP5
);
6423 p
->rx_ppp6
= GET_STAT(RX_PORT_PPP6
);
6424 p
->rx_ppp7
= GET_STAT(RX_PORT_PPP7
);
6426 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) >= CHELSIO_T5
) {
6427 if (stat_ctl
& COUNTPAUSESTATRX_F
)
6428 p
->rx_frames_64
-= p
->rx_pause
;
6429 if (stat_ctl
& COUNTPAUSEMCRX_F
)
6430 p
->rx_mcast_frames
-= p
->rx_pause
;
6433 p
->rx_ovflow0
= (bgmap
& 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME
) : 0;
6434 p
->rx_ovflow1
= (bgmap
& 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME
) : 0;
6435 p
->rx_ovflow2
= (bgmap
& 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME
) : 0;
6436 p
->rx_ovflow3
= (bgmap
& 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME
) : 0;
6437 p
->rx_trunc0
= (bgmap
& 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME
) : 0;
6438 p
->rx_trunc1
= (bgmap
& 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME
) : 0;
6439 p
->rx_trunc2
= (bgmap
& 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME
) : 0;
6440 p
->rx_trunc3
= (bgmap
& 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME
) : 0;
6447 * t4_get_lb_stats - collect loopback port statistics
6448 * @adap: the adapter
6449 * @idx: the loopback port index
6450 * @p: the stats structure to fill
6452 * Return HW statistics for the given loopback port.
6454 void t4_get_lb_stats(struct adapter
*adap
, int idx
, struct lb_port_stats
*p
)
6456 u32 bgmap
= t4_get_mps_bg_map(adap
, idx
);
6458 #define GET_STAT(name) \
6459 t4_read_reg64(adap, \
6460 (is_t4(adap->params.chip) ? \
6461 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6462 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6463 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6465 p
->octets
= GET_STAT(BYTES
);
6466 p
->frames
= GET_STAT(FRAMES
);
6467 p
->bcast_frames
= GET_STAT(BCAST
);
6468 p
->mcast_frames
= GET_STAT(MCAST
);
6469 p
->ucast_frames
= GET_STAT(UCAST
);
6470 p
->error_frames
= GET_STAT(ERROR
);
6472 p
->frames_64
= GET_STAT(64B
);
6473 p
->frames_65_127
= GET_STAT(65B_127B
);
6474 p
->frames_128_255
= GET_STAT(128B_255B
);
6475 p
->frames_256_511
= GET_STAT(256B_511B
);
6476 p
->frames_512_1023
= GET_STAT(512B_1023B
);
6477 p
->frames_1024_1518
= GET_STAT(1024B_1518B
);
6478 p
->frames_1519_max
= GET_STAT(1519B_MAX
);
6479 p
->drop
= GET_STAT(DROP_FRAMES
);
6481 p
->ovflow0
= (bgmap
& 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME
) : 0;
6482 p
->ovflow1
= (bgmap
& 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME
) : 0;
6483 p
->ovflow2
= (bgmap
& 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME
) : 0;
6484 p
->ovflow3
= (bgmap
& 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME
) : 0;
6485 p
->trunc0
= (bgmap
& 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME
) : 0;
6486 p
->trunc1
= (bgmap
& 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME
) : 0;
6487 p
->trunc2
= (bgmap
& 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME
) : 0;
6488 p
->trunc3
= (bgmap
& 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME
) : 0;
6494 /* t4_mk_filtdelwr - create a delete filter WR
6495 * @ftid: the filter ID
6496 * @wr: the filter work request to populate
6497 * @qid: ingress queue to receive the delete notification
6499 * Creates a filter work request to delete the supplied filter. If @qid is
6500 * negative the delete notification is suppressed.
6502 void t4_mk_filtdelwr(unsigned int ftid
, struct fw_filter_wr
*wr
, int qid
)
6504 memset(wr
, 0, sizeof(*wr
));
6505 wr
->op_pkd
= cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR
));
6506 wr
->len16_pkd
= cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr
) / 16));
6507 wr
->tid_to_iq
= cpu_to_be32(FW_FILTER_WR_TID_V(ftid
) |
6508 FW_FILTER_WR_NOREPLY_V(qid
< 0));
6509 wr
->del_filter_to_l2tix
= cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F
);
6511 wr
->rx_chan_rx_rpl_iq
=
6512 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid
));
6515 #define INIT_CMD(var, cmd, rd_wr) do { \
6516 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6517 FW_CMD_REQUEST_F | \
6518 FW_CMD_##rd_wr##_F); \
6519 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6522 int t4_fwaddrspace_write(struct adapter
*adap
, unsigned int mbox
,
6526 struct fw_ldst_cmd c
;
6528 memset(&c
, 0, sizeof(c
));
6529 ldst_addrspace
= FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE
);
6530 c
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
6534 c
.cycles_to_len16
= cpu_to_be32(FW_LEN16(c
));
6535 c
.u
.addrval
.addr
= cpu_to_be32(addr
);
6536 c
.u
.addrval
.val
= cpu_to_be32(val
);
6538 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
6542 * t4_mdio_rd - read a PHY register through MDIO
6543 * @adap: the adapter
6544 * @mbox: mailbox to use for the FW command
6545 * @phy_addr: the PHY address
6546 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6547 * @reg: the register to read
6548 * @valp: where to store the value
6550 * Issues a FW command through the given mailbox to read a PHY register.
6552 int t4_mdio_rd(struct adapter
*adap
, unsigned int mbox
, unsigned int phy_addr
,
6553 unsigned int mmd
, unsigned int reg
, u16
*valp
)
6557 struct fw_ldst_cmd c
;
6559 memset(&c
, 0, sizeof(c
));
6560 ldst_addrspace
= FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO
);
6561 c
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
6562 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
6564 c
.cycles_to_len16
= cpu_to_be32(FW_LEN16(c
));
6565 c
.u
.mdio
.paddr_mmd
= cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr
) |
6566 FW_LDST_CMD_MMD_V(mmd
));
6567 c
.u
.mdio
.raddr
= cpu_to_be16(reg
);
6569 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
6571 *valp
= be16_to_cpu(c
.u
.mdio
.rval
);
6576 * t4_mdio_wr - write a PHY register through MDIO
6577 * @adap: the adapter
6578 * @mbox: mailbox to use for the FW command
6579 * @phy_addr: the PHY address
6580 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6581 * @reg: the register to write
6582 * @valp: value to write
6584 * Issues a FW command through the given mailbox to write a PHY register.
6586 int t4_mdio_wr(struct adapter
*adap
, unsigned int mbox
, unsigned int phy_addr
,
6587 unsigned int mmd
, unsigned int reg
, u16 val
)
6590 struct fw_ldst_cmd c
;
6592 memset(&c
, 0, sizeof(c
));
6593 ldst_addrspace
= FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO
);
6594 c
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
6595 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
6597 c
.cycles_to_len16
= cpu_to_be32(FW_LEN16(c
));
6598 c
.u
.mdio
.paddr_mmd
= cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr
) |
6599 FW_LDST_CMD_MMD_V(mmd
));
6600 c
.u
.mdio
.raddr
= cpu_to_be16(reg
);
6601 c
.u
.mdio
.rval
= cpu_to_be16(val
);
6603 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
6607 * t4_sge_decode_idma_state - decode the idma state
6608 * @adap: the adapter
6609 * @state: the state idma is stuck in
6611 void t4_sge_decode_idma_state(struct adapter
*adapter
, int state
)
6613 static const char * const t4_decode
[] = {
6615 "IDMA_PUSH_MORE_CPL_FIFO",
6616 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6618 "IDMA_PHYSADDR_SEND_PCIEHDR",
6619 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6620 "IDMA_PHYSADDR_SEND_PAYLOAD",
6621 "IDMA_SEND_FIFO_TO_IMSG",
6622 "IDMA_FL_REQ_DATA_FL_PREP",
6623 "IDMA_FL_REQ_DATA_FL",
6625 "IDMA_FL_H_REQ_HEADER_FL",
6626 "IDMA_FL_H_SEND_PCIEHDR",
6627 "IDMA_FL_H_PUSH_CPL_FIFO",
6628 "IDMA_FL_H_SEND_CPL",
6629 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6630 "IDMA_FL_H_SEND_IP_HDR",
6631 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6632 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6633 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6634 "IDMA_FL_D_SEND_PCIEHDR",
6635 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6636 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6637 "IDMA_FL_SEND_PCIEHDR",
6638 "IDMA_FL_PUSH_CPL_FIFO",
6640 "IDMA_FL_SEND_PAYLOAD_FIRST",
6641 "IDMA_FL_SEND_PAYLOAD",
6642 "IDMA_FL_REQ_NEXT_DATA_FL",
6643 "IDMA_FL_SEND_NEXT_PCIEHDR",
6644 "IDMA_FL_SEND_PADDING",
6645 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6646 "IDMA_FL_SEND_FIFO_TO_IMSG",
6647 "IDMA_FL_REQ_DATAFL_DONE",
6648 "IDMA_FL_REQ_HEADERFL_DONE",
6650 static const char * const t5_decode
[] = {
6653 "IDMA_PUSH_MORE_CPL_FIFO",
6654 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6655 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6656 "IDMA_PHYSADDR_SEND_PCIEHDR",
6657 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6658 "IDMA_PHYSADDR_SEND_PAYLOAD",
6659 "IDMA_SEND_FIFO_TO_IMSG",
6660 "IDMA_FL_REQ_DATA_FL",
6662 "IDMA_FL_DROP_SEND_INC",
6663 "IDMA_FL_H_REQ_HEADER_FL",
6664 "IDMA_FL_H_SEND_PCIEHDR",
6665 "IDMA_FL_H_PUSH_CPL_FIFO",
6666 "IDMA_FL_H_SEND_CPL",
6667 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6668 "IDMA_FL_H_SEND_IP_HDR",
6669 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6670 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6671 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6672 "IDMA_FL_D_SEND_PCIEHDR",
6673 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6674 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6675 "IDMA_FL_SEND_PCIEHDR",
6676 "IDMA_FL_PUSH_CPL_FIFO",
6678 "IDMA_FL_SEND_PAYLOAD_FIRST",
6679 "IDMA_FL_SEND_PAYLOAD",
6680 "IDMA_FL_REQ_NEXT_DATA_FL",
6681 "IDMA_FL_SEND_NEXT_PCIEHDR",
6682 "IDMA_FL_SEND_PADDING",
6683 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6685 static const char * const t6_decode
[] = {
6687 "IDMA_PUSH_MORE_CPL_FIFO",
6688 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6689 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6690 "IDMA_PHYSADDR_SEND_PCIEHDR",
6691 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6692 "IDMA_PHYSADDR_SEND_PAYLOAD",
6693 "IDMA_FL_REQ_DATA_FL",
6695 "IDMA_FL_DROP_SEND_INC",
6696 "IDMA_FL_H_REQ_HEADER_FL",
6697 "IDMA_FL_H_SEND_PCIEHDR",
6698 "IDMA_FL_H_PUSH_CPL_FIFO",
6699 "IDMA_FL_H_SEND_CPL",
6700 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6701 "IDMA_FL_H_SEND_IP_HDR",
6702 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6703 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6704 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6705 "IDMA_FL_D_SEND_PCIEHDR",
6706 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6707 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6708 "IDMA_FL_SEND_PCIEHDR",
6709 "IDMA_FL_PUSH_CPL_FIFO",
6711 "IDMA_FL_SEND_PAYLOAD_FIRST",
6712 "IDMA_FL_SEND_PAYLOAD",
6713 "IDMA_FL_REQ_NEXT_DATA_FL",
6714 "IDMA_FL_SEND_NEXT_PCIEHDR",
6715 "IDMA_FL_SEND_PADDING",
6716 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6718 static const u32 sge_regs
[] = {
6719 SGE_DEBUG_DATA_LOW_INDEX_2_A
,
6720 SGE_DEBUG_DATA_LOW_INDEX_3_A
,
6721 SGE_DEBUG_DATA_HIGH_INDEX_10_A
,
6723 const char **sge_idma_decode
;
6724 int sge_idma_decode_nstates
;
6726 unsigned int chip_version
= CHELSIO_CHIP_VERSION(adapter
->params
.chip
);
6728 /* Select the right set of decode strings to dump depending on the
6729 * adapter chip type.
6731 switch (chip_version
) {
6733 sge_idma_decode
= (const char **)t4_decode
;
6734 sge_idma_decode_nstates
= ARRAY_SIZE(t4_decode
);
6738 sge_idma_decode
= (const char **)t5_decode
;
6739 sge_idma_decode_nstates
= ARRAY_SIZE(t5_decode
);
6743 sge_idma_decode
= (const char **)t6_decode
;
6744 sge_idma_decode_nstates
= ARRAY_SIZE(t6_decode
);
6748 dev_err(adapter
->pdev_dev
,
6749 "Unsupported chip version %d\n", chip_version
);
6753 if (is_t4(adapter
->params
.chip
)) {
6754 sge_idma_decode
= (const char **)t4_decode
;
6755 sge_idma_decode_nstates
= ARRAY_SIZE(t4_decode
);
6757 sge_idma_decode
= (const char **)t5_decode
;
6758 sge_idma_decode_nstates
= ARRAY_SIZE(t5_decode
);
6761 if (state
< sge_idma_decode_nstates
)
6762 CH_WARN(adapter
, "idma state %s\n", sge_idma_decode
[state
]);
6764 CH_WARN(adapter
, "idma state %d unknown\n", state
);
6766 for (i
= 0; i
< ARRAY_SIZE(sge_regs
); i
++)
6767 CH_WARN(adapter
, "SGE register %#x value %#x\n",
6768 sge_regs
[i
], t4_read_reg(adapter
, sge_regs
[i
]));
6772 * t4_sge_ctxt_flush - flush the SGE context cache
6773 * @adap: the adapter
6774 * @mbox: mailbox to use for the FW command
6775 * @ctx_type: Egress or Ingress
6777 * Issues a FW command through the given mailbox to flush the
6778 * SGE context cache.
6780 int t4_sge_ctxt_flush(struct adapter
*adap
, unsigned int mbox
, int ctxt_type
)
6784 struct fw_ldst_cmd c
;
6786 memset(&c
, 0, sizeof(c
));
6787 ldst_addrspace
= FW_LDST_CMD_ADDRSPACE_V(ctxt_type
== CTXT_EGRESS
?
6788 FW_LDST_ADDRSPC_SGE_EGRC
:
6789 FW_LDST_ADDRSPC_SGE_INGC
);
6790 c
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
6791 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
6793 c
.cycles_to_len16
= cpu_to_be32(FW_LEN16(c
));
6794 c
.u
.idctxt
.msg_ctxtflush
= cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F
);
6796 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
6801 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6802 * @adap - the adapter
6803 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6804 * @dbqtimers: SGE Doorbell Queue Timer table
6806 * Reads the SGE Doorbell Queue Timer values into the provided table.
6807 * Returns 0 on success (Firmware and Hardware support this feature),
6808 * an error on failure.
6810 int t4_read_sge_dbqtimers(struct adapter
*adap
, unsigned int ndbqtimers
,
6813 int ret
, dbqtimerix
;
6817 while (dbqtimerix
< ndbqtimers
) {
6819 u32 params
[7], vals
[7];
6821 nparams
= ndbqtimers
- dbqtimerix
;
6822 if (nparams
> ARRAY_SIZE(params
))
6823 nparams
= ARRAY_SIZE(params
);
6825 for (param
= 0; param
< nparams
; param
++)
6827 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
6828 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER
) |
6829 FW_PARAMS_PARAM_Y_V(dbqtimerix
+ param
));
6830 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0,
6831 nparams
, params
, vals
);
6835 for (param
= 0; param
< nparams
; param
++)
6836 dbqtimers
[dbqtimerix
++] = vals
[param
];
6842 * t4_fw_hello - establish communication with FW
6843 * @adap: the adapter
6844 * @mbox: mailbox to use for the FW command
6845 * @evt_mbox: mailbox to receive async FW events
6846 * @master: specifies the caller's willingness to be the device master
6847 * @state: returns the current device state (if non-NULL)
6849 * Issues a command to establish communication with FW. Returns either
6850 * an error (negative integer) or the mailbox of the Master PF.
6852 int t4_fw_hello(struct adapter
*adap
, unsigned int mbox
, unsigned int evt_mbox
,
6853 enum dev_master master
, enum dev_state
*state
)
6856 struct fw_hello_cmd c
;
6858 unsigned int master_mbox
;
6859 int retries
= FW_CMD_HELLO_RETRIES
;
6862 memset(&c
, 0, sizeof(c
));
6863 INIT_CMD(c
, HELLO
, WRITE
);
6864 c
.err_to_clearinit
= cpu_to_be32(
6865 FW_HELLO_CMD_MASTERDIS_V(master
== MASTER_CANT
) |
6866 FW_HELLO_CMD_MASTERFORCE_V(master
== MASTER_MUST
) |
6867 FW_HELLO_CMD_MBMASTER_V(master
== MASTER_MUST
?
6868 mbox
: FW_HELLO_CMD_MBMASTER_M
) |
6869 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox
) |
6870 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os
) |
6871 FW_HELLO_CMD_CLEARINIT_F
);
6874 * Issue the HELLO command to the firmware. If it's not successful
6875 * but indicates that we got a "busy" or "timeout" condition, retry
6876 * the HELLO until we exhaust our retry limit. If we do exceed our
6877 * retry limit, check to see if the firmware left us any error
6878 * information and report that if so.
6880 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
6882 if ((ret
== -EBUSY
|| ret
== -ETIMEDOUT
) && retries
-- > 0)
6884 if (t4_read_reg(adap
, PCIE_FW_A
) & PCIE_FW_ERR_F
)
6885 t4_report_fw_error(adap
);
6889 v
= be32_to_cpu(c
.err_to_clearinit
);
6890 master_mbox
= FW_HELLO_CMD_MBMASTER_G(v
);
6892 if (v
& FW_HELLO_CMD_ERR_F
)
6893 *state
= DEV_STATE_ERR
;
6894 else if (v
& FW_HELLO_CMD_INIT_F
)
6895 *state
= DEV_STATE_INIT
;
6897 *state
= DEV_STATE_UNINIT
;
6901 * If we're not the Master PF then we need to wait around for the
6902 * Master PF Driver to finish setting up the adapter.
6904 * Note that we also do this wait if we're a non-Master-capable PF and
6905 * there is no current Master PF; a Master PF may show up momentarily
6906 * and we wouldn't want to fail pointlessly. (This can happen when an
6907 * OS loads lots of different drivers rapidly at the same time). In
6908 * this case, the Master PF returned by the firmware will be
6909 * PCIE_FW_MASTER_M so the test below will work ...
6911 if ((v
& (FW_HELLO_CMD_ERR_F
|FW_HELLO_CMD_INIT_F
)) == 0 &&
6912 master_mbox
!= mbox
) {
6913 int waiting
= FW_CMD_HELLO_TIMEOUT
;
6916 * Wait for the firmware to either indicate an error or
6917 * initialized state. If we see either of these we bail out
6918 * and report the issue to the caller. If we exhaust the
6919 * "hello timeout" and we haven't exhausted our retries, try
6920 * again. Otherwise bail with a timeout error.
6929 * If neither Error nor Initialized are indicated
6930 * by the firmware keep waiting till we exhaust our
6931 * timeout ... and then retry if we haven't exhausted
6934 pcie_fw
= t4_read_reg(adap
, PCIE_FW_A
);
6935 if (!(pcie_fw
& (PCIE_FW_ERR_F
|PCIE_FW_INIT_F
))) {
6946 * We either have an Error or Initialized condition
6947 * report errors preferentially.
6950 if (pcie_fw
& PCIE_FW_ERR_F
)
6951 *state
= DEV_STATE_ERR
;
6952 else if (pcie_fw
& PCIE_FW_INIT_F
)
6953 *state
= DEV_STATE_INIT
;
6957 * If we arrived before a Master PF was selected and
6958 * there's not a valid Master PF, grab its identity
6961 if (master_mbox
== PCIE_FW_MASTER_M
&&
6962 (pcie_fw
& PCIE_FW_MASTER_VLD_F
))
6963 master_mbox
= PCIE_FW_MASTER_G(pcie_fw
);
6972 * t4_fw_bye - end communication with FW
6973 * @adap: the adapter
6974 * @mbox: mailbox to use for the FW command
6976 * Issues a command to terminate communication with FW.
6978 int t4_fw_bye(struct adapter
*adap
, unsigned int mbox
)
6980 struct fw_bye_cmd c
;
6982 memset(&c
, 0, sizeof(c
));
6983 INIT_CMD(c
, BYE
, WRITE
);
6984 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
6988 * t4_init_cmd - ask FW to initialize the device
6989 * @adap: the adapter
6990 * @mbox: mailbox to use for the FW command
6992 * Issues a command to FW to partially initialize the device. This
6993 * performs initialization that generally doesn't depend on user input.
6995 int t4_early_init(struct adapter
*adap
, unsigned int mbox
)
6997 struct fw_initialize_cmd c
;
6999 memset(&c
, 0, sizeof(c
));
7000 INIT_CMD(c
, INITIALIZE
, WRITE
);
7001 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
7005 * t4_fw_reset - issue a reset to FW
7006 * @adap: the adapter
7007 * @mbox: mailbox to use for the FW command
7008 * @reset: specifies the type of reset to perform
7010 * Issues a reset command of the specified type to FW.
7012 int t4_fw_reset(struct adapter
*adap
, unsigned int mbox
, int reset
)
7014 struct fw_reset_cmd c
;
7016 memset(&c
, 0, sizeof(c
));
7017 INIT_CMD(c
, RESET
, WRITE
);
7018 c
.val
= cpu_to_be32(reset
);
7019 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
7023 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7024 * @adap: the adapter
7025 * @mbox: mailbox to use for the FW RESET command (if desired)
7026 * @force: force uP into RESET even if FW RESET command fails
7028 * Issues a RESET command to firmware (if desired) with a HALT indication
7029 * and then puts the microprocessor into RESET state. The RESET command
7030 * will only be issued if a legitimate mailbox is provided (mbox <=
7031 * PCIE_FW_MASTER_M).
7033 * This is generally used in order for the host to safely manipulate the
7034 * adapter without fear of conflicting with whatever the firmware might
7035 * be doing. The only way out of this state is to RESTART the firmware
7038 static int t4_fw_halt(struct adapter
*adap
, unsigned int mbox
, int force
)
7043 * If a legitimate mailbox is provided, issue a RESET command
7044 * with a HALT indication.
7046 if (mbox
<= PCIE_FW_MASTER_M
) {
7047 struct fw_reset_cmd c
;
7049 memset(&c
, 0, sizeof(c
));
7050 INIT_CMD(c
, RESET
, WRITE
);
7051 c
.val
= cpu_to_be32(PIORST_F
| PIORSTMODE_F
);
7052 c
.halt_pkd
= cpu_to_be32(FW_RESET_CMD_HALT_F
);
7053 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
7057 * Normally we won't complete the operation if the firmware RESET
7058 * command fails but if our caller insists we'll go ahead and put the
7059 * uP into RESET. This can be useful if the firmware is hung or even
7060 * missing ... We'll have to take the risk of putting the uP into
7061 * RESET without the cooperation of firmware in that case.
7063 * We also force the firmware's HALT flag to be on in case we bypassed
7064 * the firmware RESET command above or we're dealing with old firmware
7065 * which doesn't have the HALT capability. This will serve as a flag
7066 * for the incoming firmware to know that it's coming out of a HALT
7067 * rather than a RESET ... if it's new enough to understand that ...
7069 if (ret
== 0 || force
) {
7070 t4_set_reg_field(adap
, CIM_BOOT_CFG_A
, UPCRST_F
, UPCRST_F
);
7071 t4_set_reg_field(adap
, PCIE_FW_A
, PCIE_FW_HALT_F
,
7076 * And we always return the result of the firmware RESET command
7077 * even when we force the uP into RESET ...
7083 * t4_fw_restart - restart the firmware by taking the uP out of RESET
7084 * @adap: the adapter
7085 * @reset: if we want to do a RESET to restart things
7087 * Restart firmware previously halted by t4_fw_halt(). On successful
7088 * return the previous PF Master remains as the new PF Master and there
7089 * is no need to issue a new HELLO command, etc.
7091 * We do this in two ways:
7093 * 1. If we're dealing with newer firmware we'll simply want to take
7094 * the chip's microprocessor out of RESET. This will cause the
7095 * firmware to start up from its start vector. And then we'll loop
7096 * until the firmware indicates it's started again (PCIE_FW.HALT
7097 * reset to 0) or we timeout.
7099 * 2. If we're dealing with older firmware then we'll need to RESET
7100 * the chip since older firmware won't recognize the PCIE_FW.HALT
7101 * flag and automatically RESET itself on startup.
7103 static int t4_fw_restart(struct adapter
*adap
, unsigned int mbox
, int reset
)
7107 * Since we're directing the RESET instead of the firmware
7108 * doing it automatically, we need to clear the PCIE_FW.HALT
7111 t4_set_reg_field(adap
, PCIE_FW_A
, PCIE_FW_HALT_F
, 0);
7114 * If we've been given a valid mailbox, first try to get the
7115 * firmware to do the RESET. If that works, great and we can
7116 * return success. Otherwise, if we haven't been given a
7117 * valid mailbox or the RESET command failed, fall back to
7118 * hitting the chip with a hammer.
7120 if (mbox
<= PCIE_FW_MASTER_M
) {
7121 t4_set_reg_field(adap
, CIM_BOOT_CFG_A
, UPCRST_F
, 0);
7123 if (t4_fw_reset(adap
, mbox
,
7124 PIORST_F
| PIORSTMODE_F
) == 0)
7128 t4_write_reg(adap
, PL_RST_A
, PIORST_F
| PIORSTMODE_F
);
7133 t4_set_reg_field(adap
, CIM_BOOT_CFG_A
, UPCRST_F
, 0);
7134 for (ms
= 0; ms
< FW_CMD_MAX_TIMEOUT
; ) {
7135 if (!(t4_read_reg(adap
, PCIE_FW_A
) & PCIE_FW_HALT_F
))
7146 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7147 * @adap: the adapter
7148 * @mbox: mailbox to use for the FW RESET command (if desired)
7149 * @fw_data: the firmware image to write
7151 * @force: force upgrade even if firmware doesn't cooperate
7153 * Perform all of the steps necessary for upgrading an adapter's
7154 * firmware image. Normally this requires the cooperation of the
7155 * existing firmware in order to halt all existing activities
7156 * but if an invalid mailbox token is passed in we skip that step
7157 * (though we'll still put the adapter microprocessor into RESET in
7160 * On successful return the new firmware will have been loaded and
7161 * the adapter will have been fully RESET losing all previous setup
7162 * state. On unsuccessful return the adapter may be completely hosed ...
7163 * positive errno indicates that the adapter is ~probably~ intact, a
7164 * negative errno indicates that things are looking bad ...
7166 int t4_fw_upgrade(struct adapter
*adap
, unsigned int mbox
,
7167 const u8
*fw_data
, unsigned int size
, int force
)
7169 const struct fw_hdr
*fw_hdr
= (const struct fw_hdr
*)fw_data
;
7172 if (!t4_fw_matches_chip(adap
, fw_hdr
))
7175 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7176 * set wont be sent when we are flashing FW.
7178 adap
->flags
&= ~CXGB4_FW_OK
;
7180 ret
= t4_fw_halt(adap
, mbox
, force
);
7181 if (ret
< 0 && !force
)
7184 ret
= t4_load_fw(adap
, fw_data
, size
);
7189 * If there was a Firmware Configuration File stored in FLASH,
7190 * there's a good chance that it won't be compatible with the new
7191 * Firmware. In order to prevent difficult to diagnose adapter
7192 * initialization issues, we clear out the Firmware Configuration File
7193 * portion of the FLASH . The user will need to re-FLASH a new
7194 * Firmware Configuration File which is compatible with the new
7195 * Firmware if that's desired.
7197 (void)t4_load_cfg(adap
, NULL
, 0);
7200 * Older versions of the firmware don't understand the new
7201 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7202 * restart. So for newly loaded older firmware we'll have to do the
7203 * RESET for it so it starts up on a clean slate. We can tell if
7204 * the newly loaded firmware will handle this right by checking
7205 * its header flags to see if it advertises the capability.
7207 reset
= ((be32_to_cpu(fw_hdr
->flags
) & FW_HDR_FLAGS_RESET_HALT
) == 0);
7208 ret
= t4_fw_restart(adap
, mbox
, reset
);
7210 /* Grab potentially new Firmware Device Log parameters so we can see
7211 * how healthy the new Firmware is. It's okay to contact the new
7212 * Firmware for these parameters even though, as far as it's
7213 * concerned, we've never said "HELLO" to it ...
7215 (void)t4_init_devlog_params(adap
);
7217 adap
->flags
|= CXGB4_FW_OK
;
7222 * t4_fl_pkt_align - return the fl packet alignment
7223 * @adap: the adapter
7225 * T4 has a single field to specify the packing and padding boundary.
7226 * T5 onwards has separate fields for this and hence the alignment for
7227 * next packet offset is maximum of these two.
7230 int t4_fl_pkt_align(struct adapter
*adap
)
7232 u32 sge_control
, sge_control2
;
7233 unsigned int ingpadboundary
, ingpackboundary
, fl_align
, ingpad_shift
;
7235 sge_control
= t4_read_reg(adap
, SGE_CONTROL_A
);
7237 /* T4 uses a single control field to specify both the PCIe Padding and
7238 * Packing Boundary. T5 introduced the ability to specify these
7239 * separately. The actual Ingress Packet Data alignment boundary
7240 * within Packed Buffer Mode is the maximum of these two
7241 * specifications. (Note that it makes no real practical sense to
7242 * have the Padding Boundary be larger than the Packing Boundary but you
7243 * could set the chip up that way and, in fact, legacy T4 code would
7244 * end doing this because it would initialize the Padding Boundary and
7245 * leave the Packing Boundary initialized to 0 (16 bytes).)
7246 * Padding Boundary values in T6 starts from 8B,
7247 * where as it is 32B for T4 and T5.
7249 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) <= CHELSIO_T5
)
7250 ingpad_shift
= INGPADBOUNDARY_SHIFT_X
;
7252 ingpad_shift
= T6_INGPADBOUNDARY_SHIFT_X
;
7254 ingpadboundary
= 1 << (INGPADBOUNDARY_G(sge_control
) + ingpad_shift
);
7256 fl_align
= ingpadboundary
;
7257 if (!is_t4(adap
->params
.chip
)) {
7258 /* T5 has a weird interpretation of one of the PCIe Packing
7259 * Boundary values. No idea why ...
7261 sge_control2
= t4_read_reg(adap
, SGE_CONTROL2_A
);
7262 ingpackboundary
= INGPACKBOUNDARY_G(sge_control2
);
7263 if (ingpackboundary
== INGPACKBOUNDARY_16B_X
)
7264 ingpackboundary
= 16;
7266 ingpackboundary
= 1 << (ingpackboundary
+
7267 INGPACKBOUNDARY_SHIFT_X
);
7269 fl_align
= max(ingpadboundary
, ingpackboundary
);
7275 * t4_fixup_host_params - fix up host-dependent parameters
7276 * @adap: the adapter
7277 * @page_size: the host's Base Page Size
7278 * @cache_line_size: the host's Cache Line Size
7280 * Various registers in T4 contain values which are dependent on the
7281 * host's Base Page and Cache Line Sizes. This function will fix all of
7282 * those registers with the appropriate values as passed in ...
7284 int t4_fixup_host_params(struct adapter
*adap
, unsigned int page_size
,
7285 unsigned int cache_line_size
)
7287 unsigned int page_shift
= fls(page_size
) - 1;
7288 unsigned int sge_hps
= page_shift
- 10;
7289 unsigned int stat_len
= cache_line_size
> 64 ? 128 : 64;
7290 unsigned int fl_align
= cache_line_size
< 32 ? 32 : cache_line_size
;
7291 unsigned int fl_align_log
= fls(fl_align
) - 1;
7293 t4_write_reg(adap
, SGE_HOST_PAGE_SIZE_A
,
7294 HOSTPAGESIZEPF0_V(sge_hps
) |
7295 HOSTPAGESIZEPF1_V(sge_hps
) |
7296 HOSTPAGESIZEPF2_V(sge_hps
) |
7297 HOSTPAGESIZEPF3_V(sge_hps
) |
7298 HOSTPAGESIZEPF4_V(sge_hps
) |
7299 HOSTPAGESIZEPF5_V(sge_hps
) |
7300 HOSTPAGESIZEPF6_V(sge_hps
) |
7301 HOSTPAGESIZEPF7_V(sge_hps
));
7303 if (is_t4(adap
->params
.chip
)) {
7304 t4_set_reg_field(adap
, SGE_CONTROL_A
,
7305 INGPADBOUNDARY_V(INGPADBOUNDARY_M
) |
7306 EGRSTATUSPAGESIZE_F
,
7307 INGPADBOUNDARY_V(fl_align_log
-
7308 INGPADBOUNDARY_SHIFT_X
) |
7309 EGRSTATUSPAGESIZE_V(stat_len
!= 64));
7311 unsigned int pack_align
;
7312 unsigned int ingpad
, ingpack
;
7314 /* T5 introduced the separation of the Free List Padding and
7315 * Packing Boundaries. Thus, we can select a smaller Padding
7316 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7317 * Bandwidth, and use a Packing Boundary which is large enough
7318 * to avoid false sharing between CPUs, etc.
7320 * For the PCI Link, the smaller the Padding Boundary the
7321 * better. For the Memory Controller, a smaller Padding
7322 * Boundary is better until we cross under the Memory Line
7323 * Size (the minimum unit of transfer to/from Memory). If we
7324 * have a Padding Boundary which is smaller than the Memory
7325 * Line Size, that'll involve a Read-Modify-Write cycle on the
7326 * Memory Controller which is never good.
7329 /* We want the Packing Boundary to be based on the Cache Line
7330 * Size in order to help avoid False Sharing performance
7331 * issues between CPUs, etc. We also want the Packing
7332 * Boundary to incorporate the PCI-E Maximum Payload Size. We
7333 * get best performance when the Packing Boundary is a
7334 * multiple of the Maximum Payload Size.
7336 pack_align
= fl_align
;
7337 if (pci_is_pcie(adap
->pdev
)) {
7338 unsigned int mps
, mps_log
;
7341 /* The PCIe Device Control Maximum Payload Size field
7342 * [bits 7:5] encodes sizes as powers of 2 starting at
7345 pcie_capability_read_word(adap
->pdev
, PCI_EXP_DEVCTL
,
7347 mps_log
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5) + 7;
7349 if (mps
> pack_align
)
7353 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7354 * value for the Packing Boundary. This corresponds to 16
7355 * bytes instead of the expected 32 bytes. So if we want 32
7356 * bytes, the best we can really do is 64 bytes ...
7358 if (pack_align
<= 16) {
7359 ingpack
= INGPACKBOUNDARY_16B_X
;
7361 } else if (pack_align
== 32) {
7362 ingpack
= INGPACKBOUNDARY_64B_X
;
7365 unsigned int pack_align_log
= fls(pack_align
) - 1;
7367 ingpack
= pack_align_log
- INGPACKBOUNDARY_SHIFT_X
;
7368 fl_align
= pack_align
;
7371 /* Use the smallest Ingress Padding which isn't smaller than
7372 * the Memory Controller Read/Write Size. We'll take that as
7373 * being 8 bytes since we don't know of any system with a
7374 * wider Memory Controller Bus Width.
7376 if (is_t5(adap
->params
.chip
))
7377 ingpad
= INGPADBOUNDARY_32B_X
;
7379 ingpad
= T6_INGPADBOUNDARY_8B_X
;
7381 t4_set_reg_field(adap
, SGE_CONTROL_A
,
7382 INGPADBOUNDARY_V(INGPADBOUNDARY_M
) |
7383 EGRSTATUSPAGESIZE_F
,
7384 INGPADBOUNDARY_V(ingpad
) |
7385 EGRSTATUSPAGESIZE_V(stat_len
!= 64));
7386 t4_set_reg_field(adap
, SGE_CONTROL2_A
,
7387 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M
),
7388 INGPACKBOUNDARY_V(ingpack
));
7391 * Adjust various SGE Free List Host Buffer Sizes.
7393 * This is something of a crock since we're using fixed indices into
7394 * the array which are also known by the sge.c code and the T4
7395 * Firmware Configuration File. We need to come up with a much better
7396 * approach to managing this array. For now, the first four entries
7401 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7402 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7404 * For the single-MTU buffers in unpacked mode we need to include
7405 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7406 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7407 * Padding boundary. All of these are accommodated in the Factory
7408 * Default Firmware Configuration File but we need to adjust it for
7409 * this host's cache line size.
7411 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE0_A
, page_size
);
7412 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE2_A
,
7413 (t4_read_reg(adap
, SGE_FL_BUFFER_SIZE2_A
) + fl_align
-1)
7415 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE3_A
,
7416 (t4_read_reg(adap
, SGE_FL_BUFFER_SIZE3_A
) + fl_align
-1)
7419 t4_write_reg(adap
, ULP_RX_TDDP_PSZ_A
, HPZ0_V(page_shift
- 12));
7425 * t4_fw_initialize - ask FW to initialize the device
7426 * @adap: the adapter
7427 * @mbox: mailbox to use for the FW command
7429 * Issues a command to FW to partially initialize the device. This
7430 * performs initialization that generally doesn't depend on user input.
7432 int t4_fw_initialize(struct adapter
*adap
, unsigned int mbox
)
7434 struct fw_initialize_cmd c
;
7436 memset(&c
, 0, sizeof(c
));
7437 INIT_CMD(c
, INITIALIZE
, WRITE
);
7438 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
7442 * t4_query_params_rw - query FW or device parameters
7443 * @adap: the adapter
7444 * @mbox: mailbox to use for the FW command
7447 * @nparams: the number of parameters
7448 * @params: the parameter names
7449 * @val: the parameter values
7450 * @rw: Write and read flag
7451 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7453 * Reads the value of FW or device parameters. Up to 7 parameters can be
7456 int t4_query_params_rw(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
7457 unsigned int vf
, unsigned int nparams
, const u32
*params
,
7458 u32
*val
, int rw
, bool sleep_ok
)
7461 struct fw_params_cmd c
;
7462 __be32
*p
= &c
.param
[0].mnem
;
7467 memset(&c
, 0, sizeof(c
));
7468 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
7469 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
7470 FW_PARAMS_CMD_PFN_V(pf
) |
7471 FW_PARAMS_CMD_VFN_V(vf
));
7472 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
7474 for (i
= 0; i
< nparams
; i
++) {
7475 *p
++ = cpu_to_be32(*params
++);
7477 *p
= cpu_to_be32(*(val
+ i
));
7481 ret
= t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
7483 for (i
= 0, p
= &c
.param
[0].val
; i
< nparams
; i
++, p
+= 2)
7484 *val
++ = be32_to_cpu(*p
);
7488 int t4_query_params(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
7489 unsigned int vf
, unsigned int nparams
, const u32
*params
,
7492 return t4_query_params_rw(adap
, mbox
, pf
, vf
, nparams
, params
, val
, 0,
7496 int t4_query_params_ns(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
7497 unsigned int vf
, unsigned int nparams
, const u32
*params
,
7500 return t4_query_params_rw(adap
, mbox
, pf
, vf
, nparams
, params
, val
, 0,
7505 * t4_set_params_timeout - sets FW or device parameters
7506 * @adap: the adapter
7507 * @mbox: mailbox to use for the FW command
7510 * @nparams: the number of parameters
7511 * @params: the parameter names
7512 * @val: the parameter values
7513 * @timeout: the timeout time
7515 * Sets the value of FW or device parameters. Up to 7 parameters can be
7516 * specified at once.
7518 int t4_set_params_timeout(struct adapter
*adap
, unsigned int mbox
,
7519 unsigned int pf
, unsigned int vf
,
7520 unsigned int nparams
, const u32
*params
,
7521 const u32
*val
, int timeout
)
7523 struct fw_params_cmd c
;
7524 __be32
*p
= &c
.param
[0].mnem
;
7529 memset(&c
, 0, sizeof(c
));
7530 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD
) |
7531 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
7532 FW_PARAMS_CMD_PFN_V(pf
) |
7533 FW_PARAMS_CMD_VFN_V(vf
));
7534 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
7537 *p
++ = cpu_to_be32(*params
++);
7538 *p
++ = cpu_to_be32(*val
++);
7541 return t4_wr_mbox_timeout(adap
, mbox
, &c
, sizeof(c
), NULL
, timeout
);
7545 * t4_set_params - sets FW or device parameters
7546 * @adap: the adapter
7547 * @mbox: mailbox to use for the FW command
7550 * @nparams: the number of parameters
7551 * @params: the parameter names
7552 * @val: the parameter values
7554 * Sets the value of FW or device parameters. Up to 7 parameters can be
7555 * specified at once.
7557 int t4_set_params(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
7558 unsigned int vf
, unsigned int nparams
, const u32
*params
,
7561 return t4_set_params_timeout(adap
, mbox
, pf
, vf
, nparams
, params
, val
,
7562 FW_CMD_MAX_TIMEOUT
);
7566 * t4_cfg_pfvf - configure PF/VF resource limits
7567 * @adap: the adapter
7568 * @mbox: mailbox to use for the FW command
7569 * @pf: the PF being configured
7570 * @vf: the VF being configured
7571 * @txq: the max number of egress queues
7572 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
7573 * @rxqi: the max number of interrupt-capable ingress queues
7574 * @rxq: the max number of interruptless ingress queues
7575 * @tc: the PCI traffic class
7576 * @vi: the max number of virtual interfaces
7577 * @cmask: the channel access rights mask for the PF/VF
7578 * @pmask: the port access rights mask for the PF/VF
7579 * @nexact: the maximum number of exact MPS filters
7580 * @rcaps: read capabilities
7581 * @wxcaps: write/execute capabilities
7583 * Configures resource limits and capabilities for a physical or virtual
7586 int t4_cfg_pfvf(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
7587 unsigned int vf
, unsigned int txq
, unsigned int txq_eth_ctrl
,
7588 unsigned int rxqi
, unsigned int rxq
, unsigned int tc
,
7589 unsigned int vi
, unsigned int cmask
, unsigned int pmask
,
7590 unsigned int nexact
, unsigned int rcaps
, unsigned int wxcaps
)
7592 struct fw_pfvf_cmd c
;
7594 memset(&c
, 0, sizeof(c
));
7595 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD
) | FW_CMD_REQUEST_F
|
7596 FW_CMD_WRITE_F
| FW_PFVF_CMD_PFN_V(pf
) |
7597 FW_PFVF_CMD_VFN_V(vf
));
7598 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
7599 c
.niqflint_niq
= cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi
) |
7600 FW_PFVF_CMD_NIQ_V(rxq
));
7601 c
.type_to_neq
= cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask
) |
7602 FW_PFVF_CMD_PMASK_V(pmask
) |
7603 FW_PFVF_CMD_NEQ_V(txq
));
7604 c
.tc_to_nexactf
= cpu_to_be32(FW_PFVF_CMD_TC_V(tc
) |
7605 FW_PFVF_CMD_NVI_V(vi
) |
7606 FW_PFVF_CMD_NEXACTF_V(nexact
));
7607 c
.r_caps_to_nethctrl
= cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps
) |
7608 FW_PFVF_CMD_WX_CAPS_V(wxcaps
) |
7609 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl
));
7610 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
7614 * t4_alloc_vi - allocate a virtual interface
7615 * @adap: the adapter
7616 * @mbox: mailbox to use for the FW command
7617 * @port: physical port associated with the VI
7618 * @pf: the PF owning the VI
7619 * @vf: the VF owning the VI
7620 * @nmac: number of MAC addresses needed (1 to 5)
7621 * @mac: the MAC addresses of the VI
7622 * @rss_size: size of RSS table slice associated with this VI
7624 * Allocates a virtual interface for the given physical port. If @mac is
7625 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
7626 * @mac should be large enough to hold @nmac Ethernet addresses, they are
7627 * stored consecutively so the space needed is @nmac * 6 bytes.
7628 * Returns a negative error number or the non-negative VI id.
7630 int t4_alloc_vi(struct adapter
*adap
, unsigned int mbox
, unsigned int port
,
7631 unsigned int pf
, unsigned int vf
, unsigned int nmac
, u8
*mac
,
7632 unsigned int *rss_size
, u8
*vivld
, u8
*vin
)
7637 memset(&c
, 0, sizeof(c
));
7638 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) | FW_CMD_REQUEST_F
|
7639 FW_CMD_WRITE_F
| FW_CMD_EXEC_F
|
7640 FW_VI_CMD_PFN_V(pf
) | FW_VI_CMD_VFN_V(vf
));
7641 c
.alloc_to_len16
= cpu_to_be32(FW_VI_CMD_ALLOC_F
| FW_LEN16(c
));
7642 c
.portid_pkd
= FW_VI_CMD_PORTID_V(port
);
7645 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
7650 memcpy(mac
, c
.mac
, sizeof(c
.mac
));
7653 memcpy(mac
+ 24, c
.nmac3
, sizeof(c
.nmac3
));
7656 memcpy(mac
+ 18, c
.nmac2
, sizeof(c
.nmac2
));
7659 memcpy(mac
+ 12, c
.nmac1
, sizeof(c
.nmac1
));
7662 memcpy(mac
+ 6, c
.nmac0
, sizeof(c
.nmac0
));
7666 *rss_size
= FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c
.rsssize_pkd
));
7669 *vivld
= FW_VI_CMD_VFVLD_G(be32_to_cpu(c
.alloc_to_len16
));
7672 *vin
= FW_VI_CMD_VIN_G(be32_to_cpu(c
.alloc_to_len16
));
7674 return FW_VI_CMD_VIID_G(be16_to_cpu(c
.type_viid
));
7678 * t4_free_vi - free a virtual interface
7679 * @adap: the adapter
7680 * @mbox: mailbox to use for the FW command
7681 * @pf: the PF owning the VI
7682 * @vf: the VF owning the VI
7683 * @viid: virtual interface identifiler
7685 * Free a previously allocated virtual interface.
7687 int t4_free_vi(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
7688 unsigned int vf
, unsigned int viid
)
7692 memset(&c
, 0, sizeof(c
));
7693 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD
) |
7696 FW_VI_CMD_PFN_V(pf
) |
7697 FW_VI_CMD_VFN_V(vf
));
7698 c
.alloc_to_len16
= cpu_to_be32(FW_VI_CMD_FREE_F
| FW_LEN16(c
));
7699 c
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID_V(viid
));
7701 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
7705 * t4_set_rxmode - set Rx properties of a virtual interface
7706 * @adap: the adapter
7707 * @mbox: mailbox to use for the FW command
7709 * @mtu: the new MTU or -1
7710 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7711 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7712 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7713 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7714 * @sleep_ok: if true we may sleep while awaiting command completion
7716 * Sets Rx properties of a virtual interface.
7718 int t4_set_rxmode(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
7719 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
7722 struct fw_vi_rxmode_cmd c
;
7724 /* convert to FW values */
7726 mtu
= FW_RXMODE_MTU_NO_CHG
;
7728 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_M
;
7730 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_M
;
7732 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_M
;
7734 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_M
;
7736 memset(&c
, 0, sizeof(c
));
7737 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD
) |
7738 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
7739 FW_VI_RXMODE_CMD_VIID_V(viid
));
7740 c
.retval_len16
= cpu_to_be32(FW_LEN16(c
));
7742 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu
) |
7743 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc
) |
7744 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi
) |
7745 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast
) |
7746 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex
));
7747 return t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), NULL
, sleep_ok
);
7751 * t4_free_encap_mac_filt - frees MPS entry at given index
7752 * @adap: the adapter
7754 * @idx: index of MPS entry to be freed
7755 * @sleep_ok: call is allowed to sleep
7757 * Frees the MPS entry at supplied index
7759 * Returns a negative error number or zero on success
7761 int t4_free_encap_mac_filt(struct adapter
*adap
, unsigned int viid
,
7762 int idx
, bool sleep_ok
)
7764 struct fw_vi_mac_exact
*p
;
7765 u8 addr
[] = {0, 0, 0, 0, 0, 0};
7766 struct fw_vi_mac_cmd c
;
7770 memset(&c
, 0, sizeof(c
));
7771 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
7772 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
7774 FW_VI_MAC_CMD_VIID_V(viid
));
7775 exact
= FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC
);
7776 c
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7780 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID_F
|
7781 FW_VI_MAC_CMD_IDX_V(idx
));
7782 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
7783 ret
= t4_wr_mbox_meat(adap
, adap
->mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
7788 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7789 * @adap: the adapter
7791 * @addr: the MAC address
7793 * @idx: index of the entry in mps tcam
7794 * @lookup_type: MAC address for inner (1) or outer (0) header
7795 * @port_id: the port index
7796 * @sleep_ok: call is allowed to sleep
7798 * Removes the mac entry at the specified index using raw mac interface.
7800 * Returns a negative error number on failure.
7802 int t4_free_raw_mac_filt(struct adapter
*adap
, unsigned int viid
,
7803 const u8
*addr
, const u8
*mask
, unsigned int idx
,
7804 u8 lookup_type
, u8 port_id
, bool sleep_ok
)
7806 struct fw_vi_mac_cmd c
;
7807 struct fw_vi_mac_raw
*p
= &c
.u
.raw
;
7810 memset(&c
, 0, sizeof(c
));
7811 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
7812 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
7814 FW_VI_MAC_CMD_VIID_V(viid
));
7815 val
= FW_CMD_LEN16_V(1) |
7816 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW
);
7817 c
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7818 FW_CMD_LEN16_V(val
));
7820 p
->raw_idx_pkd
= cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx
) |
7821 FW_VI_MAC_ID_BASED_FREE
);
7823 /* Lookup Type. Outer header: 0, Inner header: 1 */
7824 p
->data0_pkd
= cpu_to_be32(DATALKPTYPE_V(lookup_type
) |
7825 DATAPORTNUM_V(port_id
));
7826 /* Lookup mask and port mask */
7827 p
->data0m_pkd
= cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M
) |
7828 DATAPORTNUM_V(DATAPORTNUM_M
));
7830 /* Copy the address and the mask */
7831 memcpy((u8
*)&p
->data1
[0] + 2, addr
, ETH_ALEN
);
7832 memcpy((u8
*)&p
->data1m
[0] + 2, mask
, ETH_ALEN
);
7834 return t4_wr_mbox_meat(adap
, adap
->mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
7838 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7839 * @adap: the adapter
7841 * @mac: the MAC address
7843 * @vni: the VNI id for the tunnel protocol
7844 * @vni_mask: mask for the VNI id
7845 * @dip_hit: to enable DIP match for the MPS entry
7846 * @lookup_type: MAC address for inner (1) or outer (0) header
7847 * @sleep_ok: call is allowed to sleep
7849 * Allocates an MPS entry with specified MAC address and VNI value.
7851 * Returns a negative error number or the allocated index for this mac.
7853 int t4_alloc_encap_mac_filt(struct adapter
*adap
, unsigned int viid
,
7854 const u8
*addr
, const u8
*mask
, unsigned int vni
,
7855 unsigned int vni_mask
, u8 dip_hit
, u8 lookup_type
,
7858 struct fw_vi_mac_cmd c
;
7859 struct fw_vi_mac_vni
*p
= c
.u
.exact_vni
;
7863 memset(&c
, 0, sizeof(c
));
7864 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
7865 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
7866 FW_VI_MAC_CMD_VIID_V(viid
));
7867 val
= FW_CMD_LEN16_V(1) |
7868 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI
);
7869 c
.freemacs_to_len16
= cpu_to_be32(val
);
7870 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID_F
|
7871 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC
));
7872 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
7873 memcpy(p
->macaddr_mask
, mask
, sizeof(p
->macaddr_mask
));
7875 p
->lookup_type_to_vni
=
7876 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni
) |
7877 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit
) |
7878 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type
));
7879 p
->vni_mask_pkd
= cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask
));
7880 ret
= t4_wr_mbox_meat(adap
, adap
->mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
7882 ret
= FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p
->valid_to_idx
));
7887 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7888 * @adap: the adapter
7890 * @mac: the MAC address
7892 * @idx: index at which to add this entry
7893 * @port_id: the port index
7894 * @lookup_type: MAC address for inner (1) or outer (0) header
7895 * @sleep_ok: call is allowed to sleep
7897 * Adds the mac entry at the specified index using raw mac interface.
7899 * Returns a negative error number or the allocated index for this mac.
7901 int t4_alloc_raw_mac_filt(struct adapter
*adap
, unsigned int viid
,
7902 const u8
*addr
, const u8
*mask
, unsigned int idx
,
7903 u8 lookup_type
, u8 port_id
, bool sleep_ok
)
7906 struct fw_vi_mac_cmd c
;
7907 struct fw_vi_mac_raw
*p
= &c
.u
.raw
;
7910 memset(&c
, 0, sizeof(c
));
7911 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
7912 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
7913 FW_VI_MAC_CMD_VIID_V(viid
));
7914 val
= FW_CMD_LEN16_V(1) |
7915 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW
);
7916 c
.freemacs_to_len16
= cpu_to_be32(val
);
7918 /* Specify that this is an inner mac address */
7919 p
->raw_idx_pkd
= cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx
));
7921 /* Lookup Type. Outer header: 0, Inner header: 1 */
7922 p
->data0_pkd
= cpu_to_be32(DATALKPTYPE_V(lookup_type
) |
7923 DATAPORTNUM_V(port_id
));
7924 /* Lookup mask and port mask */
7925 p
->data0m_pkd
= cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M
) |
7926 DATAPORTNUM_V(DATAPORTNUM_M
));
7928 /* Copy the address and the mask */
7929 memcpy((u8
*)&p
->data1
[0] + 2, addr
, ETH_ALEN
);
7930 memcpy((u8
*)&p
->data1m
[0] + 2, mask
, ETH_ALEN
);
7932 ret
= t4_wr_mbox_meat(adap
, adap
->mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
7934 ret
= FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p
->raw_idx_pkd
));
7943 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7944 * @adap: the adapter
7945 * @mbox: mailbox to use for the FW command
7947 * @free: if true any existing filters for this VI id are first removed
7948 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
7949 * @addr: the MAC address(es)
7950 * @idx: where to store the index of each allocated filter
7951 * @hash: pointer to hash address filter bitmap
7952 * @sleep_ok: call is allowed to sleep
7954 * Allocates an exact-match filter for each of the supplied addresses and
7955 * sets it to the corresponding address. If @idx is not %NULL it should
7956 * have at least @naddr entries, each of which will be set to the index of
7957 * the filter allocated for the corresponding MAC address. If a filter
7958 * could not be allocated for an address its index is set to 0xffff.
7959 * If @hash is not %NULL addresses that fail to allocate an exact filter
7960 * are hashed and update the hash filter bitmap pointed at by @hash.
7962 * Returns a negative error number or the number of filters allocated.
7964 int t4_alloc_mac_filt(struct adapter
*adap
, unsigned int mbox
,
7965 unsigned int viid
, bool free
, unsigned int naddr
,
7966 const u8
**addr
, u16
*idx
, u64
*hash
, bool sleep_ok
)
7968 int offset
, ret
= 0;
7969 struct fw_vi_mac_cmd c
;
7970 unsigned int nfilters
= 0;
7971 unsigned int max_naddr
= adap
->params
.arch
.mps_tcam_size
;
7972 unsigned int rem
= naddr
;
7974 if (naddr
> max_naddr
)
7977 for (offset
= 0; offset
< naddr
; /**/) {
7978 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(c
.u
.exact
) ?
7979 rem
: ARRAY_SIZE(c
.u
.exact
));
7980 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
7981 u
.exact
[fw_naddr
]), 16);
7982 struct fw_vi_mac_exact
*p
;
7985 memset(&c
, 0, sizeof(c
));
7986 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
7989 FW_CMD_EXEC_V(free
) |
7990 FW_VI_MAC_CMD_VIID_V(viid
));
7991 c
.freemacs_to_len16
=
7992 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free
) |
7993 FW_CMD_LEN16_V(len16
));
7995 for (i
= 0, p
= c
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
7997 cpu_to_be16(FW_VI_MAC_CMD_VALID_F
|
7998 FW_VI_MAC_CMD_IDX_V(
7999 FW_VI_MAC_ADD_MAC
));
8000 memcpy(p
->macaddr
, addr
[offset
+ i
],
8001 sizeof(p
->macaddr
));
8004 /* It's okay if we run out of space in our MAC address arena.
8005 * Some of the addresses we submit may get stored so we need
8006 * to run through the reply to see what the results were ...
8008 ret
= t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
8009 if (ret
&& ret
!= -FW_ENOMEM
)
8012 for (i
= 0, p
= c
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
8013 u16 index
= FW_VI_MAC_CMD_IDX_G(
8014 be16_to_cpu(p
->valid_to_idx
));
8017 idx
[offset
+ i
] = (index
>= max_naddr
?
8019 if (index
< max_naddr
)
8023 hash_mac_addr(addr
[offset
+ i
]));
8031 if (ret
== 0 || ret
== -FW_ENOMEM
)
8037 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
8038 * @adap: the adapter
8039 * @mbox: mailbox to use for the FW command
8041 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
8042 * @addr: the MAC address(es)
8043 * @sleep_ok: call is allowed to sleep
8045 * Frees the exact-match filter for each of the supplied addresses
8047 * Returns a negative error number or the number of filters freed.
8049 int t4_free_mac_filt(struct adapter
*adap
, unsigned int mbox
,
8050 unsigned int viid
, unsigned int naddr
,
8051 const u8
**addr
, bool sleep_ok
)
8053 int offset
, ret
= 0;
8054 struct fw_vi_mac_cmd c
;
8055 unsigned int nfilters
= 0;
8056 unsigned int max_naddr
= is_t4(adap
->params
.chip
) ?
8057 NUM_MPS_CLS_SRAM_L_INSTANCES
:
8058 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
8059 unsigned int rem
= naddr
;
8061 if (naddr
> max_naddr
)
8064 for (offset
= 0; offset
< (int)naddr
; /**/) {
8065 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(c
.u
.exact
)
8067 : ARRAY_SIZE(c
.u
.exact
));
8068 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
8069 u
.exact
[fw_naddr
]), 16);
8070 struct fw_vi_mac_exact
*p
;
8073 memset(&c
, 0, sizeof(c
));
8074 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
8078 FW_VI_MAC_CMD_VIID_V(viid
));
8079 c
.freemacs_to_len16
=
8080 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8081 FW_CMD_LEN16_V(len16
));
8083 for (i
= 0, p
= c
.u
.exact
; i
< (int)fw_naddr
; i
++, p
++) {
8084 p
->valid_to_idx
= cpu_to_be16(
8085 FW_VI_MAC_CMD_VALID_F
|
8086 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE
));
8087 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
8090 ret
= t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), &c
, sleep_ok
);
8094 for (i
= 0, p
= c
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
8095 u16 index
= FW_VI_MAC_CMD_IDX_G(
8096 be16_to_cpu(p
->valid_to_idx
));
8098 if (index
< max_naddr
)
8112 * t4_change_mac - modifies the exact-match filter for a MAC address
8113 * @adap: the adapter
8114 * @mbox: mailbox to use for the FW command
8116 * @idx: index of existing filter for old value of MAC address, or -1
8117 * @addr: the new MAC address value
8118 * @persist: whether a new MAC allocation should be persistent
8119 * @add_smt: if true also add the address to the HW SMT
8121 * Modifies an exact-match filter and sets it to the new MAC address.
8122 * Note that in general it is not possible to modify the value of a given
8123 * filter so the generic way to modify an address filter is to free the one
8124 * being used by the old address value and allocate a new filter for the
8125 * new address value. @idx can be -1 if the address is a new addition.
8127 * Returns a negative error number or the index of the filter with the new
8130 int t4_change_mac(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
8131 int idx
, const u8
*addr
, bool persist
, u8
*smt_idx
)
8134 struct fw_vi_mac_cmd c
;
8135 struct fw_vi_mac_exact
*p
= c
.u
.exact
;
8136 unsigned int max_mac_addr
= adap
->params
.arch
.mps_tcam_size
;
8138 if (idx
< 0) /* new allocation */
8139 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
8140 mode
= smt_idx
? FW_VI_MAC_SMT_AND_MPSTCAM
: FW_VI_MAC_MPS_TCAM_ENTRY
;
8142 memset(&c
, 0, sizeof(c
));
8143 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
8144 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
8145 FW_VI_MAC_CMD_VIID_V(viid
));
8146 c
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16_V(1));
8147 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID_F
|
8148 FW_VI_MAC_CMD_SMAC_RESULT_V(mode
) |
8149 FW_VI_MAC_CMD_IDX_V(idx
));
8150 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
8152 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
8154 ret
= FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p
->valid_to_idx
));
8155 if (ret
>= max_mac_addr
)
8158 if (adap
->params
.viid_smt_extn_support
) {
8159 *smt_idx
= FW_VI_MAC_CMD_SMTID_G
8160 (be32_to_cpu(c
.op_to_viid
));
8162 /* In T4/T5, SMT contains 256 SMAC entries
8163 * organized in 128 rows of 2 entries each.
8164 * In T6, SMT contains 256 SMAC entries in
8167 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) <=
8169 *smt_idx
= (viid
& FW_VIID_VIN_M
) << 1;
8171 *smt_idx
= (viid
& FW_VIID_VIN_M
);
8179 * t4_set_addr_hash - program the MAC inexact-match hash filter
8180 * @adap: the adapter
8181 * @mbox: mailbox to use for the FW command
8183 * @ucast: whether the hash filter should also match unicast addresses
8184 * @vec: the value to be written to the hash filter
8185 * @sleep_ok: call is allowed to sleep
8187 * Sets the 64-bit inexact-match hash filter for a virtual interface.
8189 int t4_set_addr_hash(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
8190 bool ucast
, u64 vec
, bool sleep_ok
)
8192 struct fw_vi_mac_cmd c
;
8194 memset(&c
, 0, sizeof(c
));
8195 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD
) |
8196 FW_CMD_REQUEST_F
| FW_CMD_WRITE_F
|
8197 FW_VI_ENABLE_CMD_VIID_V(viid
));
8198 c
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F
|
8199 FW_VI_MAC_CMD_HASHUNIEN_V(ucast
) |
8201 c
.u
.hash
.hashvec
= cpu_to_be64(vec
);
8202 return t4_wr_mbox_meat(adap
, mbox
, &c
, sizeof(c
), NULL
, sleep_ok
);
8206 * t4_enable_vi_params - enable/disable a virtual interface
8207 * @adap: the adapter
8208 * @mbox: mailbox to use for the FW command
8210 * @rx_en: 1=enable Rx, 0=disable Rx
8211 * @tx_en: 1=enable Tx, 0=disable Tx
8212 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
8214 * Enables/disables a virtual interface. Note that setting DCB Enable
8215 * only makes sense when enabling a Virtual Interface ...
8217 int t4_enable_vi_params(struct adapter
*adap
, unsigned int mbox
,
8218 unsigned int viid
, bool rx_en
, bool tx_en
, bool dcb_en
)
8220 struct fw_vi_enable_cmd c
;
8222 memset(&c
, 0, sizeof(c
));
8223 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD
) |
8224 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
8225 FW_VI_ENABLE_CMD_VIID_V(viid
));
8226 c
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en
) |
8227 FW_VI_ENABLE_CMD_EEN_V(tx_en
) |
8228 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en
) |
8230 return t4_wr_mbox_ns(adap
, mbox
, &c
, sizeof(c
), NULL
);
8234 * t4_enable_vi - enable/disable a virtual interface
8235 * @adap: the adapter
8236 * @mbox: mailbox to use for the FW command
8238 * @rx_en: 1=enable Rx, 0=disable Rx
8239 * @tx_en: 1=enable Tx, 0=disable Tx
8241 * Enables/disables a virtual interface.
8243 int t4_enable_vi(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
8244 bool rx_en
, bool tx_en
)
8246 return t4_enable_vi_params(adap
, mbox
, viid
, rx_en
, tx_en
, 0);
8250 * t4_enable_pi_params - enable/disable a Port's Virtual Interface
8251 * @adap: the adapter
8252 * @mbox: mailbox to use for the FW command
8253 * @pi: the Port Information structure
8254 * @rx_en: 1=enable Rx, 0=disable Rx
8255 * @tx_en: 1=enable Tx, 0=disable Tx
8256 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
8258 * Enables/disables a Port's Virtual Interface. Note that setting DCB
8259 * Enable only makes sense when enabling a Virtual Interface ...
8260 * If the Virtual Interface enable/disable operation is successful,
8261 * we notify the OS-specific code of a potential Link Status change
8262 * via the OS Contract API t4_os_link_changed().
8264 int t4_enable_pi_params(struct adapter
*adap
, unsigned int mbox
,
8265 struct port_info
*pi
,
8266 bool rx_en
, bool tx_en
, bool dcb_en
)
8268 int ret
= t4_enable_vi_params(adap
, mbox
, pi
->viid
,
8269 rx_en
, tx_en
, dcb_en
);
8272 t4_os_link_changed(adap
, pi
->port_id
,
8273 rx_en
&& tx_en
&& pi
->link_cfg
.link_ok
);
8278 * t4_identify_port - identify a VI's port by blinking its LED
8279 * @adap: the adapter
8280 * @mbox: mailbox to use for the FW command
8282 * @nblinks: how many times to blink LED at 2.5 Hz
8284 * Identifies a VI's port by blinking its LED.
8286 int t4_identify_port(struct adapter
*adap
, unsigned int mbox
, unsigned int viid
,
8287 unsigned int nblinks
)
8289 struct fw_vi_enable_cmd c
;
8291 memset(&c
, 0, sizeof(c
));
8292 c
.op_to_viid
= cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD
) |
8293 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
8294 FW_VI_ENABLE_CMD_VIID_V(viid
));
8295 c
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED_F
| FW_LEN16(c
));
8296 c
.blinkdur
= cpu_to_be16(nblinks
);
8297 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
8301 * t4_iq_stop - stop an ingress queue and its FLs
8302 * @adap: the adapter
8303 * @mbox: mailbox to use for the FW command
8304 * @pf: the PF owning the queues
8305 * @vf: the VF owning the queues
8306 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8307 * @iqid: ingress queue id
8308 * @fl0id: FL0 queue id or 0xffff if no attached FL0
8309 * @fl1id: FL1 queue id or 0xffff if no attached FL1
8311 * Stops an ingress queue and its associated FLs, if any. This causes
8312 * any current or future data/messages destined for these queues to be
8315 int t4_iq_stop(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
8316 unsigned int vf
, unsigned int iqtype
, unsigned int iqid
,
8317 unsigned int fl0id
, unsigned int fl1id
)
8321 memset(&c
, 0, sizeof(c
));
8322 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD
) | FW_CMD_REQUEST_F
|
8323 FW_CMD_EXEC_F
| FW_IQ_CMD_PFN_V(pf
) |
8324 FW_IQ_CMD_VFN_V(vf
));
8325 c
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_IQSTOP_F
| FW_LEN16(c
));
8326 c
.type_to_iqandstindex
= cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype
));
8327 c
.iqid
= cpu_to_be16(iqid
);
8328 c
.fl0id
= cpu_to_be16(fl0id
);
8329 c
.fl1id
= cpu_to_be16(fl1id
);
8330 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
8334 * t4_iq_free - free an ingress queue and its FLs
8335 * @adap: the adapter
8336 * @mbox: mailbox to use for the FW command
8337 * @pf: the PF owning the queues
8338 * @vf: the VF owning the queues
8339 * @iqtype: the ingress queue type
8340 * @iqid: ingress queue id
8341 * @fl0id: FL0 queue id or 0xffff if no attached FL0
8342 * @fl1id: FL1 queue id or 0xffff if no attached FL1
8344 * Frees an ingress queue and its associated FLs, if any.
8346 int t4_iq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
8347 unsigned int vf
, unsigned int iqtype
, unsigned int iqid
,
8348 unsigned int fl0id
, unsigned int fl1id
)
8352 memset(&c
, 0, sizeof(c
));
8353 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD
) | FW_CMD_REQUEST_F
|
8354 FW_CMD_EXEC_F
| FW_IQ_CMD_PFN_V(pf
) |
8355 FW_IQ_CMD_VFN_V(vf
));
8356 c
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE_F
| FW_LEN16(c
));
8357 c
.type_to_iqandstindex
= cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype
));
8358 c
.iqid
= cpu_to_be16(iqid
);
8359 c
.fl0id
= cpu_to_be16(fl0id
);
8360 c
.fl1id
= cpu_to_be16(fl1id
);
8361 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
8365 * t4_eth_eq_free - free an Ethernet egress queue
8366 * @adap: the adapter
8367 * @mbox: mailbox to use for the FW command
8368 * @pf: the PF owning the queue
8369 * @vf: the VF owning the queue
8370 * @eqid: egress queue id
8372 * Frees an Ethernet egress queue.
8374 int t4_eth_eq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
8375 unsigned int vf
, unsigned int eqid
)
8377 struct fw_eq_eth_cmd c
;
8379 memset(&c
, 0, sizeof(c
));
8380 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD
) |
8381 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
8382 FW_EQ_ETH_CMD_PFN_V(pf
) |
8383 FW_EQ_ETH_CMD_VFN_V(vf
));
8384 c
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE_F
| FW_LEN16(c
));
8385 c
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid
));
8386 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
8390 * t4_ctrl_eq_free - free a control egress queue
8391 * @adap: the adapter
8392 * @mbox: mailbox to use for the FW command
8393 * @pf: the PF owning the queue
8394 * @vf: the VF owning the queue
8395 * @eqid: egress queue id
8397 * Frees a control egress queue.
8399 int t4_ctrl_eq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
8400 unsigned int vf
, unsigned int eqid
)
8402 struct fw_eq_ctrl_cmd c
;
8404 memset(&c
, 0, sizeof(c
));
8405 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD
) |
8406 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
8407 FW_EQ_CTRL_CMD_PFN_V(pf
) |
8408 FW_EQ_CTRL_CMD_VFN_V(vf
));
8409 c
.alloc_to_len16
= cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F
| FW_LEN16(c
));
8410 c
.cmpliqid_eqid
= cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid
));
8411 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
8415 * t4_ofld_eq_free - free an offload egress queue
8416 * @adap: the adapter
8417 * @mbox: mailbox to use for the FW command
8418 * @pf: the PF owning the queue
8419 * @vf: the VF owning the queue
8420 * @eqid: egress queue id
8422 * Frees a control egress queue.
8424 int t4_ofld_eq_free(struct adapter
*adap
, unsigned int mbox
, unsigned int pf
,
8425 unsigned int vf
, unsigned int eqid
)
8427 struct fw_eq_ofld_cmd c
;
8429 memset(&c
, 0, sizeof(c
));
8430 c
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD
) |
8431 FW_CMD_REQUEST_F
| FW_CMD_EXEC_F
|
8432 FW_EQ_OFLD_CMD_PFN_V(pf
) |
8433 FW_EQ_OFLD_CMD_VFN_V(vf
));
8434 c
.alloc_to_len16
= cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F
| FW_LEN16(c
));
8435 c
.eqid_pkd
= cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid
));
8436 return t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), NULL
);
8440 * t4_link_down_rc_str - return a string for a Link Down Reason Code
8441 * @adap: the adapter
8442 * @link_down_rc: Link Down Reason Code
8444 * Returns a string representation of the Link Down Reason Code.
8446 static const char *t4_link_down_rc_str(unsigned char link_down_rc
)
8448 static const char * const reason
[] = {
8451 "Auto-negotiation Failure",
8453 "Insufficient Airflow",
8454 "Unable To Determine Reason",
8455 "No RX Signal Detected",
8459 if (link_down_rc
>= ARRAY_SIZE(reason
))
8460 return "Bad Reason Code";
8462 return reason
[link_down_rc
];
8466 * Return the highest speed set in the port capabilities, in Mb/s.
8468 static unsigned int fwcap_to_speed(fw_port_cap32_t caps
)
8470 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8472 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8476 TEST_SPEED_RETURN(400G
, 400000);
8477 TEST_SPEED_RETURN(200G
, 200000);
8478 TEST_SPEED_RETURN(100G
, 100000);
8479 TEST_SPEED_RETURN(50G
, 50000);
8480 TEST_SPEED_RETURN(40G
, 40000);
8481 TEST_SPEED_RETURN(25G
, 25000);
8482 TEST_SPEED_RETURN(10G
, 10000);
8483 TEST_SPEED_RETURN(1G
, 1000);
8484 TEST_SPEED_RETURN(100M
, 100);
8486 #undef TEST_SPEED_RETURN
8492 * fwcap_to_fwspeed - return highest speed in Port Capabilities
8493 * @acaps: advertised Port Capabilities
8495 * Get the highest speed for the port from the advertised Port
8496 * Capabilities. It will be either the highest speed from the list of
8497 * speeds or whatever user has set using ethtool.
8499 static fw_port_cap32_t
fwcap_to_fwspeed(fw_port_cap32_t acaps
)
8501 #define TEST_SPEED_RETURN(__caps_speed) \
8503 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8504 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8507 TEST_SPEED_RETURN(400G
);
8508 TEST_SPEED_RETURN(200G
);
8509 TEST_SPEED_RETURN(100G
);
8510 TEST_SPEED_RETURN(50G
);
8511 TEST_SPEED_RETURN(40G
);
8512 TEST_SPEED_RETURN(25G
);
8513 TEST_SPEED_RETURN(10G
);
8514 TEST_SPEED_RETURN(1G
);
8515 TEST_SPEED_RETURN(100M
);
8517 #undef TEST_SPEED_RETURN
8523 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8524 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8526 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8527 * 32-bit Port Capabilities value.
8529 static fw_port_cap32_t
lstatus_to_fwcap(u32 lstatus
)
8531 fw_port_cap32_t linkattr
= 0;
8533 /* Unfortunately the format of the Link Status in the old
8534 * 16-bit Port Information message isn't the same as the
8535 * 16-bit Port Capabilities bitfield used everywhere else ...
8537 if (lstatus
& FW_PORT_CMD_RXPAUSE_F
)
8538 linkattr
|= FW_PORT_CAP32_FC_RX
;
8539 if (lstatus
& FW_PORT_CMD_TXPAUSE_F
)
8540 linkattr
|= FW_PORT_CAP32_FC_TX
;
8541 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M
))
8542 linkattr
|= FW_PORT_CAP32_SPEED_100M
;
8543 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G
))
8544 linkattr
|= FW_PORT_CAP32_SPEED_1G
;
8545 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G
))
8546 linkattr
|= FW_PORT_CAP32_SPEED_10G
;
8547 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G
))
8548 linkattr
|= FW_PORT_CAP32_SPEED_25G
;
8549 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G
))
8550 linkattr
|= FW_PORT_CAP32_SPEED_40G
;
8551 if (lstatus
& FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G
))
8552 linkattr
|= FW_PORT_CAP32_SPEED_100G
;
8558 * t4_handle_get_port_info - process a FW reply message
8559 * @pi: the port info
8560 * @rpl: start of the FW message
8562 * Processes a GET_PORT_INFO FW reply message.
8564 void t4_handle_get_port_info(struct port_info
*pi
, const __be64
*rpl
)
8566 const struct fw_port_cmd
*cmd
= (const void *)rpl
;
8567 fw_port_cap32_t pcaps
, acaps
, lpacaps
, linkattr
;
8568 struct link_config
*lc
= &pi
->link_cfg
;
8569 struct adapter
*adapter
= pi
->adapter
;
8570 unsigned int speed
, fc
, fec
, adv_fc
;
8571 enum fw_port_module_type mod_type
;
8572 int action
, link_ok
, linkdnrc
;
8573 enum fw_port_type port_type
;
8575 /* Extract the various fields from the Port Information message.
8577 action
= FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd
->action_to_len16
));
8579 case FW_PORT_ACTION_GET_PORT_INFO
: {
8580 u32 lstatus
= be32_to_cpu(cmd
->u
.info
.lstatus_to_modtype
);
8582 link_ok
= (lstatus
& FW_PORT_CMD_LSTATUS_F
) != 0;
8583 linkdnrc
= FW_PORT_CMD_LINKDNRC_G(lstatus
);
8584 port_type
= FW_PORT_CMD_PTYPE_G(lstatus
);
8585 mod_type
= FW_PORT_CMD_MODTYPE_G(lstatus
);
8586 pcaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.pcap
));
8587 acaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.acap
));
8588 lpacaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
->u
.info
.lpacap
));
8589 linkattr
= lstatus_to_fwcap(lstatus
);
8593 case FW_PORT_ACTION_GET_PORT_INFO32
: {
8596 lstatus32
= be32_to_cpu(cmd
->u
.info32
.lstatus32_to_cbllen32
);
8597 link_ok
= (lstatus32
& FW_PORT_CMD_LSTATUS32_F
) != 0;
8598 linkdnrc
= FW_PORT_CMD_LINKDNRC32_G(lstatus32
);
8599 port_type
= FW_PORT_CMD_PORTTYPE32_G(lstatus32
);
8600 mod_type
= FW_PORT_CMD_MODTYPE32_G(lstatus32
);
8601 pcaps
= be32_to_cpu(cmd
->u
.info32
.pcaps32
);
8602 acaps
= be32_to_cpu(cmd
->u
.info32
.acaps32
);
8603 lpacaps
= be32_to_cpu(cmd
->u
.info32
.lpacaps32
);
8604 linkattr
= be32_to_cpu(cmd
->u
.info32
.linkattr32
);
8609 dev_err(adapter
->pdev_dev
, "Handle Port Information: Bad Command/Action %#x\n",
8610 be32_to_cpu(cmd
->action_to_len16
));
8614 fec
= fwcap_to_cc_fec(acaps
);
8615 adv_fc
= fwcap_to_cc_pause(acaps
);
8616 fc
= fwcap_to_cc_pause(linkattr
);
8617 speed
= fwcap_to_speed(linkattr
);
8619 /* Reset state for communicating new Transceiver Module status and
8620 * whether the OS-dependent layer wants us to redo the current
8621 * "sticky" L1 Configure Link Parameters.
8623 lc
->new_module
= false;
8624 lc
->redo_l1cfg
= false;
8626 if (mod_type
!= pi
->mod_type
) {
8627 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8628 * various fundamental Port Capabilities which used to be
8629 * immutable can now change radically. We can now have
8630 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8631 * all change based on what Transceiver Module is inserted.
8632 * So we need to record the Physical "Port" Capabilities on
8633 * every Transceiver Module change.
8637 /* When a new Transceiver Module is inserted, the Firmware
8638 * will examine its i2c EPROM to determine its type and
8639 * general operating parameters including things like Forward
8640 * Error Control, etc. Various IEEE 802.3 standards dictate
8641 * how to interpret these i2c values to determine default
8642 * "sutomatic" settings. We record these for future use when
8643 * the user explicitly requests these standards-based values.
8645 lc
->def_acaps
= acaps
;
8647 /* Some versions of the early T6 Firmware "cheated" when
8648 * handling different Transceiver Modules by changing the
8649 * underlaying Port Type reported to the Host Drivers. As
8650 * such we need to capture whatever Port Type the Firmware
8651 * sends us and record it in case it's different from what we
8652 * were told earlier. Unfortunately, since Firmware is
8653 * forever, we'll need to keep this code here forever, but in
8654 * later T6 Firmware it should just be an assignment of the
8655 * same value already recorded.
8657 pi
->port_type
= port_type
;
8659 /* Record new Module Type information.
8661 pi
->mod_type
= mod_type
;
8663 /* Let the OS-dependent layer know if we have a new
8664 * Transceiver Module inserted.
8666 lc
->new_module
= t4_is_inserted_mod_type(mod_type
);
8668 t4_os_portmod_changed(adapter
, pi
->port_id
);
8671 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
8672 fc
!= lc
->fc
|| adv_fc
!= lc
->advertised_fc
||
8674 /* something changed */
8675 if (!link_ok
&& lc
->link_ok
) {
8676 lc
->link_down_rc
= linkdnrc
;
8677 dev_warn_ratelimited(adapter
->pdev_dev
,
8678 "Port %d link down, reason: %s\n",
8680 t4_link_down_rc_str(linkdnrc
));
8682 lc
->link_ok
= link_ok
;
8684 lc
->advertised_fc
= adv_fc
;
8688 lc
->lpacaps
= lpacaps
;
8689 lc
->acaps
= acaps
& ADVERT_MASK
;
8691 /* If we're not physically capable of Auto-Negotiation, note
8692 * this as Auto-Negotiation disabled. Otherwise, we track
8693 * what Auto-Negotiation settings we have. Note parallel
8694 * structure in t4_link_l1cfg_core() and init_link_config().
8696 if (!(lc
->acaps
& FW_PORT_CAP32_ANEG
)) {
8697 lc
->autoneg
= AUTONEG_DISABLE
;
8698 } else if (lc
->acaps
& FW_PORT_CAP32_ANEG
) {
8699 lc
->autoneg
= AUTONEG_ENABLE
;
8701 /* When Autoneg is disabled, user needs to set
8703 * Similar to cxgb4_ethtool.c: set_link_ksettings
8706 lc
->speed_caps
= fwcap_to_fwspeed(acaps
);
8707 lc
->autoneg
= AUTONEG_DISABLE
;
8710 t4_os_link_changed(adapter
, pi
->port_id
, link_ok
);
8713 /* If we have a new Transceiver Module and the OS-dependent code has
8714 * told us that it wants us to redo whatever "sticky" L1 Configuration
8715 * Link Parameters are set, do that now.
8717 if (lc
->new_module
&& lc
->redo_l1cfg
) {
8718 struct link_config old_lc
;
8721 /* Save the current L1 Configuration and restore it if an
8722 * error occurs. We probably should fix the l1_cfg*()
8723 * routines not to change the link_config when an error
8727 ret
= t4_link_l1cfg_ns(adapter
, adapter
->mbox
, pi
->lport
, lc
);
8730 dev_warn(adapter
->pdev_dev
,
8731 "Attempt to update new Transceiver Module settings failed\n");
8734 lc
->new_module
= false;
8735 lc
->redo_l1cfg
= false;
8739 * t4_update_port_info - retrieve and update port information if changed
8740 * @pi: the port_info
8742 * We issue a Get Port Information Command to the Firmware and, if
8743 * successful, we check to see if anything is different from what we
8744 * last recorded and update things accordingly.
8746 int t4_update_port_info(struct port_info
*pi
)
8748 unsigned int fw_caps
= pi
->adapter
->params
.fw_caps_support
;
8749 struct fw_port_cmd port_cmd
;
8752 memset(&port_cmd
, 0, sizeof(port_cmd
));
8753 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
8754 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
8755 FW_PORT_CMD_PORTID_V(pi
->tx_chan
));
8756 port_cmd
.action_to_len16
= cpu_to_be32(
8757 FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
8758 ? FW_PORT_ACTION_GET_PORT_INFO
8759 : FW_PORT_ACTION_GET_PORT_INFO32
) |
8760 FW_LEN16(port_cmd
));
8761 ret
= t4_wr_mbox(pi
->adapter
, pi
->adapter
->mbox
,
8762 &port_cmd
, sizeof(port_cmd
), &port_cmd
);
8766 t4_handle_get_port_info(pi
, (__be64
*)&port_cmd
);
8771 * t4_get_link_params - retrieve basic link parameters for given port
8773 * @link_okp: value return pointer for link up/down
8774 * @speedp: value return pointer for speed (Mb/s)
8775 * @mtup: value return pointer for mtu
8777 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8778 * and MTU for a specified port. A negative error is returned on
8779 * failure; 0 on success.
8781 int t4_get_link_params(struct port_info
*pi
, unsigned int *link_okp
,
8782 unsigned int *speedp
, unsigned int *mtup
)
8784 unsigned int fw_caps
= pi
->adapter
->params
.fw_caps_support
;
8785 unsigned int action
, link_ok
, mtu
;
8786 struct fw_port_cmd port_cmd
;
8787 fw_port_cap32_t linkattr
;
8790 memset(&port_cmd
, 0, sizeof(port_cmd
));
8791 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
8792 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
8793 FW_PORT_CMD_PORTID_V(pi
->tx_chan
));
8794 action
= (fw_caps
== FW_CAPS16
8795 ? FW_PORT_ACTION_GET_PORT_INFO
8796 : FW_PORT_ACTION_GET_PORT_INFO32
);
8797 port_cmd
.action_to_len16
= cpu_to_be32(
8798 FW_PORT_CMD_ACTION_V(action
) |
8799 FW_LEN16(port_cmd
));
8800 ret
= t4_wr_mbox(pi
->adapter
, pi
->adapter
->mbox
,
8801 &port_cmd
, sizeof(port_cmd
), &port_cmd
);
8805 if (action
== FW_PORT_ACTION_GET_PORT_INFO
) {
8806 u32 lstatus
= be32_to_cpu(port_cmd
.u
.info
.lstatus_to_modtype
);
8808 link_ok
= !!(lstatus
& FW_PORT_CMD_LSTATUS_F
);
8809 linkattr
= lstatus_to_fwcap(lstatus
);
8810 mtu
= be16_to_cpu(port_cmd
.u
.info
.mtu
);
8813 be32_to_cpu(port_cmd
.u
.info32
.lstatus32_to_cbllen32
);
8815 link_ok
= !!(lstatus32
& FW_PORT_CMD_LSTATUS32_F
);
8816 linkattr
= be32_to_cpu(port_cmd
.u
.info32
.linkattr32
);
8817 mtu
= FW_PORT_CMD_MTU32_G(
8818 be32_to_cpu(port_cmd
.u
.info32
.auxlinfo32_mtu32
));
8822 *link_okp
= link_ok
;
8824 *speedp
= fwcap_to_speed(linkattr
);
8832 * t4_handle_fw_rpl - process a FW reply message
8833 * @adap: the adapter
8834 * @rpl: start of the FW message
8836 * Processes a FW message, such as link state change messages.
8838 int t4_handle_fw_rpl(struct adapter
*adap
, const __be64
*rpl
)
8840 u8 opcode
= *(const u8
*)rpl
;
8842 /* This might be a port command ... this simplifies the following
8843 * conditionals ... We can get away with pre-dereferencing
8844 * action_to_len16 because it's in the first 16 bytes and all messages
8845 * will be at least that long.
8847 const struct fw_port_cmd
*p
= (const void *)rpl
;
8848 unsigned int action
=
8849 FW_PORT_CMD_ACTION_G(be32_to_cpu(p
->action_to_len16
));
8851 if (opcode
== FW_PORT_CMD
&&
8852 (action
== FW_PORT_ACTION_GET_PORT_INFO
||
8853 action
== FW_PORT_ACTION_GET_PORT_INFO32
)) {
8855 int chan
= FW_PORT_CMD_PORTID_G(be32_to_cpu(p
->op_to_portid
));
8856 struct port_info
*pi
= NULL
;
8858 for_each_port(adap
, i
) {
8859 pi
= adap2pinfo(adap
, i
);
8860 if (pi
->tx_chan
== chan
)
8864 t4_handle_get_port_info(pi
, rpl
);
8866 dev_warn(adap
->pdev_dev
, "Unknown firmware reply %d\n",
8873 static void get_pci_mode(struct adapter
*adapter
, struct pci_params
*p
)
8877 if (pci_is_pcie(adapter
->pdev
)) {
8878 pcie_capability_read_word(adapter
->pdev
, PCI_EXP_LNKSTA
, &val
);
8879 p
->speed
= val
& PCI_EXP_LNKSTA_CLS
;
8880 p
->width
= (val
& PCI_EXP_LNKSTA_NLW
) >> 4;
8885 * init_link_config - initialize a link's SW state
8886 * @lc: pointer to structure holding the link state
8887 * @pcaps: link Port Capabilities
8888 * @acaps: link current Advertised Port Capabilities
8890 * Initializes the SW state maintained for each link, including the link's
8891 * capabilities and default speed/flow-control/autonegotiation settings.
8893 static void init_link_config(struct link_config
*lc
, fw_port_cap32_t pcaps
,
8894 fw_port_cap32_t acaps
)
8897 lc
->def_acaps
= acaps
;
8901 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
8903 /* For Forward Error Control, we default to whatever the Firmware
8904 * tells us the Link is currently advertising.
8906 lc
->requested_fec
= FEC_AUTO
;
8907 lc
->fec
= fwcap_to_cc_fec(lc
->def_acaps
);
8909 /* If the Port is capable of Auto-Negtotiation, initialize it as
8910 * "enabled" and copy over all of the Physical Port Capabilities
8911 * to the Advertised Port Capabilities. Otherwise mark it as
8912 * Auto-Negotiate disabled and select the highest supported speed
8913 * for the link. Note parallel structure in t4_link_l1cfg_core()
8914 * and t4_handle_get_port_info().
8916 if (lc
->pcaps
& FW_PORT_CAP32_ANEG
) {
8917 lc
->acaps
= lc
->pcaps
& ADVERT_MASK
;
8918 lc
->autoneg
= AUTONEG_ENABLE
;
8919 lc
->requested_fc
|= PAUSE_AUTONEG
;
8922 lc
->autoneg
= AUTONEG_DISABLE
;
8923 lc
->speed_caps
= fwcap_to_fwspeed(acaps
);
8927 #define CIM_PF_NOACCESS 0xeeeeeeee
8929 int t4_wait_dev_ready(void __iomem
*regs
)
8933 whoami
= readl(regs
+ PL_WHOAMI_A
);
8934 if (whoami
!= 0xffffffff && whoami
!= CIM_PF_NOACCESS
)
8938 whoami
= readl(regs
+ PL_WHOAMI_A
);
8939 return (whoami
!= 0xffffffff && whoami
!= CIM_PF_NOACCESS
? 0 : -EIO
);
8943 u32 vendor_and_model_id
;
8947 static int t4_get_flash_params(struct adapter
*adap
)
8949 /* Table for non-Numonix supported flash parts. Numonix parts are left
8950 * to the preexisting code. All flash parts have 64KB sectors.
8952 static struct flash_desc supported_flash
[] = {
8953 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
8956 unsigned int part
, manufacturer
;
8957 unsigned int density
, size
= 0;
8961 /* Issue a Read ID Command to the Flash part. We decode supported
8962 * Flash parts and their sizes from this. There's a newer Query
8963 * Command which can retrieve detailed geometry information but many
8964 * Flash parts don't support it.
8967 ret
= sf1_write(adap
, 1, 1, 0, SF_RD_ID
);
8969 ret
= sf1_read(adap
, 3, 0, 1, &flashid
);
8970 t4_write_reg(adap
, SF_OP_A
, 0); /* unlock SF */
8974 /* Check to see if it's one of our non-standard supported Flash parts.
8976 for (part
= 0; part
< ARRAY_SIZE(supported_flash
); part
++)
8977 if (supported_flash
[part
].vendor_and_model_id
== flashid
) {
8978 adap
->params
.sf_size
= supported_flash
[part
].size_mb
;
8979 adap
->params
.sf_nsec
=
8980 adap
->params
.sf_size
/ SF_SEC_SIZE
;
8984 /* Decode Flash part size. The code below looks repetitive with
8985 * common encodings, but that's not guaranteed in the JEDEC
8986 * specification for the Read JEDEC ID command. The only thing that
8987 * we're guaranteed by the JEDEC specification is where the
8988 * Manufacturer ID is in the returned result. After that each
8989 * Manufacturer ~could~ encode things completely differently.
8990 * Note, all Flash parts must have 64KB sectors.
8992 manufacturer
= flashid
& 0xff;
8993 switch (manufacturer
) {
8994 case 0x20: { /* Micron/Numonix */
8995 /* This Density -> Size decoding table is taken from Micron
8998 density
= (flashid
>> 16) & 0xff;
9000 case 0x14: /* 1MB */
9003 case 0x15: /* 2MB */
9006 case 0x16: /* 4MB */
9009 case 0x17: /* 8MB */
9012 case 0x18: /* 16MB */
9015 case 0x19: /* 32MB */
9018 case 0x20: /* 64MB */
9021 case 0x21: /* 128MB */
9024 case 0x22: /* 256MB */
9030 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9031 /* This Density -> Size decoding table is taken from ISSI
9034 density
= (flashid
>> 16) & 0xff;
9036 case 0x16: /* 32 MB */
9039 case 0x17: /* 64MB */
9045 case 0xc2: { /* Macronix */
9046 /* This Density -> Size decoding table is taken from Macronix
9049 density
= (flashid
>> 16) & 0xff;
9051 case 0x17: /* 8MB */
9054 case 0x18: /* 16MB */
9060 case 0xef: { /* Winbond */
9061 /* This Density -> Size decoding table is taken from Winbond
9064 density
= (flashid
>> 16) & 0xff;
9066 case 0x17: /* 8MB */
9069 case 0x18: /* 16MB */
9077 /* If we didn't recognize the FLASH part, that's no real issue: the
9078 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9079 * use a FLASH part which is at least 4MB in size and has 64KB
9080 * sectors. The unrecognized FLASH part is likely to be much larger
9081 * than 4MB, but that's all we really need.
9084 dev_warn(adap
->pdev_dev
, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9089 /* Store decoded Flash size and fall through into vetting code. */
9090 adap
->params
.sf_size
= size
;
9091 adap
->params
.sf_nsec
= size
/ SF_SEC_SIZE
;
9094 if (adap
->params
.sf_size
< FLASH_MIN_SIZE
)
9095 dev_warn(adap
->pdev_dev
, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9096 flashid
, adap
->params
.sf_size
, FLASH_MIN_SIZE
);
9101 * t4_prep_adapter - prepare SW and HW for operation
9102 * @adapter: the adapter
9103 * @reset: if true perform a HW reset
9105 * Initialize adapter SW state for the various HW modules, set initial
9106 * values for some adapter tunables, take PHYs out of reset, and
9107 * initialize the MDIO interface.
9109 int t4_prep_adapter(struct adapter
*adapter
)
9115 get_pci_mode(adapter
, &adapter
->params
.pci
);
9116 pl_rev
= REV_G(t4_read_reg(adapter
, PL_REV_A
));
9118 ret
= t4_get_flash_params(adapter
);
9120 dev_err(adapter
->pdev_dev
, "error %d identifying flash\n", ret
);
9124 /* Retrieve adapter's device ID
9126 pci_read_config_word(adapter
->pdev
, PCI_DEVICE_ID
, &device_id
);
9127 ver
= device_id
>> 12;
9128 adapter
->params
.chip
= 0;
9131 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T4
, pl_rev
);
9132 adapter
->params
.arch
.sge_fl_db
= DBPRIO_F
;
9133 adapter
->params
.arch
.mps_tcam_size
=
9134 NUM_MPS_CLS_SRAM_L_INSTANCES
;
9135 adapter
->params
.arch
.mps_rplc_size
= 128;
9136 adapter
->params
.arch
.nchan
= NCHAN
;
9137 adapter
->params
.arch
.pm_stats_cnt
= PM_NSTATS
;
9138 adapter
->params
.arch
.vfcount
= 128;
9139 /* Congestion map is for 4 channels so that
9140 * MPS can have 4 priority per port.
9142 adapter
->params
.arch
.cng_ch_bits_log
= 2;
9145 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T5
, pl_rev
);
9146 adapter
->params
.arch
.sge_fl_db
= DBPRIO_F
| DBTYPE_F
;
9147 adapter
->params
.arch
.mps_tcam_size
=
9148 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
9149 adapter
->params
.arch
.mps_rplc_size
= 128;
9150 adapter
->params
.arch
.nchan
= NCHAN
;
9151 adapter
->params
.arch
.pm_stats_cnt
= PM_NSTATS
;
9152 adapter
->params
.arch
.vfcount
= 128;
9153 adapter
->params
.arch
.cng_ch_bits_log
= 2;
9156 adapter
->params
.chip
|= CHELSIO_CHIP_CODE(CHELSIO_T6
, pl_rev
);
9157 adapter
->params
.arch
.sge_fl_db
= 0;
9158 adapter
->params
.arch
.mps_tcam_size
=
9159 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
9160 adapter
->params
.arch
.mps_rplc_size
= 256;
9161 adapter
->params
.arch
.nchan
= 2;
9162 adapter
->params
.arch
.pm_stats_cnt
= T6_PM_NSTATS
;
9163 adapter
->params
.arch
.vfcount
= 256;
9164 /* Congestion map will be for 2 channels so that
9165 * MPS can have 8 priority per port.
9167 adapter
->params
.arch
.cng_ch_bits_log
= 3;
9170 dev_err(adapter
->pdev_dev
, "Device %d is not supported\n",
9175 adapter
->params
.cim_la_size
= CIMLA_SIZE
;
9176 init_cong_ctrl(adapter
->params
.a_wnd
, adapter
->params
.b_wnd
);
9179 * Default port for debugging in case we can't reach FW.
9181 adapter
->params
.nports
= 1;
9182 adapter
->params
.portvec
= 1;
9183 adapter
->params
.vpd
.cclk
= 50000;
9185 /* Set PCIe completion timeout to 4 seconds. */
9186 pcie_capability_clear_and_set_word(adapter
->pdev
, PCI_EXP_DEVCTL2
,
9187 PCI_EXP_DEVCTL2_COMP_TIMEOUT
, 0xd);
9192 * t4_shutdown_adapter - shut down adapter, host & wire
9193 * @adapter: the adapter
9195 * Perform an emergency shutdown of the adapter and stop it from
9196 * continuing any further communication on the ports or DMA to the
9197 * host. This is typically used when the adapter and/or firmware
9198 * have crashed and we want to prevent any further accidental
9199 * communication with the rest of the world. This will also force
9200 * the port Link Status to go down -- if register writes work --
9201 * which should help our peers figure out that we're down.
9203 int t4_shutdown_adapter(struct adapter
*adapter
)
9207 t4_intr_disable(adapter
);
9208 t4_write_reg(adapter
, DBG_GPIO_EN_A
, 0);
9209 for_each_port(adapter
, port
) {
9210 u32 a_port_cfg
= is_t4(adapter
->params
.chip
) ?
9211 PORT_REG(port
, XGMAC_PORT_CFG_A
) :
9212 T5_PORT_REG(port
, MAC_PORT_CFG_A
);
9214 t4_write_reg(adapter
, a_port_cfg
,
9215 t4_read_reg(adapter
, a_port_cfg
)
9216 & ~SIGNAL_DET_V(1));
9218 t4_set_reg_field(adapter
, SGE_CONTROL_A
, GLOBALENABLE_F
, 0);
9224 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9225 * @adapter: the adapter
9226 * @qid: the Queue ID
9227 * @qtype: the Ingress or Egress type for @qid
9228 * @user: true if this request is for a user mode queue
9229 * @pbar2_qoffset: BAR2 Queue Offset
9230 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9232 * Returns the BAR2 SGE Queue Registers information associated with the
9233 * indicated Absolute Queue ID. These are passed back in return value
9234 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9235 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9237 * This may return an error which indicates that BAR2 SGE Queue
9238 * registers aren't available. If an error is not returned, then the
9239 * following values are returned:
9241 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9242 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9244 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9245 * require the "Inferred Queue ID" ability may be used. E.g. the
9246 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9247 * then these "Inferred Queue ID" register may not be used.
9249 int t4_bar2_sge_qregs(struct adapter
*adapter
,
9251 enum t4_bar2_qtype qtype
,
9254 unsigned int *pbar2_qid
)
9256 unsigned int page_shift
, page_size
, qpp_shift
, qpp_mask
;
9257 u64 bar2_page_offset
, bar2_qoffset
;
9258 unsigned int bar2_qid
, bar2_qid_offset
, bar2_qinferred
;
9260 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9261 if (!user
&& is_t4(adapter
->params
.chip
))
9264 /* Get our SGE Page Size parameters.
9266 page_shift
= adapter
->params
.sge
.hps
+ 10;
9267 page_size
= 1 << page_shift
;
9269 /* Get the right Queues per Page parameters for our Queue.
9271 qpp_shift
= (qtype
== T4_BAR2_QTYPE_EGRESS
9272 ? adapter
->params
.sge
.eq_qpp
9273 : adapter
->params
.sge
.iq_qpp
);
9274 qpp_mask
= (1 << qpp_shift
) - 1;
9276 /* Calculate the basics of the BAR2 SGE Queue register area:
9277 * o The BAR2 page the Queue registers will be in.
9278 * o The BAR2 Queue ID.
9279 * o The BAR2 Queue ID Offset into the BAR2 page.
9281 bar2_page_offset
= ((u64
)(qid
>> qpp_shift
) << page_shift
);
9282 bar2_qid
= qid
& qpp_mask
;
9283 bar2_qid_offset
= bar2_qid
* SGE_UDB_SIZE
;
9285 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9286 * hardware will infer the Absolute Queue ID simply from the writes to
9287 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9288 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
9289 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9290 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9291 * from the BAR2 Page and BAR2 Queue ID.
9293 * One important censequence of this is that some BAR2 SGE registers
9294 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9295 * there. But other registers synthesize the SGE Queue ID purely
9296 * from the writes to the registers -- the Write Combined Doorbell
9297 * Buffer is a good example. These BAR2 SGE Registers are only
9298 * available for those BAR2 SGE Register areas where the SGE Absolute
9299 * Queue ID can be inferred from simple writes.
9301 bar2_qoffset
= bar2_page_offset
;
9302 bar2_qinferred
= (bar2_qid_offset
< page_size
);
9303 if (bar2_qinferred
) {
9304 bar2_qoffset
+= bar2_qid_offset
;
9308 *pbar2_qoffset
= bar2_qoffset
;
9309 *pbar2_qid
= bar2_qid
;
9314 * t4_init_devlog_params - initialize adapter->params.devlog
9315 * @adap: the adapter
9317 * Initialize various fields of the adapter's Firmware Device Log
9318 * Parameters structure.
9320 int t4_init_devlog_params(struct adapter
*adap
)
9322 struct devlog_params
*dparams
= &adap
->params
.devlog
;
9324 unsigned int devlog_meminfo
;
9325 struct fw_devlog_cmd devlog_cmd
;
9328 /* If we're dealing with newer firmware, the Device Log Parameters
9329 * are stored in a designated register which allows us to access the
9330 * Device Log even if we can't talk to the firmware.
9333 t4_read_reg(adap
, PCIE_FW_REG(PCIE_FW_PF_A
, PCIE_FW_PF_DEVLOG
));
9335 unsigned int nentries
, nentries128
;
9337 dparams
->memtype
= PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams
);
9338 dparams
->start
= PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams
) << 4;
9340 nentries128
= PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams
);
9341 nentries
= (nentries128
+ 1) * 128;
9342 dparams
->size
= nentries
* sizeof(struct fw_devlog_e
);
9347 /* Otherwise, ask the firmware for it's Device Log Parameters.
9349 memset(&devlog_cmd
, 0, sizeof(devlog_cmd
));
9350 devlog_cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD
) |
9351 FW_CMD_REQUEST_F
| FW_CMD_READ_F
);
9352 devlog_cmd
.retval_len16
= cpu_to_be32(FW_LEN16(devlog_cmd
));
9353 ret
= t4_wr_mbox(adap
, adap
->mbox
, &devlog_cmd
, sizeof(devlog_cmd
),
9359 be32_to_cpu(devlog_cmd
.memtype_devlog_memaddr16_devlog
);
9360 dparams
->memtype
= FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo
);
9361 dparams
->start
= FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo
) << 4;
9362 dparams
->size
= be32_to_cpu(devlog_cmd
.memsize_devlog
);
9368 * t4_init_sge_params - initialize adap->params.sge
9369 * @adapter: the adapter
9371 * Initialize various fields of the adapter's SGE Parameters structure.
9373 int t4_init_sge_params(struct adapter
*adapter
)
9375 struct sge_params
*sge_params
= &adapter
->params
.sge
;
9377 unsigned int s_hps
, s_qpp
;
9379 /* Extract the SGE Page Size for our PF.
9381 hps
= t4_read_reg(adapter
, SGE_HOST_PAGE_SIZE_A
);
9382 s_hps
= (HOSTPAGESIZEPF0_S
+
9383 (HOSTPAGESIZEPF1_S
- HOSTPAGESIZEPF0_S
) * adapter
->pf
);
9384 sge_params
->hps
= ((hps
>> s_hps
) & HOSTPAGESIZEPF0_M
);
9386 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9388 s_qpp
= (QUEUESPERPAGEPF0_S
+
9389 (QUEUESPERPAGEPF1_S
- QUEUESPERPAGEPF0_S
) * adapter
->pf
);
9390 qpp
= t4_read_reg(adapter
, SGE_EGRESS_QUEUES_PER_PAGE_PF_A
);
9391 sge_params
->eq_qpp
= ((qpp
>> s_qpp
) & QUEUESPERPAGEPF0_M
);
9392 qpp
= t4_read_reg(adapter
, SGE_INGRESS_QUEUES_PER_PAGE_PF_A
);
9393 sge_params
->iq_qpp
= ((qpp
>> s_qpp
) & QUEUESPERPAGEPF0_M
);
9399 * t4_init_tp_params - initialize adap->params.tp
9400 * @adap: the adapter
9401 * @sleep_ok: if true we may sleep while awaiting command completion
9403 * Initialize various fields of the adapter's TP Parameters structure.
9405 int t4_init_tp_params(struct adapter
*adap
, bool sleep_ok
)
9411 v
= t4_read_reg(adap
, TP_TIMER_RESOLUTION_A
);
9412 adap
->params
.tp
.tre
= TIMERRESOLUTION_G(v
);
9413 adap
->params
.tp
.dack_re
= DELAYEDACKRESOLUTION_G(v
);
9415 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9416 for (chan
= 0; chan
< NCHAN
; chan
++)
9417 adap
->params
.tp
.tx_modq
[chan
] = chan
;
9419 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9422 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV
) |
9423 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER
) |
9424 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK
));
9426 /* Read current value */
9427 ret
= t4_query_params(adap
, adap
->mbox
, adap
->pf
, 0, 1,
9430 dev_info(adap
->pdev_dev
,
9431 "Current filter mode/mask 0x%x:0x%x\n",
9432 FW_PARAMS_PARAM_FILTER_MODE_G(val
),
9433 FW_PARAMS_PARAM_FILTER_MASK_G(val
));
9434 adap
->params
.tp
.vlan_pri_map
=
9435 FW_PARAMS_PARAM_FILTER_MODE_G(val
);
9436 adap
->params
.tp
.filter_mask
=
9437 FW_PARAMS_PARAM_FILTER_MASK_G(val
);
9439 dev_info(adap
->pdev_dev
,
9440 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9442 /* Incase of older-fw (which doesn't expose the api
9443 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9444 * the fw api) combination, fall-back to older method of reading
9445 * the filter mode from indirect-register
9447 t4_tp_pio_read(adap
, &adap
->params
.tp
.vlan_pri_map
, 1,
9448 TP_VLAN_PRI_MAP_A
, sleep_ok
);
9450 /* With the older-fw and newer-driver combination we might run
9451 * into an issue when user wants to use hash filter region but
9452 * the filter_mask is zero, in this case filter_mask validation
9453 * is tough. To avoid that we set the filter_mask same as filter
9454 * mode, which will behave exactly as the older way of ignoring
9455 * the filter mask validation.
9457 adap
->params
.tp
.filter_mask
= adap
->params
.tp
.vlan_pri_map
;
9460 t4_tp_pio_read(adap
, &adap
->params
.tp
.ingress_config
, 1,
9461 TP_INGRESS_CONFIG_A
, sleep_ok
);
9463 /* For T6, cache the adapter's compressed error vector
9464 * and passing outer header info for encapsulated packets.
9466 if (CHELSIO_CHIP_VERSION(adap
->params
.chip
) > CHELSIO_T5
) {
9467 v
= t4_read_reg(adap
, TP_OUT_CONFIG_A
);
9468 adap
->params
.tp
.rx_pkt_encap
= (v
& CRXPKTENC_F
) ? 1 : 0;
9471 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9472 * shift positions of several elements of the Compressed Filter Tuple
9473 * for this adapter which we need frequently ...
9475 adap
->params
.tp
.fcoe_shift
= t4_filter_field_shift(adap
, FCOE_F
);
9476 adap
->params
.tp
.port_shift
= t4_filter_field_shift(adap
, PORT_F
);
9477 adap
->params
.tp
.vnic_shift
= t4_filter_field_shift(adap
, VNIC_ID_F
);
9478 adap
->params
.tp
.vlan_shift
= t4_filter_field_shift(adap
, VLAN_F
);
9479 adap
->params
.tp
.tos_shift
= t4_filter_field_shift(adap
, TOS_F
);
9480 adap
->params
.tp
.protocol_shift
= t4_filter_field_shift(adap
,
9482 adap
->params
.tp
.ethertype_shift
= t4_filter_field_shift(adap
,
9484 adap
->params
.tp
.macmatch_shift
= t4_filter_field_shift(adap
,
9486 adap
->params
.tp
.matchtype_shift
= t4_filter_field_shift(adap
,
9488 adap
->params
.tp
.frag_shift
= t4_filter_field_shift(adap
,
9491 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9492 * represents the presence of an Outer VLAN instead of a VNIC ID.
9494 if ((adap
->params
.tp
.ingress_config
& VNIC_F
) == 0)
9495 adap
->params
.tp
.vnic_shift
= -1;
9497 v
= t4_read_reg(adap
, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A
);
9498 adap
->params
.tp
.hash_filter_mask
= v
;
9499 v
= t4_read_reg(adap
, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A
);
9500 adap
->params
.tp
.hash_filter_mask
|= ((u64
)v
<< 32);
9505 * t4_filter_field_shift - calculate filter field shift
9506 * @adap: the adapter
9507 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9509 * Return the shift position of a filter field within the Compressed
9510 * Filter Tuple. The filter field is specified via its selection bit
9511 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
9513 int t4_filter_field_shift(const struct adapter
*adap
, int filter_sel
)
9515 unsigned int filter_mode
= adap
->params
.tp
.vlan_pri_map
;
9519 if ((filter_mode
& filter_sel
) == 0)
9522 for (sel
= 1, field_shift
= 0; sel
< filter_sel
; sel
<<= 1) {
9523 switch (filter_mode
& sel
) {
9525 field_shift
+= FT_FCOE_W
;
9528 field_shift
+= FT_PORT_W
;
9531 field_shift
+= FT_VNIC_ID_W
;
9534 field_shift
+= FT_VLAN_W
;
9537 field_shift
+= FT_TOS_W
;
9540 field_shift
+= FT_PROTOCOL_W
;
9543 field_shift
+= FT_ETHERTYPE_W
;
9546 field_shift
+= FT_MACMATCH_W
;
9549 field_shift
+= FT_MPSHITTYPE_W
;
9551 case FRAGMENTATION_F
:
9552 field_shift
+= FT_FRAGMENTATION_W
;
9559 int t4_init_rss_mode(struct adapter
*adap
, int mbox
)
9562 struct fw_rss_vi_config_cmd rvc
;
9564 memset(&rvc
, 0, sizeof(rvc
));
9566 for_each_port(adap
, i
) {
9567 struct port_info
*p
= adap2pinfo(adap
, i
);
9570 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD
) |
9571 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
9572 FW_RSS_VI_CONFIG_CMD_VIID_V(p
->viid
));
9573 rvc
.retval_len16
= cpu_to_be32(FW_LEN16(rvc
));
9574 ret
= t4_wr_mbox(adap
, mbox
, &rvc
, sizeof(rvc
), &rvc
);
9577 p
->rss_mode
= be32_to_cpu(rvc
.u
.basicvirtual
.defaultq_to_udpen
);
9583 * t4_init_portinfo - allocate a virtual interface and initialize port_info
9584 * @pi: the port_info
9585 * @mbox: mailbox to use for the FW command
9586 * @port: physical port associated with the VI
9587 * @pf: the PF owning the VI
9588 * @vf: the VF owning the VI
9589 * @mac: the MAC address of the VI
9591 * Allocates a virtual interface for the given physical port. If @mac is
9592 * not %NULL it contains the MAC address of the VI as assigned by FW.
9593 * @mac should be large enough to hold an Ethernet address.
9594 * Returns < 0 on error.
9596 int t4_init_portinfo(struct port_info
*pi
, int mbox
,
9597 int port
, int pf
, int vf
, u8 mac
[])
9599 struct adapter
*adapter
= pi
->adapter
;
9600 unsigned int fw_caps
= adapter
->params
.fw_caps_support
;
9601 struct fw_port_cmd cmd
;
9602 unsigned int rss_size
;
9603 enum fw_port_type port_type
;
9605 fw_port_cap32_t pcaps
, acaps
;
9606 u8 vivld
= 0, vin
= 0;
9609 /* If we haven't yet determined whether we're talking to Firmware
9610 * which knows the new 32-bit Port Capabilities, it's time to find
9611 * out now. This will also tell new Firmware to send us Port Status
9612 * Updates using the new 32-bit Port Capabilities version of the
9613 * Port Information message.
9615 if (fw_caps
== FW_CAPS_UNKNOWN
) {
9618 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
9619 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32
));
9621 ret
= t4_set_params(adapter
, mbox
, pf
, vf
, 1, ¶m
, &val
);
9622 fw_caps
= (ret
== 0 ? FW_CAPS32
: FW_CAPS16
);
9623 adapter
->params
.fw_caps_support
= fw_caps
;
9626 memset(&cmd
, 0, sizeof(cmd
));
9627 cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD
) |
9628 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
9629 FW_PORT_CMD_PORTID_V(port
));
9630 cmd
.action_to_len16
= cpu_to_be32(
9631 FW_PORT_CMD_ACTION_V(fw_caps
== FW_CAPS16
9632 ? FW_PORT_ACTION_GET_PORT_INFO
9633 : FW_PORT_ACTION_GET_PORT_INFO32
) |
9635 ret
= t4_wr_mbox(pi
->adapter
, mbox
, &cmd
, sizeof(cmd
), &cmd
);
9639 /* Extract the various fields from the Port Information message.
9641 if (fw_caps
== FW_CAPS16
) {
9642 u32 lstatus
= be32_to_cpu(cmd
.u
.info
.lstatus_to_modtype
);
9644 port_type
= FW_PORT_CMD_PTYPE_G(lstatus
);
9645 mdio_addr
= ((lstatus
& FW_PORT_CMD_MDIOCAP_F
)
9646 ? FW_PORT_CMD_MDIOADDR_G(lstatus
)
9648 pcaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
.u
.info
.pcap
));
9649 acaps
= fwcaps16_to_caps32(be16_to_cpu(cmd
.u
.info
.acap
));
9651 u32 lstatus32
= be32_to_cpu(cmd
.u
.info32
.lstatus32_to_cbllen32
);
9653 port_type
= FW_PORT_CMD_PORTTYPE32_G(lstatus32
);
9654 mdio_addr
= ((lstatus32
& FW_PORT_CMD_MDIOCAP32_F
)
9655 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32
)
9657 pcaps
= be32_to_cpu(cmd
.u
.info32
.pcaps32
);
9658 acaps
= be32_to_cpu(cmd
.u
.info32
.acaps32
);
9661 ret
= t4_alloc_vi(pi
->adapter
, mbox
, port
, pf
, vf
, 1, mac
, &rss_size
,
9669 pi
->rss_size
= rss_size
;
9670 pi
->rx_cchan
= t4_get_tp_e2c_map(pi
->adapter
, port
);
9672 /* If fw supports returning the VIN as part of FW_VI_CMD,
9673 * save the returned values.
9675 if (adapter
->params
.viid_smt_extn_support
) {
9679 /* Retrieve the values from VIID */
9680 pi
->vivld
= FW_VIID_VIVLD_G(pi
->viid
);
9681 pi
->vin
= FW_VIID_VIN_G(pi
->viid
);
9684 pi
->port_type
= port_type
;
9685 pi
->mdio_addr
= mdio_addr
;
9686 pi
->mod_type
= FW_PORT_MOD_TYPE_NA
;
9688 init_link_config(&pi
->link_cfg
, pcaps
, acaps
);
9692 int t4_port_init(struct adapter
*adap
, int mbox
, int pf
, int vf
)
9697 for_each_port(adap
, i
) {
9698 struct port_info
*pi
= adap2pinfo(adap
, i
);
9700 while ((adap
->params
.portvec
& (1 << j
)) == 0)
9703 ret
= t4_init_portinfo(pi
, mbox
, j
, pf
, vf
, addr
);
9707 memcpy(adap
->port
[i
]->dev_addr
, addr
, ETH_ALEN
);
9714 * t4_read_cimq_cfg - read CIM queue configuration
9715 * @adap: the adapter
9716 * @base: holds the queue base addresses in bytes
9717 * @size: holds the queue sizes in bytes
9718 * @thres: holds the queue full thresholds in bytes
9720 * Returns the current configuration of the CIM queues, starting with
9721 * the IBQs, then the OBQs.
9723 void t4_read_cimq_cfg(struct adapter
*adap
, u16
*base
, u16
*size
, u16
*thres
)
9726 int cim_num_obq
= is_t4(adap
->params
.chip
) ?
9727 CIM_NUM_OBQ
: CIM_NUM_OBQ_T5
;
9729 for (i
= 0; i
< CIM_NUM_IBQ
; i
++) {
9730 t4_write_reg(adap
, CIM_QUEUE_CONFIG_REF_A
, IBQSELECT_F
|
9732 v
= t4_read_reg(adap
, CIM_QUEUE_CONFIG_CTRL_A
);
9733 /* value is in 256-byte units */
9734 *base
++ = CIMQBASE_G(v
) * 256;
9735 *size
++ = CIMQSIZE_G(v
) * 256;
9736 *thres
++ = QUEFULLTHRSH_G(v
) * 8; /* 8-byte unit */
9738 for (i
= 0; i
< cim_num_obq
; i
++) {
9739 t4_write_reg(adap
, CIM_QUEUE_CONFIG_REF_A
, OBQSELECT_F
|
9741 v
= t4_read_reg(adap
, CIM_QUEUE_CONFIG_CTRL_A
);
9742 /* value is in 256-byte units */
9743 *base
++ = CIMQBASE_G(v
) * 256;
9744 *size
++ = CIMQSIZE_G(v
) * 256;
9749 * t4_read_cim_ibq - read the contents of a CIM inbound queue
9750 * @adap: the adapter
9751 * @qid: the queue index
9752 * @data: where to store the queue contents
9753 * @n: capacity of @data in 32-bit words
9755 * Reads the contents of the selected CIM queue starting at address 0 up
9756 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
9757 * error and the number of 32-bit words actually read on success.
9759 int t4_read_cim_ibq(struct adapter
*adap
, unsigned int qid
, u32
*data
, size_t n
)
9761 int i
, err
, attempts
;
9763 const unsigned int nwords
= CIM_IBQ_SIZE
* 4;
9765 if (qid
> 5 || (n
& 3))
9768 addr
= qid
* nwords
;
9772 /* It might take 3-10ms before the IBQ debug read access is allowed.
9773 * Wait for 1 Sec with a delay of 1 usec.
9777 for (i
= 0; i
< n
; i
++, addr
++) {
9778 t4_write_reg(adap
, CIM_IBQ_DBG_CFG_A
, IBQDBGADDR_V(addr
) |
9780 err
= t4_wait_op_done(adap
, CIM_IBQ_DBG_CFG_A
, IBQDBGBUSY_F
, 0,
9784 *data
++ = t4_read_reg(adap
, CIM_IBQ_DBG_DATA_A
);
9786 t4_write_reg(adap
, CIM_IBQ_DBG_CFG_A
, 0);
9791 * t4_read_cim_obq - read the contents of a CIM outbound queue
9792 * @adap: the adapter
9793 * @qid: the queue index
9794 * @data: where to store the queue contents
9795 * @n: capacity of @data in 32-bit words
9797 * Reads the contents of the selected CIM queue starting at address 0 up
9798 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
9799 * error and the number of 32-bit words actually read on success.
9801 int t4_read_cim_obq(struct adapter
*adap
, unsigned int qid
, u32
*data
, size_t n
)
9804 unsigned int addr
, v
, nwords
;
9805 int cim_num_obq
= is_t4(adap
->params
.chip
) ?
9806 CIM_NUM_OBQ
: CIM_NUM_OBQ_T5
;
9808 if ((qid
> (cim_num_obq
- 1)) || (n
& 3))
9811 t4_write_reg(adap
, CIM_QUEUE_CONFIG_REF_A
, OBQSELECT_F
|
9812 QUENUMSELECT_V(qid
));
9813 v
= t4_read_reg(adap
, CIM_QUEUE_CONFIG_CTRL_A
);
9815 addr
= CIMQBASE_G(v
) * 64; /* muliple of 256 -> muliple of 4 */
9816 nwords
= CIMQSIZE_G(v
) * 64; /* same */
9820 for (i
= 0; i
< n
; i
++, addr
++) {
9821 t4_write_reg(adap
, CIM_OBQ_DBG_CFG_A
, OBQDBGADDR_V(addr
) |
9823 err
= t4_wait_op_done(adap
, CIM_OBQ_DBG_CFG_A
, OBQDBGBUSY_F
, 0,
9827 *data
++ = t4_read_reg(adap
, CIM_OBQ_DBG_DATA_A
);
9829 t4_write_reg(adap
, CIM_OBQ_DBG_CFG_A
, 0);
9834 * t4_cim_read - read a block from CIM internal address space
9835 * @adap: the adapter
9836 * @addr: the start address within the CIM address space
9837 * @n: number of words to read
9838 * @valp: where to store the result
9840 * Reads a block of 4-byte words from the CIM intenal address space.
9842 int t4_cim_read(struct adapter
*adap
, unsigned int addr
, unsigned int n
,
9847 if (t4_read_reg(adap
, CIM_HOST_ACC_CTRL_A
) & HOSTBUSY_F
)
9850 for ( ; !ret
&& n
--; addr
+= 4) {
9851 t4_write_reg(adap
, CIM_HOST_ACC_CTRL_A
, addr
);
9852 ret
= t4_wait_op_done(adap
, CIM_HOST_ACC_CTRL_A
, HOSTBUSY_F
,
9855 *valp
++ = t4_read_reg(adap
, CIM_HOST_ACC_DATA_A
);
9861 * t4_cim_write - write a block into CIM internal address space
9862 * @adap: the adapter
9863 * @addr: the start address within the CIM address space
9864 * @n: number of words to write
9865 * @valp: set of values to write
9867 * Writes a block of 4-byte words into the CIM intenal address space.
9869 int t4_cim_write(struct adapter
*adap
, unsigned int addr
, unsigned int n
,
9870 const unsigned int *valp
)
9874 if (t4_read_reg(adap
, CIM_HOST_ACC_CTRL_A
) & HOSTBUSY_F
)
9877 for ( ; !ret
&& n
--; addr
+= 4) {
9878 t4_write_reg(adap
, CIM_HOST_ACC_DATA_A
, *valp
++);
9879 t4_write_reg(adap
, CIM_HOST_ACC_CTRL_A
, addr
| HOSTWRITE_F
);
9880 ret
= t4_wait_op_done(adap
, CIM_HOST_ACC_CTRL_A
, HOSTBUSY_F
,
9886 static int t4_cim_write1(struct adapter
*adap
, unsigned int addr
,
9889 return t4_cim_write(adap
, addr
, 1, &val
);
9893 * t4_cim_read_la - read CIM LA capture buffer
9894 * @adap: the adapter
9895 * @la_buf: where to store the LA data
9896 * @wrptr: the HW write pointer within the capture buffer
9898 * Reads the contents of the CIM LA buffer with the most recent entry at
9899 * the end of the returned data and with the entry at @wrptr first.
9900 * We try to leave the LA in the running state we find it in.
9902 int t4_cim_read_la(struct adapter
*adap
, u32
*la_buf
, unsigned int *wrptr
)
9905 unsigned int cfg
, val
, idx
;
9907 ret
= t4_cim_read(adap
, UP_UP_DBG_LA_CFG_A
, 1, &cfg
);
9911 if (cfg
& UPDBGLAEN_F
) { /* LA is running, freeze it */
9912 ret
= t4_cim_write1(adap
, UP_UP_DBG_LA_CFG_A
, 0);
9917 ret
= t4_cim_read(adap
, UP_UP_DBG_LA_CFG_A
, 1, &val
);
9921 idx
= UPDBGLAWRPTR_G(val
);
9925 for (i
= 0; i
< adap
->params
.cim_la_size
; i
++) {
9926 ret
= t4_cim_write1(adap
, UP_UP_DBG_LA_CFG_A
,
9927 UPDBGLARDPTR_V(idx
) | UPDBGLARDEN_F
);
9930 ret
= t4_cim_read(adap
, UP_UP_DBG_LA_CFG_A
, 1, &val
);
9933 if (val
& UPDBGLARDEN_F
) {
9937 ret
= t4_cim_read(adap
, UP_UP_DBG_LA_DATA_A
, 1, &la_buf
[i
]);
9941 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9942 * identify the 32-bit portion of the full 312-bit data
9944 if (is_t6(adap
->params
.chip
) && (idx
& 0xf) >= 9)
9945 idx
= (idx
& 0xff0) + 0x10;
9948 /* address can't exceed 0xfff */
9949 idx
&= UPDBGLARDPTR_M
;
9952 if (cfg
& UPDBGLAEN_F
) {
9953 int r
= t4_cim_write1(adap
, UP_UP_DBG_LA_CFG_A
,
9954 cfg
& ~UPDBGLARDEN_F
);
9962 * t4_tp_read_la - read TP LA capture buffer
9963 * @adap: the adapter
9964 * @la_buf: where to store the LA data
9965 * @wrptr: the HW write pointer within the capture buffer
9967 * Reads the contents of the TP LA buffer with the most recent entry at
9968 * the end of the returned data and with the entry at @wrptr first.
9969 * We leave the LA in the running state we find it in.
9971 void t4_tp_read_la(struct adapter
*adap
, u64
*la_buf
, unsigned int *wrptr
)
9973 bool last_incomplete
;
9974 unsigned int i
, cfg
, val
, idx
;
9976 cfg
= t4_read_reg(adap
, TP_DBG_LA_CONFIG_A
) & 0xffff;
9977 if (cfg
& DBGLAENABLE_F
) /* freeze LA */
9978 t4_write_reg(adap
, TP_DBG_LA_CONFIG_A
,
9979 adap
->params
.tp
.la_mask
| (cfg
^ DBGLAENABLE_F
));
9981 val
= t4_read_reg(adap
, TP_DBG_LA_CONFIG_A
);
9982 idx
= DBGLAWPTR_G(val
);
9983 last_incomplete
= DBGLAMODE_G(val
) >= 2 && (val
& DBGLAWHLF_F
) == 0;
9984 if (last_incomplete
)
9985 idx
= (idx
+ 1) & DBGLARPTR_M
;
9990 val
&= ~DBGLARPTR_V(DBGLARPTR_M
);
9991 val
|= adap
->params
.tp
.la_mask
;
9993 for (i
= 0; i
< TPLA_SIZE
; i
++) {
9994 t4_write_reg(adap
, TP_DBG_LA_CONFIG_A
, DBGLARPTR_V(idx
) | val
);
9995 la_buf
[i
] = t4_read_reg64(adap
, TP_DBG_LA_DATAL_A
);
9996 idx
= (idx
+ 1) & DBGLARPTR_M
;
9999 /* Wipe out last entry if it isn't valid */
10000 if (last_incomplete
)
10001 la_buf
[TPLA_SIZE
- 1] = ~0ULL;
10003 if (cfg
& DBGLAENABLE_F
) /* restore running state */
10004 t4_write_reg(adap
, TP_DBG_LA_CONFIG_A
,
10005 cfg
| adap
->params
.tp
.la_mask
);
10008 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10009 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
10010 * state for more than the Warning Threshold then we'll issue a warning about
10011 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
10012 * appears to be hung every Warning Repeat second till the situation clears.
10013 * If the situation clears, we'll note that as well.
10015 #define SGE_IDMA_WARN_THRESH 1
10016 #define SGE_IDMA_WARN_REPEAT 300
10019 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10020 * @adapter: the adapter
10021 * @idma: the adapter IDMA Monitor state
10023 * Initialize the state of an SGE Ingress DMA Monitor.
10025 void t4_idma_monitor_init(struct adapter
*adapter
,
10026 struct sge_idma_monitor_state
*idma
)
10028 /* Initialize the state variables for detecting an SGE Ingress DMA
10029 * hang. The SGE has internal counters which count up on each clock
10030 * tick whenever the SGE finds its Ingress DMA State Engines in the
10031 * same state they were on the previous clock tick. The clock used is
10032 * the Core Clock so we have a limit on the maximum "time" they can
10033 * record; typically a very small number of seconds. For instance,
10034 * with a 600MHz Core Clock, we can only count up to a bit more than
10035 * 7s. So we'll synthesize a larger counter in order to not run the
10036 * risk of having the "timers" overflow and give us the flexibility to
10037 * maintain a Hung SGE State Machine of our own which operates across
10038 * a longer time frame.
10040 idma
->idma_1s_thresh
= core_ticks_per_usec(adapter
) * 1000000; /* 1s */
10041 idma
->idma_stalled
[0] = 0;
10042 idma
->idma_stalled
[1] = 0;
10046 * t4_idma_monitor - monitor SGE Ingress DMA state
10047 * @adapter: the adapter
10048 * @idma: the adapter IDMA Monitor state
10049 * @hz: number of ticks/second
10050 * @ticks: number of ticks since the last IDMA Monitor call
10052 void t4_idma_monitor(struct adapter
*adapter
,
10053 struct sge_idma_monitor_state
*idma
,
10056 int i
, idma_same_state_cnt
[2];
10058 /* Read the SGE Debug Ingress DMA Same State Count registers. These
10059 * are counters inside the SGE which count up on each clock when the
10060 * SGE finds its Ingress DMA State Engines in the same states they
10061 * were in the previous clock. The counters will peg out at
10062 * 0xffffffff without wrapping around so once they pass the 1s
10063 * threshold they'll stay above that till the IDMA state changes.
10065 t4_write_reg(adapter
, SGE_DEBUG_INDEX_A
, 13);
10066 idma_same_state_cnt
[0] = t4_read_reg(adapter
, SGE_DEBUG_DATA_HIGH_A
);
10067 idma_same_state_cnt
[1] = t4_read_reg(adapter
, SGE_DEBUG_DATA_LOW_A
);
10069 for (i
= 0; i
< 2; i
++) {
10070 u32 debug0
, debug11
;
10072 /* If the Ingress DMA Same State Counter ("timer") is less
10073 * than 1s, then we can reset our synthesized Stall Timer and
10074 * continue. If we have previously emitted warnings about a
10075 * potential stalled Ingress Queue, issue a note indicating
10076 * that the Ingress Queue has resumed forward progress.
10078 if (idma_same_state_cnt
[i
] < idma
->idma_1s_thresh
) {
10079 if (idma
->idma_stalled
[i
] >= SGE_IDMA_WARN_THRESH
* hz
)
10080 dev_warn(adapter
->pdev_dev
, "SGE idma%d, queue %u, "
10081 "resumed after %d seconds\n",
10082 i
, idma
->idma_qid
[i
],
10083 idma
->idma_stalled
[i
] / hz
);
10084 idma
->idma_stalled
[i
] = 0;
10088 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10089 * domain. The first time we get here it'll be because we
10090 * passed the 1s Threshold; each additional time it'll be
10091 * because the RX Timer Callback is being fired on its regular
10094 * If the stall is below our Potential Hung Ingress Queue
10095 * Warning Threshold, continue.
10097 if (idma
->idma_stalled
[i
] == 0) {
10098 idma
->idma_stalled
[i
] = hz
;
10099 idma
->idma_warn
[i
] = 0;
10101 idma
->idma_stalled
[i
] += ticks
;
10102 idma
->idma_warn
[i
] -= ticks
;
10105 if (idma
->idma_stalled
[i
] < SGE_IDMA_WARN_THRESH
* hz
)
10108 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10110 if (idma
->idma_warn
[i
] > 0)
10112 idma
->idma_warn
[i
] = SGE_IDMA_WARN_REPEAT
* hz
;
10114 /* Read and save the SGE IDMA State and Queue ID information.
10115 * We do this every time in case it changes across time ...
10116 * can't be too careful ...
10118 t4_write_reg(adapter
, SGE_DEBUG_INDEX_A
, 0);
10119 debug0
= t4_read_reg(adapter
, SGE_DEBUG_DATA_LOW_A
);
10120 idma
->idma_state
[i
] = (debug0
>> (i
* 9)) & 0x3f;
10122 t4_write_reg(adapter
, SGE_DEBUG_INDEX_A
, 11);
10123 debug11
= t4_read_reg(adapter
, SGE_DEBUG_DATA_LOW_A
);
10124 idma
->idma_qid
[i
] = (debug11
>> (i
* 16)) & 0xffff;
10126 dev_warn(adapter
->pdev_dev
, "SGE idma%u, queue %u, potentially stuck in "
10127 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10128 i
, idma
->idma_qid
[i
], idma
->idma_state
[i
],
10129 idma
->idma_stalled
[i
] / hz
,
10131 t4_sge_decode_idma_state(adapter
, idma
->idma_state
[i
]);
10136 * t4_load_cfg - download config file
10137 * @adap: the adapter
10138 * @cfg_data: the cfg text file to write
10139 * @size: text file size
10141 * Write the supplied config text file to the card's serial flash.
10143 int t4_load_cfg(struct adapter
*adap
, const u8
*cfg_data
, unsigned int size
)
10145 int ret
, i
, n
, cfg_addr
;
10147 unsigned int flash_cfg_start_sec
;
10148 unsigned int sf_sec_size
= adap
->params
.sf_size
/ adap
->params
.sf_nsec
;
10150 cfg_addr
= t4_flash_cfg_addr(adap
);
10155 flash_cfg_start_sec
= addr
/ SF_SEC_SIZE
;
10157 if (size
> FLASH_CFG_MAX_SIZE
) {
10158 dev_err(adap
->pdev_dev
, "cfg file too large, max is %u bytes\n",
10159 FLASH_CFG_MAX_SIZE
);
10163 i
= DIV_ROUND_UP(FLASH_CFG_MAX_SIZE
, /* # of sectors spanned */
10165 ret
= t4_flash_erase_sectors(adap
, flash_cfg_start_sec
,
10166 flash_cfg_start_sec
+ i
- 1);
10167 /* If size == 0 then we're simply erasing the FLASH sectors associated
10168 * with the on-adapter Firmware Configuration File.
10170 if (ret
|| size
== 0)
10173 /* this will write to the flash up to SF_PAGE_SIZE at a time */
10174 for (i
= 0; i
< size
; i
+= SF_PAGE_SIZE
) {
10175 if ((size
- i
) < SF_PAGE_SIZE
)
10179 ret
= t4_write_flash(adap
, addr
, n
, cfg_data
);
10183 addr
+= SF_PAGE_SIZE
;
10184 cfg_data
+= SF_PAGE_SIZE
;
10189 dev_err(adap
->pdev_dev
, "config file %s failed %d\n",
10190 (size
== 0 ? "clear" : "download"), ret
);
10195 * t4_set_vf_mac - Set MAC address for the specified VF
10196 * @adapter: The adapter
10197 * @vf: one of the VFs instantiated by the specified PF
10198 * @naddr: the number of MAC addresses
10199 * @addr: the MAC address(es) to be set to the specified VF
10201 int t4_set_vf_mac_acl(struct adapter
*adapter
, unsigned int vf
,
10202 unsigned int naddr
, u8
*addr
)
10204 struct fw_acl_mac_cmd cmd
;
10206 memset(&cmd
, 0, sizeof(cmd
));
10207 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD
) |
10210 FW_ACL_MAC_CMD_PFN_V(adapter
->pf
) |
10211 FW_ACL_MAC_CMD_VFN_V(vf
));
10213 /* Note: Do not enable the ACL */
10214 cmd
.en_to_len16
= cpu_to_be32((unsigned int)FW_LEN16(cmd
));
10217 switch (adapter
->pf
) {
10219 memcpy(cmd
.macaddr3
, addr
, sizeof(cmd
.macaddr3
));
10222 memcpy(cmd
.macaddr2
, addr
, sizeof(cmd
.macaddr2
));
10225 memcpy(cmd
.macaddr1
, addr
, sizeof(cmd
.macaddr1
));
10228 memcpy(cmd
.macaddr0
, addr
, sizeof(cmd
.macaddr0
));
10232 return t4_wr_mbox(adapter
, adapter
->mbox
, &cmd
, sizeof(cmd
), &cmd
);
10236 * t4_read_pace_tbl - read the pace table
10237 * @adap: the adapter
10238 * @pace_vals: holds the returned values
10240 * Returns the values of TP's pace table in microseconds.
10242 void t4_read_pace_tbl(struct adapter
*adap
, unsigned int pace_vals
[NTX_SCHED
])
10246 for (i
= 0; i
< NTX_SCHED
; i
++) {
10247 t4_write_reg(adap
, TP_PACE_TABLE_A
, 0xffff0000 + i
);
10248 v
= t4_read_reg(adap
, TP_PACE_TABLE_A
);
10249 pace_vals
[i
] = dack_ticks_to_usec(adap
, v
);
10254 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10255 * @adap: the adapter
10256 * @sched: the scheduler index
10257 * @kbps: the byte rate in Kbps
10258 * @ipg: the interpacket delay in tenths of nanoseconds
10259 * @sleep_ok: if true we may sleep while awaiting command completion
10261 * Return the current configuration of a HW Tx scheduler.
10263 void t4_get_tx_sched(struct adapter
*adap
, unsigned int sched
,
10264 unsigned int *kbps
, unsigned int *ipg
, bool sleep_ok
)
10266 unsigned int v
, addr
, bpt
, cpt
;
10269 addr
= TP_TX_MOD_Q1_Q0_RATE_LIMIT_A
- sched
/ 2;
10270 t4_tp_tm_pio_read(adap
, &v
, 1, addr
, sleep_ok
);
10273 bpt
= (v
>> 8) & 0xff;
10276 *kbps
= 0; /* scheduler disabled */
10278 v
= (adap
->params
.vpd
.cclk
* 1000) / cpt
; /* ticks/s */
10279 *kbps
= (v
* bpt
) / 125;
10283 addr
= TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A
- sched
/ 2;
10284 t4_tp_tm_pio_read(adap
, &v
, 1, addr
, sleep_ok
);
10288 *ipg
= (10000 * v
) / core_ticks_per_usec(adap
);
10292 /* t4_sge_ctxt_rd - read an SGE context through FW
10293 * @adap: the adapter
10294 * @mbox: mailbox to use for the FW command
10295 * @cid: the context id
10296 * @ctype: the context type
10297 * @data: where to store the context data
10299 * Issues a FW command through the given mailbox to read an SGE context.
10301 int t4_sge_ctxt_rd(struct adapter
*adap
, unsigned int mbox
, unsigned int cid
,
10302 enum ctxt_type ctype
, u32
*data
)
10304 struct fw_ldst_cmd c
;
10307 if (ctype
== CTXT_FLM
)
10308 ret
= FW_LDST_ADDRSPC_SGE_FLMC
;
10310 ret
= FW_LDST_ADDRSPC_SGE_CONMC
;
10312 memset(&c
, 0, sizeof(c
));
10313 c
.op_to_addrspace
= cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
10314 FW_CMD_REQUEST_F
| FW_CMD_READ_F
|
10315 FW_LDST_CMD_ADDRSPACE_V(ret
));
10316 c
.cycles_to_len16
= cpu_to_be32(FW_LEN16(c
));
10317 c
.u
.idctxt
.physid
= cpu_to_be32(cid
);
10319 ret
= t4_wr_mbox(adap
, mbox
, &c
, sizeof(c
), &c
);
10321 data
[0] = be32_to_cpu(c
.u
.idctxt
.ctxt_data0
);
10322 data
[1] = be32_to_cpu(c
.u
.idctxt
.ctxt_data1
);
10323 data
[2] = be32_to_cpu(c
.u
.idctxt
.ctxt_data2
);
10324 data
[3] = be32_to_cpu(c
.u
.idctxt
.ctxt_data3
);
10325 data
[4] = be32_to_cpu(c
.u
.idctxt
.ctxt_data4
);
10326 data
[5] = be32_to_cpu(c
.u
.idctxt
.ctxt_data5
);
10332 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10333 * @adap: the adapter
10334 * @cid: the context id
10335 * @ctype: the context type
10336 * @data: where to store the context data
10338 * Reads an SGE context directly, bypassing FW. This is only for
10339 * debugging when FW is unavailable.
10341 int t4_sge_ctxt_rd_bd(struct adapter
*adap
, unsigned int cid
,
10342 enum ctxt_type ctype
, u32
*data
)
10346 t4_write_reg(adap
, SGE_CTXT_CMD_A
, CTXTQID_V(cid
) | CTXTTYPE_V(ctype
));
10347 ret
= t4_wait_op_done(adap
, SGE_CTXT_CMD_A
, BUSY_F
, 0, 3, 1);
10349 for (i
= SGE_CTXT_DATA0_A
; i
<= SGE_CTXT_DATA5_A
; i
+= 4)
10350 *data
++ = t4_read_reg(adap
, i
);
10354 int t4_sched_params(struct adapter
*adapter
, int type
, int level
, int mode
,
10355 int rateunit
, int ratemode
, int channel
, int class,
10356 int minrate
, int maxrate
, int weight
, int pktsize
)
10358 struct fw_sched_cmd cmd
;
10360 memset(&cmd
, 0, sizeof(cmd
));
10361 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD
) |
10364 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
10366 cmd
.u
.params
.sc
= FW_SCHED_SC_PARAMS
;
10367 cmd
.u
.params
.type
= type
;
10368 cmd
.u
.params
.level
= level
;
10369 cmd
.u
.params
.mode
= mode
;
10370 cmd
.u
.params
.ch
= channel
;
10371 cmd
.u
.params
.cl
= class;
10372 cmd
.u
.params
.unit
= rateunit
;
10373 cmd
.u
.params
.rate
= ratemode
;
10374 cmd
.u
.params
.min
= cpu_to_be32(minrate
);
10375 cmd
.u
.params
.max
= cpu_to_be32(maxrate
);
10376 cmd
.u
.params
.weight
= cpu_to_be16(weight
);
10377 cmd
.u
.params
.pktsize
= cpu_to_be16(pktsize
);
10379 return t4_wr_mbox_meat(adapter
, adapter
->mbox
, &cmd
, sizeof(cmd
),
10384 * t4_i2c_rd - read I2C data from adapter
10385 * @adap: the adapter
10386 * @port: Port number if per-port device; <0 if not
10387 * @devid: per-port device ID or absolute device ID
10388 * @offset: byte offset into device I2C space
10389 * @len: byte length of I2C space data
10390 * @buf: buffer in which to return I2C data
10392 * Reads the I2C data from the indicated device and location.
10394 int t4_i2c_rd(struct adapter
*adap
, unsigned int mbox
, int port
,
10395 unsigned int devid
, unsigned int offset
,
10396 unsigned int len
, u8
*buf
)
10398 struct fw_ldst_cmd ldst_cmd
, ldst_rpl
;
10399 unsigned int i2c_max
= sizeof(ldst_cmd
.u
.i2c
.data
);
10402 if (len
> I2C_PAGE_SIZE
)
10405 /* Dont allow reads that spans multiple pages */
10406 if (offset
< I2C_PAGE_SIZE
&& offset
+ len
> I2C_PAGE_SIZE
)
10409 memset(&ldst_cmd
, 0, sizeof(ldst_cmd
));
10410 ldst_cmd
.op_to_addrspace
=
10411 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD
) |
10414 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C
));
10415 ldst_cmd
.cycles_to_len16
= cpu_to_be32(FW_LEN16(ldst_cmd
));
10416 ldst_cmd
.u
.i2c
.pid
= (port
< 0 ? 0xff : port
);
10417 ldst_cmd
.u
.i2c
.did
= devid
;
10420 unsigned int i2c_len
= (len
< i2c_max
) ? len
: i2c_max
;
10422 ldst_cmd
.u
.i2c
.boffset
= offset
;
10423 ldst_cmd
.u
.i2c
.blen
= i2c_len
;
10425 ret
= t4_wr_mbox(adap
, mbox
, &ldst_cmd
, sizeof(ldst_cmd
),
10430 memcpy(buf
, ldst_rpl
.u
.i2c
.data
, i2c_len
);
10440 * t4_set_vlan_acl - Set a VLAN id for the specified VF
10441 * @adapter: the adapter
10442 * @mbox: mailbox to use for the FW command
10443 * @vf: one of the VFs instantiated by the specified PF
10444 * @vlan: The vlanid to be set
10446 int t4_set_vlan_acl(struct adapter
*adap
, unsigned int mbox
, unsigned int vf
,
10449 struct fw_acl_vlan_cmd vlan_cmd
;
10450 unsigned int enable
;
10452 enable
= (vlan
? FW_ACL_VLAN_CMD_EN_F
: 0);
10453 memset(&vlan_cmd
, 0, sizeof(vlan_cmd
));
10454 vlan_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD
) |
10458 FW_ACL_VLAN_CMD_PFN_V(adap
->pf
) |
10459 FW_ACL_VLAN_CMD_VFN_V(vf
));
10460 vlan_cmd
.en_to_len16
= cpu_to_be32(enable
| FW_LEN16(vlan_cmd
));
10461 /* Drop all packets that donot match vlan id */
10462 vlan_cmd
.dropnovlan_fm
= (enable
10463 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F
|
10464 FW_ACL_VLAN_CMD_FM_F
) : 0);
10466 vlan_cmd
.nvlan
= 1;
10467 vlan_cmd
.vlanid
[0] = cpu_to_be16(vlan
);
10470 return t4_wr_mbox(adap
, adap
->mbox
, &vlan_cmd
, sizeof(vlan_cmd
), NULL
);