treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / davicom / dm9000.c
blob1ea3372775e6daa39c300e2624f921742cb5f29e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Davicom DM9000 Fast Ethernet driver for Linux.
4 * Copyright (C) 1997 Sten Wang
6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
8 * Additional updates, Copyright:
9 * Ben Dooks <ben@simtec.co.uk>
10 * Sascha Hauer <s.hauer@pengutronix.de>
13 #include <linux/module.h>
14 #include <linux/ioport.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/interrupt.h>
18 #include <linux/skbuff.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/ethtool.h>
25 #include <linux/dm9000.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
34 #include <asm/delay.h>
35 #include <asm/irq.h>
36 #include <asm/io.h>
38 #include "dm9000.h"
40 /* Board/System/Debug information/definition ---------------- */
42 #define DM9000_PHY 0x40 /* PHY address 0x01 */
44 #define CARDNAME "dm9000"
45 #define DRV_VERSION "1.31"
48 * Transmit timeout, default 5 seconds.
50 static int watchdog = 5000;
51 module_param(watchdog, int, 0400);
52 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
55 * Debug messages level
57 static int debug;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
61 /* DM9000 register address locking.
63 * The DM9000 uses an address register to control where data written
64 * to the data register goes. This means that the address register
65 * must be preserved over interrupts or similar calls.
67 * During interrupt and other critical calls, a spinlock is used to
68 * protect the system, but the calls themselves save the address
69 * in the address register in case they are interrupting another
70 * access to the device.
72 * For general accesses a lock is provided so that calls which are
73 * allowed to sleep are serialised so that the address register does
74 * not need to be saved. This lock also serves to serialise access
75 * to the EEPROM and PHY access registers which are shared between
76 * these two devices.
79 /* The driver supports the original DM9000E, and now the two newer
80 * devices, DM9000A and DM9000B.
83 enum dm9000_type {
84 TYPE_DM9000E, /* original DM9000 */
85 TYPE_DM9000A,
86 TYPE_DM9000B
89 /* Structure/enum declaration ------------------------------- */
90 struct board_info {
92 void __iomem *io_addr; /* Register I/O base address */
93 void __iomem *io_data; /* Data I/O address */
94 u16 irq; /* IRQ */
96 u16 tx_pkt_cnt;
97 u16 queue_pkt_len;
98 u16 queue_start_addr;
99 u16 queue_ip_summed;
100 u16 dbug_cnt;
101 u8 io_mode; /* 0:word, 2:byte */
102 u8 phy_addr;
103 u8 imr_all;
105 unsigned int flags;
106 unsigned int in_timeout:1;
107 unsigned int in_suspend:1;
108 unsigned int wake_supported:1;
110 enum dm9000_type type;
112 void (*inblk)(void __iomem *port, void *data, int length);
113 void (*outblk)(void __iomem *port, void *data, int length);
114 void (*dumpblk)(void __iomem *port, int length);
116 struct device *dev; /* parent device */
118 struct resource *addr_res; /* resources found */
119 struct resource *data_res;
120 struct resource *addr_req; /* resources requested */
121 struct resource *data_req;
123 int irq_wake;
125 struct mutex addr_lock; /* phy and eeprom access lock */
127 struct delayed_work phy_poll;
128 struct net_device *ndev;
130 spinlock_t lock;
132 struct mii_if_info mii;
133 u32 msg_enable;
134 u32 wake_state;
136 int ip_summed;
139 /* debug code */
141 #define dm9000_dbg(db, lev, msg...) do { \
142 if ((lev) < debug) { \
143 dev_dbg(db->dev, msg); \
145 } while (0)
147 static inline struct board_info *to_dm9000_board(struct net_device *dev)
149 return netdev_priv(dev);
152 /* DM9000 network board routine ---------------------------- */
155 * Read a byte from I/O port
157 static u8
158 ior(struct board_info *db, int reg)
160 writeb(reg, db->io_addr);
161 return readb(db->io_data);
165 * Write a byte to I/O port
168 static void
169 iow(struct board_info *db, int reg, int value)
171 writeb(reg, db->io_addr);
172 writeb(value, db->io_data);
175 static void
176 dm9000_reset(struct board_info *db)
178 dev_dbg(db->dev, "resetting device\n");
180 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
181 * The essential point is that we have to do a double reset, and the
182 * instruction is to set LBK into MAC internal loopback mode.
184 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
185 udelay(100); /* Application note says at least 20 us */
186 if (ior(db, DM9000_NCR) & 1)
187 dev_err(db->dev, "dm9000 did not respond to first reset\n");
189 iow(db, DM9000_NCR, 0);
190 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
191 udelay(100);
192 if (ior(db, DM9000_NCR) & 1)
193 dev_err(db->dev, "dm9000 did not respond to second reset\n");
196 /* routines for sending block to chip */
198 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
200 iowrite8_rep(reg, data, count);
203 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
205 iowrite16_rep(reg, data, (count+1) >> 1);
208 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
210 iowrite32_rep(reg, data, (count+3) >> 2);
213 /* input block from chip to memory */
215 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
217 ioread8_rep(reg, data, count);
221 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
223 ioread16_rep(reg, data, (count+1) >> 1);
226 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
228 ioread32_rep(reg, data, (count+3) >> 2);
231 /* dump block from chip to null */
233 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
235 int i;
236 int tmp;
238 for (i = 0; i < count; i++)
239 tmp = readb(reg);
242 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
244 int i;
245 int tmp;
247 count = (count + 1) >> 1;
249 for (i = 0; i < count; i++)
250 tmp = readw(reg);
253 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
255 int i;
256 int tmp;
258 count = (count + 3) >> 2;
260 for (i = 0; i < count; i++)
261 tmp = readl(reg);
265 * Sleep, either by using msleep() or if we are suspending, then
266 * use mdelay() to sleep.
268 static void dm9000_msleep(struct board_info *db, unsigned int ms)
270 if (db->in_suspend || db->in_timeout)
271 mdelay(ms);
272 else
273 msleep(ms);
276 /* Read a word from phyxcer */
277 static int
278 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
280 struct board_info *db = netdev_priv(dev);
281 unsigned long flags;
282 unsigned int reg_save;
283 int ret;
285 mutex_lock(&db->addr_lock);
287 spin_lock_irqsave(&db->lock, flags);
289 /* Save previous register address */
290 reg_save = readb(db->io_addr);
292 /* Fill the phyxcer register into REG_0C */
293 iow(db, DM9000_EPAR, DM9000_PHY | reg);
295 /* Issue phyxcer read command */
296 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
298 writeb(reg_save, db->io_addr);
299 spin_unlock_irqrestore(&db->lock, flags);
301 dm9000_msleep(db, 1); /* Wait read complete */
303 spin_lock_irqsave(&db->lock, flags);
304 reg_save = readb(db->io_addr);
306 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
308 /* The read data keeps on REG_0D & REG_0E */
309 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
311 /* restore the previous address */
312 writeb(reg_save, db->io_addr);
313 spin_unlock_irqrestore(&db->lock, flags);
315 mutex_unlock(&db->addr_lock);
317 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
318 return ret;
321 /* Write a word to phyxcer */
322 static void
323 dm9000_phy_write(struct net_device *dev,
324 int phyaddr_unused, int reg, int value)
326 struct board_info *db = netdev_priv(dev);
327 unsigned long flags;
328 unsigned long reg_save;
330 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
331 if (!db->in_timeout)
332 mutex_lock(&db->addr_lock);
334 spin_lock_irqsave(&db->lock, flags);
336 /* Save previous register address */
337 reg_save = readb(db->io_addr);
339 /* Fill the phyxcer register into REG_0C */
340 iow(db, DM9000_EPAR, DM9000_PHY | reg);
342 /* Fill the written data into REG_0D & REG_0E */
343 iow(db, DM9000_EPDRL, value);
344 iow(db, DM9000_EPDRH, value >> 8);
346 /* Issue phyxcer write command */
347 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
349 writeb(reg_save, db->io_addr);
350 spin_unlock_irqrestore(&db->lock, flags);
352 dm9000_msleep(db, 1); /* Wait write complete */
354 spin_lock_irqsave(&db->lock, flags);
355 reg_save = readb(db->io_addr);
357 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
359 /* restore the previous address */
360 writeb(reg_save, db->io_addr);
362 spin_unlock_irqrestore(&db->lock, flags);
363 if (!db->in_timeout)
364 mutex_unlock(&db->addr_lock);
367 /* dm9000_set_io
369 * select the specified set of io routines to use with the
370 * device
373 static void dm9000_set_io(struct board_info *db, int byte_width)
375 /* use the size of the data resource to work out what IO
376 * routines we want to use
379 switch (byte_width) {
380 case 1:
381 db->dumpblk = dm9000_dumpblk_8bit;
382 db->outblk = dm9000_outblk_8bit;
383 db->inblk = dm9000_inblk_8bit;
384 break;
387 case 3:
388 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
389 /* fall through */
390 case 2:
391 db->dumpblk = dm9000_dumpblk_16bit;
392 db->outblk = dm9000_outblk_16bit;
393 db->inblk = dm9000_inblk_16bit;
394 break;
396 case 4:
397 default:
398 db->dumpblk = dm9000_dumpblk_32bit;
399 db->outblk = dm9000_outblk_32bit;
400 db->inblk = dm9000_inblk_32bit;
401 break;
405 static void dm9000_schedule_poll(struct board_info *db)
407 if (db->type == TYPE_DM9000E)
408 schedule_delayed_work(&db->phy_poll, HZ * 2);
411 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
413 struct board_info *dm = to_dm9000_board(dev);
415 if (!netif_running(dev))
416 return -EINVAL;
418 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
421 static unsigned int
422 dm9000_read_locked(struct board_info *db, int reg)
424 unsigned long flags;
425 unsigned int ret;
427 spin_lock_irqsave(&db->lock, flags);
428 ret = ior(db, reg);
429 spin_unlock_irqrestore(&db->lock, flags);
431 return ret;
434 static int dm9000_wait_eeprom(struct board_info *db)
436 unsigned int status;
437 int timeout = 8; /* wait max 8msec */
439 /* The DM9000 data sheets say we should be able to
440 * poll the ERRE bit in EPCR to wait for the EEPROM
441 * operation. From testing several chips, this bit
442 * does not seem to work.
444 * We attempt to use the bit, but fall back to the
445 * timeout (which is why we do not return an error
446 * on expiry) to say that the EEPROM operation has
447 * completed.
450 while (1) {
451 status = dm9000_read_locked(db, DM9000_EPCR);
453 if ((status & EPCR_ERRE) == 0)
454 break;
456 msleep(1);
458 if (timeout-- < 0) {
459 dev_dbg(db->dev, "timeout waiting EEPROM\n");
460 break;
464 return 0;
468 * Read a word data from EEPROM
470 static void
471 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
473 unsigned long flags;
475 if (db->flags & DM9000_PLATF_NO_EEPROM) {
476 to[0] = 0xff;
477 to[1] = 0xff;
478 return;
481 mutex_lock(&db->addr_lock);
483 spin_lock_irqsave(&db->lock, flags);
485 iow(db, DM9000_EPAR, offset);
486 iow(db, DM9000_EPCR, EPCR_ERPRR);
488 spin_unlock_irqrestore(&db->lock, flags);
490 dm9000_wait_eeprom(db);
492 /* delay for at-least 150uS */
493 msleep(1);
495 spin_lock_irqsave(&db->lock, flags);
497 iow(db, DM9000_EPCR, 0x0);
499 to[0] = ior(db, DM9000_EPDRL);
500 to[1] = ior(db, DM9000_EPDRH);
502 spin_unlock_irqrestore(&db->lock, flags);
504 mutex_unlock(&db->addr_lock);
508 * Write a word data to SROM
510 static void
511 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
513 unsigned long flags;
515 if (db->flags & DM9000_PLATF_NO_EEPROM)
516 return;
518 mutex_lock(&db->addr_lock);
520 spin_lock_irqsave(&db->lock, flags);
521 iow(db, DM9000_EPAR, offset);
522 iow(db, DM9000_EPDRH, data[1]);
523 iow(db, DM9000_EPDRL, data[0]);
524 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
525 spin_unlock_irqrestore(&db->lock, flags);
527 dm9000_wait_eeprom(db);
529 mdelay(1); /* wait at least 150uS to clear */
531 spin_lock_irqsave(&db->lock, flags);
532 iow(db, DM9000_EPCR, 0);
533 spin_unlock_irqrestore(&db->lock, flags);
535 mutex_unlock(&db->addr_lock);
538 /* ethtool ops */
540 static void dm9000_get_drvinfo(struct net_device *dev,
541 struct ethtool_drvinfo *info)
543 struct board_info *dm = to_dm9000_board(dev);
545 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
546 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
547 strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
548 sizeof(info->bus_info));
551 static u32 dm9000_get_msglevel(struct net_device *dev)
553 struct board_info *dm = to_dm9000_board(dev);
555 return dm->msg_enable;
558 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
560 struct board_info *dm = to_dm9000_board(dev);
562 dm->msg_enable = value;
565 static int dm9000_get_link_ksettings(struct net_device *dev,
566 struct ethtool_link_ksettings *cmd)
568 struct board_info *dm = to_dm9000_board(dev);
570 mii_ethtool_get_link_ksettings(&dm->mii, cmd);
571 return 0;
574 static int dm9000_set_link_ksettings(struct net_device *dev,
575 const struct ethtool_link_ksettings *cmd)
577 struct board_info *dm = to_dm9000_board(dev);
579 return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
582 static int dm9000_nway_reset(struct net_device *dev)
584 struct board_info *dm = to_dm9000_board(dev);
585 return mii_nway_restart(&dm->mii);
588 static int dm9000_set_features(struct net_device *dev,
589 netdev_features_t features)
591 struct board_info *dm = to_dm9000_board(dev);
592 netdev_features_t changed = dev->features ^ features;
593 unsigned long flags;
595 if (!(changed & NETIF_F_RXCSUM))
596 return 0;
598 spin_lock_irqsave(&dm->lock, flags);
599 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
600 spin_unlock_irqrestore(&dm->lock, flags);
602 return 0;
605 static u32 dm9000_get_link(struct net_device *dev)
607 struct board_info *dm = to_dm9000_board(dev);
608 u32 ret;
610 if (dm->flags & DM9000_PLATF_EXT_PHY)
611 ret = mii_link_ok(&dm->mii);
612 else
613 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
615 return ret;
618 #define DM_EEPROM_MAGIC (0x444D394B)
620 static int dm9000_get_eeprom_len(struct net_device *dev)
622 return 128;
625 static int dm9000_get_eeprom(struct net_device *dev,
626 struct ethtool_eeprom *ee, u8 *data)
628 struct board_info *dm = to_dm9000_board(dev);
629 int offset = ee->offset;
630 int len = ee->len;
631 int i;
633 /* EEPROM access is aligned to two bytes */
635 if ((len & 1) != 0 || (offset & 1) != 0)
636 return -EINVAL;
638 if (dm->flags & DM9000_PLATF_NO_EEPROM)
639 return -ENOENT;
641 ee->magic = DM_EEPROM_MAGIC;
643 for (i = 0; i < len; i += 2)
644 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
646 return 0;
649 static int dm9000_set_eeprom(struct net_device *dev,
650 struct ethtool_eeprom *ee, u8 *data)
652 struct board_info *dm = to_dm9000_board(dev);
653 int offset = ee->offset;
654 int len = ee->len;
655 int done;
657 /* EEPROM access is aligned to two bytes */
659 if (dm->flags & DM9000_PLATF_NO_EEPROM)
660 return -ENOENT;
662 if (ee->magic != DM_EEPROM_MAGIC)
663 return -EINVAL;
665 while (len > 0) {
666 if (len & 1 || offset & 1) {
667 int which = offset & 1;
668 u8 tmp[2];
670 dm9000_read_eeprom(dm, offset / 2, tmp);
671 tmp[which] = *data;
672 dm9000_write_eeprom(dm, offset / 2, tmp);
674 done = 1;
675 } else {
676 dm9000_write_eeprom(dm, offset / 2, data);
677 done = 2;
680 data += done;
681 offset += done;
682 len -= done;
685 return 0;
688 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
690 struct board_info *dm = to_dm9000_board(dev);
692 memset(w, 0, sizeof(struct ethtool_wolinfo));
694 /* note, we could probably support wake-phy too */
695 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
696 w->wolopts = dm->wake_state;
699 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
701 struct board_info *dm = to_dm9000_board(dev);
702 unsigned long flags;
703 u32 opts = w->wolopts;
704 u32 wcr = 0;
706 if (!dm->wake_supported)
707 return -EOPNOTSUPP;
709 if (opts & ~WAKE_MAGIC)
710 return -EINVAL;
712 if (opts & WAKE_MAGIC)
713 wcr |= WCR_MAGICEN;
715 mutex_lock(&dm->addr_lock);
717 spin_lock_irqsave(&dm->lock, flags);
718 iow(dm, DM9000_WCR, wcr);
719 spin_unlock_irqrestore(&dm->lock, flags);
721 mutex_unlock(&dm->addr_lock);
723 if (dm->wake_state != opts) {
724 /* change in wol state, update IRQ state */
726 if (!dm->wake_state)
727 irq_set_irq_wake(dm->irq_wake, 1);
728 else if (dm->wake_state && !opts)
729 irq_set_irq_wake(dm->irq_wake, 0);
732 dm->wake_state = opts;
733 return 0;
736 static const struct ethtool_ops dm9000_ethtool_ops = {
737 .get_drvinfo = dm9000_get_drvinfo,
738 .get_msglevel = dm9000_get_msglevel,
739 .set_msglevel = dm9000_set_msglevel,
740 .nway_reset = dm9000_nway_reset,
741 .get_link = dm9000_get_link,
742 .get_wol = dm9000_get_wol,
743 .set_wol = dm9000_set_wol,
744 .get_eeprom_len = dm9000_get_eeprom_len,
745 .get_eeprom = dm9000_get_eeprom,
746 .set_eeprom = dm9000_set_eeprom,
747 .get_link_ksettings = dm9000_get_link_ksettings,
748 .set_link_ksettings = dm9000_set_link_ksettings,
751 static void dm9000_show_carrier(struct board_info *db,
752 unsigned carrier, unsigned nsr)
754 int lpa;
755 struct net_device *ndev = db->ndev;
756 struct mii_if_info *mii = &db->mii;
757 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
759 if (carrier) {
760 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
761 dev_info(db->dev,
762 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
763 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
764 (ncr & NCR_FDX) ? "full" : "half", lpa);
765 } else {
766 dev_info(db->dev, "%s: link down\n", ndev->name);
770 static void
771 dm9000_poll_work(struct work_struct *w)
773 struct delayed_work *dw = to_delayed_work(w);
774 struct board_info *db = container_of(dw, struct board_info, phy_poll);
775 struct net_device *ndev = db->ndev;
777 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
778 !(db->flags & DM9000_PLATF_EXT_PHY)) {
779 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
780 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
781 unsigned new_carrier;
783 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
785 if (old_carrier != new_carrier) {
786 if (netif_msg_link(db))
787 dm9000_show_carrier(db, new_carrier, nsr);
789 if (!new_carrier)
790 netif_carrier_off(ndev);
791 else
792 netif_carrier_on(ndev);
794 } else
795 mii_check_media(&db->mii, netif_msg_link(db), 0);
797 if (netif_running(ndev))
798 dm9000_schedule_poll(db);
801 /* dm9000_release_board
803 * release a board, and any mapped resources
806 static void
807 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
809 /* unmap our resources */
811 iounmap(db->io_addr);
812 iounmap(db->io_data);
814 /* release the resources */
816 if (db->data_req)
817 release_resource(db->data_req);
818 kfree(db->data_req);
820 if (db->addr_req)
821 release_resource(db->addr_req);
822 kfree(db->addr_req);
825 static unsigned char dm9000_type_to_char(enum dm9000_type type)
827 switch (type) {
828 case TYPE_DM9000E: return 'e';
829 case TYPE_DM9000A: return 'a';
830 case TYPE_DM9000B: return 'b';
833 return '?';
837 * Set DM9000 multicast address
839 static void
840 dm9000_hash_table_unlocked(struct net_device *dev)
842 struct board_info *db = netdev_priv(dev);
843 struct netdev_hw_addr *ha;
844 int i, oft;
845 u32 hash_val;
846 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
847 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
849 dm9000_dbg(db, 1, "entering %s\n", __func__);
851 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
852 iow(db, oft, dev->dev_addr[i]);
854 if (dev->flags & IFF_PROMISC)
855 rcr |= RCR_PRMSC;
857 if (dev->flags & IFF_ALLMULTI)
858 rcr |= RCR_ALL;
860 /* the multicast address in Hash Table : 64 bits */
861 netdev_for_each_mc_addr(ha, dev) {
862 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
863 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
866 /* Write the hash table to MAC MD table */
867 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
868 iow(db, oft++, hash_table[i]);
869 iow(db, oft++, hash_table[i] >> 8);
872 iow(db, DM9000_RCR, rcr);
875 static void
876 dm9000_hash_table(struct net_device *dev)
878 struct board_info *db = netdev_priv(dev);
879 unsigned long flags;
881 spin_lock_irqsave(&db->lock, flags);
882 dm9000_hash_table_unlocked(dev);
883 spin_unlock_irqrestore(&db->lock, flags);
886 static void
887 dm9000_mask_interrupts(struct board_info *db)
889 iow(db, DM9000_IMR, IMR_PAR);
892 static void
893 dm9000_unmask_interrupts(struct board_info *db)
895 iow(db, DM9000_IMR, db->imr_all);
899 * Initialize dm9000 board
901 static void
902 dm9000_init_dm9000(struct net_device *dev)
904 struct board_info *db = netdev_priv(dev);
905 unsigned int imr;
906 unsigned int ncr;
908 dm9000_dbg(db, 1, "entering %s\n", __func__);
910 dm9000_reset(db);
911 dm9000_mask_interrupts(db);
913 /* I/O mode */
914 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
916 /* Checksum mode */
917 if (dev->hw_features & NETIF_F_RXCSUM)
918 iow(db, DM9000_RCSR,
919 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
921 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
922 iow(db, DM9000_GPR, 0);
924 /* If we are dealing with DM9000B, some extra steps are required: a
925 * manual phy reset, and setting init params.
927 if (db->type == TYPE_DM9000B) {
928 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
929 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
932 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
934 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
935 * up dumping the wake events if we disable this. There is already
936 * a wake-mask in DM9000_WCR */
937 if (db->wake_supported)
938 ncr |= NCR_WAKEEN;
940 iow(db, DM9000_NCR, ncr);
942 /* Program operating register */
943 iow(db, DM9000_TCR, 0); /* TX Polling clear */
944 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
945 iow(db, DM9000_FCR, 0xff); /* Flow Control */
946 iow(db, DM9000_SMCR, 0); /* Special Mode */
947 /* clear TX status */
948 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
949 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
951 /* Set address filter table */
952 dm9000_hash_table_unlocked(dev);
954 imr = IMR_PAR | IMR_PTM | IMR_PRM;
955 if (db->type != TYPE_DM9000E)
956 imr |= IMR_LNKCHNG;
958 db->imr_all = imr;
960 /* Init Driver variable */
961 db->tx_pkt_cnt = 0;
962 db->queue_pkt_len = 0;
963 netif_trans_update(dev);
966 /* Our watchdog timed out. Called by the networking layer */
967 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
969 struct board_info *db = netdev_priv(dev);
970 u8 reg_save;
971 unsigned long flags;
973 /* Save previous register address */
974 spin_lock_irqsave(&db->lock, flags);
975 db->in_timeout = 1;
976 reg_save = readb(db->io_addr);
978 netif_stop_queue(dev);
979 dm9000_init_dm9000(dev);
980 dm9000_unmask_interrupts(db);
981 /* We can accept TX packets again */
982 netif_trans_update(dev); /* prevent tx timeout */
983 netif_wake_queue(dev);
985 /* Restore previous register address */
986 writeb(reg_save, db->io_addr);
987 db->in_timeout = 0;
988 spin_unlock_irqrestore(&db->lock, flags);
991 static void dm9000_send_packet(struct net_device *dev,
992 int ip_summed,
993 u16 pkt_len)
995 struct board_info *dm = to_dm9000_board(dev);
997 /* The DM9000 is not smart enough to leave fragmented packets alone. */
998 if (dm->ip_summed != ip_summed) {
999 if (ip_summed == CHECKSUM_NONE)
1000 iow(dm, DM9000_TCCR, 0);
1001 else
1002 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1003 dm->ip_summed = ip_summed;
1006 /* Set TX length to DM9000 */
1007 iow(dm, DM9000_TXPLL, pkt_len);
1008 iow(dm, DM9000_TXPLH, pkt_len >> 8);
1010 /* Issue TX polling command */
1011 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1015 * Hardware start transmission.
1016 * Send a packet to media from the upper layer.
1018 static int
1019 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1021 unsigned long flags;
1022 struct board_info *db = netdev_priv(dev);
1024 dm9000_dbg(db, 3, "%s:\n", __func__);
1026 if (db->tx_pkt_cnt > 1)
1027 return NETDEV_TX_BUSY;
1029 spin_lock_irqsave(&db->lock, flags);
1031 /* Move data to DM9000 TX RAM */
1032 writeb(DM9000_MWCMD, db->io_addr);
1034 (db->outblk)(db->io_data, skb->data, skb->len);
1035 dev->stats.tx_bytes += skb->len;
1037 db->tx_pkt_cnt++;
1038 /* TX control: First packet immediately send, second packet queue */
1039 if (db->tx_pkt_cnt == 1) {
1040 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1041 } else {
1042 /* Second packet */
1043 db->queue_pkt_len = skb->len;
1044 db->queue_ip_summed = skb->ip_summed;
1045 netif_stop_queue(dev);
1048 spin_unlock_irqrestore(&db->lock, flags);
1050 /* free this SKB */
1051 dev_consume_skb_any(skb);
1053 return NETDEV_TX_OK;
1057 * DM9000 interrupt handler
1058 * receive the packet to upper layer, free the transmitted packet
1061 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1063 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
1065 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1066 /* One packet sent complete */
1067 db->tx_pkt_cnt--;
1068 dev->stats.tx_packets++;
1070 if (netif_msg_tx_done(db))
1071 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1073 /* Queue packet check & send */
1074 if (db->tx_pkt_cnt > 0)
1075 dm9000_send_packet(dev, db->queue_ip_summed,
1076 db->queue_pkt_len);
1077 netif_wake_queue(dev);
1081 struct dm9000_rxhdr {
1082 u8 RxPktReady;
1083 u8 RxStatus;
1084 __le16 RxLen;
1085 } __packed;
1088 * Received a packet and pass to upper layer
1090 static void
1091 dm9000_rx(struct net_device *dev)
1093 struct board_info *db = netdev_priv(dev);
1094 struct dm9000_rxhdr rxhdr;
1095 struct sk_buff *skb;
1096 u8 rxbyte, *rdptr;
1097 bool GoodPacket;
1098 int RxLen;
1100 /* Check packet ready or not */
1101 do {
1102 ior(db, DM9000_MRCMDX); /* Dummy read */
1104 /* Get most updated data */
1105 rxbyte = readb(db->io_data);
1107 /* Status check: this byte must be 0 or 1 */
1108 if (rxbyte & DM9000_PKT_ERR) {
1109 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1110 iow(db, DM9000_RCR, 0x00); /* Stop Device */
1111 return;
1114 if (!(rxbyte & DM9000_PKT_RDY))
1115 return;
1117 /* A packet ready now & Get status/length */
1118 GoodPacket = true;
1119 writeb(DM9000_MRCMD, db->io_addr);
1121 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1123 RxLen = le16_to_cpu(rxhdr.RxLen);
1125 if (netif_msg_rx_status(db))
1126 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1127 rxhdr.RxStatus, RxLen);
1129 /* Packet Status check */
1130 if (RxLen < 0x40) {
1131 GoodPacket = false;
1132 if (netif_msg_rx_err(db))
1133 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1136 if (RxLen > DM9000_PKT_MAX) {
1137 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1140 /* rxhdr.RxStatus is identical to RSR register. */
1141 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1142 RSR_PLE | RSR_RWTO |
1143 RSR_LCS | RSR_RF)) {
1144 GoodPacket = false;
1145 if (rxhdr.RxStatus & RSR_FOE) {
1146 if (netif_msg_rx_err(db))
1147 dev_dbg(db->dev, "fifo error\n");
1148 dev->stats.rx_fifo_errors++;
1150 if (rxhdr.RxStatus & RSR_CE) {
1151 if (netif_msg_rx_err(db))
1152 dev_dbg(db->dev, "crc error\n");
1153 dev->stats.rx_crc_errors++;
1155 if (rxhdr.RxStatus & RSR_RF) {
1156 if (netif_msg_rx_err(db))
1157 dev_dbg(db->dev, "length error\n");
1158 dev->stats.rx_length_errors++;
1162 /* Move data from DM9000 */
1163 if (GoodPacket &&
1164 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1165 skb_reserve(skb, 2);
1166 rdptr = skb_put(skb, RxLen - 4);
1168 /* Read received packet from RX SRAM */
1170 (db->inblk)(db->io_data, rdptr, RxLen);
1171 dev->stats.rx_bytes += RxLen;
1173 /* Pass to upper layer */
1174 skb->protocol = eth_type_trans(skb, dev);
1175 if (dev->features & NETIF_F_RXCSUM) {
1176 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1177 skb->ip_summed = CHECKSUM_UNNECESSARY;
1178 else
1179 skb_checksum_none_assert(skb);
1181 netif_rx(skb);
1182 dev->stats.rx_packets++;
1184 } else {
1185 /* need to dump the packet's data */
1187 (db->dumpblk)(db->io_data, RxLen);
1189 } while (rxbyte & DM9000_PKT_RDY);
1192 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1194 struct net_device *dev = dev_id;
1195 struct board_info *db = netdev_priv(dev);
1196 int int_status;
1197 unsigned long flags;
1198 u8 reg_save;
1200 dm9000_dbg(db, 3, "entering %s\n", __func__);
1202 /* A real interrupt coming */
1204 /* holders of db->lock must always block IRQs */
1205 spin_lock_irqsave(&db->lock, flags);
1207 /* Save previous register address */
1208 reg_save = readb(db->io_addr);
1210 dm9000_mask_interrupts(db);
1211 /* Got DM9000 interrupt status */
1212 int_status = ior(db, DM9000_ISR); /* Got ISR */
1213 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1215 if (netif_msg_intr(db))
1216 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1218 /* Received the coming packet */
1219 if (int_status & ISR_PRS)
1220 dm9000_rx(dev);
1222 /* Transmit Interrupt check */
1223 if (int_status & ISR_PTS)
1224 dm9000_tx_done(dev, db);
1226 if (db->type != TYPE_DM9000E) {
1227 if (int_status & ISR_LNKCHNG) {
1228 /* fire a link-change request */
1229 schedule_delayed_work(&db->phy_poll, 1);
1233 dm9000_unmask_interrupts(db);
1234 /* Restore previous register address */
1235 writeb(reg_save, db->io_addr);
1237 spin_unlock_irqrestore(&db->lock, flags);
1239 return IRQ_HANDLED;
1242 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1244 struct net_device *dev = dev_id;
1245 struct board_info *db = netdev_priv(dev);
1246 unsigned long flags;
1247 unsigned nsr, wcr;
1249 spin_lock_irqsave(&db->lock, flags);
1251 nsr = ior(db, DM9000_NSR);
1252 wcr = ior(db, DM9000_WCR);
1254 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1256 if (nsr & NSR_WAKEST) {
1257 /* clear, so we can avoid */
1258 iow(db, DM9000_NSR, NSR_WAKEST);
1260 if (wcr & WCR_LINKST)
1261 dev_info(db->dev, "wake by link status change\n");
1262 if (wcr & WCR_SAMPLEST)
1263 dev_info(db->dev, "wake by sample packet\n");
1264 if (wcr & WCR_MAGICST)
1265 dev_info(db->dev, "wake by magic packet\n");
1266 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1267 dev_err(db->dev, "wake signalled with no reason? "
1268 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1271 spin_unlock_irqrestore(&db->lock, flags);
1273 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1276 #ifdef CONFIG_NET_POLL_CONTROLLER
1278 *Used by netconsole
1280 static void dm9000_poll_controller(struct net_device *dev)
1282 disable_irq(dev->irq);
1283 dm9000_interrupt(dev->irq, dev);
1284 enable_irq(dev->irq);
1286 #endif
1289 * Open the interface.
1290 * The interface is opened whenever "ifconfig" actives it.
1292 static int
1293 dm9000_open(struct net_device *dev)
1295 struct board_info *db = netdev_priv(dev);
1296 unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1298 if (netif_msg_ifup(db))
1299 dev_dbg(db->dev, "enabling %s\n", dev->name);
1301 /* If there is no IRQ type specified, tell the user that this is a
1302 * problem
1304 if (irq_flags == IRQF_TRIGGER_NONE)
1305 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1307 irq_flags |= IRQF_SHARED;
1309 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1310 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1311 mdelay(1); /* delay needs by DM9000B */
1313 /* Initialize DM9000 board */
1314 dm9000_init_dm9000(dev);
1316 if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1317 return -EAGAIN;
1318 /* Now that we have an interrupt handler hooked up we can unmask
1319 * our interrupts
1321 dm9000_unmask_interrupts(db);
1323 /* Init driver variable */
1324 db->dbug_cnt = 0;
1326 mii_check_media(&db->mii, netif_msg_link(db), 1);
1327 netif_start_queue(dev);
1329 /* Poll initial link status */
1330 schedule_delayed_work(&db->phy_poll, 1);
1332 return 0;
1335 static void
1336 dm9000_shutdown(struct net_device *dev)
1338 struct board_info *db = netdev_priv(dev);
1340 /* RESET device */
1341 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1342 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1343 dm9000_mask_interrupts(db);
1344 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1348 * Stop the interface.
1349 * The interface is stopped when it is brought.
1351 static int
1352 dm9000_stop(struct net_device *ndev)
1354 struct board_info *db = netdev_priv(ndev);
1356 if (netif_msg_ifdown(db))
1357 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1359 cancel_delayed_work_sync(&db->phy_poll);
1361 netif_stop_queue(ndev);
1362 netif_carrier_off(ndev);
1364 /* free interrupt */
1365 free_irq(ndev->irq, ndev);
1367 dm9000_shutdown(ndev);
1369 return 0;
1372 static const struct net_device_ops dm9000_netdev_ops = {
1373 .ndo_open = dm9000_open,
1374 .ndo_stop = dm9000_stop,
1375 .ndo_start_xmit = dm9000_start_xmit,
1376 .ndo_tx_timeout = dm9000_timeout,
1377 .ndo_set_rx_mode = dm9000_hash_table,
1378 .ndo_do_ioctl = dm9000_ioctl,
1379 .ndo_set_features = dm9000_set_features,
1380 .ndo_validate_addr = eth_validate_addr,
1381 .ndo_set_mac_address = eth_mac_addr,
1382 #ifdef CONFIG_NET_POLL_CONTROLLER
1383 .ndo_poll_controller = dm9000_poll_controller,
1384 #endif
1387 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1389 struct dm9000_plat_data *pdata;
1390 struct device_node *np = dev->of_node;
1391 const void *mac_addr;
1393 if (!IS_ENABLED(CONFIG_OF) || !np)
1394 return ERR_PTR(-ENXIO);
1396 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1397 if (!pdata)
1398 return ERR_PTR(-ENOMEM);
1400 if (of_find_property(np, "davicom,ext-phy", NULL))
1401 pdata->flags |= DM9000_PLATF_EXT_PHY;
1402 if (of_find_property(np, "davicom,no-eeprom", NULL))
1403 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1405 mac_addr = of_get_mac_address(np);
1406 if (!IS_ERR(mac_addr))
1407 ether_addr_copy(pdata->dev_addr, mac_addr);
1409 return pdata;
1413 * Search DM9000 board, allocate space and register it
1415 static int
1416 dm9000_probe(struct platform_device *pdev)
1418 struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1419 struct board_info *db; /* Point a board information structure */
1420 struct net_device *ndev;
1421 struct device *dev = &pdev->dev;
1422 const unsigned char *mac_src;
1423 int ret = 0;
1424 int iosize;
1425 int i;
1426 u32 id_val;
1427 int reset_gpios;
1428 enum of_gpio_flags flags;
1429 struct regulator *power;
1430 bool inv_mac_addr = false;
1432 power = devm_regulator_get(dev, "vcc");
1433 if (IS_ERR(power)) {
1434 if (PTR_ERR(power) == -EPROBE_DEFER)
1435 return -EPROBE_DEFER;
1436 dev_dbg(dev, "no regulator provided\n");
1437 } else {
1438 ret = regulator_enable(power);
1439 if (ret != 0) {
1440 dev_err(dev,
1441 "Failed to enable power regulator: %d\n", ret);
1442 return ret;
1444 dev_dbg(dev, "regulator enabled\n");
1447 reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1448 &flags);
1449 if (gpio_is_valid(reset_gpios)) {
1450 ret = devm_gpio_request_one(dev, reset_gpios, flags,
1451 "dm9000_reset");
1452 if (ret) {
1453 dev_err(dev, "failed to request reset gpio %d: %d\n",
1454 reset_gpios, ret);
1455 return -ENODEV;
1458 /* According to manual PWRST# Low Period Min 1ms */
1459 msleep(2);
1460 gpio_set_value(reset_gpios, 1);
1461 /* Needs 3ms to read eeprom when PWRST is deasserted */
1462 msleep(4);
1465 if (!pdata) {
1466 pdata = dm9000_parse_dt(&pdev->dev);
1467 if (IS_ERR(pdata))
1468 return PTR_ERR(pdata);
1471 /* Init network device */
1472 ndev = alloc_etherdev(sizeof(struct board_info));
1473 if (!ndev)
1474 return -ENOMEM;
1476 SET_NETDEV_DEV(ndev, &pdev->dev);
1478 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1480 /* setup board info structure */
1481 db = netdev_priv(ndev);
1483 db->dev = &pdev->dev;
1484 db->ndev = ndev;
1486 spin_lock_init(&db->lock);
1487 mutex_init(&db->addr_lock);
1489 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1491 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1492 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1494 if (!db->addr_res || !db->data_res) {
1495 dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1496 db->addr_res, db->data_res);
1497 ret = -ENOENT;
1498 goto out;
1501 ndev->irq = platform_get_irq(pdev, 0);
1502 if (ndev->irq < 0) {
1503 ret = ndev->irq;
1504 goto out;
1507 db->irq_wake = platform_get_irq(pdev, 1);
1508 if (db->irq_wake >= 0) {
1509 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1511 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1512 IRQF_SHARED, dev_name(db->dev), ndev);
1513 if (ret) {
1514 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1515 } else {
1517 /* test to see if irq is really wakeup capable */
1518 ret = irq_set_irq_wake(db->irq_wake, 1);
1519 if (ret) {
1520 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1521 db->irq_wake, ret);
1522 ret = 0;
1523 } else {
1524 irq_set_irq_wake(db->irq_wake, 0);
1525 db->wake_supported = 1;
1530 iosize = resource_size(db->addr_res);
1531 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1532 pdev->name);
1534 if (db->addr_req == NULL) {
1535 dev_err(db->dev, "cannot claim address reg area\n");
1536 ret = -EIO;
1537 goto out;
1540 db->io_addr = ioremap(db->addr_res->start, iosize);
1542 if (db->io_addr == NULL) {
1543 dev_err(db->dev, "failed to ioremap address reg\n");
1544 ret = -EINVAL;
1545 goto out;
1548 iosize = resource_size(db->data_res);
1549 db->data_req = request_mem_region(db->data_res->start, iosize,
1550 pdev->name);
1552 if (db->data_req == NULL) {
1553 dev_err(db->dev, "cannot claim data reg area\n");
1554 ret = -EIO;
1555 goto out;
1558 db->io_data = ioremap(db->data_res->start, iosize);
1560 if (db->io_data == NULL) {
1561 dev_err(db->dev, "failed to ioremap data reg\n");
1562 ret = -EINVAL;
1563 goto out;
1566 /* fill in parameters for net-dev structure */
1567 ndev->base_addr = (unsigned long)db->io_addr;
1569 /* ensure at least we have a default set of IO routines */
1570 dm9000_set_io(db, iosize);
1572 /* check to see if anything is being over-ridden */
1573 if (pdata != NULL) {
1574 /* check to see if the driver wants to over-ride the
1575 * default IO width */
1577 if (pdata->flags & DM9000_PLATF_8BITONLY)
1578 dm9000_set_io(db, 1);
1580 if (pdata->flags & DM9000_PLATF_16BITONLY)
1581 dm9000_set_io(db, 2);
1583 if (pdata->flags & DM9000_PLATF_32BITONLY)
1584 dm9000_set_io(db, 4);
1586 /* check to see if there are any IO routine
1587 * over-rides */
1589 if (pdata->inblk != NULL)
1590 db->inblk = pdata->inblk;
1592 if (pdata->outblk != NULL)
1593 db->outblk = pdata->outblk;
1595 if (pdata->dumpblk != NULL)
1596 db->dumpblk = pdata->dumpblk;
1598 db->flags = pdata->flags;
1601 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1602 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1603 #endif
1605 dm9000_reset(db);
1607 /* try multiple times, DM9000 sometimes gets the read wrong */
1608 for (i = 0; i < 8; i++) {
1609 id_val = ior(db, DM9000_VIDL);
1610 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1611 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1612 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1614 if (id_val == DM9000_ID)
1615 break;
1616 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1619 if (id_val != DM9000_ID) {
1620 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1621 ret = -ENODEV;
1622 goto out;
1625 /* Identify what type of DM9000 we are working on */
1627 id_val = ior(db, DM9000_CHIPR);
1628 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1630 switch (id_val) {
1631 case CHIPR_DM9000A:
1632 db->type = TYPE_DM9000A;
1633 break;
1634 case CHIPR_DM9000B:
1635 db->type = TYPE_DM9000B;
1636 break;
1637 default:
1638 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1639 db->type = TYPE_DM9000E;
1642 /* dm9000a/b are capable of hardware checksum offload */
1643 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1644 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1645 ndev->features |= ndev->hw_features;
1648 /* from this point we assume that we have found a DM9000 */
1650 ndev->netdev_ops = &dm9000_netdev_ops;
1651 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1652 ndev->ethtool_ops = &dm9000_ethtool_ops;
1654 db->msg_enable = NETIF_MSG_LINK;
1655 db->mii.phy_id_mask = 0x1f;
1656 db->mii.reg_num_mask = 0x1f;
1657 db->mii.force_media = 0;
1658 db->mii.full_duplex = 0;
1659 db->mii.dev = ndev;
1660 db->mii.mdio_read = dm9000_phy_read;
1661 db->mii.mdio_write = dm9000_phy_write;
1663 mac_src = "eeprom";
1665 /* try reading the node address from the attached EEPROM */
1666 for (i = 0; i < 6; i += 2)
1667 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1669 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1670 mac_src = "platform data";
1671 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1674 if (!is_valid_ether_addr(ndev->dev_addr)) {
1675 /* try reading from mac */
1677 mac_src = "chip";
1678 for (i = 0; i < 6; i++)
1679 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1682 if (!is_valid_ether_addr(ndev->dev_addr)) {
1683 inv_mac_addr = true;
1684 eth_hw_addr_random(ndev);
1685 mac_src = "random";
1689 platform_set_drvdata(pdev, ndev);
1690 ret = register_netdev(ndev);
1692 if (ret == 0) {
1693 if (inv_mac_addr)
1694 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1695 ndev->name);
1696 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1697 ndev->name, dm9000_type_to_char(db->type),
1698 db->io_addr, db->io_data, ndev->irq,
1699 ndev->dev_addr, mac_src);
1701 return 0;
1703 out:
1704 dev_err(db->dev, "not found (%d).\n", ret);
1706 dm9000_release_board(pdev, db);
1707 free_netdev(ndev);
1709 return ret;
1712 static int
1713 dm9000_drv_suspend(struct device *dev)
1715 struct net_device *ndev = dev_get_drvdata(dev);
1716 struct board_info *db;
1718 if (ndev) {
1719 db = netdev_priv(ndev);
1720 db->in_suspend = 1;
1722 if (!netif_running(ndev))
1723 return 0;
1725 netif_device_detach(ndev);
1727 /* only shutdown if not using WoL */
1728 if (!db->wake_state)
1729 dm9000_shutdown(ndev);
1731 return 0;
1734 static int
1735 dm9000_drv_resume(struct device *dev)
1737 struct net_device *ndev = dev_get_drvdata(dev);
1738 struct board_info *db = netdev_priv(ndev);
1740 if (ndev) {
1741 if (netif_running(ndev)) {
1742 /* reset if we were not in wake mode to ensure if
1743 * the device was powered off it is in a known state */
1744 if (!db->wake_state) {
1745 dm9000_init_dm9000(ndev);
1746 dm9000_unmask_interrupts(db);
1749 netif_device_attach(ndev);
1752 db->in_suspend = 0;
1754 return 0;
1757 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1758 .suspend = dm9000_drv_suspend,
1759 .resume = dm9000_drv_resume,
1762 static int
1763 dm9000_drv_remove(struct platform_device *pdev)
1765 struct net_device *ndev = platform_get_drvdata(pdev);
1767 unregister_netdev(ndev);
1768 dm9000_release_board(pdev, netdev_priv(ndev));
1769 free_netdev(ndev); /* free device structure */
1771 dev_dbg(&pdev->dev, "released and freed device\n");
1772 return 0;
1775 #ifdef CONFIG_OF
1776 static const struct of_device_id dm9000_of_matches[] = {
1777 { .compatible = "davicom,dm9000", },
1778 { /* sentinel */ }
1780 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1781 #endif
1783 static struct platform_driver dm9000_driver = {
1784 .driver = {
1785 .name = "dm9000",
1786 .pm = &dm9000_drv_pm_ops,
1787 .of_match_table = of_match_ptr(dm9000_of_matches),
1789 .probe = dm9000_probe,
1790 .remove = dm9000_drv_remove,
1793 module_platform_driver(dm9000_driver);
1795 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1796 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1797 MODULE_LICENSE("GPL");
1798 MODULE_ALIAS("platform:dm9000");