1 // SPDX-License-Identifier: GPL-2.0-only
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
40 #define DRV_NAME "skge"
41 #define DRV_VERSION "1.14"
43 #define DEFAULT_TX_RING_SIZE 128
44 #define DEFAULT_RX_RING_SIZE 512
45 #define MAX_TX_RING_SIZE 1024
46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE 4096
48 #define RX_COPY_THRESHOLD 128
49 #define RX_BUF_SIZE 1536
50 #define PHY_RETRIES 1000
51 #define ETH_JUMBO_MTU 9000
52 #define TX_WATCHDOG (5 * HZ)
53 #define NAPI_WEIGHT 64
57 #define SKGE_EEPROM_MAGIC 0x9933aabb
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION
);
65 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
66 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
69 static int debug
= -1; /* defaults above */
70 module_param(debug
, int, 0);
71 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
73 static const struct pci_device_id skge_id_table
[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x1700) }, /* 3Com 3C940 */
75 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x80EB) }, /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4300) }, /* SK-9xx */
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4320) }, /* SK-98xx V2.0 */
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4c00) }, /* D-Link DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4302) }, /* D-Link DGE-530T Rev C1 */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
85 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, 0x434E) }, /* CNet PowerG-2000 */
86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, 0x1064) }, /* Linksys EG1064 v2 */
87 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 }, /* Linksys EG1032 v2 */
90 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
92 static int skge_up(struct net_device
*dev
);
93 static int skge_down(struct net_device
*dev
);
94 static void skge_phy_reset(struct skge_port
*skge
);
95 static void skge_tx_clean(struct net_device
*dev
);
96 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
98 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
100 static void yukon_init(struct skge_hw
*hw
, int port
);
101 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
102 static void genesis_link_up(struct skge_port
*skge
);
103 static void skge_set_multicast(struct net_device
*dev
);
104 static irqreturn_t
skge_intr(int irq
, void *dev_id
);
106 /* Avoid conditionals by using array */
107 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
108 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
109 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
110 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
111 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
112 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
114 static inline bool is_genesis(const struct skge_hw
*hw
)
116 #ifdef CONFIG_SKGE_GENESIS
117 return hw
->chip_id
== CHIP_ID_GENESIS
;
123 static int skge_get_regs_len(struct net_device
*dev
)
129 * Returns copy of whole control register region
130 * Note: skip RAM address register because accessing it will
133 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
136 const struct skge_port
*skge
= netdev_priv(dev
);
137 const void __iomem
*io
= skge
->hw
->regs
;
140 memset(p
, 0, regs
->len
);
141 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
143 if (regs
->len
> B3_RI_WTO_R1
) {
144 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
145 regs
->len
- B3_RI_WTO_R1
);
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32
wol_supported(const struct skge_hw
*hw
)
155 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
158 return WAKE_MAGIC
| WAKE_PHY
;
161 static void skge_wol_init(struct skge_port
*skge
)
163 struct skge_hw
*hw
= skge
->hw
;
164 int port
= skge
->port
;
167 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
168 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
171 skge_write8(hw
, B0_POWER_CTRL
,
172 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
174 /* WA code for COMA mode -- clear PHY reset */
175 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
176 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
177 u32 reg
= skge_read32(hw
, B2_GP_IO
);
180 skge_write32(hw
, B2_GP_IO
, reg
);
183 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
185 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
186 GPC_ANEG_1
| GPC_RST_SET
);
188 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
190 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
191 GPC_ANEG_1
| GPC_RST_CLR
);
193 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
195 /* Force to 10/100 skge_reset will re-enable on resume */
196 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
197 (PHY_AN_100FULL
| PHY_AN_100HALF
|
198 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
200 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
201 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
202 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
203 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
206 /* Set GMAC to no flow control and auto update for speed/duplex */
207 gma_write16(hw
, port
, GM_GP_CTRL
,
208 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
209 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
211 /* Set WOL address */
212 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
213 skge
->netdev
->dev_addr
, ETH_ALEN
);
215 /* Turn on appropriate WOL control bits */
216 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
218 if (skge
->wol
& WAKE_PHY
)
219 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
221 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
223 if (skge
->wol
& WAKE_MAGIC
)
224 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
226 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
228 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
229 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
232 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
235 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
237 struct skge_port
*skge
= netdev_priv(dev
);
239 wol
->supported
= wol_supported(skge
->hw
);
240 wol
->wolopts
= skge
->wol
;
243 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
245 struct skge_port
*skge
= netdev_priv(dev
);
246 struct skge_hw
*hw
= skge
->hw
;
248 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
249 !device_can_wakeup(&hw
->pdev
->dev
))
252 skge
->wol
= wol
->wolopts
;
254 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
262 static u32
skge_supported_modes(const struct skge_hw
*hw
)
267 supported
= (SUPPORTED_10baseT_Half
|
268 SUPPORTED_10baseT_Full
|
269 SUPPORTED_100baseT_Half
|
270 SUPPORTED_100baseT_Full
|
271 SUPPORTED_1000baseT_Half
|
272 SUPPORTED_1000baseT_Full
|
277 supported
&= ~(SUPPORTED_10baseT_Half
|
278 SUPPORTED_10baseT_Full
|
279 SUPPORTED_100baseT_Half
|
280 SUPPORTED_100baseT_Full
);
282 else if (hw
->chip_id
== CHIP_ID_YUKON
)
283 supported
&= ~SUPPORTED_1000baseT_Half
;
285 supported
= (SUPPORTED_1000baseT_Full
|
286 SUPPORTED_1000baseT_Half
|
293 static int skge_get_link_ksettings(struct net_device
*dev
,
294 struct ethtool_link_ksettings
*cmd
)
296 struct skge_port
*skge
= netdev_priv(dev
);
297 struct skge_hw
*hw
= skge
->hw
;
298 u32 supported
, advertising
;
300 supported
= skge_supported_modes(hw
);
303 cmd
->base
.port
= PORT_TP
;
304 cmd
->base
.phy_address
= hw
->phy_addr
;
306 cmd
->base
.port
= PORT_FIBRE
;
308 advertising
= skge
->advertising
;
309 cmd
->base
.autoneg
= skge
->autoneg
;
310 cmd
->base
.speed
= skge
->speed
;
311 cmd
->base
.duplex
= skge
->duplex
;
313 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
315 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
321 static int skge_set_link_ksettings(struct net_device
*dev
,
322 const struct ethtool_link_ksettings
*cmd
)
324 struct skge_port
*skge
= netdev_priv(dev
);
325 const struct skge_hw
*hw
= skge
->hw
;
326 u32 supported
= skge_supported_modes(hw
);
330 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
331 cmd
->link_modes
.advertising
);
333 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
334 advertising
= supported
;
339 u32 speed
= cmd
->base
.speed
;
343 if (cmd
->base
.duplex
== DUPLEX_FULL
)
344 setting
= SUPPORTED_1000baseT_Full
;
345 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
346 setting
= SUPPORTED_1000baseT_Half
;
351 if (cmd
->base
.duplex
== DUPLEX_FULL
)
352 setting
= SUPPORTED_100baseT_Full
;
353 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
354 setting
= SUPPORTED_100baseT_Half
;
360 if (cmd
->base
.duplex
== DUPLEX_FULL
)
361 setting
= SUPPORTED_10baseT_Full
;
362 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
363 setting
= SUPPORTED_10baseT_Half
;
371 if ((setting
& supported
) == 0)
375 skge
->duplex
= cmd
->base
.duplex
;
378 skge
->autoneg
= cmd
->base
.autoneg
;
379 skge
->advertising
= advertising
;
381 if (netif_running(dev
)) {
393 static void skge_get_drvinfo(struct net_device
*dev
,
394 struct ethtool_drvinfo
*info
)
396 struct skge_port
*skge
= netdev_priv(dev
);
398 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
399 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
400 strlcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
),
401 sizeof(info
->bus_info
));
404 static const struct skge_stat
{
405 char name
[ETH_GSTRING_LEN
];
409 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
410 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
412 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
413 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
414 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
415 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
416 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
417 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
418 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
419 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
421 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
422 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
423 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
424 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
425 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
426 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
428 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
429 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
430 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
431 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
432 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
435 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
439 return ARRAY_SIZE(skge_stats
);
445 static void skge_get_ethtool_stats(struct net_device
*dev
,
446 struct ethtool_stats
*stats
, u64
*data
)
448 struct skge_port
*skge
= netdev_priv(dev
);
450 if (is_genesis(skge
->hw
))
451 genesis_get_stats(skge
, data
);
453 yukon_get_stats(skge
, data
);
456 /* Use hardware MIB variables for critical path statistics and
457 * transmit feedback not reported at interrupt.
458 * Other errors are accounted for in interrupt handler.
460 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
462 struct skge_port
*skge
= netdev_priv(dev
);
463 u64 data
[ARRAY_SIZE(skge_stats
)];
465 if (is_genesis(skge
->hw
))
466 genesis_get_stats(skge
, data
);
468 yukon_get_stats(skge
, data
);
470 dev
->stats
.tx_bytes
= data
[0];
471 dev
->stats
.rx_bytes
= data
[1];
472 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
473 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
474 dev
->stats
.multicast
= data
[3] + data
[5];
475 dev
->stats
.collisions
= data
[10];
476 dev
->stats
.tx_aborted_errors
= data
[12];
481 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
487 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
488 memcpy(data
+ i
* ETH_GSTRING_LEN
,
489 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
494 static void skge_get_ring_param(struct net_device
*dev
,
495 struct ethtool_ringparam
*p
)
497 struct skge_port
*skge
= netdev_priv(dev
);
499 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
500 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
502 p
->rx_pending
= skge
->rx_ring
.count
;
503 p
->tx_pending
= skge
->tx_ring
.count
;
506 static int skge_set_ring_param(struct net_device
*dev
,
507 struct ethtool_ringparam
*p
)
509 struct skge_port
*skge
= netdev_priv(dev
);
512 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
513 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
516 skge
->rx_ring
.count
= p
->rx_pending
;
517 skge
->tx_ring
.count
= p
->tx_pending
;
519 if (netif_running(dev
)) {
529 static u32
skge_get_msglevel(struct net_device
*netdev
)
531 struct skge_port
*skge
= netdev_priv(netdev
);
532 return skge
->msg_enable
;
535 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
537 struct skge_port
*skge
= netdev_priv(netdev
);
538 skge
->msg_enable
= value
;
541 static int skge_nway_reset(struct net_device
*dev
)
543 struct skge_port
*skge
= netdev_priv(dev
);
545 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
548 skge_phy_reset(skge
);
552 static void skge_get_pauseparam(struct net_device
*dev
,
553 struct ethtool_pauseparam
*ecmd
)
555 struct skge_port
*skge
= netdev_priv(dev
);
557 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
558 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
559 ecmd
->tx_pause
= (ecmd
->rx_pause
||
560 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
562 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
565 static int skge_set_pauseparam(struct net_device
*dev
,
566 struct ethtool_pauseparam
*ecmd
)
568 struct skge_port
*skge
= netdev_priv(dev
);
569 struct ethtool_pauseparam old
;
572 skge_get_pauseparam(dev
, &old
);
574 if (ecmd
->autoneg
!= old
.autoneg
)
575 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
577 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
578 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
579 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
580 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
581 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
582 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
584 skge
->flow_control
= FLOW_MODE_NONE
;
587 if (netif_running(dev
)) {
599 /* Chip internal frequency for clock calculations */
600 static inline u32
hwkhz(const struct skge_hw
*hw
)
602 return is_genesis(hw
) ? 53125 : 78125;
605 /* Chip HZ to microseconds */
606 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
608 return (ticks
* 1000) / hwkhz(hw
);
611 /* Microseconds to chip HZ */
612 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
614 return hwkhz(hw
) * usec
/ 1000;
617 static int skge_get_coalesce(struct net_device
*dev
,
618 struct ethtool_coalesce
*ecmd
)
620 struct skge_port
*skge
= netdev_priv(dev
);
621 struct skge_hw
*hw
= skge
->hw
;
622 int port
= skge
->port
;
624 ecmd
->rx_coalesce_usecs
= 0;
625 ecmd
->tx_coalesce_usecs
= 0;
627 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
628 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
629 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
631 if (msk
& rxirqmask
[port
])
632 ecmd
->rx_coalesce_usecs
= delay
;
633 if (msk
& txirqmask
[port
])
634 ecmd
->tx_coalesce_usecs
= delay
;
640 /* Note: interrupt timer is per board, but can turn on/off per port */
641 static int skge_set_coalesce(struct net_device
*dev
,
642 struct ethtool_coalesce
*ecmd
)
644 struct skge_port
*skge
= netdev_priv(dev
);
645 struct skge_hw
*hw
= skge
->hw
;
646 int port
= skge
->port
;
647 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
650 if (ecmd
->rx_coalesce_usecs
== 0)
651 msk
&= ~rxirqmask
[port
];
652 else if (ecmd
->rx_coalesce_usecs
< 25 ||
653 ecmd
->rx_coalesce_usecs
> 33333)
656 msk
|= rxirqmask
[port
];
657 delay
= ecmd
->rx_coalesce_usecs
;
660 if (ecmd
->tx_coalesce_usecs
== 0)
661 msk
&= ~txirqmask
[port
];
662 else if (ecmd
->tx_coalesce_usecs
< 25 ||
663 ecmd
->tx_coalesce_usecs
> 33333)
666 msk
|= txirqmask
[port
];
667 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
670 skge_write32(hw
, B2_IRQM_MSK
, msk
);
672 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
674 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
675 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
680 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
681 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
683 struct skge_hw
*hw
= skge
->hw
;
684 int port
= skge
->port
;
686 spin_lock_bh(&hw
->phy_lock
);
687 if (is_genesis(hw
)) {
690 if (hw
->phy_type
== SK_PHY_BCOM
)
691 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
693 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
694 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
696 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
697 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
698 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
702 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
703 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
705 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
706 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
711 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
712 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
713 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
715 if (hw
->phy_type
== SK_PHY_BCOM
)
716 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
718 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
719 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
720 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
727 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
728 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
729 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
730 PHY_M_LED_MO_10(MO_LED_OFF
) |
731 PHY_M_LED_MO_100(MO_LED_OFF
) |
732 PHY_M_LED_MO_1000(MO_LED_OFF
) |
733 PHY_M_LED_MO_RX(MO_LED_OFF
));
736 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
737 PHY_M_LED_PULS_DUR(PULS_170MS
) |
738 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
742 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
743 PHY_M_LED_MO_RX(MO_LED_OFF
) |
744 (skge
->speed
== SPEED_100
?
745 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
748 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
749 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
750 PHY_M_LED_MO_DUP(MO_LED_ON
) |
751 PHY_M_LED_MO_10(MO_LED_ON
) |
752 PHY_M_LED_MO_100(MO_LED_ON
) |
753 PHY_M_LED_MO_1000(MO_LED_ON
) |
754 PHY_M_LED_MO_RX(MO_LED_ON
));
757 spin_unlock_bh(&hw
->phy_lock
);
760 /* blink LED's for finding board */
761 static int skge_set_phys_id(struct net_device
*dev
,
762 enum ethtool_phys_id_state state
)
764 struct skge_port
*skge
= netdev_priv(dev
);
767 case ETHTOOL_ID_ACTIVE
:
768 return 2; /* cycle on/off twice per second */
771 skge_led(skge
, LED_MODE_TST
);
775 skge_led(skge
, LED_MODE_OFF
);
778 case ETHTOOL_ID_INACTIVE
:
779 /* back to regular LED state */
780 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
786 static int skge_get_eeprom_len(struct net_device
*dev
)
788 struct skge_port
*skge
= netdev_priv(dev
);
791 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
792 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
795 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
799 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
802 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
803 } while (!(offset
& PCI_VPD_ADDR_F
));
805 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
809 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
811 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
812 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
813 offset
| PCI_VPD_ADDR_F
);
816 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
817 } while (offset
& PCI_VPD_ADDR_F
);
820 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
823 struct skge_port
*skge
= netdev_priv(dev
);
824 struct pci_dev
*pdev
= skge
->hw
->pdev
;
825 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
826 int length
= eeprom
->len
;
827 u16 offset
= eeprom
->offset
;
832 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
835 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
836 int n
= min_t(int, length
, sizeof(val
));
838 memcpy(data
, &val
, n
);
846 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
849 struct skge_port
*skge
= netdev_priv(dev
);
850 struct pci_dev
*pdev
= skge
->hw
->pdev
;
851 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
852 int length
= eeprom
->len
;
853 u16 offset
= eeprom
->offset
;
858 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
863 int n
= min_t(int, length
, sizeof(val
));
866 val
= skge_vpd_read(pdev
, cap
, offset
);
867 memcpy(&val
, data
, n
);
869 skge_vpd_write(pdev
, cap
, offset
, val
);
878 static const struct ethtool_ops skge_ethtool_ops
= {
879 .get_drvinfo
= skge_get_drvinfo
,
880 .get_regs_len
= skge_get_regs_len
,
881 .get_regs
= skge_get_regs
,
882 .get_wol
= skge_get_wol
,
883 .set_wol
= skge_set_wol
,
884 .get_msglevel
= skge_get_msglevel
,
885 .set_msglevel
= skge_set_msglevel
,
886 .nway_reset
= skge_nway_reset
,
887 .get_link
= ethtool_op_get_link
,
888 .get_eeprom_len
= skge_get_eeprom_len
,
889 .get_eeprom
= skge_get_eeprom
,
890 .set_eeprom
= skge_set_eeprom
,
891 .get_ringparam
= skge_get_ring_param
,
892 .set_ringparam
= skge_set_ring_param
,
893 .get_pauseparam
= skge_get_pauseparam
,
894 .set_pauseparam
= skge_set_pauseparam
,
895 .get_coalesce
= skge_get_coalesce
,
896 .set_coalesce
= skge_set_coalesce
,
897 .get_strings
= skge_get_strings
,
898 .set_phys_id
= skge_set_phys_id
,
899 .get_sset_count
= skge_get_sset_count
,
900 .get_ethtool_stats
= skge_get_ethtool_stats
,
901 .get_link_ksettings
= skge_get_link_ksettings
,
902 .set_link_ksettings
= skge_set_link_ksettings
,
906 * Allocate ring elements and chain them together
907 * One-to-one association of board descriptors with ring elements
909 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
911 struct skge_tx_desc
*d
;
912 struct skge_element
*e
;
915 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
919 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
921 if (i
== ring
->count
- 1) {
922 e
->next
= ring
->start
;
923 d
->next_offset
= base
;
926 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
929 ring
->to_use
= ring
->to_clean
= ring
->start
;
934 /* Allocate and setup a new buffer for receiving */
935 static int skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
936 struct sk_buff
*skb
, unsigned int bufsize
)
938 struct skge_rx_desc
*rd
= e
->desc
;
941 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
944 if (pci_dma_mapping_error(skge
->hw
->pdev
, map
))
947 rd
->dma_lo
= lower_32_bits(map
);
948 rd
->dma_hi
= upper_32_bits(map
);
950 rd
->csum1_start
= ETH_HLEN
;
951 rd
->csum2_start
= ETH_HLEN
;
957 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
958 dma_unmap_addr_set(e
, mapaddr
, map
);
959 dma_unmap_len_set(e
, maplen
, bufsize
);
963 /* Resume receiving using existing skb,
964 * Note: DMA address is not changed by chip.
965 * MTU not changed while receiver active.
967 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
969 struct skge_rx_desc
*rd
= e
->desc
;
972 rd
->csum2_start
= ETH_HLEN
;
976 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
980 /* Free all buffers in receive ring, assumes receiver stopped */
981 static void skge_rx_clean(struct skge_port
*skge
)
983 struct skge_hw
*hw
= skge
->hw
;
984 struct skge_ring
*ring
= &skge
->rx_ring
;
985 struct skge_element
*e
;
989 struct skge_rx_desc
*rd
= e
->desc
;
992 pci_unmap_single(hw
->pdev
,
993 dma_unmap_addr(e
, mapaddr
),
994 dma_unmap_len(e
, maplen
),
996 dev_kfree_skb(e
->skb
);
999 } while ((e
= e
->next
) != ring
->start
);
1003 /* Allocate buffers for receive ring
1004 * For receive: to_clean is next received frame.
1006 static int skge_rx_fill(struct net_device
*dev
)
1008 struct skge_port
*skge
= netdev_priv(dev
);
1009 struct skge_ring
*ring
= &skge
->rx_ring
;
1010 struct skge_element
*e
;
1014 struct sk_buff
*skb
;
1016 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1021 skb_reserve(skb
, NET_IP_ALIGN
);
1022 if (skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
) < 0) {
1026 } while ((e
= e
->next
) != ring
->start
);
1028 ring
->to_clean
= ring
->start
;
1032 static const char *skge_pause(enum pause_status status
)
1035 case FLOW_STAT_NONE
:
1037 case FLOW_STAT_REM_SEND
:
1039 case FLOW_STAT_LOC_SEND
:
1041 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1044 return "indeterminated";
1049 static void skge_link_up(struct skge_port
*skge
)
1051 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1052 LED_BLK_OFF
|LED_SYNC_OFF
|LED_REG_ON
);
1054 netif_carrier_on(skge
->netdev
);
1055 netif_wake_queue(skge
->netdev
);
1057 netif_info(skge
, link
, skge
->netdev
,
1058 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1060 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1061 skge_pause(skge
->flow_status
));
1064 static void skge_link_down(struct skge_port
*skge
)
1066 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
1067 netif_carrier_off(skge
->netdev
);
1068 netif_stop_queue(skge
->netdev
);
1070 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1073 static void xm_link_down(struct skge_hw
*hw
, int port
)
1075 struct net_device
*dev
= hw
->dev
[port
];
1076 struct skge_port
*skge
= netdev_priv(dev
);
1078 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1080 if (netif_carrier_ok(dev
))
1081 skge_link_down(skge
);
1084 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1088 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1089 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1091 if (hw
->phy_type
== SK_PHY_XMAC
)
1094 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1095 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1102 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1107 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1110 if (__xm_phy_read(hw
, port
, reg
, &v
))
1111 pr_warn("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1115 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1119 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1120 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1121 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1128 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1129 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1130 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1137 static void genesis_init(struct skge_hw
*hw
)
1139 /* set blink source counter */
1140 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1141 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1143 /* configure mac arbiter */
1144 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1146 /* configure mac arbiter timeout values */
1147 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1148 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1149 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1150 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1152 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1153 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1154 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1155 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1157 /* configure packet arbiter timeout */
1158 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1159 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1160 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1161 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1162 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1165 static void genesis_reset(struct skge_hw
*hw
, int port
)
1167 static const u8 zero
[8] = { 0 };
1170 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1172 /* reset the statistics module */
1173 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1174 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1175 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1176 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1177 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1179 /* disable Broadcom PHY IRQ */
1180 if (hw
->phy_type
== SK_PHY_BCOM
)
1181 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1183 xm_outhash(hw
, port
, XM_HSM
, zero
);
1185 /* Flush TX and RX fifo */
1186 reg
= xm_read32(hw
, port
, XM_MODE
);
1187 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1188 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1191 /* Convert mode to MII values */
1192 static const u16 phy_pause_map
[] = {
1193 [FLOW_MODE_NONE
] = 0,
1194 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1195 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1196 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1199 /* special defines for FIBER (88E1011S only) */
1200 static const u16 fiber_pause_map
[] = {
1201 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1202 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1203 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1204 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1208 /* Check status of Broadcom phy link */
1209 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1211 struct net_device
*dev
= hw
->dev
[port
];
1212 struct skge_port
*skge
= netdev_priv(dev
);
1215 /* read twice because of latch */
1216 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1217 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1219 if ((status
& PHY_ST_LSYNC
) == 0) {
1220 xm_link_down(hw
, port
);
1224 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1227 if (!(status
& PHY_ST_AN_OVER
))
1230 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1231 if (lpa
& PHY_B_AN_RF
) {
1232 netdev_notice(dev
, "remote fault\n");
1236 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1238 /* Check Duplex mismatch */
1239 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1240 case PHY_B_RES_1000FD
:
1241 skge
->duplex
= DUPLEX_FULL
;
1243 case PHY_B_RES_1000HD
:
1244 skge
->duplex
= DUPLEX_HALF
;
1247 netdev_notice(dev
, "duplex mismatch\n");
1251 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1252 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1253 case PHY_B_AS_PAUSE_MSK
:
1254 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1257 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1260 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1263 skge
->flow_status
= FLOW_STAT_NONE
;
1265 skge
->speed
= SPEED_1000
;
1268 if (!netif_carrier_ok(dev
))
1269 genesis_link_up(skge
);
1272 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1273 * Phy on for 100 or 10Mbit operation
1275 static void bcom_phy_init(struct skge_port
*skge
)
1277 struct skge_hw
*hw
= skge
->hw
;
1278 int port
= skge
->port
;
1280 u16 id1
, r
, ext
, ctl
;
1282 /* magic workaround patterns for Broadcom */
1283 static const struct {
1287 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1288 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1289 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1290 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1292 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1293 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1296 /* read Id from external PHY (all have the same address) */
1297 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1299 /* Optimize MDIO transfer by suppressing preamble. */
1300 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1302 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1305 case PHY_BCOM_ID1_C0
:
1307 * Workaround BCOM Errata for the C0 type.
1308 * Write magic patterns to reserved registers.
1310 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1311 xm_phy_write(hw
, port
,
1312 C0hack
[i
].reg
, C0hack
[i
].val
);
1315 case PHY_BCOM_ID1_A1
:
1317 * Workaround BCOM Errata for the A1 type.
1318 * Write magic patterns to reserved registers.
1320 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1321 xm_phy_write(hw
, port
,
1322 A1hack
[i
].reg
, A1hack
[i
].val
);
1327 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1328 * Disable Power Management after reset.
1330 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1331 r
|= PHY_B_AC_DIS_PM
;
1332 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1335 xm_read16(hw
, port
, XM_ISRC
);
1337 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1338 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1340 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1342 * Workaround BCOM Errata #1 for the C5 type.
1343 * 1000Base-T Link Acquisition Failure in Slave Mode
1344 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1346 u16 adv
= PHY_B_1000C_RD
;
1347 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1348 adv
|= PHY_B_1000C_AHD
;
1349 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1350 adv
|= PHY_B_1000C_AFD
;
1351 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1353 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1355 if (skge
->duplex
== DUPLEX_FULL
)
1356 ctl
|= PHY_CT_DUP_MD
;
1357 /* Force to slave */
1358 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1361 /* Set autonegotiation pause parameters */
1362 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1363 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1365 /* Handle Jumbo frames */
1366 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1367 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1368 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1370 ext
|= PHY_B_PEC_HIGH_LA
;
1374 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1375 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1377 /* Use link status change interrupt */
1378 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1381 static void xm_phy_init(struct skge_port
*skge
)
1383 struct skge_hw
*hw
= skge
->hw
;
1384 int port
= skge
->port
;
1387 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1388 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1389 ctrl
|= PHY_X_AN_HD
;
1390 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1391 ctrl
|= PHY_X_AN_FD
;
1393 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1395 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1397 /* Restart Auto-negotiation */
1398 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1400 /* Set DuplexMode in Config register */
1401 if (skge
->duplex
== DUPLEX_FULL
)
1402 ctrl
|= PHY_CT_DUP_MD
;
1404 * Do NOT enable Auto-negotiation here. This would hold
1405 * the link down because no IDLEs are transmitted
1409 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1411 /* Poll PHY for status changes */
1412 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1415 static int xm_check_link(struct net_device
*dev
)
1417 struct skge_port
*skge
= netdev_priv(dev
);
1418 struct skge_hw
*hw
= skge
->hw
;
1419 int port
= skge
->port
;
1422 /* read twice because of latch */
1423 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1424 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1426 if ((status
& PHY_ST_LSYNC
) == 0) {
1427 xm_link_down(hw
, port
);
1431 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1434 if (!(status
& PHY_ST_AN_OVER
))
1437 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1438 if (lpa
& PHY_B_AN_RF
) {
1439 netdev_notice(dev
, "remote fault\n");
1443 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1445 /* Check Duplex mismatch */
1446 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1448 skge
->duplex
= DUPLEX_FULL
;
1451 skge
->duplex
= DUPLEX_HALF
;
1454 netdev_notice(dev
, "duplex mismatch\n");
1458 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1459 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1460 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1461 (lpa
& PHY_X_P_SYM_MD
))
1462 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1463 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1464 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1465 /* Enable PAUSE receive, disable PAUSE transmit */
1466 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1467 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1468 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1469 /* Disable PAUSE receive, enable PAUSE transmit */
1470 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1472 skge
->flow_status
= FLOW_STAT_NONE
;
1474 skge
->speed
= SPEED_1000
;
1477 if (!netif_carrier_ok(dev
))
1478 genesis_link_up(skge
);
1482 /* Poll to check for link coming up.
1484 * Since internal PHY is wired to a level triggered pin, can't
1485 * get an interrupt when carrier is detected, need to poll for
1488 static void xm_link_timer(struct timer_list
*t
)
1490 struct skge_port
*skge
= from_timer(skge
, t
, link_timer
);
1491 struct net_device
*dev
= skge
->netdev
;
1492 struct skge_hw
*hw
= skge
->hw
;
1493 int port
= skge
->port
;
1495 unsigned long flags
;
1497 if (!netif_running(dev
))
1500 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1503 * Verify that the link by checking GPIO register three times.
1504 * This pin has the signal from the link_sync pin connected to it.
1506 for (i
= 0; i
< 3; i
++) {
1507 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1511 /* Re-enable interrupt to detect link down */
1512 if (xm_check_link(dev
)) {
1513 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1514 msk
&= ~XM_IS_INP_ASS
;
1515 xm_write16(hw
, port
, XM_IMSK
, msk
);
1516 xm_read16(hw
, port
, XM_ISRC
);
1519 mod_timer(&skge
->link_timer
,
1520 round_jiffies(jiffies
+ LINK_HZ
));
1522 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1525 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1527 struct net_device
*dev
= hw
->dev
[port
];
1528 struct skge_port
*skge
= netdev_priv(dev
);
1529 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1532 static const u8 zero
[6] = { 0 };
1534 for (i
= 0; i
< 10; i
++) {
1535 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1537 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1542 netdev_warn(dev
, "genesis reset failed\n");
1545 /* Unreset the XMAC. */
1546 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1549 * Perform additional initialization for external PHYs,
1550 * namely for the 1000baseTX cards that use the XMAC's
1553 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1554 /* Take external Phy out of reset */
1555 r
= skge_read32(hw
, B2_GP_IO
);
1557 r
|= GP_DIR_0
|GP_IO_0
;
1559 r
|= GP_DIR_2
|GP_IO_2
;
1561 skge_write32(hw
, B2_GP_IO
, r
);
1563 /* Enable GMII interface */
1564 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1568 switch (hw
->phy_type
) {
1573 bcom_phy_init(skge
);
1574 bcom_check_link(hw
, port
);
1577 /* Set Station Address */
1578 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1580 /* We don't use match addresses so clear */
1581 for (i
= 1; i
< 16; i
++)
1582 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1584 /* Clear MIB counters */
1585 xm_write16(hw
, port
, XM_STAT_CMD
,
1586 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1587 /* Clear two times according to Errata #3 */
1588 xm_write16(hw
, port
, XM_STAT_CMD
,
1589 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1591 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1592 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1594 /* We don't need the FCS appended to the packet. */
1595 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1597 r
|= XM_RX_BIG_PK_OK
;
1599 if (skge
->duplex
== DUPLEX_HALF
) {
1601 * If in manual half duplex mode the other side might be in
1602 * full duplex mode, so ignore if a carrier extension is not seen
1603 * on frames received
1605 r
|= XM_RX_DIS_CEXT
;
1607 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1609 /* We want short frames padded to 60 bytes. */
1610 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1612 /* Increase threshold for jumbo frames on dual port */
1613 if (hw
->ports
> 1 && jumbo
)
1614 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1616 xm_write16(hw
, port
, XM_TX_THR
, 512);
1619 * Enable the reception of all error frames. This is is
1620 * a necessary evil due to the design of the XMAC. The
1621 * XMAC's receive FIFO is only 8K in size, however jumbo
1622 * frames can be up to 9000 bytes in length. When bad
1623 * frame filtering is enabled, the XMAC's RX FIFO operates
1624 * in 'store and forward' mode. For this to work, the
1625 * entire frame has to fit into the FIFO, but that means
1626 * that jumbo frames larger than 8192 bytes will be
1627 * truncated. Disabling all bad frame filtering causes
1628 * the RX FIFO to operate in streaming mode, in which
1629 * case the XMAC will start transferring frames out of the
1630 * RX FIFO as soon as the FIFO threshold is reached.
1632 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1636 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1637 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1638 * and 'Octets Rx OK Hi Cnt Ov'.
1640 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1643 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1644 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1645 * and 'Octets Tx OK Hi Cnt Ov'.
1647 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1649 /* Configure MAC arbiter */
1650 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1652 /* configure timeout values */
1653 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1654 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1655 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1656 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1658 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1659 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1660 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1661 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1663 /* Configure Rx MAC FIFO */
1664 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1665 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1666 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1668 /* Configure Tx MAC FIFO */
1669 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1670 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1671 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1674 /* Enable frame flushing if jumbo frames used */
1675 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1677 /* enable timeout timers if normal frames */
1678 skge_write16(hw
, B3_PA_CTRL
,
1679 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1683 static void genesis_stop(struct skge_port
*skge
)
1685 struct skge_hw
*hw
= skge
->hw
;
1686 int port
= skge
->port
;
1687 unsigned retries
= 1000;
1690 /* Disable Tx and Rx */
1691 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1692 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1693 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1695 genesis_reset(hw
, port
);
1697 /* Clear Tx packet arbiter timeout IRQ */
1698 skge_write16(hw
, B3_PA_CTRL
,
1699 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1702 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1704 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1705 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1707 } while (--retries
> 0);
1709 /* For external PHYs there must be special handling */
1710 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1711 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1719 skge_write32(hw
, B2_GP_IO
, reg
);
1720 skge_read32(hw
, B2_GP_IO
);
1723 xm_write16(hw
, port
, XM_MMU_CMD
,
1724 xm_read16(hw
, port
, XM_MMU_CMD
)
1725 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1727 xm_read16(hw
, port
, XM_MMU_CMD
);
1731 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1733 struct skge_hw
*hw
= skge
->hw
;
1734 int port
= skge
->port
;
1736 unsigned long timeout
= jiffies
+ HZ
;
1738 xm_write16(hw
, port
,
1739 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1741 /* wait for update to complete */
1742 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1743 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1744 if (time_after(jiffies
, timeout
))
1749 /* special case for 64 bit octet counter */
1750 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1751 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1752 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1753 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1755 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1756 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1759 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1761 struct net_device
*dev
= hw
->dev
[port
];
1762 struct skge_port
*skge
= netdev_priv(dev
);
1763 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1765 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1766 "mac interrupt status 0x%x\n", status
);
1768 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1769 xm_link_down(hw
, port
);
1770 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1773 if (status
& XM_IS_TXF_UR
) {
1774 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1775 ++dev
->stats
.tx_fifo_errors
;
1779 static void genesis_link_up(struct skge_port
*skge
)
1781 struct skge_hw
*hw
= skge
->hw
;
1782 int port
= skge
->port
;
1786 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1789 * enabling pause frame reception is required for 1000BT
1790 * because the XMAC is not reset if the link is going down
1792 if (skge
->flow_status
== FLOW_STAT_NONE
||
1793 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1794 /* Disable Pause Frame Reception */
1795 cmd
|= XM_MMU_IGN_PF
;
1797 /* Enable Pause Frame Reception */
1798 cmd
&= ~XM_MMU_IGN_PF
;
1800 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1802 mode
= xm_read32(hw
, port
, XM_MODE
);
1803 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1804 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1806 * Configure Pause Frame Generation
1807 * Use internal and external Pause Frame Generation.
1808 * Sending pause frames is edge triggered.
1809 * Send a Pause frame with the maximum pause time if
1810 * internal oder external FIFO full condition occurs.
1811 * Send a zero pause time frame to re-start transmission.
1813 /* XM_PAUSE_DA = '010000C28001' (default) */
1814 /* XM_MAC_PTIME = 0xffff (maximum) */
1815 /* remember this value is defined in big endian (!) */
1816 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1818 mode
|= XM_PAUSE_MODE
;
1819 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1822 * disable pause frame generation is required for 1000BT
1823 * because the XMAC is not reset if the link is going down
1825 /* Disable Pause Mode in Mode Register */
1826 mode
&= ~XM_PAUSE_MODE
;
1828 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1831 xm_write32(hw
, port
, XM_MODE
, mode
);
1833 /* Turn on detection of Tx underrun */
1834 msk
= xm_read16(hw
, port
, XM_IMSK
);
1835 msk
&= ~XM_IS_TXF_UR
;
1836 xm_write16(hw
, port
, XM_IMSK
, msk
);
1838 xm_read16(hw
, port
, XM_ISRC
);
1840 /* get MMU Command Reg. */
1841 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1842 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1843 cmd
|= XM_MMU_GMII_FD
;
1846 * Workaround BCOM Errata (#10523) for all BCom Phys
1847 * Enable Power Management after link up
1849 if (hw
->phy_type
== SK_PHY_BCOM
) {
1850 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1851 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1852 & ~PHY_B_AC_DIS_PM
);
1853 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1857 xm_write16(hw
, port
, XM_MMU_CMD
,
1858 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1863 static inline void bcom_phy_intr(struct skge_port
*skge
)
1865 struct skge_hw
*hw
= skge
->hw
;
1866 int port
= skge
->port
;
1869 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1870 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1871 "phy interrupt status 0x%x\n", isrc
);
1873 if (isrc
& PHY_B_IS_PSE
)
1874 pr_err("%s: uncorrectable pair swap error\n",
1875 hw
->dev
[port
]->name
);
1877 /* Workaround BCom Errata:
1878 * enable and disable loopback mode if "NO HCD" occurs.
1880 if (isrc
& PHY_B_IS_NO_HDCL
) {
1881 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1882 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1883 ctrl
| PHY_CT_LOOP
);
1884 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1885 ctrl
& ~PHY_CT_LOOP
);
1888 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1889 bcom_check_link(hw
, port
);
1893 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1897 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1898 gma_write16(hw
, port
, GM_SMI_CTRL
,
1899 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1900 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1903 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1907 pr_warn("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1911 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1915 gma_write16(hw
, port
, GM_SMI_CTRL
,
1916 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1917 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1919 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1921 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1927 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1931 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1934 if (__gm_phy_read(hw
, port
, reg
, &v
))
1935 pr_warn("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1939 /* Marvell Phy Initialization */
1940 static void yukon_init(struct skge_hw
*hw
, int port
)
1942 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1943 u16 ctrl
, ct1000
, adv
;
1945 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1946 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1948 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1949 PHY_M_EC_MAC_S_MSK
);
1950 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1952 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1954 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1957 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1958 if (skge
->autoneg
== AUTONEG_DISABLE
)
1959 ctrl
&= ~PHY_CT_ANE
;
1961 ctrl
|= PHY_CT_RESET
;
1962 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1968 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1970 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1971 ct1000
|= PHY_M_1000C_AFD
;
1972 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1973 ct1000
|= PHY_M_1000C_AHD
;
1974 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1975 adv
|= PHY_M_AN_100_FD
;
1976 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1977 adv
|= PHY_M_AN_100_HD
;
1978 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1979 adv
|= PHY_M_AN_10_FD
;
1980 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1981 adv
|= PHY_M_AN_10_HD
;
1983 /* Set Flow-control capabilities */
1984 adv
|= phy_pause_map
[skge
->flow_control
];
1986 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1987 adv
|= PHY_M_AN_1000X_AFD
;
1988 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1989 adv
|= PHY_M_AN_1000X_AHD
;
1991 adv
|= fiber_pause_map
[skge
->flow_control
];
1994 /* Restart Auto-negotiation */
1995 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1997 /* forced speed/duplex settings */
1998 ct1000
= PHY_M_1000C_MSE
;
2000 if (skge
->duplex
== DUPLEX_FULL
)
2001 ctrl
|= PHY_CT_DUP_MD
;
2003 switch (skge
->speed
) {
2005 ctrl
|= PHY_CT_SP1000
;
2008 ctrl
|= PHY_CT_SP100
;
2012 ctrl
|= PHY_CT_RESET
;
2015 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2017 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2018 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2020 /* Enable phy interrupt on autonegotiation complete (or link up) */
2021 if (skge
->autoneg
== AUTONEG_ENABLE
)
2022 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2024 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2027 static void yukon_reset(struct skge_hw
*hw
, int port
)
2029 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2030 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2031 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2032 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2033 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2035 gma_write16(hw
, port
, GM_RX_CTRL
,
2036 gma_read16(hw
, port
, GM_RX_CTRL
)
2037 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2040 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2041 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2046 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2049 reg
= skge_read32(hw
, B2_FAR
);
2050 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2051 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2052 skge_write32(hw
, B2_FAR
, reg
);
2056 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2058 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2061 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2063 /* WA code for COMA mode -- set PHY reset */
2064 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2065 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2066 reg
= skge_read32(hw
, B2_GP_IO
);
2067 reg
|= GP_DIR_9
| GP_IO_9
;
2068 skge_write32(hw
, B2_GP_IO
, reg
);
2072 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2073 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2075 /* WA code for COMA mode -- clear PHY reset */
2076 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2077 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2078 reg
= skge_read32(hw
, B2_GP_IO
);
2081 skge_write32(hw
, B2_GP_IO
, reg
);
2084 /* Set hardware config mode */
2085 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2086 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2087 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2089 /* Clear GMC reset */
2090 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2091 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2092 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2094 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2095 reg
= GM_GPCR_AU_ALL_DIS
;
2096 gma_write16(hw
, port
, GM_GP_CTRL
,
2097 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2099 switch (skge
->speed
) {
2101 reg
&= ~GM_GPCR_SPEED_100
;
2102 reg
|= GM_GPCR_SPEED_1000
;
2105 reg
&= ~GM_GPCR_SPEED_1000
;
2106 reg
|= GM_GPCR_SPEED_100
;
2109 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2113 if (skge
->duplex
== DUPLEX_FULL
)
2114 reg
|= GM_GPCR_DUP_FULL
;
2116 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2118 switch (skge
->flow_control
) {
2119 case FLOW_MODE_NONE
:
2120 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2121 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2123 case FLOW_MODE_LOC_SEND
:
2124 /* disable Rx flow-control */
2125 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2127 case FLOW_MODE_SYMMETRIC
:
2128 case FLOW_MODE_SYM_OR_REM
:
2129 /* enable Tx & Rx flow-control */
2133 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2134 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2136 yukon_init(hw
, port
);
2139 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2140 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2142 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2143 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2144 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2146 /* transmit control */
2147 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2149 /* receive control reg: unicast + multicast + no FCS */
2150 gma_write16(hw
, port
, GM_RX_CTRL
,
2151 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2153 /* transmit flow control */
2154 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2156 /* transmit parameter */
2157 gma_write16(hw
, port
, GM_TX_PARAM
,
2158 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2159 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2160 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2162 /* configure the Serial Mode Register */
2163 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2165 | IPG_DATA_VAL(IPG_DATA_DEF
);
2167 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2168 reg
|= GM_SMOD_JUMBO_ENA
;
2170 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2172 /* physical address: used for pause frames */
2173 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2174 /* virtual address for data */
2175 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2177 /* enable interrupt mask for counter overflows */
2178 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2179 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2180 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2182 /* Initialize Mac Fifo */
2184 /* Configure Rx MAC FIFO */
2185 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2186 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2188 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2189 if (is_yukon_lite_a0(hw
))
2190 reg
&= ~GMF_RX_F_FL_ON
;
2192 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2193 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2195 * because Pause Packet Truncation in GMAC is not working
2196 * we have to increase the Flush Threshold to 64 bytes
2197 * in order to flush pause packets in Rx FIFO on Yukon-1
2199 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2201 /* Configure Tx MAC FIFO */
2202 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2203 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2206 /* Go into power down mode */
2207 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2211 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2212 ctrl
|= PHY_M_PC_POL_R_DIS
;
2213 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2215 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2216 ctrl
|= PHY_CT_RESET
;
2217 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2219 /* switch IEEE compatible power down mode on */
2220 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2221 ctrl
|= PHY_CT_PDOWN
;
2222 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2225 static void yukon_stop(struct skge_port
*skge
)
2227 struct skge_hw
*hw
= skge
->hw
;
2228 int port
= skge
->port
;
2230 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2231 yukon_reset(hw
, port
);
2233 gma_write16(hw
, port
, GM_GP_CTRL
,
2234 gma_read16(hw
, port
, GM_GP_CTRL
)
2235 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2236 gma_read16(hw
, port
, GM_GP_CTRL
);
2238 yukon_suspend(hw
, port
);
2240 /* set GPHY Control reset */
2241 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2242 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2245 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2247 struct skge_hw
*hw
= skge
->hw
;
2248 int port
= skge
->port
;
2251 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2252 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2253 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2254 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2256 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2257 data
[i
] = gma_read32(hw
, port
,
2258 skge_stats
[i
].gma_offset
);
2261 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2263 struct net_device
*dev
= hw
->dev
[port
];
2264 struct skge_port
*skge
= netdev_priv(dev
);
2265 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2267 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2268 "mac interrupt status 0x%x\n", status
);
2270 if (status
& GM_IS_RX_FF_OR
) {
2271 ++dev
->stats
.rx_fifo_errors
;
2272 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2275 if (status
& GM_IS_TX_FF_UR
) {
2276 ++dev
->stats
.tx_fifo_errors
;
2277 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2282 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2284 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2285 case PHY_M_PS_SPEED_1000
:
2287 case PHY_M_PS_SPEED_100
:
2294 static void yukon_link_up(struct skge_port
*skge
)
2296 struct skge_hw
*hw
= skge
->hw
;
2297 int port
= skge
->port
;
2300 /* Enable Transmit FIFO Underrun */
2301 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2303 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2304 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2305 reg
|= GM_GPCR_DUP_FULL
;
2308 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2309 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2311 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2315 static void yukon_link_down(struct skge_port
*skge
)
2317 struct skge_hw
*hw
= skge
->hw
;
2318 int port
= skge
->port
;
2321 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2322 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2323 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2325 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2326 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2327 ctrl
|= PHY_M_AN_ASP
;
2328 /* restore Asymmetric Pause bit */
2329 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2332 skge_link_down(skge
);
2334 yukon_init(hw
, port
);
2337 static void yukon_phy_intr(struct skge_port
*skge
)
2339 struct skge_hw
*hw
= skge
->hw
;
2340 int port
= skge
->port
;
2341 const char *reason
= NULL
;
2342 u16 istatus
, phystat
;
2344 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2345 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2347 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2348 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2350 if (istatus
& PHY_M_IS_AN_COMPL
) {
2351 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2353 reason
= "remote fault";
2357 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2358 reason
= "master/slave fault";
2362 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2363 reason
= "speed/duplex";
2367 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2368 ? DUPLEX_FULL
: DUPLEX_HALF
;
2369 skge
->speed
= yukon_speed(hw
, phystat
);
2371 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2372 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2373 case PHY_M_PS_PAUSE_MSK
:
2374 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2376 case PHY_M_PS_RX_P_EN
:
2377 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2379 case PHY_M_PS_TX_P_EN
:
2380 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2383 skge
->flow_status
= FLOW_STAT_NONE
;
2386 if (skge
->flow_status
== FLOW_STAT_NONE
||
2387 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2388 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2390 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2391 yukon_link_up(skge
);
2395 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2396 skge
->speed
= yukon_speed(hw
, phystat
);
2398 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2399 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2400 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2401 if (phystat
& PHY_M_PS_LINK_UP
)
2402 yukon_link_up(skge
);
2404 yukon_link_down(skge
);
2408 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2410 /* XXX restart autonegotiation? */
2413 static void skge_phy_reset(struct skge_port
*skge
)
2415 struct skge_hw
*hw
= skge
->hw
;
2416 int port
= skge
->port
;
2417 struct net_device
*dev
= hw
->dev
[port
];
2419 netif_stop_queue(skge
->netdev
);
2420 netif_carrier_off(skge
->netdev
);
2422 spin_lock_bh(&hw
->phy_lock
);
2423 if (is_genesis(hw
)) {
2424 genesis_reset(hw
, port
);
2425 genesis_mac_init(hw
, port
);
2427 yukon_reset(hw
, port
);
2428 yukon_init(hw
, port
);
2430 spin_unlock_bh(&hw
->phy_lock
);
2432 skge_set_multicast(dev
);
2435 /* Basic MII support */
2436 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2438 struct mii_ioctl_data
*data
= if_mii(ifr
);
2439 struct skge_port
*skge
= netdev_priv(dev
);
2440 struct skge_hw
*hw
= skge
->hw
;
2441 int err
= -EOPNOTSUPP
;
2443 if (!netif_running(dev
))
2444 return -ENODEV
; /* Phy still in reset */
2448 data
->phy_id
= hw
->phy_addr
;
2453 spin_lock_bh(&hw
->phy_lock
);
2456 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2458 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2459 spin_unlock_bh(&hw
->phy_lock
);
2460 data
->val_out
= val
;
2465 spin_lock_bh(&hw
->phy_lock
);
2467 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2470 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2472 spin_unlock_bh(&hw
->phy_lock
);
2478 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2484 end
= start
+ len
- 1;
2486 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2487 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2488 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2489 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2490 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2492 if (q
== Q_R1
|| q
== Q_R2
) {
2493 /* Set thresholds on receive queue's */
2494 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2496 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2499 /* Enable store & forward on Tx queue's because
2500 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2502 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2505 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2508 /* Setup Bus Memory Interface */
2509 static void skge_qset(struct skge_port
*skge
, u16 q
,
2510 const struct skge_element
*e
)
2512 struct skge_hw
*hw
= skge
->hw
;
2513 u32 watermark
= 0x600;
2514 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2516 /* optimization to reduce window on 32bit/33mhz */
2517 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2520 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2521 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2522 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2523 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2526 static int skge_up(struct net_device
*dev
)
2528 struct skge_port
*skge
= netdev_priv(dev
);
2529 struct skge_hw
*hw
= skge
->hw
;
2530 int port
= skge
->port
;
2531 u32 chunk
, ram_addr
;
2532 size_t rx_size
, tx_size
;
2535 if (!is_valid_ether_addr(dev
->dev_addr
))
2538 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2540 if (dev
->mtu
> RX_BUF_SIZE
)
2541 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2543 skge
->rx_buf_size
= RX_BUF_SIZE
;
2546 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2547 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2548 skge
->mem_size
= tx_size
+ rx_size
;
2549 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2553 BUG_ON(skge
->dma
& 7);
2555 if (upper_32_bits(skge
->dma
) != upper_32_bits(skge
->dma
+ skge
->mem_size
)) {
2556 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2561 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2565 err
= skge_rx_fill(dev
);
2569 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2570 skge
->dma
+ rx_size
);
2574 if (hw
->ports
== 1) {
2575 err
= request_irq(hw
->pdev
->irq
, skge_intr
, IRQF_SHARED
,
2578 netdev_err(dev
, "Unable to allocate interrupt %d error: %d\n",
2579 hw
->pdev
->irq
, err
);
2584 /* Initialize MAC */
2585 netif_carrier_off(dev
);
2586 spin_lock_bh(&hw
->phy_lock
);
2588 genesis_mac_init(hw
, port
);
2590 yukon_mac_init(hw
, port
);
2591 spin_unlock_bh(&hw
->phy_lock
);
2593 /* Configure RAMbuffers - equally between ports and tx/rx */
2594 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2595 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2597 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2598 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2600 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2601 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2602 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2604 /* Start receiver BMU */
2606 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2607 skge_led(skge
, LED_MODE_ON
);
2609 spin_lock_irq(&hw
->hw_lock
);
2610 hw
->intr_mask
|= portmask
[port
];
2611 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2612 skge_read32(hw
, B0_IMSK
);
2613 spin_unlock_irq(&hw
->hw_lock
);
2615 napi_enable(&skge
->napi
);
2617 skge_set_multicast(dev
);
2622 kfree(skge
->tx_ring
.start
);
2624 skge_rx_clean(skge
);
2625 kfree(skge
->rx_ring
.start
);
2627 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2634 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2636 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2637 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2638 RB_RST_SET
|RB_DIS_OP_MD
);
2639 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2642 static int skge_down(struct net_device
*dev
)
2644 struct skge_port
*skge
= netdev_priv(dev
);
2645 struct skge_hw
*hw
= skge
->hw
;
2646 int port
= skge
->port
;
2651 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2653 netif_tx_disable(dev
);
2655 if (is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
)
2656 del_timer_sync(&skge
->link_timer
);
2658 napi_disable(&skge
->napi
);
2659 netif_carrier_off(dev
);
2661 spin_lock_irq(&hw
->hw_lock
);
2662 hw
->intr_mask
&= ~portmask
[port
];
2663 skge_write32(hw
, B0_IMSK
, (hw
->ports
== 1) ? 0 : hw
->intr_mask
);
2664 skge_read32(hw
, B0_IMSK
);
2665 spin_unlock_irq(&hw
->hw_lock
);
2668 free_irq(hw
->pdev
->irq
, hw
);
2670 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
2676 /* Stop transmitter */
2677 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2678 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2679 RB_RST_SET
|RB_DIS_OP_MD
);
2682 /* Disable Force Sync bit and Enable Alloc bit */
2683 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2684 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2686 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2687 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2688 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2690 /* Reset PCI FIFO */
2691 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2692 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2694 /* Reset the RAM Buffer async Tx queue */
2695 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2697 skge_rx_stop(hw
, port
);
2699 if (is_genesis(hw
)) {
2700 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2701 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2703 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2704 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2707 skge_led(skge
, LED_MODE_OFF
);
2709 netif_tx_lock_bh(dev
);
2711 netif_tx_unlock_bh(dev
);
2713 skge_rx_clean(skge
);
2715 kfree(skge
->rx_ring
.start
);
2716 kfree(skge
->tx_ring
.start
);
2717 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2722 static inline int skge_avail(const struct skge_ring
*ring
)
2725 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2726 + (ring
->to_clean
- ring
->to_use
) - 1;
2729 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2730 struct net_device
*dev
)
2732 struct skge_port
*skge
= netdev_priv(dev
);
2733 struct skge_hw
*hw
= skge
->hw
;
2734 struct skge_element
*e
;
2735 struct skge_tx_desc
*td
;
2740 if (skb_padto(skb
, ETH_ZLEN
))
2741 return NETDEV_TX_OK
;
2743 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2744 return NETDEV_TX_BUSY
;
2746 e
= skge
->tx_ring
.to_use
;
2748 BUG_ON(td
->control
& BMU_OWN
);
2750 len
= skb_headlen(skb
);
2751 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2752 if (pci_dma_mapping_error(hw
->pdev
, map
))
2755 dma_unmap_addr_set(e
, mapaddr
, map
);
2756 dma_unmap_len_set(e
, maplen
, len
);
2758 td
->dma_lo
= lower_32_bits(map
);
2759 td
->dma_hi
= upper_32_bits(map
);
2761 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2762 const int offset
= skb_checksum_start_offset(skb
);
2764 /* This seems backwards, but it is what the sk98lin
2765 * does. Looks like hardware is wrong?
2767 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2768 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2769 control
= BMU_TCP_CHECK
;
2771 control
= BMU_UDP_CHECK
;
2774 td
->csum_start
= offset
;
2775 td
->csum_write
= offset
+ skb
->csum_offset
;
2777 control
= BMU_CHECK
;
2779 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2780 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2782 struct skge_tx_desc
*tf
= td
;
2784 control
|= BMU_STFWD
;
2785 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2786 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2788 map
= skb_frag_dma_map(&hw
->pdev
->dev
, frag
, 0,
2789 skb_frag_size(frag
), DMA_TO_DEVICE
);
2790 if (dma_mapping_error(&hw
->pdev
->dev
, map
))
2791 goto mapping_unwind
;
2796 BUG_ON(tf
->control
& BMU_OWN
);
2798 tf
->dma_lo
= lower_32_bits(map
);
2799 tf
->dma_hi
= upper_32_bits(map
);
2800 dma_unmap_addr_set(e
, mapaddr
, map
);
2801 dma_unmap_len_set(e
, maplen
, skb_frag_size(frag
));
2803 tf
->control
= BMU_OWN
| BMU_SW
| control
| skb_frag_size(frag
);
2805 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2807 /* Make sure all the descriptors written */
2809 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2812 netdev_sent_queue(dev
, skb
->len
);
2814 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2816 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2817 "tx queued, slot %td, len %d\n",
2818 e
- skge
->tx_ring
.start
, skb
->len
);
2820 skge
->tx_ring
.to_use
= e
->next
;
2823 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2824 netdev_dbg(dev
, "transmit queue full\n");
2825 netif_stop_queue(dev
);
2828 return NETDEV_TX_OK
;
2831 e
= skge
->tx_ring
.to_use
;
2832 pci_unmap_single(hw
->pdev
,
2833 dma_unmap_addr(e
, mapaddr
),
2834 dma_unmap_len(e
, maplen
),
2838 pci_unmap_page(hw
->pdev
,
2839 dma_unmap_addr(e
, mapaddr
),
2840 dma_unmap_len(e
, maplen
),
2845 if (net_ratelimit())
2846 dev_warn(&hw
->pdev
->dev
, "%s: tx mapping error\n", dev
->name
);
2847 dev_kfree_skb_any(skb
);
2848 return NETDEV_TX_OK
;
2852 /* Free resources associated with this reing element */
2853 static inline void skge_tx_unmap(struct pci_dev
*pdev
, struct skge_element
*e
,
2856 /* skb header vs. fragment */
2857 if (control
& BMU_STF
)
2858 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2859 dma_unmap_len(e
, maplen
),
2862 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2863 dma_unmap_len(e
, maplen
),
2867 /* Free all buffers in transmit ring */
2868 static void skge_tx_clean(struct net_device
*dev
)
2870 struct skge_port
*skge
= netdev_priv(dev
);
2871 struct skge_element
*e
;
2873 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2874 struct skge_tx_desc
*td
= e
->desc
;
2876 skge_tx_unmap(skge
->hw
->pdev
, e
, td
->control
);
2878 if (td
->control
& BMU_EOF
)
2879 dev_kfree_skb(e
->skb
);
2883 netdev_reset_queue(dev
);
2884 skge
->tx_ring
.to_clean
= e
;
2887 static void skge_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
2889 struct skge_port
*skge
= netdev_priv(dev
);
2891 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2893 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2895 netif_wake_queue(dev
);
2898 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2902 if (!netif_running(dev
)) {
2918 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2920 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2924 crc
= ether_crc_le(ETH_ALEN
, addr
);
2926 filter
[bit
/8] |= 1 << (bit
%8);
2929 static void genesis_set_multicast(struct net_device
*dev
)
2931 struct skge_port
*skge
= netdev_priv(dev
);
2932 struct skge_hw
*hw
= skge
->hw
;
2933 int port
= skge
->port
;
2934 struct netdev_hw_addr
*ha
;
2938 mode
= xm_read32(hw
, port
, XM_MODE
);
2939 mode
|= XM_MD_ENA_HASH
;
2940 if (dev
->flags
& IFF_PROMISC
)
2941 mode
|= XM_MD_ENA_PROM
;
2943 mode
&= ~XM_MD_ENA_PROM
;
2945 if (dev
->flags
& IFF_ALLMULTI
)
2946 memset(filter
, 0xff, sizeof(filter
));
2948 memset(filter
, 0, sizeof(filter
));
2950 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2951 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2952 genesis_add_filter(filter
, pause_mc_addr
);
2954 netdev_for_each_mc_addr(ha
, dev
)
2955 genesis_add_filter(filter
, ha
->addr
);
2958 xm_write32(hw
, port
, XM_MODE
, mode
);
2959 xm_outhash(hw
, port
, XM_HSM
, filter
);
2962 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2964 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2965 filter
[bit
/8] |= 1 << (bit
%8);
2968 static void yukon_set_multicast(struct net_device
*dev
)
2970 struct skge_port
*skge
= netdev_priv(dev
);
2971 struct skge_hw
*hw
= skge
->hw
;
2972 int port
= skge
->port
;
2973 struct netdev_hw_addr
*ha
;
2974 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2975 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2979 memset(filter
, 0, sizeof(filter
));
2981 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2982 reg
|= GM_RXCR_UCF_ENA
;
2984 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2985 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2986 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2987 memset(filter
, 0xff, sizeof(filter
));
2988 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2989 reg
&= ~GM_RXCR_MCF_ENA
;
2991 reg
|= GM_RXCR_MCF_ENA
;
2994 yukon_add_filter(filter
, pause_mc_addr
);
2996 netdev_for_each_mc_addr(ha
, dev
)
2997 yukon_add_filter(filter
, ha
->addr
);
3001 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3002 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3003 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3004 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3005 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3006 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3007 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3008 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3010 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3013 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3016 return status
>> XMR_FS_LEN_SHIFT
;
3018 return status
>> GMR_FS_LEN_SHIFT
;
3021 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3024 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3026 return (status
& GMR_FS_ANY_ERR
) ||
3027 (status
& GMR_FS_RX_OK
) == 0;
3030 static void skge_set_multicast(struct net_device
*dev
)
3032 struct skge_port
*skge
= netdev_priv(dev
);
3034 if (is_genesis(skge
->hw
))
3035 genesis_set_multicast(dev
);
3037 yukon_set_multicast(dev
);
3042 /* Get receive buffer from descriptor.
3043 * Handles copy of small buffers and reallocation failures
3045 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3046 struct skge_element
*e
,
3047 u32 control
, u32 status
, u16 csum
)
3049 struct skge_port
*skge
= netdev_priv(dev
);
3050 struct sk_buff
*skb
;
3051 u16 len
= control
& BMU_BBC
;
3053 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3054 "rx slot %td status 0x%x len %d\n",
3055 e
- skge
->rx_ring
.start
, status
, len
);
3057 if (len
> skge
->rx_buf_size
)
3060 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3063 if (bad_phy_status(skge
->hw
, status
))
3066 if (phy_length(skge
->hw
, status
) != len
)
3069 if (len
< RX_COPY_THRESHOLD
) {
3070 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3074 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3075 dma_unmap_addr(e
, mapaddr
),
3076 dma_unmap_len(e
, maplen
),
3077 PCI_DMA_FROMDEVICE
);
3078 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3079 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3080 dma_unmap_addr(e
, mapaddr
),
3081 dma_unmap_len(e
, maplen
),
3082 PCI_DMA_FROMDEVICE
);
3083 skge_rx_reuse(e
, skge
->rx_buf_size
);
3085 struct skge_element ee
;
3086 struct sk_buff
*nskb
;
3088 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3095 prefetch(skb
->data
);
3097 if (skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
) < 0) {
3098 dev_kfree_skb(nskb
);
3102 pci_unmap_single(skge
->hw
->pdev
,
3103 dma_unmap_addr(&ee
, mapaddr
),
3104 dma_unmap_len(&ee
, maplen
),
3105 PCI_DMA_FROMDEVICE
);
3110 if (dev
->features
& NETIF_F_RXCSUM
) {
3111 skb
->csum
= le16_to_cpu(csum
);
3112 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3115 skb
->protocol
= eth_type_trans(skb
, dev
);
3120 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3121 "rx err, slot %td control 0x%x status 0x%x\n",
3122 e
- skge
->rx_ring
.start
, control
, status
);
3124 if (is_genesis(skge
->hw
)) {
3125 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3126 dev
->stats
.rx_length_errors
++;
3127 if (status
& XMR_FS_FRA_ERR
)
3128 dev
->stats
.rx_frame_errors
++;
3129 if (status
& XMR_FS_FCS_ERR
)
3130 dev
->stats
.rx_crc_errors
++;
3132 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3133 dev
->stats
.rx_length_errors
++;
3134 if (status
& GMR_FS_FRAGMENT
)
3135 dev
->stats
.rx_frame_errors
++;
3136 if (status
& GMR_FS_CRC_ERR
)
3137 dev
->stats
.rx_crc_errors
++;
3141 skge_rx_reuse(e
, skge
->rx_buf_size
);
3145 /* Free all buffers in Tx ring which are no longer owned by device */
3146 static void skge_tx_done(struct net_device
*dev
)
3148 struct skge_port
*skge
= netdev_priv(dev
);
3149 struct skge_ring
*ring
= &skge
->tx_ring
;
3150 struct skge_element
*e
;
3151 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3153 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3155 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3156 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3158 if (control
& BMU_OWN
)
3161 skge_tx_unmap(skge
->hw
->pdev
, e
, control
);
3163 if (control
& BMU_EOF
) {
3164 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
3165 "tx done slot %td\n",
3166 e
- skge
->tx_ring
.start
);
3169 bytes_compl
+= e
->skb
->len
;
3171 dev_consume_skb_any(e
->skb
);
3174 netdev_completed_queue(dev
, pkts_compl
, bytes_compl
);
3175 skge
->tx_ring
.to_clean
= e
;
3177 /* Can run lockless until we need to synchronize to restart queue. */
3180 if (unlikely(netif_queue_stopped(dev
) &&
3181 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3183 if (unlikely(netif_queue_stopped(dev
) &&
3184 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3185 netif_wake_queue(dev
);
3188 netif_tx_unlock(dev
);
3192 static int skge_poll(struct napi_struct
*napi
, int budget
)
3194 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3195 struct net_device
*dev
= skge
->netdev
;
3196 struct skge_hw
*hw
= skge
->hw
;
3197 struct skge_ring
*ring
= &skge
->rx_ring
;
3198 struct skge_element
*e
;
3203 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3205 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< budget
; e
= e
->next
) {
3206 struct skge_rx_desc
*rd
= e
->desc
;
3207 struct sk_buff
*skb
;
3211 control
= rd
->control
;
3212 if (control
& BMU_OWN
)
3215 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3217 napi_gro_receive(napi
, skb
);
3223 /* restart receiver */
3225 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3227 if (work_done
< budget
&& napi_complete_done(napi
, work_done
)) {
3228 unsigned long flags
;
3230 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3231 hw
->intr_mask
|= napimask
[skge
->port
];
3232 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3233 skge_read32(hw
, B0_IMSK
);
3234 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3240 /* Parity errors seem to happen when Genesis is connected to a switch
3241 * with no other ports present. Heartbeat error??
3243 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3245 struct net_device
*dev
= hw
->dev
[port
];
3247 ++dev
->stats
.tx_heartbeat_errors
;
3250 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3253 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3254 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3255 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3256 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3259 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3262 genesis_mac_intr(hw
, port
);
3264 yukon_mac_intr(hw
, port
);
3267 /* Handle device specific framing and timeout interrupts */
3268 static void skge_error_irq(struct skge_hw
*hw
)
3270 struct pci_dev
*pdev
= hw
->pdev
;
3271 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3273 if (is_genesis(hw
)) {
3274 /* clear xmac errors */
3275 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3276 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3277 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3278 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3280 /* Timestamp (unused) overflow */
3281 if (hwstatus
& IS_IRQ_TIST_OV
)
3282 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3285 if (hwstatus
& IS_RAM_RD_PAR
) {
3286 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3287 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3290 if (hwstatus
& IS_RAM_WR_PAR
) {
3291 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3292 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3295 if (hwstatus
& IS_M1_PAR_ERR
)
3296 skge_mac_parity(hw
, 0);
3298 if (hwstatus
& IS_M2_PAR_ERR
)
3299 skge_mac_parity(hw
, 1);
3301 if (hwstatus
& IS_R1_PAR_ERR
) {
3302 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3304 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3307 if (hwstatus
& IS_R2_PAR_ERR
) {
3308 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3310 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3313 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3314 u16 pci_status
, pci_cmd
;
3316 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3317 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3319 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3320 pci_cmd
, pci_status
);
3322 /* Write the error bits back to clear them. */
3323 pci_status
&= PCI_STATUS_ERROR_BITS
;
3324 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3325 pci_write_config_word(pdev
, PCI_COMMAND
,
3326 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3327 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3328 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3330 /* if error still set then just ignore it */
3331 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3332 if (hwstatus
& IS_IRQ_STAT
) {
3333 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3334 hw
->intr_mask
&= ~IS_HW_ERR
;
3340 * Interrupt from PHY are handled in tasklet (softirq)
3341 * because accessing phy registers requires spin wait which might
3342 * cause excess interrupt latency.
3344 static void skge_extirq(unsigned long arg
)
3346 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3349 for (port
= 0; port
< hw
->ports
; port
++) {
3350 struct net_device
*dev
= hw
->dev
[port
];
3352 if (netif_running(dev
)) {
3353 struct skge_port
*skge
= netdev_priv(dev
);
3355 spin_lock(&hw
->phy_lock
);
3356 if (!is_genesis(hw
))
3357 yukon_phy_intr(skge
);
3358 else if (hw
->phy_type
== SK_PHY_BCOM
)
3359 bcom_phy_intr(skge
);
3360 spin_unlock(&hw
->phy_lock
);
3364 spin_lock_irq(&hw
->hw_lock
);
3365 hw
->intr_mask
|= IS_EXT_REG
;
3366 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3367 skge_read32(hw
, B0_IMSK
);
3368 spin_unlock_irq(&hw
->hw_lock
);
3371 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3373 struct skge_hw
*hw
= dev_id
;
3377 spin_lock(&hw
->hw_lock
);
3378 /* Reading this register masks IRQ */
3379 status
= skge_read32(hw
, B0_SP_ISRC
);
3380 if (status
== 0 || status
== ~0)
3384 status
&= hw
->intr_mask
;
3385 if (status
& IS_EXT_REG
) {
3386 hw
->intr_mask
&= ~IS_EXT_REG
;
3387 tasklet_schedule(&hw
->phy_task
);
3390 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3391 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3392 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3393 napi_schedule(&skge
->napi
);
3396 if (status
& IS_PA_TO_TX1
)
3397 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3399 if (status
& IS_PA_TO_RX1
) {
3400 ++hw
->dev
[0]->stats
.rx_over_errors
;
3401 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3405 if (status
& IS_MAC1
)
3406 skge_mac_intr(hw
, 0);
3409 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3411 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3412 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3413 napi_schedule(&skge
->napi
);
3416 if (status
& IS_PA_TO_RX2
) {
3417 ++hw
->dev
[1]->stats
.rx_over_errors
;
3418 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3421 if (status
& IS_PA_TO_TX2
)
3422 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3424 if (status
& IS_MAC2
)
3425 skge_mac_intr(hw
, 1);
3428 if (status
& IS_HW_ERR
)
3431 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3432 skge_read32(hw
, B0_IMSK
);
3433 spin_unlock(&hw
->hw_lock
);
3435 return IRQ_RETVAL(handled
);
3438 #ifdef CONFIG_NET_POLL_CONTROLLER
3439 static void skge_netpoll(struct net_device
*dev
)
3441 struct skge_port
*skge
= netdev_priv(dev
);
3443 disable_irq(dev
->irq
);
3444 skge_intr(dev
->irq
, skge
->hw
);
3445 enable_irq(dev
->irq
);
3449 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3451 struct skge_port
*skge
= netdev_priv(dev
);
3452 struct skge_hw
*hw
= skge
->hw
;
3453 unsigned port
= skge
->port
;
3454 const struct sockaddr
*addr
= p
;
3457 if (!is_valid_ether_addr(addr
->sa_data
))
3458 return -EADDRNOTAVAIL
;
3460 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3462 if (!netif_running(dev
)) {
3463 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3464 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3467 spin_lock_bh(&hw
->phy_lock
);
3468 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3469 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3471 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3472 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3475 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3477 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3478 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3481 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3482 spin_unlock_bh(&hw
->phy_lock
);
3488 static const struct {
3492 { CHIP_ID_GENESIS
, "Genesis" },
3493 { CHIP_ID_YUKON
, "Yukon" },
3494 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3495 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3498 static const char *skge_board_name(const struct skge_hw
*hw
)
3501 static char buf
[16];
3503 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3504 if (skge_chips
[i
].id
== hw
->chip_id
)
3505 return skge_chips
[i
].name
;
3507 snprintf(buf
, sizeof(buf
), "chipid 0x%x", hw
->chip_id
);
3513 * Setup the board data structure, but don't bring up
3516 static int skge_reset(struct skge_hw
*hw
)
3519 u16 ctst
, pci_status
;
3520 u8 t8
, mac_cfg
, pmd_type
;
3523 ctst
= skge_read16(hw
, B0_CTST
);
3526 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3527 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3529 /* clear PCI errors, if any */
3530 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3531 skge_write8(hw
, B2_TST_CTRL2
, 0);
3533 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3534 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3535 pci_status
| PCI_STATUS_ERROR_BITS
);
3536 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3537 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3539 /* restore CLK_RUN bits (for Yukon-Lite) */
3540 skge_write16(hw
, B0_CTST
,
3541 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3543 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3544 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3545 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3546 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3548 switch (hw
->chip_id
) {
3549 case CHIP_ID_GENESIS
:
3550 #ifdef CONFIG_SKGE_GENESIS
3551 switch (hw
->phy_type
) {
3553 hw
->phy_addr
= PHY_ADDR_XMAC
;
3556 hw
->phy_addr
= PHY_ADDR_BCOM
;
3559 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3565 dev_err(&hw
->pdev
->dev
, "Genesis chip detected but not configured\n");
3570 case CHIP_ID_YUKON_LITE
:
3571 case CHIP_ID_YUKON_LP
:
3572 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3575 hw
->phy_addr
= PHY_ADDR_MARV
;
3579 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3584 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3585 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3586 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3588 /* read the adapters RAM size */
3589 t8
= skge_read8(hw
, B2_E_0
);
3590 if (is_genesis(hw
)) {
3592 /* special case: 4 x 64k x 36, offset = 0x80000 */
3593 hw
->ram_size
= 0x100000;
3594 hw
->ram_offset
= 0x80000;
3596 hw
->ram_size
= t8
* 512;
3598 hw
->ram_size
= 0x20000;
3600 hw
->ram_size
= t8
* 4096;
3602 hw
->intr_mask
= IS_HW_ERR
;
3604 /* Use PHY IRQ for all but fiber based Genesis board */
3605 if (!(is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
))
3606 hw
->intr_mask
|= IS_EXT_REG
;
3611 /* switch power to VCC (WA for VAUX problem) */
3612 skge_write8(hw
, B0_POWER_CTRL
,
3613 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3615 /* avoid boards with stuck Hardware error bits */
3616 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3617 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3618 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3619 hw
->intr_mask
&= ~IS_HW_ERR
;
3622 /* Clear PHY COMA */
3623 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3624 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3625 reg
&= ~PCI_PHY_COMA
;
3626 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3627 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3630 for (i
= 0; i
< hw
->ports
; i
++) {
3631 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3632 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3636 /* turn off hardware timer (unused) */
3637 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3638 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3639 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3641 /* enable the Tx Arbiters */
3642 for (i
= 0; i
< hw
->ports
; i
++)
3643 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3645 /* Initialize ram interface */
3646 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3648 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3649 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3650 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3651 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3652 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3653 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3654 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3655 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3656 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3657 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3658 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3659 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3661 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3663 /* Set interrupt moderation for Transmit only
3664 * Receive interrupts avoided by NAPI
3666 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3667 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3668 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3670 /* Leave irq disabled until first port is brought up. */
3671 skge_write32(hw
, B0_IMSK
, 0);
3673 for (i
= 0; i
< hw
->ports
; i
++) {
3675 genesis_reset(hw
, i
);
3684 #ifdef CONFIG_SKGE_DEBUG
3686 static struct dentry
*skge_debug
;
3688 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3690 struct net_device
*dev
= seq
->private;
3691 const struct skge_port
*skge
= netdev_priv(dev
);
3692 const struct skge_hw
*hw
= skge
->hw
;
3693 const struct skge_element
*e
;
3695 if (!netif_running(dev
))
3698 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3699 skge_read32(hw
, B0_IMSK
));
3701 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3702 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3703 const struct skge_tx_desc
*t
= e
->desc
;
3704 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3705 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3706 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3709 seq_puts(seq
, "\nRx Ring:\n");
3710 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3711 const struct skge_rx_desc
*r
= e
->desc
;
3713 if (r
->control
& BMU_OWN
)
3716 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3717 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3718 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3723 DEFINE_SHOW_ATTRIBUTE(skge_debug
);
3726 * Use network device events to create/remove/rename
3727 * debugfs file entries
3729 static int skge_device_event(struct notifier_block
*unused
,
3730 unsigned long event
, void *ptr
)
3732 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
3733 struct skge_port
*skge
;
3735 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3738 skge
= netdev_priv(dev
);
3740 case NETDEV_CHANGENAME
:
3742 skge
->debugfs
= debugfs_rename(skge_debug
,
3744 skge_debug
, dev
->name
);
3747 case NETDEV_GOING_DOWN
:
3748 debugfs_remove(skge
->debugfs
);
3749 skge
->debugfs
= NULL
;
3753 skge
->debugfs
= debugfs_create_file(dev
->name
, 0444, skge_debug
,
3754 dev
, &skge_debug_fops
);
3762 static struct notifier_block skge_notifier
= {
3763 .notifier_call
= skge_device_event
,
3767 static __init
void skge_debug_init(void)
3769 skge_debug
= debugfs_create_dir("skge", NULL
);
3771 register_netdevice_notifier(&skge_notifier
);
3774 static __exit
void skge_debug_cleanup(void)
3777 unregister_netdevice_notifier(&skge_notifier
);
3778 debugfs_remove(skge_debug
);
3784 #define skge_debug_init()
3785 #define skge_debug_cleanup()
3788 static const struct net_device_ops skge_netdev_ops
= {
3789 .ndo_open
= skge_up
,
3790 .ndo_stop
= skge_down
,
3791 .ndo_start_xmit
= skge_xmit_frame
,
3792 .ndo_do_ioctl
= skge_ioctl
,
3793 .ndo_get_stats
= skge_get_stats
,
3794 .ndo_tx_timeout
= skge_tx_timeout
,
3795 .ndo_change_mtu
= skge_change_mtu
,
3796 .ndo_validate_addr
= eth_validate_addr
,
3797 .ndo_set_rx_mode
= skge_set_multicast
,
3798 .ndo_set_mac_address
= skge_set_mac_address
,
3799 #ifdef CONFIG_NET_POLL_CONTROLLER
3800 .ndo_poll_controller
= skge_netpoll
,
3805 /* Initialize network device */
3806 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3809 struct skge_port
*skge
;
3810 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3815 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3816 dev
->netdev_ops
= &skge_netdev_ops
;
3817 dev
->ethtool_ops
= &skge_ethtool_ops
;
3818 dev
->watchdog_timeo
= TX_WATCHDOG
;
3819 dev
->irq
= hw
->pdev
->irq
;
3821 /* MTU range: 60 - 9000 */
3822 dev
->min_mtu
= ETH_ZLEN
;
3823 dev
->max_mtu
= ETH_JUMBO_MTU
;
3826 dev
->features
|= NETIF_F_HIGHDMA
;
3828 skge
= netdev_priv(dev
);
3829 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3832 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3834 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3835 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3837 /* Auto speed and flow control */
3838 skge
->autoneg
= AUTONEG_ENABLE
;
3839 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3842 skge
->advertising
= skge_supported_modes(hw
);
3844 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3845 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3846 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3849 hw
->dev
[port
] = dev
;
3853 /* Only used for Genesis XMAC */
3855 timer_setup(&skge
->link_timer
, xm_link_timer
, 0);
3857 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3859 dev
->features
|= dev
->hw_features
;
3862 /* read the mac address */
3863 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3868 static void skge_show_addr(struct net_device
*dev
)
3870 const struct skge_port
*skge
= netdev_priv(dev
);
3872 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3875 static int only_32bit_dma
;
3877 static int skge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
3879 struct net_device
*dev
, *dev1
;
3881 int err
, using_dac
= 0;
3883 err
= pci_enable_device(pdev
);
3885 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3889 err
= pci_request_regions(pdev
, DRV_NAME
);
3891 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3892 goto err_out_disable_pdev
;
3895 pci_set_master(pdev
);
3897 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3899 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3900 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3902 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3906 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3907 goto err_out_free_regions
;
3911 /* byte swap descriptors in hardware */
3915 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3916 reg
|= PCI_REV_DESC
;
3917 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3922 /* space for skge@pci:0000:04:00.0 */
3923 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3924 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3926 goto err_out_free_regions
;
3928 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3931 spin_lock_init(&hw
->hw_lock
);
3932 spin_lock_init(&hw
->phy_lock
);
3933 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3935 hw
->regs
= ioremap(pci_resource_start(pdev
, 0), 0x4000);
3937 dev_err(&pdev
->dev
, "cannot map device registers\n");
3938 goto err_out_free_hw
;
3941 err
= skge_reset(hw
);
3943 goto err_out_iounmap
;
3945 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3947 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3948 skge_board_name(hw
), hw
->chip_rev
);
3950 dev
= skge_devinit(hw
, 0, using_dac
);
3953 goto err_out_led_off
;
3956 /* Some motherboards are broken and has zero in ROM. */
3957 if (!is_valid_ether_addr(dev
->dev_addr
))
3958 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3960 err
= register_netdev(dev
);
3962 dev_err(&pdev
->dev
, "cannot register net device\n");
3963 goto err_out_free_netdev
;
3966 skge_show_addr(dev
);
3968 if (hw
->ports
> 1) {
3969 dev1
= skge_devinit(hw
, 1, using_dac
);
3972 goto err_out_unregister
;
3975 err
= register_netdev(dev1
);
3977 dev_err(&pdev
->dev
, "cannot register second net device\n");
3978 goto err_out_free_dev1
;
3981 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
,
3984 dev_err(&pdev
->dev
, "cannot assign irq %d\n",
3986 goto err_out_unregister_dev1
;
3989 skge_show_addr(dev1
);
3991 pci_set_drvdata(pdev
, hw
);
3995 err_out_unregister_dev1
:
3996 unregister_netdev(dev1
);
4000 unregister_netdev(dev
);
4001 err_out_free_netdev
:
4004 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4009 err_out_free_regions
:
4010 pci_release_regions(pdev
);
4011 err_out_disable_pdev
:
4012 pci_disable_device(pdev
);
4017 static void skge_remove(struct pci_dev
*pdev
)
4019 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4020 struct net_device
*dev0
, *dev1
;
4027 unregister_netdev(dev1
);
4029 unregister_netdev(dev0
);
4031 tasklet_kill(&hw
->phy_task
);
4033 spin_lock_irq(&hw
->hw_lock
);
4036 if (hw
->ports
> 1) {
4037 skge_write32(hw
, B0_IMSK
, 0);
4038 skge_read32(hw
, B0_IMSK
);
4040 spin_unlock_irq(&hw
->hw_lock
);
4042 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4043 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4046 free_irq(pdev
->irq
, hw
);
4047 pci_release_regions(pdev
);
4048 pci_disable_device(pdev
);
4057 #ifdef CONFIG_PM_SLEEP
4058 static int skge_suspend(struct device
*dev
)
4060 struct skge_hw
*hw
= dev_get_drvdata(dev
);
4066 for (i
= 0; i
< hw
->ports
; i
++) {
4067 struct net_device
*dev
= hw
->dev
[i
];
4068 struct skge_port
*skge
= netdev_priv(dev
);
4070 if (netif_running(dev
))
4074 skge_wol_init(skge
);
4077 skge_write32(hw
, B0_IMSK
, 0);
4082 static int skge_resume(struct device
*dev
)
4084 struct skge_hw
*hw
= dev_get_drvdata(dev
);
4090 err
= skge_reset(hw
);
4094 for (i
= 0; i
< hw
->ports
; i
++) {
4095 struct net_device
*dev
= hw
->dev
[i
];
4097 if (netif_running(dev
)) {
4101 netdev_err(dev
, "could not up: %d\n", err
);
4111 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4112 #define SKGE_PM_OPS (&skge_pm_ops)
4116 #define SKGE_PM_OPS NULL
4117 #endif /* CONFIG_PM_SLEEP */
4119 static void skge_shutdown(struct pci_dev
*pdev
)
4121 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4127 for (i
= 0; i
< hw
->ports
; i
++) {
4128 struct net_device
*dev
= hw
->dev
[i
];
4129 struct skge_port
*skge
= netdev_priv(dev
);
4132 skge_wol_init(skge
);
4135 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4136 pci_set_power_state(pdev
, PCI_D3hot
);
4139 static struct pci_driver skge_driver
= {
4141 .id_table
= skge_id_table
,
4142 .probe
= skge_probe
,
4143 .remove
= skge_remove
,
4144 .shutdown
= skge_shutdown
,
4145 .driver
.pm
= SKGE_PM_OPS
,
4148 static const struct dmi_system_id skge_32bit_dma_boards
[] = {
4150 .ident
= "Gigabyte nForce boards",
4152 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4153 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4157 .ident
= "ASUS P5NSLI",
4159 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTeK Computer INC."),
4160 DMI_MATCH(DMI_BOARD_NAME
, "P5NSLI")
4164 .ident
= "FUJITSU SIEMENS A8NE-FM",
4166 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTek Computer INC."),
4167 DMI_MATCH(DMI_BOARD_NAME
, "A8NE-FM")
4173 static int __init
skge_init_module(void)
4175 if (dmi_check_system(skge_32bit_dma_boards
))
4178 return pci_register_driver(&skge_driver
);
4181 static void __exit
skge_cleanup_module(void)
4183 pci_unregister_driver(&skge_driver
);
4184 skge_debug_cleanup();
4187 module_init(skge_init_module
);
4188 module_exit(skge_cleanup_module
);