1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Davicom DM9000 Fast Ethernet driver for Linux.
4 * Copyright (C) 1997 Sten Wang
6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
8 * Additional updates, Copyright:
9 * Ben Dooks <ben@simtec.co.uk>
10 * Sascha Hauer <s.hauer@pengutronix.de>
13 #include <linux/module.h>
14 #include <linux/ioport.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/interrupt.h>
18 #include <linux/skbuff.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
23 #include <linux/of_net.h>
24 #include <linux/ethtool.h>
25 #include <linux/dm9000.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
34 #include <asm/delay.h>
40 /* Board/System/Debug information/definition ---------------- */
42 #define DM9000_PHY 0x40 /* PHY address 0x01 */
44 #define CARDNAME "dm9000"
45 #define DRV_VERSION "1.31"
48 * Transmit timeout, default 5 seconds.
50 static int watchdog
= 5000;
51 module_param(watchdog
, int, 0400);
52 MODULE_PARM_DESC(watchdog
, "transmit timeout in milliseconds");
55 * Debug messages level
58 module_param(debug
, int, 0644);
59 MODULE_PARM_DESC(debug
, "dm9000 debug level (0-6)");
61 /* DM9000 register address locking.
63 * The DM9000 uses an address register to control where data written
64 * to the data register goes. This means that the address register
65 * must be preserved over interrupts or similar calls.
67 * During interrupt and other critical calls, a spinlock is used to
68 * protect the system, but the calls themselves save the address
69 * in the address register in case they are interrupting another
70 * access to the device.
72 * For general accesses a lock is provided so that calls which are
73 * allowed to sleep are serialised so that the address register does
74 * not need to be saved. This lock also serves to serialise access
75 * to the EEPROM and PHY access registers which are shared between
79 /* The driver supports the original DM9000E, and now the two newer
80 * devices, DM9000A and DM9000B.
84 TYPE_DM9000E
, /* original DM9000 */
89 /* Structure/enum declaration ------------------------------- */
92 void __iomem
*io_addr
; /* Register I/O base address */
93 void __iomem
*io_data
; /* Data I/O address */
101 u8 io_mode
; /* 0:word, 2:byte */
106 unsigned int in_timeout
:1;
107 unsigned int in_suspend
:1;
108 unsigned int wake_supported
:1;
110 enum dm9000_type type
;
112 void (*inblk
)(void __iomem
*port
, void *data
, int length
);
113 void (*outblk
)(void __iomem
*port
, void *data
, int length
);
114 void (*dumpblk
)(void __iomem
*port
, int length
);
116 struct device
*dev
; /* parent device */
118 struct resource
*addr_res
; /* resources found */
119 struct resource
*data_res
;
120 struct resource
*addr_req
; /* resources requested */
121 struct resource
*data_req
;
125 struct mutex addr_lock
; /* phy and eeprom access lock */
127 struct delayed_work phy_poll
;
128 struct net_device
*ndev
;
132 struct mii_if_info mii
;
141 #define dm9000_dbg(db, lev, msg...) do { \
142 if ((lev) < debug) { \
143 dev_dbg(db->dev, msg); \
147 static inline struct board_info
*to_dm9000_board(struct net_device
*dev
)
149 return netdev_priv(dev
);
152 /* DM9000 network board routine ---------------------------- */
155 * Read a byte from I/O port
158 ior(struct board_info
*db
, int reg
)
160 writeb(reg
, db
->io_addr
);
161 return readb(db
->io_data
);
165 * Write a byte to I/O port
169 iow(struct board_info
*db
, int reg
, int value
)
171 writeb(reg
, db
->io_addr
);
172 writeb(value
, db
->io_data
);
176 dm9000_reset(struct board_info
*db
)
178 dev_dbg(db
->dev
, "resetting device\n");
180 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
181 * The essential point is that we have to do a double reset, and the
182 * instruction is to set LBK into MAC internal loopback mode.
184 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
185 udelay(100); /* Application note says at least 20 us */
186 if (ior(db
, DM9000_NCR
) & 1)
187 dev_err(db
->dev
, "dm9000 did not respond to first reset\n");
189 iow(db
, DM9000_NCR
, 0);
190 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
192 if (ior(db
, DM9000_NCR
) & 1)
193 dev_err(db
->dev
, "dm9000 did not respond to second reset\n");
196 /* routines for sending block to chip */
198 static void dm9000_outblk_8bit(void __iomem
*reg
, void *data
, int count
)
200 iowrite8_rep(reg
, data
, count
);
203 static void dm9000_outblk_16bit(void __iomem
*reg
, void *data
, int count
)
205 iowrite16_rep(reg
, data
, (count
+1) >> 1);
208 static void dm9000_outblk_32bit(void __iomem
*reg
, void *data
, int count
)
210 iowrite32_rep(reg
, data
, (count
+3) >> 2);
213 /* input block from chip to memory */
215 static void dm9000_inblk_8bit(void __iomem
*reg
, void *data
, int count
)
217 ioread8_rep(reg
, data
, count
);
221 static void dm9000_inblk_16bit(void __iomem
*reg
, void *data
, int count
)
223 ioread16_rep(reg
, data
, (count
+1) >> 1);
226 static void dm9000_inblk_32bit(void __iomem
*reg
, void *data
, int count
)
228 ioread32_rep(reg
, data
, (count
+3) >> 2);
231 /* dump block from chip to null */
233 static void dm9000_dumpblk_8bit(void __iomem
*reg
, int count
)
238 for (i
= 0; i
< count
; i
++)
242 static void dm9000_dumpblk_16bit(void __iomem
*reg
, int count
)
247 count
= (count
+ 1) >> 1;
249 for (i
= 0; i
< count
; i
++)
253 static void dm9000_dumpblk_32bit(void __iomem
*reg
, int count
)
258 count
= (count
+ 3) >> 2;
260 for (i
= 0; i
< count
; i
++)
265 * Sleep, either by using msleep() or if we are suspending, then
266 * use mdelay() to sleep.
268 static void dm9000_msleep(struct board_info
*db
, unsigned int ms
)
270 if (db
->in_suspend
|| db
->in_timeout
)
276 /* Read a word from phyxcer */
278 dm9000_phy_read(struct net_device
*dev
, int phy_reg_unused
, int reg
)
280 struct board_info
*db
= netdev_priv(dev
);
282 unsigned int reg_save
;
285 mutex_lock(&db
->addr_lock
);
287 spin_lock_irqsave(&db
->lock
, flags
);
289 /* Save previous register address */
290 reg_save
= readb(db
->io_addr
);
292 /* Fill the phyxcer register into REG_0C */
293 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
295 /* Issue phyxcer read command */
296 iow(db
, DM9000_EPCR
, EPCR_ERPRR
| EPCR_EPOS
);
298 writeb(reg_save
, db
->io_addr
);
299 spin_unlock_irqrestore(&db
->lock
, flags
);
301 dm9000_msleep(db
, 1); /* Wait read complete */
303 spin_lock_irqsave(&db
->lock
, flags
);
304 reg_save
= readb(db
->io_addr
);
306 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer read command */
308 /* The read data keeps on REG_0D & REG_0E */
309 ret
= (ior(db
, DM9000_EPDRH
) << 8) | ior(db
, DM9000_EPDRL
);
311 /* restore the previous address */
312 writeb(reg_save
, db
->io_addr
);
313 spin_unlock_irqrestore(&db
->lock
, flags
);
315 mutex_unlock(&db
->addr_lock
);
317 dm9000_dbg(db
, 5, "phy_read[%02x] -> %04x\n", reg
, ret
);
321 /* Write a word to phyxcer */
323 dm9000_phy_write(struct net_device
*dev
,
324 int phyaddr_unused
, int reg
, int value
)
326 struct board_info
*db
= netdev_priv(dev
);
328 unsigned long reg_save
;
330 dm9000_dbg(db
, 5, "phy_write[%02x] = %04x\n", reg
, value
);
332 mutex_lock(&db
->addr_lock
);
334 spin_lock_irqsave(&db
->lock
, flags
);
336 /* Save previous register address */
337 reg_save
= readb(db
->io_addr
);
339 /* Fill the phyxcer register into REG_0C */
340 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
342 /* Fill the written data into REG_0D & REG_0E */
343 iow(db
, DM9000_EPDRL
, value
);
344 iow(db
, DM9000_EPDRH
, value
>> 8);
346 /* Issue phyxcer write command */
347 iow(db
, DM9000_EPCR
, EPCR_EPOS
| EPCR_ERPRW
);
349 writeb(reg_save
, db
->io_addr
);
350 spin_unlock_irqrestore(&db
->lock
, flags
);
352 dm9000_msleep(db
, 1); /* Wait write complete */
354 spin_lock_irqsave(&db
->lock
, flags
);
355 reg_save
= readb(db
->io_addr
);
357 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer write command */
359 /* restore the previous address */
360 writeb(reg_save
, db
->io_addr
);
362 spin_unlock_irqrestore(&db
->lock
, flags
);
364 mutex_unlock(&db
->addr_lock
);
369 * select the specified set of io routines to use with the
373 static void dm9000_set_io(struct board_info
*db
, int byte_width
)
375 /* use the size of the data resource to work out what IO
376 * routines we want to use
379 switch (byte_width
) {
381 db
->dumpblk
= dm9000_dumpblk_8bit
;
382 db
->outblk
= dm9000_outblk_8bit
;
383 db
->inblk
= dm9000_inblk_8bit
;
388 dev_dbg(db
->dev
, ": 3 byte IO, falling back to 16bit\n");
391 db
->dumpblk
= dm9000_dumpblk_16bit
;
392 db
->outblk
= dm9000_outblk_16bit
;
393 db
->inblk
= dm9000_inblk_16bit
;
398 db
->dumpblk
= dm9000_dumpblk_32bit
;
399 db
->outblk
= dm9000_outblk_32bit
;
400 db
->inblk
= dm9000_inblk_32bit
;
405 static void dm9000_schedule_poll(struct board_info
*db
)
407 if (db
->type
== TYPE_DM9000E
)
408 schedule_delayed_work(&db
->phy_poll
, HZ
* 2);
411 static int dm9000_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
413 struct board_info
*dm
= to_dm9000_board(dev
);
415 if (!netif_running(dev
))
418 return generic_mii_ioctl(&dm
->mii
, if_mii(req
), cmd
, NULL
);
422 dm9000_read_locked(struct board_info
*db
, int reg
)
427 spin_lock_irqsave(&db
->lock
, flags
);
429 spin_unlock_irqrestore(&db
->lock
, flags
);
434 static int dm9000_wait_eeprom(struct board_info
*db
)
437 int timeout
= 8; /* wait max 8msec */
439 /* The DM9000 data sheets say we should be able to
440 * poll the ERRE bit in EPCR to wait for the EEPROM
441 * operation. From testing several chips, this bit
442 * does not seem to work.
444 * We attempt to use the bit, but fall back to the
445 * timeout (which is why we do not return an error
446 * on expiry) to say that the EEPROM operation has
451 status
= dm9000_read_locked(db
, DM9000_EPCR
);
453 if ((status
& EPCR_ERRE
) == 0)
459 dev_dbg(db
->dev
, "timeout waiting EEPROM\n");
468 * Read a word data from EEPROM
471 dm9000_read_eeprom(struct board_info
*db
, int offset
, u8
*to
)
475 if (db
->flags
& DM9000_PLATF_NO_EEPROM
) {
481 mutex_lock(&db
->addr_lock
);
483 spin_lock_irqsave(&db
->lock
, flags
);
485 iow(db
, DM9000_EPAR
, offset
);
486 iow(db
, DM9000_EPCR
, EPCR_ERPRR
);
488 spin_unlock_irqrestore(&db
->lock
, flags
);
490 dm9000_wait_eeprom(db
);
492 /* delay for at-least 150uS */
495 spin_lock_irqsave(&db
->lock
, flags
);
497 iow(db
, DM9000_EPCR
, 0x0);
499 to
[0] = ior(db
, DM9000_EPDRL
);
500 to
[1] = ior(db
, DM9000_EPDRH
);
502 spin_unlock_irqrestore(&db
->lock
, flags
);
504 mutex_unlock(&db
->addr_lock
);
508 * Write a word data to SROM
511 dm9000_write_eeprom(struct board_info
*db
, int offset
, u8
*data
)
515 if (db
->flags
& DM9000_PLATF_NO_EEPROM
)
518 mutex_lock(&db
->addr_lock
);
520 spin_lock_irqsave(&db
->lock
, flags
);
521 iow(db
, DM9000_EPAR
, offset
);
522 iow(db
, DM9000_EPDRH
, data
[1]);
523 iow(db
, DM9000_EPDRL
, data
[0]);
524 iow(db
, DM9000_EPCR
, EPCR_WEP
| EPCR_ERPRW
);
525 spin_unlock_irqrestore(&db
->lock
, flags
);
527 dm9000_wait_eeprom(db
);
529 mdelay(1); /* wait at least 150uS to clear */
531 spin_lock_irqsave(&db
->lock
, flags
);
532 iow(db
, DM9000_EPCR
, 0);
533 spin_unlock_irqrestore(&db
->lock
, flags
);
535 mutex_unlock(&db
->addr_lock
);
540 static void dm9000_get_drvinfo(struct net_device
*dev
,
541 struct ethtool_drvinfo
*info
)
543 struct board_info
*dm
= to_dm9000_board(dev
);
545 strlcpy(info
->driver
, CARDNAME
, sizeof(info
->driver
));
546 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
547 strlcpy(info
->bus_info
, to_platform_device(dm
->dev
)->name
,
548 sizeof(info
->bus_info
));
551 static u32
dm9000_get_msglevel(struct net_device
*dev
)
553 struct board_info
*dm
= to_dm9000_board(dev
);
555 return dm
->msg_enable
;
558 static void dm9000_set_msglevel(struct net_device
*dev
, u32 value
)
560 struct board_info
*dm
= to_dm9000_board(dev
);
562 dm
->msg_enable
= value
;
565 static int dm9000_get_link_ksettings(struct net_device
*dev
,
566 struct ethtool_link_ksettings
*cmd
)
568 struct board_info
*dm
= to_dm9000_board(dev
);
570 mii_ethtool_get_link_ksettings(&dm
->mii
, cmd
);
574 static int dm9000_set_link_ksettings(struct net_device
*dev
,
575 const struct ethtool_link_ksettings
*cmd
)
577 struct board_info
*dm
= to_dm9000_board(dev
);
579 return mii_ethtool_set_link_ksettings(&dm
->mii
, cmd
);
582 static int dm9000_nway_reset(struct net_device
*dev
)
584 struct board_info
*dm
= to_dm9000_board(dev
);
585 return mii_nway_restart(&dm
->mii
);
588 static int dm9000_set_features(struct net_device
*dev
,
589 netdev_features_t features
)
591 struct board_info
*dm
= to_dm9000_board(dev
);
592 netdev_features_t changed
= dev
->features
^ features
;
595 if (!(changed
& NETIF_F_RXCSUM
))
598 spin_lock_irqsave(&dm
->lock
, flags
);
599 iow(dm
, DM9000_RCSR
, (features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
600 spin_unlock_irqrestore(&dm
->lock
, flags
);
605 static u32
dm9000_get_link(struct net_device
*dev
)
607 struct board_info
*dm
= to_dm9000_board(dev
);
610 if (dm
->flags
& DM9000_PLATF_EXT_PHY
)
611 ret
= mii_link_ok(&dm
->mii
);
613 ret
= dm9000_read_locked(dm
, DM9000_NSR
) & NSR_LINKST
? 1 : 0;
618 #define DM_EEPROM_MAGIC (0x444D394B)
620 static int dm9000_get_eeprom_len(struct net_device
*dev
)
625 static int dm9000_get_eeprom(struct net_device
*dev
,
626 struct ethtool_eeprom
*ee
, u8
*data
)
628 struct board_info
*dm
= to_dm9000_board(dev
);
629 int offset
= ee
->offset
;
633 /* EEPROM access is aligned to two bytes */
635 if ((len
& 1) != 0 || (offset
& 1) != 0)
638 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
641 ee
->magic
= DM_EEPROM_MAGIC
;
643 for (i
= 0; i
< len
; i
+= 2)
644 dm9000_read_eeprom(dm
, (offset
+ i
) / 2, data
+ i
);
649 static int dm9000_set_eeprom(struct net_device
*dev
,
650 struct ethtool_eeprom
*ee
, u8
*data
)
652 struct board_info
*dm
= to_dm9000_board(dev
);
653 int offset
= ee
->offset
;
657 /* EEPROM access is aligned to two bytes */
659 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
662 if (ee
->magic
!= DM_EEPROM_MAGIC
)
666 if (len
& 1 || offset
& 1) {
667 int which
= offset
& 1;
670 dm9000_read_eeprom(dm
, offset
/ 2, tmp
);
672 dm9000_write_eeprom(dm
, offset
/ 2, tmp
);
676 dm9000_write_eeprom(dm
, offset
/ 2, data
);
688 static void dm9000_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
690 struct board_info
*dm
= to_dm9000_board(dev
);
692 memset(w
, 0, sizeof(struct ethtool_wolinfo
));
694 /* note, we could probably support wake-phy too */
695 w
->supported
= dm
->wake_supported
? WAKE_MAGIC
: 0;
696 w
->wolopts
= dm
->wake_state
;
699 static int dm9000_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
701 struct board_info
*dm
= to_dm9000_board(dev
);
703 u32 opts
= w
->wolopts
;
706 if (!dm
->wake_supported
)
709 if (opts
& ~WAKE_MAGIC
)
712 if (opts
& WAKE_MAGIC
)
715 mutex_lock(&dm
->addr_lock
);
717 spin_lock_irqsave(&dm
->lock
, flags
);
718 iow(dm
, DM9000_WCR
, wcr
);
719 spin_unlock_irqrestore(&dm
->lock
, flags
);
721 mutex_unlock(&dm
->addr_lock
);
723 if (dm
->wake_state
!= opts
) {
724 /* change in wol state, update IRQ state */
727 irq_set_irq_wake(dm
->irq_wake
, 1);
728 else if (dm
->wake_state
&& !opts
)
729 irq_set_irq_wake(dm
->irq_wake
, 0);
732 dm
->wake_state
= opts
;
736 static const struct ethtool_ops dm9000_ethtool_ops
= {
737 .get_drvinfo
= dm9000_get_drvinfo
,
738 .get_msglevel
= dm9000_get_msglevel
,
739 .set_msglevel
= dm9000_set_msglevel
,
740 .nway_reset
= dm9000_nway_reset
,
741 .get_link
= dm9000_get_link
,
742 .get_wol
= dm9000_get_wol
,
743 .set_wol
= dm9000_set_wol
,
744 .get_eeprom_len
= dm9000_get_eeprom_len
,
745 .get_eeprom
= dm9000_get_eeprom
,
746 .set_eeprom
= dm9000_set_eeprom
,
747 .get_link_ksettings
= dm9000_get_link_ksettings
,
748 .set_link_ksettings
= dm9000_set_link_ksettings
,
751 static void dm9000_show_carrier(struct board_info
*db
,
752 unsigned carrier
, unsigned nsr
)
755 struct net_device
*ndev
= db
->ndev
;
756 struct mii_if_info
*mii
= &db
->mii
;
757 unsigned ncr
= dm9000_read_locked(db
, DM9000_NCR
);
760 lpa
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_LPA
);
762 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
763 ndev
->name
, (nsr
& NSR_SPEED
) ? 10 : 100,
764 (ncr
& NCR_FDX
) ? "full" : "half", lpa
);
766 dev_info(db
->dev
, "%s: link down\n", ndev
->name
);
771 dm9000_poll_work(struct work_struct
*w
)
773 struct delayed_work
*dw
= to_delayed_work(w
);
774 struct board_info
*db
= container_of(dw
, struct board_info
, phy_poll
);
775 struct net_device
*ndev
= db
->ndev
;
777 if (db
->flags
& DM9000_PLATF_SIMPLE_PHY
&&
778 !(db
->flags
& DM9000_PLATF_EXT_PHY
)) {
779 unsigned nsr
= dm9000_read_locked(db
, DM9000_NSR
);
780 unsigned old_carrier
= netif_carrier_ok(ndev
) ? 1 : 0;
781 unsigned new_carrier
;
783 new_carrier
= (nsr
& NSR_LINKST
) ? 1 : 0;
785 if (old_carrier
!= new_carrier
) {
786 if (netif_msg_link(db
))
787 dm9000_show_carrier(db
, new_carrier
, nsr
);
790 netif_carrier_off(ndev
);
792 netif_carrier_on(ndev
);
795 mii_check_media(&db
->mii
, netif_msg_link(db
), 0);
797 if (netif_running(ndev
))
798 dm9000_schedule_poll(db
);
801 /* dm9000_release_board
803 * release a board, and any mapped resources
807 dm9000_release_board(struct platform_device
*pdev
, struct board_info
*db
)
809 /* unmap our resources */
811 iounmap(db
->io_addr
);
812 iounmap(db
->io_data
);
814 /* release the resources */
817 release_resource(db
->data_req
);
821 release_resource(db
->addr_req
);
825 static unsigned char dm9000_type_to_char(enum dm9000_type type
)
828 case TYPE_DM9000E
: return 'e';
829 case TYPE_DM9000A
: return 'a';
830 case TYPE_DM9000B
: return 'b';
837 * Set DM9000 multicast address
840 dm9000_hash_table_unlocked(struct net_device
*dev
)
842 struct board_info
*db
= netdev_priv(dev
);
843 struct netdev_hw_addr
*ha
;
846 u16 hash_table
[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
847 u8 rcr
= RCR_DIS_LONG
| RCR_DIS_CRC
| RCR_RXEN
;
849 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
851 for (i
= 0, oft
= DM9000_PAR
; i
< 6; i
++, oft
++)
852 iow(db
, oft
, dev
->dev_addr
[i
]);
854 if (dev
->flags
& IFF_PROMISC
)
857 if (dev
->flags
& IFF_ALLMULTI
)
860 /* the multicast address in Hash Table : 64 bits */
861 netdev_for_each_mc_addr(ha
, dev
) {
862 hash_val
= ether_crc_le(6, ha
->addr
) & 0x3f;
863 hash_table
[hash_val
/ 16] |= (u16
) 1 << (hash_val
% 16);
866 /* Write the hash table to MAC MD table */
867 for (i
= 0, oft
= DM9000_MAR
; i
< 4; i
++) {
868 iow(db
, oft
++, hash_table
[i
]);
869 iow(db
, oft
++, hash_table
[i
] >> 8);
872 iow(db
, DM9000_RCR
, rcr
);
876 dm9000_hash_table(struct net_device
*dev
)
878 struct board_info
*db
= netdev_priv(dev
);
881 spin_lock_irqsave(&db
->lock
, flags
);
882 dm9000_hash_table_unlocked(dev
);
883 spin_unlock_irqrestore(&db
->lock
, flags
);
887 dm9000_mask_interrupts(struct board_info
*db
)
889 iow(db
, DM9000_IMR
, IMR_PAR
);
893 dm9000_unmask_interrupts(struct board_info
*db
)
895 iow(db
, DM9000_IMR
, db
->imr_all
);
899 * Initialize dm9000 board
902 dm9000_init_dm9000(struct net_device
*dev
)
904 struct board_info
*db
= netdev_priv(dev
);
908 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
911 dm9000_mask_interrupts(db
);
914 db
->io_mode
= ior(db
, DM9000_ISR
) >> 6; /* ISR bit7:6 keeps I/O mode */
917 if (dev
->hw_features
& NETIF_F_RXCSUM
)
919 (dev
->features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
921 iow(db
, DM9000_GPCR
, GPCR_GEP_CNTL
); /* Let GPIO0 output */
922 iow(db
, DM9000_GPR
, 0);
924 /* If we are dealing with DM9000B, some extra steps are required: a
925 * manual phy reset, and setting init params.
927 if (db
->type
== TYPE_DM9000B
) {
928 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
);
929 dm9000_phy_write(dev
, 0, MII_DM_DSPCR
, DSPCR_INIT_PARAM
);
932 ncr
= (db
->flags
& DM9000_PLATF_EXT_PHY
) ? NCR_EXT_PHY
: 0;
934 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
935 * up dumping the wake events if we disable this. There is already
936 * a wake-mask in DM9000_WCR */
937 if (db
->wake_supported
)
940 iow(db
, DM9000_NCR
, ncr
);
942 /* Program operating register */
943 iow(db
, DM9000_TCR
, 0); /* TX Polling clear */
944 iow(db
, DM9000_BPTR
, 0x3f); /* Less 3Kb, 200us */
945 iow(db
, DM9000_FCR
, 0xff); /* Flow Control */
946 iow(db
, DM9000_SMCR
, 0); /* Special Mode */
947 /* clear TX status */
948 iow(db
, DM9000_NSR
, NSR_WAKEST
| NSR_TX2END
| NSR_TX1END
);
949 iow(db
, DM9000_ISR
, ISR_CLR_STATUS
); /* Clear interrupt status */
951 /* Set address filter table */
952 dm9000_hash_table_unlocked(dev
);
954 imr
= IMR_PAR
| IMR_PTM
| IMR_PRM
;
955 if (db
->type
!= TYPE_DM9000E
)
960 /* Init Driver variable */
962 db
->queue_pkt_len
= 0;
963 netif_trans_update(dev
);
966 /* Our watchdog timed out. Called by the networking layer */
967 static void dm9000_timeout(struct net_device
*dev
, unsigned int txqueue
)
969 struct board_info
*db
= netdev_priv(dev
);
973 /* Save previous register address */
974 spin_lock_irqsave(&db
->lock
, flags
);
976 reg_save
= readb(db
->io_addr
);
978 netif_stop_queue(dev
);
979 dm9000_init_dm9000(dev
);
980 dm9000_unmask_interrupts(db
);
981 /* We can accept TX packets again */
982 netif_trans_update(dev
); /* prevent tx timeout */
983 netif_wake_queue(dev
);
985 /* Restore previous register address */
986 writeb(reg_save
, db
->io_addr
);
988 spin_unlock_irqrestore(&db
->lock
, flags
);
991 static void dm9000_send_packet(struct net_device
*dev
,
995 struct board_info
*dm
= to_dm9000_board(dev
);
997 /* The DM9000 is not smart enough to leave fragmented packets alone. */
998 if (dm
->ip_summed
!= ip_summed
) {
999 if (ip_summed
== CHECKSUM_NONE
)
1000 iow(dm
, DM9000_TCCR
, 0);
1002 iow(dm
, DM9000_TCCR
, TCCR_IP
| TCCR_UDP
| TCCR_TCP
);
1003 dm
->ip_summed
= ip_summed
;
1006 /* Set TX length to DM9000 */
1007 iow(dm
, DM9000_TXPLL
, pkt_len
);
1008 iow(dm
, DM9000_TXPLH
, pkt_len
>> 8);
1010 /* Issue TX polling command */
1011 iow(dm
, DM9000_TCR
, TCR_TXREQ
); /* Cleared after TX complete */
1015 * Hardware start transmission.
1016 * Send a packet to media from the upper layer.
1019 dm9000_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1021 unsigned long flags
;
1022 struct board_info
*db
= netdev_priv(dev
);
1024 dm9000_dbg(db
, 3, "%s:\n", __func__
);
1026 if (db
->tx_pkt_cnt
> 1)
1027 return NETDEV_TX_BUSY
;
1029 spin_lock_irqsave(&db
->lock
, flags
);
1031 /* Move data to DM9000 TX RAM */
1032 writeb(DM9000_MWCMD
, db
->io_addr
);
1034 (db
->outblk
)(db
->io_data
, skb
->data
, skb
->len
);
1035 dev
->stats
.tx_bytes
+= skb
->len
;
1038 /* TX control: First packet immediately send, second packet queue */
1039 if (db
->tx_pkt_cnt
== 1) {
1040 dm9000_send_packet(dev
, skb
->ip_summed
, skb
->len
);
1043 db
->queue_pkt_len
= skb
->len
;
1044 db
->queue_ip_summed
= skb
->ip_summed
;
1045 netif_stop_queue(dev
);
1048 spin_unlock_irqrestore(&db
->lock
, flags
);
1051 dev_consume_skb_any(skb
);
1053 return NETDEV_TX_OK
;
1057 * DM9000 interrupt handler
1058 * receive the packet to upper layer, free the transmitted packet
1061 static void dm9000_tx_done(struct net_device
*dev
, struct board_info
*db
)
1063 int tx_status
= ior(db
, DM9000_NSR
); /* Got TX status */
1065 if (tx_status
& (NSR_TX2END
| NSR_TX1END
)) {
1066 /* One packet sent complete */
1068 dev
->stats
.tx_packets
++;
1070 if (netif_msg_tx_done(db
))
1071 dev_dbg(db
->dev
, "tx done, NSR %02x\n", tx_status
);
1073 /* Queue packet check & send */
1074 if (db
->tx_pkt_cnt
> 0)
1075 dm9000_send_packet(dev
, db
->queue_ip_summed
,
1077 netif_wake_queue(dev
);
1081 struct dm9000_rxhdr
{
1088 * Received a packet and pass to upper layer
1091 dm9000_rx(struct net_device
*dev
)
1093 struct board_info
*db
= netdev_priv(dev
);
1094 struct dm9000_rxhdr rxhdr
;
1095 struct sk_buff
*skb
;
1100 /* Check packet ready or not */
1102 ior(db
, DM9000_MRCMDX
); /* Dummy read */
1104 /* Get most updated data */
1105 rxbyte
= readb(db
->io_data
);
1107 /* Status check: this byte must be 0 or 1 */
1108 if (rxbyte
& DM9000_PKT_ERR
) {
1109 dev_warn(db
->dev
, "status check fail: %d\n", rxbyte
);
1110 iow(db
, DM9000_RCR
, 0x00); /* Stop Device */
1114 if (!(rxbyte
& DM9000_PKT_RDY
))
1117 /* A packet ready now & Get status/length */
1119 writeb(DM9000_MRCMD
, db
->io_addr
);
1121 (db
->inblk
)(db
->io_data
, &rxhdr
, sizeof(rxhdr
));
1123 RxLen
= le16_to_cpu(rxhdr
.RxLen
);
1125 if (netif_msg_rx_status(db
))
1126 dev_dbg(db
->dev
, "RX: status %02x, length %04x\n",
1127 rxhdr
.RxStatus
, RxLen
);
1129 /* Packet Status check */
1132 if (netif_msg_rx_err(db
))
1133 dev_dbg(db
->dev
, "RX: Bad Packet (runt)\n");
1136 if (RxLen
> DM9000_PKT_MAX
) {
1137 dev_dbg(db
->dev
, "RST: RX Len:%x\n", RxLen
);
1140 /* rxhdr.RxStatus is identical to RSR register. */
1141 if (rxhdr
.RxStatus
& (RSR_FOE
| RSR_CE
| RSR_AE
|
1142 RSR_PLE
| RSR_RWTO
|
1143 RSR_LCS
| RSR_RF
)) {
1145 if (rxhdr
.RxStatus
& RSR_FOE
) {
1146 if (netif_msg_rx_err(db
))
1147 dev_dbg(db
->dev
, "fifo error\n");
1148 dev
->stats
.rx_fifo_errors
++;
1150 if (rxhdr
.RxStatus
& RSR_CE
) {
1151 if (netif_msg_rx_err(db
))
1152 dev_dbg(db
->dev
, "crc error\n");
1153 dev
->stats
.rx_crc_errors
++;
1155 if (rxhdr
.RxStatus
& RSR_RF
) {
1156 if (netif_msg_rx_err(db
))
1157 dev_dbg(db
->dev
, "length error\n");
1158 dev
->stats
.rx_length_errors
++;
1162 /* Move data from DM9000 */
1164 ((skb
= netdev_alloc_skb(dev
, RxLen
+ 4)) != NULL
)) {
1165 skb_reserve(skb
, 2);
1166 rdptr
= skb_put(skb
, RxLen
- 4);
1168 /* Read received packet from RX SRAM */
1170 (db
->inblk
)(db
->io_data
, rdptr
, RxLen
);
1171 dev
->stats
.rx_bytes
+= RxLen
;
1173 /* Pass to upper layer */
1174 skb
->protocol
= eth_type_trans(skb
, dev
);
1175 if (dev
->features
& NETIF_F_RXCSUM
) {
1176 if ((((rxbyte
& 0x1c) << 3) & rxbyte
) == 0)
1177 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1179 skb_checksum_none_assert(skb
);
1182 dev
->stats
.rx_packets
++;
1185 /* need to dump the packet's data */
1187 (db
->dumpblk
)(db
->io_data
, RxLen
);
1189 } while (rxbyte
& DM9000_PKT_RDY
);
1192 static irqreturn_t
dm9000_interrupt(int irq
, void *dev_id
)
1194 struct net_device
*dev
= dev_id
;
1195 struct board_info
*db
= netdev_priv(dev
);
1197 unsigned long flags
;
1200 dm9000_dbg(db
, 3, "entering %s\n", __func__
);
1202 /* A real interrupt coming */
1204 /* holders of db->lock must always block IRQs */
1205 spin_lock_irqsave(&db
->lock
, flags
);
1207 /* Save previous register address */
1208 reg_save
= readb(db
->io_addr
);
1210 dm9000_mask_interrupts(db
);
1211 /* Got DM9000 interrupt status */
1212 int_status
= ior(db
, DM9000_ISR
); /* Got ISR */
1213 iow(db
, DM9000_ISR
, int_status
); /* Clear ISR status */
1215 if (netif_msg_intr(db
))
1216 dev_dbg(db
->dev
, "interrupt status %02x\n", int_status
);
1218 /* Received the coming packet */
1219 if (int_status
& ISR_PRS
)
1222 /* Transmit Interrupt check */
1223 if (int_status
& ISR_PTS
)
1224 dm9000_tx_done(dev
, db
);
1226 if (db
->type
!= TYPE_DM9000E
) {
1227 if (int_status
& ISR_LNKCHNG
) {
1228 /* fire a link-change request */
1229 schedule_delayed_work(&db
->phy_poll
, 1);
1233 dm9000_unmask_interrupts(db
);
1234 /* Restore previous register address */
1235 writeb(reg_save
, db
->io_addr
);
1237 spin_unlock_irqrestore(&db
->lock
, flags
);
1242 static irqreturn_t
dm9000_wol_interrupt(int irq
, void *dev_id
)
1244 struct net_device
*dev
= dev_id
;
1245 struct board_info
*db
= netdev_priv(dev
);
1246 unsigned long flags
;
1249 spin_lock_irqsave(&db
->lock
, flags
);
1251 nsr
= ior(db
, DM9000_NSR
);
1252 wcr
= ior(db
, DM9000_WCR
);
1254 dev_dbg(db
->dev
, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__
, nsr
, wcr
);
1256 if (nsr
& NSR_WAKEST
) {
1257 /* clear, so we can avoid */
1258 iow(db
, DM9000_NSR
, NSR_WAKEST
);
1260 if (wcr
& WCR_LINKST
)
1261 dev_info(db
->dev
, "wake by link status change\n");
1262 if (wcr
& WCR_SAMPLEST
)
1263 dev_info(db
->dev
, "wake by sample packet\n");
1264 if (wcr
& WCR_MAGICST
)
1265 dev_info(db
->dev
, "wake by magic packet\n");
1266 if (!(wcr
& (WCR_LINKST
| WCR_SAMPLEST
| WCR_MAGICST
)))
1267 dev_err(db
->dev
, "wake signalled with no reason? "
1268 "NSR=0x%02x, WSR=0x%02x\n", nsr
, wcr
);
1271 spin_unlock_irqrestore(&db
->lock
, flags
);
1273 return (nsr
& NSR_WAKEST
) ? IRQ_HANDLED
: IRQ_NONE
;
1276 #ifdef CONFIG_NET_POLL_CONTROLLER
1280 static void dm9000_poll_controller(struct net_device
*dev
)
1282 disable_irq(dev
->irq
);
1283 dm9000_interrupt(dev
->irq
, dev
);
1284 enable_irq(dev
->irq
);
1289 * Open the interface.
1290 * The interface is opened whenever "ifconfig" actives it.
1293 dm9000_open(struct net_device
*dev
)
1295 struct board_info
*db
= netdev_priv(dev
);
1296 unsigned int irq_flags
= irq_get_trigger_type(dev
->irq
);
1298 if (netif_msg_ifup(db
))
1299 dev_dbg(db
->dev
, "enabling %s\n", dev
->name
);
1301 /* If there is no IRQ type specified, tell the user that this is a
1304 if (irq_flags
== IRQF_TRIGGER_NONE
)
1305 dev_warn(db
->dev
, "WARNING: no IRQ resource flags set.\n");
1307 irq_flags
|= IRQF_SHARED
;
1309 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1310 iow(db
, DM9000_GPR
, 0); /* REG_1F bit0 activate phyxcer */
1311 mdelay(1); /* delay needs by DM9000B */
1313 /* Initialize DM9000 board */
1314 dm9000_init_dm9000(dev
);
1316 if (request_irq(dev
->irq
, dm9000_interrupt
, irq_flags
, dev
->name
, dev
))
1318 /* Now that we have an interrupt handler hooked up we can unmask
1321 dm9000_unmask_interrupts(db
);
1323 /* Init driver variable */
1326 mii_check_media(&db
->mii
, netif_msg_link(db
), 1);
1327 netif_start_queue(dev
);
1329 /* Poll initial link status */
1330 schedule_delayed_work(&db
->phy_poll
, 1);
1336 dm9000_shutdown(struct net_device
*dev
)
1338 struct board_info
*db
= netdev_priv(dev
);
1341 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
); /* PHY RESET */
1342 iow(db
, DM9000_GPR
, 0x01); /* Power-Down PHY */
1343 dm9000_mask_interrupts(db
);
1344 iow(db
, DM9000_RCR
, 0x00); /* Disable RX */
1348 * Stop the interface.
1349 * The interface is stopped when it is brought.
1352 dm9000_stop(struct net_device
*ndev
)
1354 struct board_info
*db
= netdev_priv(ndev
);
1356 if (netif_msg_ifdown(db
))
1357 dev_dbg(db
->dev
, "shutting down %s\n", ndev
->name
);
1359 cancel_delayed_work_sync(&db
->phy_poll
);
1361 netif_stop_queue(ndev
);
1362 netif_carrier_off(ndev
);
1364 /* free interrupt */
1365 free_irq(ndev
->irq
, ndev
);
1367 dm9000_shutdown(ndev
);
1372 static const struct net_device_ops dm9000_netdev_ops
= {
1373 .ndo_open
= dm9000_open
,
1374 .ndo_stop
= dm9000_stop
,
1375 .ndo_start_xmit
= dm9000_start_xmit
,
1376 .ndo_tx_timeout
= dm9000_timeout
,
1377 .ndo_set_rx_mode
= dm9000_hash_table
,
1378 .ndo_do_ioctl
= dm9000_ioctl
,
1379 .ndo_set_features
= dm9000_set_features
,
1380 .ndo_validate_addr
= eth_validate_addr
,
1381 .ndo_set_mac_address
= eth_mac_addr
,
1382 #ifdef CONFIG_NET_POLL_CONTROLLER
1383 .ndo_poll_controller
= dm9000_poll_controller
,
1387 static struct dm9000_plat_data
*dm9000_parse_dt(struct device
*dev
)
1389 struct dm9000_plat_data
*pdata
;
1390 struct device_node
*np
= dev
->of_node
;
1391 const void *mac_addr
;
1393 if (!IS_ENABLED(CONFIG_OF
) || !np
)
1394 return ERR_PTR(-ENXIO
);
1396 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
1398 return ERR_PTR(-ENOMEM
);
1400 if (of_find_property(np
, "davicom,ext-phy", NULL
))
1401 pdata
->flags
|= DM9000_PLATF_EXT_PHY
;
1402 if (of_find_property(np
, "davicom,no-eeprom", NULL
))
1403 pdata
->flags
|= DM9000_PLATF_NO_EEPROM
;
1405 mac_addr
= of_get_mac_address(np
);
1406 if (!IS_ERR(mac_addr
))
1407 ether_addr_copy(pdata
->dev_addr
, mac_addr
);
1413 * Search DM9000 board, allocate space and register it
1416 dm9000_probe(struct platform_device
*pdev
)
1418 struct dm9000_plat_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1419 struct board_info
*db
; /* Point a board information structure */
1420 struct net_device
*ndev
;
1421 struct device
*dev
= &pdev
->dev
;
1422 const unsigned char *mac_src
;
1428 enum of_gpio_flags flags
;
1429 struct regulator
*power
;
1430 bool inv_mac_addr
= false;
1432 power
= devm_regulator_get(dev
, "vcc");
1433 if (IS_ERR(power
)) {
1434 if (PTR_ERR(power
) == -EPROBE_DEFER
)
1435 return -EPROBE_DEFER
;
1436 dev_dbg(dev
, "no regulator provided\n");
1438 ret
= regulator_enable(power
);
1441 "Failed to enable power regulator: %d\n", ret
);
1444 dev_dbg(dev
, "regulator enabled\n");
1447 reset_gpios
= of_get_named_gpio_flags(dev
->of_node
, "reset-gpios", 0,
1449 if (gpio_is_valid(reset_gpios
)) {
1450 ret
= devm_gpio_request_one(dev
, reset_gpios
, flags
,
1453 dev_err(dev
, "failed to request reset gpio %d: %d\n",
1458 /* According to manual PWRST# Low Period Min 1ms */
1460 gpio_set_value(reset_gpios
, 1);
1461 /* Needs 3ms to read eeprom when PWRST is deasserted */
1466 pdata
= dm9000_parse_dt(&pdev
->dev
);
1468 return PTR_ERR(pdata
);
1471 /* Init network device */
1472 ndev
= alloc_etherdev(sizeof(struct board_info
));
1476 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1478 dev_dbg(&pdev
->dev
, "dm9000_probe()\n");
1480 /* setup board info structure */
1481 db
= netdev_priv(ndev
);
1483 db
->dev
= &pdev
->dev
;
1486 spin_lock_init(&db
->lock
);
1487 mutex_init(&db
->addr_lock
);
1489 INIT_DELAYED_WORK(&db
->phy_poll
, dm9000_poll_work
);
1491 db
->addr_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1492 db
->data_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1494 if (!db
->addr_res
|| !db
->data_res
) {
1495 dev_err(db
->dev
, "insufficient resources addr=%p data=%p\n",
1496 db
->addr_res
, db
->data_res
);
1501 ndev
->irq
= platform_get_irq(pdev
, 0);
1502 if (ndev
->irq
< 0) {
1507 db
->irq_wake
= platform_get_irq(pdev
, 1);
1508 if (db
->irq_wake
>= 0) {
1509 dev_dbg(db
->dev
, "wakeup irq %d\n", db
->irq_wake
);
1511 ret
= request_irq(db
->irq_wake
, dm9000_wol_interrupt
,
1512 IRQF_SHARED
, dev_name(db
->dev
), ndev
);
1514 dev_err(db
->dev
, "cannot get wakeup irq (%d)\n", ret
);
1517 /* test to see if irq is really wakeup capable */
1518 ret
= irq_set_irq_wake(db
->irq_wake
, 1);
1520 dev_err(db
->dev
, "irq %d cannot set wakeup (%d)\n",
1524 irq_set_irq_wake(db
->irq_wake
, 0);
1525 db
->wake_supported
= 1;
1530 iosize
= resource_size(db
->addr_res
);
1531 db
->addr_req
= request_mem_region(db
->addr_res
->start
, iosize
,
1534 if (db
->addr_req
== NULL
) {
1535 dev_err(db
->dev
, "cannot claim address reg area\n");
1540 db
->io_addr
= ioremap(db
->addr_res
->start
, iosize
);
1542 if (db
->io_addr
== NULL
) {
1543 dev_err(db
->dev
, "failed to ioremap address reg\n");
1548 iosize
= resource_size(db
->data_res
);
1549 db
->data_req
= request_mem_region(db
->data_res
->start
, iosize
,
1552 if (db
->data_req
== NULL
) {
1553 dev_err(db
->dev
, "cannot claim data reg area\n");
1558 db
->io_data
= ioremap(db
->data_res
->start
, iosize
);
1560 if (db
->io_data
== NULL
) {
1561 dev_err(db
->dev
, "failed to ioremap data reg\n");
1566 /* fill in parameters for net-dev structure */
1567 ndev
->base_addr
= (unsigned long)db
->io_addr
;
1569 /* ensure at least we have a default set of IO routines */
1570 dm9000_set_io(db
, iosize
);
1572 /* check to see if anything is being over-ridden */
1573 if (pdata
!= NULL
) {
1574 /* check to see if the driver wants to over-ride the
1575 * default IO width */
1577 if (pdata
->flags
& DM9000_PLATF_8BITONLY
)
1578 dm9000_set_io(db
, 1);
1580 if (pdata
->flags
& DM9000_PLATF_16BITONLY
)
1581 dm9000_set_io(db
, 2);
1583 if (pdata
->flags
& DM9000_PLATF_32BITONLY
)
1584 dm9000_set_io(db
, 4);
1586 /* check to see if there are any IO routine
1589 if (pdata
->inblk
!= NULL
)
1590 db
->inblk
= pdata
->inblk
;
1592 if (pdata
->outblk
!= NULL
)
1593 db
->outblk
= pdata
->outblk
;
1595 if (pdata
->dumpblk
!= NULL
)
1596 db
->dumpblk
= pdata
->dumpblk
;
1598 db
->flags
= pdata
->flags
;
1601 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1602 db
->flags
|= DM9000_PLATF_SIMPLE_PHY
;
1607 /* try multiple times, DM9000 sometimes gets the read wrong */
1608 for (i
= 0; i
< 8; i
++) {
1609 id_val
= ior(db
, DM9000_VIDL
);
1610 id_val
|= (u32
)ior(db
, DM9000_VIDH
) << 8;
1611 id_val
|= (u32
)ior(db
, DM9000_PIDL
) << 16;
1612 id_val
|= (u32
)ior(db
, DM9000_PIDH
) << 24;
1614 if (id_val
== DM9000_ID
)
1616 dev_err(db
->dev
, "read wrong id 0x%08x\n", id_val
);
1619 if (id_val
!= DM9000_ID
) {
1620 dev_err(db
->dev
, "wrong id: 0x%08x\n", id_val
);
1625 /* Identify what type of DM9000 we are working on */
1627 id_val
= ior(db
, DM9000_CHIPR
);
1628 dev_dbg(db
->dev
, "dm9000 revision 0x%02x\n", id_val
);
1632 db
->type
= TYPE_DM9000A
;
1635 db
->type
= TYPE_DM9000B
;
1638 dev_dbg(db
->dev
, "ID %02x => defaulting to DM9000E\n", id_val
);
1639 db
->type
= TYPE_DM9000E
;
1642 /* dm9000a/b are capable of hardware checksum offload */
1643 if (db
->type
== TYPE_DM9000A
|| db
->type
== TYPE_DM9000B
) {
1644 ndev
->hw_features
= NETIF_F_RXCSUM
| NETIF_F_IP_CSUM
;
1645 ndev
->features
|= ndev
->hw_features
;
1648 /* from this point we assume that we have found a DM9000 */
1650 ndev
->netdev_ops
= &dm9000_netdev_ops
;
1651 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
1652 ndev
->ethtool_ops
= &dm9000_ethtool_ops
;
1654 db
->msg_enable
= NETIF_MSG_LINK
;
1655 db
->mii
.phy_id_mask
= 0x1f;
1656 db
->mii
.reg_num_mask
= 0x1f;
1657 db
->mii
.force_media
= 0;
1658 db
->mii
.full_duplex
= 0;
1660 db
->mii
.mdio_read
= dm9000_phy_read
;
1661 db
->mii
.mdio_write
= dm9000_phy_write
;
1665 /* try reading the node address from the attached EEPROM */
1666 for (i
= 0; i
< 6; i
+= 2)
1667 dm9000_read_eeprom(db
, i
/ 2, ndev
->dev_addr
+i
);
1669 if (!is_valid_ether_addr(ndev
->dev_addr
) && pdata
!= NULL
) {
1670 mac_src
= "platform data";
1671 memcpy(ndev
->dev_addr
, pdata
->dev_addr
, ETH_ALEN
);
1674 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1675 /* try reading from mac */
1678 for (i
= 0; i
< 6; i
++)
1679 ndev
->dev_addr
[i
] = ior(db
, i
+DM9000_PAR
);
1682 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1683 inv_mac_addr
= true;
1684 eth_hw_addr_random(ndev
);
1689 platform_set_drvdata(pdev
, ndev
);
1690 ret
= register_netdev(ndev
);
1694 dev_warn(db
->dev
, "%s: Invalid ethernet MAC address. Please set using ip\n",
1696 printk(KERN_INFO
"%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1697 ndev
->name
, dm9000_type_to_char(db
->type
),
1698 db
->io_addr
, db
->io_data
, ndev
->irq
,
1699 ndev
->dev_addr
, mac_src
);
1704 dev_err(db
->dev
, "not found (%d).\n", ret
);
1706 dm9000_release_board(pdev
, db
);
1713 dm9000_drv_suspend(struct device
*dev
)
1715 struct net_device
*ndev
= dev_get_drvdata(dev
);
1716 struct board_info
*db
;
1719 db
= netdev_priv(ndev
);
1722 if (!netif_running(ndev
))
1725 netif_device_detach(ndev
);
1727 /* only shutdown if not using WoL */
1728 if (!db
->wake_state
)
1729 dm9000_shutdown(ndev
);
1735 dm9000_drv_resume(struct device
*dev
)
1737 struct net_device
*ndev
= dev_get_drvdata(dev
);
1738 struct board_info
*db
= netdev_priv(ndev
);
1741 if (netif_running(ndev
)) {
1742 /* reset if we were not in wake mode to ensure if
1743 * the device was powered off it is in a known state */
1744 if (!db
->wake_state
) {
1745 dm9000_init_dm9000(ndev
);
1746 dm9000_unmask_interrupts(db
);
1749 netif_device_attach(ndev
);
1757 static const struct dev_pm_ops dm9000_drv_pm_ops
= {
1758 .suspend
= dm9000_drv_suspend
,
1759 .resume
= dm9000_drv_resume
,
1763 dm9000_drv_remove(struct platform_device
*pdev
)
1765 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1767 unregister_netdev(ndev
);
1768 dm9000_release_board(pdev
, netdev_priv(ndev
));
1769 free_netdev(ndev
); /* free device structure */
1771 dev_dbg(&pdev
->dev
, "released and freed device\n");
1776 static const struct of_device_id dm9000_of_matches
[] = {
1777 { .compatible
= "davicom,dm9000", },
1780 MODULE_DEVICE_TABLE(of
, dm9000_of_matches
);
1783 static struct platform_driver dm9000_driver
= {
1786 .pm
= &dm9000_drv_pm_ops
,
1787 .of_match_table
= of_match_ptr(dm9000_of_matches
),
1789 .probe
= dm9000_probe
,
1790 .remove
= dm9000_drv_remove
,
1793 module_platform_driver(dm9000_driver
);
1795 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1796 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1797 MODULE_LICENSE("GPL");
1798 MODULE_ALIAS("platform:dm9000");