1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Tehuti Networks(R) Network Driver
4 * ethtool interface implementation
5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
9 * RX HW/SW interaction overview
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * There are 2 types of RX communication channels between driver and NIC.
12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
14 * info about buffer's location, size and ID. An ID field is used to identify a
15 * buffer when it's returned with data via RXD Fifo (see below)
16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
25 * filled with data, HW builds new RXD descriptor for it and push it into single
28 * RX SW Data Structures
29 * ~~~~~~~~~~~~~~~~~~~~~
30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
31 * For RX case, ownership lasts from allocating new empty skb for RXF until
32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
33 * skb db. Implemented as array with bitmask.
34 * fifo - keeps info about fifo's size and location, relevant HW registers,
35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
36 * Implemented as simple struct.
38 * RX SW Execution Flow
39 * ~~~~~~~~~~~~~~~~~~~~
40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
41 * relevant registers. At the end of init phase, driver enables interrupts.
42 * NIC sees that there is no RXF buffers and raises
43 * RD_INTR interrupt, isr fills skbs and Rx begins.
44 * Driver has two receive operation modes:
45 * NAPI - interrupt-driven mixed with polling
46 * interrupt-driven only
48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
49 * interrupt and isr is called. isr collects all available packets
50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
52 * Rx buffer allocation note
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Driver cares to feed such amount of RxF descriptors that respective amount of
55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
56 * overflow check in Bordeaux for RxD fifo free/used size.
57 * FIXME: this is NOT fully implemented, more work should be done
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 static const struct pci_device_id bdx_pci_tbl
[] = {
66 { PCI_VDEVICE(TEHUTI
, 0x3009), },
67 { PCI_VDEVICE(TEHUTI
, 0x3010), },
68 { PCI_VDEVICE(TEHUTI
, 0x3014), },
72 MODULE_DEVICE_TABLE(pci
, bdx_pci_tbl
);
74 /* Definitions needed by ISR or NAPI functions */
75 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
);
76 static void bdx_tx_cleanup(struct bdx_priv
*priv
);
77 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
);
79 /* Definitions needed by FW loading */
80 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
);
82 /* Definitions needed by hw_start */
83 static int bdx_tx_init(struct bdx_priv
*priv
);
84 static int bdx_rx_init(struct bdx_priv
*priv
);
86 /* Definitions needed by bdx_close */
87 static void bdx_rx_free(struct bdx_priv
*priv
);
88 static void bdx_tx_free(struct bdx_priv
*priv
);
90 /* Definitions needed by bdx_probe */
91 static void bdx_set_ethtool_ops(struct net_device
*netdev
);
93 /*************************************************************************
95 *************************************************************************/
97 static void print_hw_id(struct pci_dev
*pdev
)
99 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
100 u16 pci_link_status
= 0;
103 pci_read_config_word(pdev
, PCI_LINK_STATUS_REG
, &pci_link_status
);
104 pci_read_config_word(pdev
, PCI_DEV_CTRL_REG
, &pci_ctrl
);
106 pr_info("%s%s\n", BDX_NIC_NAME
,
107 nic
->port_num
== 1 ? "" : ", 2-Port");
108 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
109 readl(nic
->regs
+ SROM_VER
), readl(nic
->regs
+ FPGA_VER
) & 0xFFF,
110 readl(nic
->regs
+ FPGA_SEED
),
111 GET_LINK_STATUS_LANES(pci_link_status
),
112 GET_DEV_CTRL_MAXPL(pci_ctrl
), GET_DEV_CTRL_MRRS(pci_ctrl
));
115 static void print_fw_id(struct pci_nic
*nic
)
117 pr_info("fw 0x%x\n", readl(nic
->regs
+ FW_VER
));
120 static void print_eth_id(struct net_device
*ndev
)
122 netdev_info(ndev
, "%s, Port %c\n",
123 BDX_NIC_NAME
, (ndev
->if_port
== 0) ? 'A' : 'B');
127 /*************************************************************************
129 *************************************************************************/
131 #define bdx_enable_interrupts(priv) \
132 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
133 #define bdx_disable_interrupts(priv) \
134 do { WRITE_REG(priv, regIMR, 0); } while (0)
137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
138 * @priv: NIC private structure
139 * @f: fifo to initialize
140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
141 * @reg_XXX: offsets of registers relative to base address
143 * 1K extra space is allocated at the end of the fifo to simplify
144 * processing of descriptors that wraps around fifo's end
146 * Returns 0 on success, negative value on failure
150 bdx_fifo_init(struct bdx_priv
*priv
, struct fifo
*f
, int fsz_type
,
151 u16 reg_CFG0
, u16 reg_CFG1
, u16 reg_RPTR
, u16 reg_WPTR
)
153 u16 memsz
= FIFO_SIZE
* (1 << fsz_type
);
155 memset(f
, 0, sizeof(struct fifo
));
156 /* pci_alloc_consistent gives us 4k-aligned memory */
157 f
->va
= pci_alloc_consistent(priv
->pdev
,
158 memsz
+ FIFO_EXTRA_SPACE
, &f
->da
);
160 pr_err("pci_alloc_consistent failed\n");
163 f
->reg_CFG0
= reg_CFG0
;
164 f
->reg_CFG1
= reg_CFG1
;
165 f
->reg_RPTR
= reg_RPTR
;
166 f
->reg_WPTR
= reg_WPTR
;
170 f
->size_mask
= memsz
- 1;
171 WRITE_REG(priv
, reg_CFG0
, (u32
) ((f
->da
& TX_RX_CFG0_BASE
) | fsz_type
));
172 WRITE_REG(priv
, reg_CFG1
, H32_64(f
->da
));
178 * bdx_fifo_free - free all resources used by fifo
179 * @priv: NIC private structure
180 * @f: fifo to release
182 static void bdx_fifo_free(struct bdx_priv
*priv
, struct fifo
*f
)
186 pci_free_consistent(priv
->pdev
,
187 f
->memsz
+ FIFO_EXTRA_SPACE
, f
->va
, f
->da
);
194 * bdx_link_changed - notifies OS about hw link state.
195 * @priv: hw adapter structure
197 static void bdx_link_changed(struct bdx_priv
*priv
)
199 u32 link
= READ_REG(priv
, regMAC_LNK_STAT
) & MAC_LINK_STAT
;
202 if (netif_carrier_ok(priv
->ndev
)) {
203 netif_stop_queue(priv
->ndev
);
204 netif_carrier_off(priv
->ndev
);
205 netdev_err(priv
->ndev
, "Link Down\n");
208 if (!netif_carrier_ok(priv
->ndev
)) {
209 netif_wake_queue(priv
->ndev
);
210 netif_carrier_on(priv
->ndev
);
211 netdev_err(priv
->ndev
, "Link Up\n");
216 static void bdx_isr_extra(struct bdx_priv
*priv
, u32 isr
)
218 if (isr
& IR_RX_FREE_0
) {
219 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
223 if (isr
& IR_LNKCHG0
)
224 bdx_link_changed(priv
);
226 if (isr
& IR_PCIE_LINK
)
227 netdev_err(priv
->ndev
, "PCI-E Link Fault\n");
229 if (isr
& IR_PCIE_TOUT
)
230 netdev_err(priv
->ndev
, "PCI-E Time Out\n");
235 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
236 * @irq: interrupt number
237 * @dev: network device
239 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
241 * It reads ISR register to know interrupt reasons, and proceed them one by one.
242 * Reasons of interest are:
243 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
244 * RX_FREE - number of free Rx buffers in RXF fifo gets low
245 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
248 static irqreturn_t
bdx_isr_napi(int irq
, void *dev
)
250 struct net_device
*ndev
= dev
;
251 struct bdx_priv
*priv
= netdev_priv(ndev
);
255 isr
= (READ_REG(priv
, regISR
) & IR_RUN
);
256 if (unlikely(!isr
)) {
257 bdx_enable_interrupts(priv
);
258 return IRQ_NONE
; /* Not our interrupt */
262 bdx_isr_extra(priv
, isr
);
264 if (isr
& (IR_RX_DESC_0
| IR_TX_FREE_0
)) {
265 if (likely(napi_schedule_prep(&priv
->napi
))) {
266 __napi_schedule(&priv
->napi
);
269 /* NOTE: we get here if intr has slipped into window
270 * between these lines in bdx_poll:
271 * bdx_enable_interrupts(priv);
273 * currently intrs are disabled (since we read ISR),
274 * and we have failed to register next poll.
275 * so we read the regs to trigger chip
276 * and allow further interupts. */
277 READ_REG(priv
, regTXF_WPTR_0
);
278 READ_REG(priv
, regRXD_WPTR_0
);
282 bdx_enable_interrupts(priv
);
286 static int bdx_poll(struct napi_struct
*napi
, int budget
)
288 struct bdx_priv
*priv
= container_of(napi
, struct bdx_priv
, napi
);
292 bdx_tx_cleanup(priv
);
293 work_done
= bdx_rx_receive(priv
, &priv
->rxd_fifo0
, budget
);
294 if ((work_done
< budget
) ||
295 (priv
->napi_stop
++ >= 30)) {
296 DBG("rx poll is done. backing to isr-driven\n");
298 /* from time to time we exit to let NAPI layer release
299 * device lock and allow waiting tasks (eg rmmod) to advance) */
302 napi_complete_done(napi
, work_done
);
303 bdx_enable_interrupts(priv
);
309 * bdx_fw_load - loads firmware to NIC
310 * @priv: NIC private structure
312 * Firmware is loaded via TXD fifo, so it must be initialized first.
313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
314 * can have few of them). So all drivers use semaphore register to choose one
315 * that will actually load FW to NIC.
318 static int bdx_fw_load(struct bdx_priv
*priv
)
320 const struct firmware
*fw
= NULL
;
325 master
= READ_REG(priv
, regINIT_SEMAPHORE
);
326 if (!READ_REG(priv
, regINIT_STATUS
) && master
) {
327 rc
= request_firmware(&fw
, "tehuti/bdx.bin", &priv
->pdev
->dev
);
330 bdx_tx_push_desc_safe(priv
, (char *)fw
->data
, fw
->size
);
333 for (i
= 0; i
< 200; i
++) {
334 if (READ_REG(priv
, regINIT_STATUS
)) {
343 WRITE_REG(priv
, regINIT_SEMAPHORE
, 1);
345 release_firmware(fw
);
348 netdev_err(priv
->ndev
, "firmware loading failed\n");
350 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
351 READ_REG(priv
, regVPC
),
352 READ_REG(priv
, regVIC
),
353 READ_REG(priv
, regINIT_STATUS
), i
);
356 DBG("%s: firmware loading success\n", priv
->ndev
->name
);
361 static void bdx_restore_mac(struct net_device
*ndev
, struct bdx_priv
*priv
)
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv
, regUNC_MAC0_A
),
368 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
370 val
= (ndev
->dev_addr
[0] << 8) | (ndev
->dev_addr
[1]);
371 WRITE_REG(priv
, regUNC_MAC2_A
, val
);
372 val
= (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]);
373 WRITE_REG(priv
, regUNC_MAC1_A
, val
);
374 val
= (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]);
375 WRITE_REG(priv
, regUNC_MAC0_A
, val
);
377 DBG("mac0=%x mac1=%x mac2=%x\n",
378 READ_REG(priv
, regUNC_MAC0_A
),
379 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
384 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
385 * @priv: NIC private structure
387 static int bdx_hw_start(struct bdx_priv
*priv
)
390 struct net_device
*ndev
= priv
->ndev
;
393 bdx_link_changed(priv
);
395 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
396 WRITE_REG(priv
, regFRM_LENGTH
, 0X3FE0);
397 WRITE_REG(priv
, regPAUSE_QUANT
, 0x96);
398 WRITE_REG(priv
, regRX_FIFO_SECTION
, 0x800010);
399 WRITE_REG(priv
, regTX_FIFO_SECTION
, 0xE00010);
400 WRITE_REG(priv
, regRX_FULLNESS
, 0);
401 WRITE_REG(priv
, regTX_FULLNESS
, 0);
402 WRITE_REG(priv
, regCTRLST
,
403 regCTRLST_BASE
| regCTRLST_RX_ENA
| regCTRLST_TX_ENA
);
405 WRITE_REG(priv
, regVGLB
, 0);
406 WRITE_REG(priv
, regMAX_FRAME_A
,
407 priv
->rxf_fifo0
.m
.pktsz
& MAX_FRAME_AB_VAL
);
409 DBG("RDINTCM=%08x\n", priv
->rdintcm
); /*NOTE: test script uses this */
410 WRITE_REG(priv
, regRDINTCM0
, priv
->rdintcm
);
411 WRITE_REG(priv
, regRDINTCM2
, 0); /*cpu_to_le32(rcm.val)); */
413 DBG("TDINTCM=%08x\n", priv
->tdintcm
); /*NOTE: test script uses this */
414 WRITE_REG(priv
, regTDINTCM0
, priv
->tdintcm
); /* old val = 0x300064 */
416 /* Enable timer interrupt once in 2 secs. */
417 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
418 bdx_restore_mac(priv
->ndev
, priv
);
420 WRITE_REG(priv
, regGMAC_RXF_A
, GMAC_RX_FILTER_OSEN
|
421 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
);
423 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
425 rc
= request_irq(priv
->pdev
->irq
, bdx_isr_napi
, BDX_IRQ_TYPE
,
429 bdx_enable_interrupts(priv
);
437 static void bdx_hw_stop(struct bdx_priv
*priv
)
440 bdx_disable_interrupts(priv
);
441 free_irq(priv
->pdev
->irq
, priv
->ndev
);
443 netif_carrier_off(priv
->ndev
);
444 netif_stop_queue(priv
->ndev
);
449 static int bdx_hw_reset_direct(void __iomem
*regs
)
454 /* reset sequences: read, write 1, read, write 0 */
455 val
= readl(regs
+ regCLKPLL
);
456 writel((val
| CLKPLL_SFTRST
) + 0x8, regs
+ regCLKPLL
);
458 val
= readl(regs
+ regCLKPLL
);
459 writel(val
& ~CLKPLL_SFTRST
, regs
+ regCLKPLL
);
461 /* check that the PLLs are locked and reset ended */
462 for (i
= 0; i
< 70; i
++, mdelay(10))
463 if ((readl(regs
+ regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
464 /* do any PCI-E read transaction */
465 readl(regs
+ regRXD_CFG0_0
);
468 pr_err("HW reset failed\n");
469 return 1; /* failure */
472 static int bdx_hw_reset(struct bdx_priv
*priv
)
477 if (priv
->port
== 0) {
478 /* reset sequences: read, write 1, read, write 0 */
479 val
= READ_REG(priv
, regCLKPLL
);
480 WRITE_REG(priv
, regCLKPLL
, (val
| CLKPLL_SFTRST
) + 0x8);
482 val
= READ_REG(priv
, regCLKPLL
);
483 WRITE_REG(priv
, regCLKPLL
, val
& ~CLKPLL_SFTRST
);
485 /* check that the PLLs are locked and reset ended */
486 for (i
= 0; i
< 70; i
++, mdelay(10))
487 if ((READ_REG(priv
, regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
488 /* do any PCI-E read transaction */
489 READ_REG(priv
, regRXD_CFG0_0
);
492 pr_err("HW reset failed\n");
493 return 1; /* failure */
496 static int bdx_sw_reset(struct bdx_priv
*priv
)
501 /* 1. load MAC (obsolete) */
502 /* 2. disable Rx (and Tx) */
503 WRITE_REG(priv
, regGMAC_RXF_A
, 0);
505 /* 3. disable port */
506 WRITE_REG(priv
, regDIS_PORT
, 1);
507 /* 4. disable queue */
508 WRITE_REG(priv
, regDIS_QU
, 1);
509 /* 5. wait until hw is disabled */
510 for (i
= 0; i
< 50; i
++) {
511 if (READ_REG(priv
, regRST_PORT
) & 1)
516 netdev_err(priv
->ndev
, "SW reset timeout. continuing anyway\n");
518 /* 6. disable intrs */
519 WRITE_REG(priv
, regRDINTCM0
, 0);
520 WRITE_REG(priv
, regTDINTCM0
, 0);
521 WRITE_REG(priv
, regIMR
, 0);
522 READ_REG(priv
, regISR
);
525 WRITE_REG(priv
, regRST_QU
, 1);
527 WRITE_REG(priv
, regRST_PORT
, 1);
528 /* 9. zero all read and write pointers */
529 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
530 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
531 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
532 WRITE_REG(priv
, i
, 0);
533 /* 10. unseet port disable */
534 WRITE_REG(priv
, regDIS_PORT
, 0);
535 /* 11. unset queue disable */
536 WRITE_REG(priv
, regDIS_QU
, 0);
537 /* 12. unset queue reset */
538 WRITE_REG(priv
, regRST_QU
, 0);
539 /* 13. unset port reset */
540 WRITE_REG(priv
, regRST_PORT
, 0);
542 /* skiped. will be done later */
543 /* 15. save MAC (obsolete) */
544 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
545 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
550 /* bdx_reset - performs right type of reset depending on hw type */
551 static int bdx_reset(struct bdx_priv
*priv
)
554 RET((priv
->pdev
->device
== 0x3009)
556 : bdx_sw_reset(priv
));
560 * bdx_close - Disables a network interface
561 * @netdev: network interface device structure
563 * Returns 0, this is not allowed to fail
565 * The close entry point is called when an interface is de-activated
566 * by the OS. The hardware is still under the drivers control, but
567 * needs to be disabled. A global MAC reset is issued to stop the
568 * hardware, and all transmit and receive resources are freed.
570 static int bdx_close(struct net_device
*ndev
)
572 struct bdx_priv
*priv
= NULL
;
575 priv
= netdev_priv(ndev
);
577 napi_disable(&priv
->napi
);
587 * bdx_open - Called when a network interface is made active
588 * @netdev: network interface device structure
590 * Returns 0 on success, negative value on failure
592 * The open entry point is called when a network interface is made
593 * active by the system (IFF_UP). At this point all resources needed
594 * for transmit and receive operations are allocated, the interrupt
595 * handler is registered with the OS, the watchdog timer is started,
596 * and the stack is notified that the interface is ready.
598 static int bdx_open(struct net_device
*ndev
)
600 struct bdx_priv
*priv
;
604 priv
= netdev_priv(ndev
);
606 if (netif_running(ndev
))
607 netif_stop_queue(priv
->ndev
);
609 if ((rc
= bdx_tx_init(priv
)) ||
610 (rc
= bdx_rx_init(priv
)) ||
611 (rc
= bdx_fw_load(priv
)))
614 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
616 rc
= bdx_hw_start(priv
);
620 napi_enable(&priv
->napi
);
622 print_fw_id(priv
->nic
);
631 static int bdx_range_check(struct bdx_priv
*priv
, u32 offset
)
633 return (offset
> (u32
) (BDX_REGS_SIZE
/ priv
->nic
->port_num
)) ?
637 static int bdx_ioctl_priv(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
639 struct bdx_priv
*priv
= netdev_priv(ndev
);
645 DBG("jiffies=%ld cmd=%d\n", jiffies
, cmd
);
646 if (cmd
!= SIOCDEVPRIVATE
) {
647 error
= copy_from_user(data
, ifr
->ifr_data
, sizeof(data
));
649 pr_err("can't copy from user\n");
652 DBG("%d 0x%x 0x%x\n", data
[0], data
[1], data
[2]);
657 if (!capable(CAP_SYS_RAWIO
))
663 error
= bdx_range_check(priv
, data
[1]);
666 data
[2] = READ_REG(priv
, data
[1]);
667 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data
[1], data
[2],
669 error
= copy_to_user(ifr
->ifr_data
, data
, sizeof(data
));
675 error
= bdx_range_check(priv
, data
[1]);
678 WRITE_REG(priv
, data
[1], data
[2]);
679 DBG("write_reg(0x%x, 0x%x)\n", data
[1], data
[2]);
688 static int bdx_ioctl(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
691 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
692 RET(bdx_ioctl_priv(ndev
, ifr
, cmd
));
698 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
699 * @ndev: network device
701 * @op: add or kill operation
703 * Passes VLAN filter table to hardware
705 static void __bdx_vlan_rx_vid(struct net_device
*ndev
, uint16_t vid
, int enable
)
707 struct bdx_priv
*priv
= netdev_priv(ndev
);
711 DBG2("vid=%d value=%d\n", (int)vid
, enable
);
712 if (unlikely(vid
>= 4096)) {
713 pr_err("invalid VID: %u (> 4096)\n", vid
);
716 reg
= regVLAN_0
+ (vid
/ 32) * 4;
718 val
= READ_REG(priv
, reg
);
719 DBG2("reg=%x, val=%x, bit=%d\n", reg
, val
, bit
);
724 DBG2("new val %x\n", val
);
725 WRITE_REG(priv
, reg
, val
);
730 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
731 * @ndev: network device
732 * @vid: VLAN vid to add
734 static int bdx_vlan_rx_add_vid(struct net_device
*ndev
, __be16 proto
, u16 vid
)
736 __bdx_vlan_rx_vid(ndev
, vid
, 1);
741 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
742 * @ndev: network device
743 * @vid: VLAN vid to kill
745 static int bdx_vlan_rx_kill_vid(struct net_device
*ndev
, __be16 proto
, u16 vid
)
747 __bdx_vlan_rx_vid(ndev
, vid
, 0);
752 * bdx_change_mtu - Change the Maximum Transfer Unit
753 * @netdev: network interface device structure
754 * @new_mtu: new value for maximum frame size
756 * Returns 0 on success, negative on failure
758 static int bdx_change_mtu(struct net_device
*ndev
, int new_mtu
)
763 if (netif_running(ndev
)) {
770 static void bdx_setmulti(struct net_device
*ndev
)
772 struct bdx_priv
*priv
= netdev_priv(ndev
);
775 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
| GMAC_RX_FILTER_OSEN
;
779 /* IMF - imperfect (hash) rx multicat filter */
780 /* PMF - perfect rx multicat filter */
782 /* FIXME: RXE(OFF) */
783 if (ndev
->flags
& IFF_PROMISC
) {
784 rxf_val
|= GMAC_RX_FILTER_PRM
;
785 } else if (ndev
->flags
& IFF_ALLMULTI
) {
786 /* set IMF to accept all multicast frmaes */
787 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
788 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, ~0);
789 } else if (!netdev_mc_empty(ndev
)) {
791 struct netdev_hw_addr
*ha
;
794 /* set IMF to deny all multicast frames */
795 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
796 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, 0);
797 /* set PMF to deny all multicast frames */
798 for (i
= 0; i
< MAC_MCST_NUM
; i
++) {
799 WRITE_REG(priv
, regRX_MAC_MCST0
+ i
* 8, 0);
800 WRITE_REG(priv
, regRX_MAC_MCST1
+ i
* 8, 0);
803 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
804 /* TBD: sort addresses and write them in ascending order
805 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
806 * multicast frames throu IMF */
807 /* accept the rest of addresses throu IMF */
808 netdev_for_each_mc_addr(ha
, ndev
) {
810 for (i
= 0; i
< ETH_ALEN
; i
++)
812 reg
= regRX_MCST_HASH0
+ ((hash
>> 5) << 2);
813 val
= READ_REG(priv
, reg
);
814 val
|= (1 << (hash
% 32));
815 WRITE_REG(priv
, reg
, val
);
819 DBG("only own mac %d\n", netdev_mc_count(ndev
));
820 rxf_val
|= GMAC_RX_FILTER_AB
;
822 WRITE_REG(priv
, regGMAC_RXF_A
, rxf_val
);
828 static int bdx_set_mac(struct net_device
*ndev
, void *p
)
830 struct bdx_priv
*priv
= netdev_priv(ndev
);
831 struct sockaddr
*addr
= p
;
835 if (netif_running(dev))
838 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
839 bdx_restore_mac(ndev
, priv
);
843 static int bdx_read_mac(struct bdx_priv
*priv
)
845 u16 macAddress
[3], i
;
848 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
849 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
850 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
851 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
852 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
853 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
854 for (i
= 0; i
< 3; i
++) {
855 priv
->ndev
->dev_addr
[i
* 2 + 1] = macAddress
[i
];
856 priv
->ndev
->dev_addr
[i
* 2] = macAddress
[i
] >> 8;
861 static u64
bdx_read_l2stat(struct bdx_priv
*priv
, int reg
)
865 val
= READ_REG(priv
, reg
);
866 val
|= ((u64
) READ_REG(priv
, reg
+ 8)) << 32;
870 /*Do the statistics-update work*/
871 static void bdx_update_stats(struct bdx_priv
*priv
)
873 struct bdx_stats
*stats
= &priv
->hw_stats
;
874 u64
*stats_vector
= (u64
*) stats
;
878 /*Fill HW structure */
880 /*First 12 statistics - 0x7200 - 0x72B0 */
881 for (i
= 0; i
< 12; i
++) {
882 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
885 BDX_ASSERT(addr
!= 0x72C0);
886 /* 0x72C0-0x72E0 RSRV */
888 for (; i
< 16; i
++) {
889 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
892 BDX_ASSERT(addr
!= 0x7330);
893 /* 0x7330-0x7360 RSRV */
895 for (; i
< 19; i
++) {
896 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
899 BDX_ASSERT(addr
!= 0x73A0);
900 /* 0x73A0-0x73B0 RSRV */
902 for (; i
< 23; i
++) {
903 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
906 BDX_ASSERT(addr
!= 0x7400);
907 BDX_ASSERT((sizeof(struct bdx_stats
) / sizeof(u64
)) != i
);
910 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
912 static void print_rxfd(struct rxf_desc
*rxfd
);
914 /*************************************************************************
916 *************************************************************************/
918 static void bdx_rxdb_destroy(struct rxdb
*db
)
923 static struct rxdb
*bdx_rxdb_create(int nelem
)
928 db
= vmalloc(sizeof(struct rxdb
)
929 + (nelem
* sizeof(int))
930 + (nelem
* sizeof(struct rx_map
)));
931 if (likely(db
!= NULL
)) {
932 db
->stack
= (int *)(db
+ 1);
933 db
->elems
= (void *)(db
->stack
+ nelem
);
936 for (i
= 0; i
< nelem
; i
++)
937 db
->stack
[i
] = nelem
- i
- 1; /* to make first allocs
944 static inline int bdx_rxdb_alloc_elem(struct rxdb
*db
)
946 BDX_ASSERT(db
->top
<= 0);
947 return db
->stack
[--(db
->top
)];
950 static inline void *bdx_rxdb_addr_elem(struct rxdb
*db
, int n
)
952 BDX_ASSERT((n
< 0) || (n
>= db
->nelem
));
953 return db
->elems
+ n
;
956 static inline int bdx_rxdb_available(struct rxdb
*db
)
961 static inline void bdx_rxdb_free_elem(struct rxdb
*db
, int n
)
963 BDX_ASSERT((n
>= db
->nelem
) || (n
< 0));
964 db
->stack
[(db
->top
)++] = n
;
967 /*************************************************************************
969 *************************************************************************/
972 * bdx_rx_init - initialize RX all related HW and SW resources
973 * @priv: NIC private structure
975 * Returns 0 on success, negative value on failure
977 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
978 * skb for rx. It assumes that Rx is desabled in HW
979 * funcs are grouped for better cache usage
981 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
982 * filled and packets will be dropped by nic without getting into host or
983 * cousing interrupt. Anyway, in that condition, host has no chance to process
984 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
987 /* TBD: ensure proper packet size */
989 static int bdx_rx_init(struct bdx_priv
*priv
)
993 if (bdx_fifo_init(priv
, &priv
->rxd_fifo0
.m
, priv
->rxd_size
,
994 regRXD_CFG0_0
, regRXD_CFG1_0
,
995 regRXD_RPTR_0
, regRXD_WPTR_0
))
997 if (bdx_fifo_init(priv
, &priv
->rxf_fifo0
.m
, priv
->rxf_size
,
998 regRXF_CFG0_0
, regRXF_CFG1_0
,
999 regRXF_RPTR_0
, regRXF_WPTR_0
))
1001 priv
->rxdb
= bdx_rxdb_create(priv
->rxf_fifo0
.m
.memsz
/
1002 sizeof(struct rxf_desc
));
1006 priv
->rxf_fifo0
.m
.pktsz
= priv
->ndev
->mtu
+ VLAN_ETH_HLEN
;
1010 netdev_err(priv
->ndev
, "Rx init failed\n");
1015 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1016 * @priv: NIC private structure
1019 static void bdx_rx_free_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1022 struct rxdb
*db
= priv
->rxdb
;
1026 DBG("total=%d free=%d busy=%d\n", db
->nelem
, bdx_rxdb_available(db
),
1027 db
->nelem
- bdx_rxdb_available(db
));
1028 while (bdx_rxdb_available(db
) > 0) {
1029 i
= bdx_rxdb_alloc_elem(db
);
1030 dm
= bdx_rxdb_addr_elem(db
, i
);
1033 for (i
= 0; i
< db
->nelem
; i
++) {
1034 dm
= bdx_rxdb_addr_elem(db
, i
);
1036 pci_unmap_single(priv
->pdev
,
1037 dm
->dma
, f
->m
.pktsz
,
1038 PCI_DMA_FROMDEVICE
);
1039 dev_kfree_skb(dm
->skb
);
1045 * bdx_rx_free - release all Rx resources
1046 * @priv: NIC private structure
1048 * It assumes that Rx is desabled in HW
1050 static void bdx_rx_free(struct bdx_priv
*priv
)
1054 bdx_rx_free_skbs(priv
, &priv
->rxf_fifo0
);
1055 bdx_rxdb_destroy(priv
->rxdb
);
1058 bdx_fifo_free(priv
, &priv
->rxf_fifo0
.m
);
1059 bdx_fifo_free(priv
, &priv
->rxd_fifo0
.m
);
1064 /*************************************************************************
1066 *************************************************************************/
1069 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1070 * @priv: nic's private structure
1071 * @f: RXF fifo that needs skbs
1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074 * skb's virtual and physical addresses are stored in skb db.
1075 * To calculate free space, func uses cached values of RPTR and WPTR
1076 * When needed, it also updates RPTR and WPTR.
1079 /* TBD: do not update WPTR if no desc were written */
1081 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1083 struct sk_buff
*skb
;
1084 struct rxf_desc
*rxfd
;
1086 int dno
, delta
, idx
;
1087 struct rxdb
*db
= priv
->rxdb
;
1090 dno
= bdx_rxdb_available(db
) - 1;
1092 skb
= netdev_alloc_skb(priv
->ndev
, f
->m
.pktsz
+ NET_IP_ALIGN
);
1096 skb_reserve(skb
, NET_IP_ALIGN
);
1098 idx
= bdx_rxdb_alloc_elem(db
);
1099 dm
= bdx_rxdb_addr_elem(db
, idx
);
1100 dm
->dma
= pci_map_single(priv
->pdev
,
1101 skb
->data
, f
->m
.pktsz
,
1102 PCI_DMA_FROMDEVICE
);
1104 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1105 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1107 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1108 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1109 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1112 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1113 delta
= f
->m
.wptr
- f
->m
.memsz
;
1114 if (unlikely(delta
>= 0)) {
1117 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1118 DBG("wrapped descriptor\n");
1123 /*TBD: to do - delayed rxf wptr like in txd */
1124 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1129 NETIF_RX_MUX(struct bdx_priv
*priv
, u32 rxd_val1
, u16 rxd_vlan
,
1130 struct sk_buff
*skb
)
1133 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1
));
1134 if (GET_RXD_VTAG(rxd_val1
)) {
1135 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1137 GET_RXD_VLAN_ID(rxd_vlan
),
1138 GET_RXD_VTAG(rxd_val1
));
1139 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), GET_RXD_VLAN_TCI(rxd_vlan
));
1141 netif_receive_skb(skb
);
1144 static void bdx_recycle_skb(struct bdx_priv
*priv
, struct rxd_desc
*rxdd
)
1146 struct rxf_desc
*rxfd
;
1153 DBG("priv=%p rxdd=%p\n", priv
, rxdd
);
1154 f
= &priv
->rxf_fifo0
;
1156 DBG("db=%p f=%p\n", db
, f
);
1157 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1159 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1160 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1161 rxfd
->va_lo
= rxdd
->va_lo
;
1162 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1163 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1164 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1167 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1168 delta
= f
->m
.wptr
- f
->m
.memsz
;
1169 if (unlikely(delta
>= 0)) {
1172 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1173 DBG("wrapped descriptor\n");
1180 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1181 * NOTE: a special treatment is given to non-continuous descriptors
1182 * that start near the end, wraps around and continue at the beginning. a second
1183 * part is copied right after the first, and then descriptor is interpreted as
1184 * normal. fifo has an extra space to allow such operations
1185 * @priv: nic's private structure
1186 * @f: RXF fifo that needs skbs
1187 * @budget: maximum number of packets to receive
1190 /* TBD: replace memcpy func call by explicite inline asm */
1192 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
)
1194 struct net_device
*ndev
= priv
->ndev
;
1195 struct sk_buff
*skb
, *skb2
;
1196 struct rxd_desc
*rxdd
;
1198 struct rxf_fifo
*rxf_fifo
;
1201 int max_done
= BDX_MAX_RX_DONE
;
1202 struct rxdb
*db
= NULL
;
1203 /* Unmarshalled descriptor - copy of descriptor in host order */
1211 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_WR_PTR
;
1213 size
= f
->m
.wptr
- f
->m
.rptr
;
1215 size
= f
->m
.memsz
+ size
; /* size is negative :-) */
1219 rxdd
= (struct rxd_desc
*)(f
->m
.va
+ f
->m
.rptr
);
1220 rxd_val1
= CPU_CHIP_SWAP32(rxdd
->rxd_val1
);
1222 len
= CPU_CHIP_SWAP16(rxdd
->len
);
1224 rxd_vlan
= CPU_CHIP_SWAP16(rxdd
->rxd_vlan
);
1226 print_rxdd(rxdd
, rxd_val1
, len
, rxd_vlan
);
1228 tmp_len
= GET_RXD_BC(rxd_val1
) << 3;
1229 BDX_ASSERT(tmp_len
<= 0);
1231 if (size
< 0) /* test for partially arrived descriptor */
1234 f
->m
.rptr
+= tmp_len
;
1236 tmp_len
= f
->m
.rptr
- f
->m
.memsz
;
1237 if (unlikely(tmp_len
>= 0)) {
1238 f
->m
.rptr
= tmp_len
;
1240 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241 f
->m
.rptr
, tmp_len
);
1242 memcpy(f
->m
.va
+ f
->m
.memsz
, f
->m
.va
, tmp_len
);
1246 if (unlikely(GET_RXD_ERR(rxd_val1
))) {
1247 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1
));
1248 ndev
->stats
.rx_errors
++;
1249 bdx_recycle_skb(priv
, rxdd
);
1253 rxf_fifo
= &priv
->rxf_fifo0
;
1255 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1258 if (len
< BDX_COPYBREAK
&&
1259 (skb2
= netdev_alloc_skb(priv
->ndev
, len
+ NET_IP_ALIGN
))) {
1260 skb_reserve(skb2
, NET_IP_ALIGN
);
1261 /*skb_put(skb2, len); */
1262 pci_dma_sync_single_for_cpu(priv
->pdev
,
1263 dm
->dma
, rxf_fifo
->m
.pktsz
,
1264 PCI_DMA_FROMDEVICE
);
1265 memcpy(skb2
->data
, skb
->data
, len
);
1266 bdx_recycle_skb(priv
, rxdd
);
1269 pci_unmap_single(priv
->pdev
,
1270 dm
->dma
, rxf_fifo
->m
.pktsz
,
1271 PCI_DMA_FROMDEVICE
);
1272 bdx_rxdb_free_elem(db
, rxdd
->va_lo
);
1275 ndev
->stats
.rx_bytes
+= len
;
1278 skb
->protocol
= eth_type_trans(skb
, ndev
);
1280 /* Non-IP packets aren't checksum-offloaded */
1281 if (GET_RXD_PKT_ID(rxd_val1
) == 0)
1282 skb_checksum_none_assert(skb
);
1284 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1286 NETIF_RX_MUX(priv
, rxd_val1
, rxd_vlan
, skb
);
1288 if (++done
>= max_done
)
1292 ndev
->stats
.rx_packets
+= done
;
1294 /* FIXME: do smth to minimize pci accesses */
1295 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1297 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
1302 /*************************************************************************
1303 * Debug / Temprorary Code *
1304 *************************************************************************/
1305 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
1308 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309 GET_RXD_BC(rxd_val1
), GET_RXD_RXFQ(rxd_val1
), GET_RXD_TO(rxd_val1
),
1310 GET_RXD_TYPE(rxd_val1
), GET_RXD_ERR(rxd_val1
),
1311 GET_RXD_RXP(rxd_val1
), GET_RXD_PKT_ID(rxd_val1
),
1312 GET_RXD_VTAG(rxd_val1
), len
, GET_RXD_VLAN_ID(rxd_vlan
),
1313 GET_RXD_CFI(rxd_vlan
), GET_RXD_PRIO(rxd_vlan
), rxdd
->va_lo
,
1317 static void print_rxfd(struct rxf_desc
*rxfd
)
1319 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1320 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321 rxfd
->info
, rxfd
->va_lo
, rxfd
->pa_lo
, rxfd
->pa_hi
, rxfd
->len
);
1325 * TX HW/SW interaction overview
1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327 * There are 2 types of TX communication channels between driver and NIC.
1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1331 * Currently NIC supports TSO, checksuming and gather DMA
1332 * UFO and IP fragmentation is on the way
1334 * RX SW Data Structures
1335 * ~~~~~~~~~~~~~~~~~~~~~
1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338 * acknowledges sent by TXF descriptors.
1339 * Implemented as cyclic buffer.
1340 * fifo - keeps info about fifo's size and location, relevant HW registers,
1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342 * Implemented as simple struct.
1344 * TX SW Execution Flow
1345 * ~~~~~~~~~~~~~~~~~~~~
1346 * OS calls driver's hard_xmit method with packet to sent.
1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348 * by updating TXD WPTR.
1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350 * To prevent TXD fifo overflow without reading HW registers every time,
1351 * SW deploys "tx level" technique.
1352 * Upon strart up, tx level is initialized to TXD fifo length.
1353 * For every sent packet, SW gets its TXD descriptor sizei
1354 * (from precalculated array) and substructs it from tx level.
1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356 * original TXD descriptor from txdb and adds it to tx level.
1357 * When Tx level drops under some predefined treshhold, the driver
1358 * stops the TX queue. When TX level rises above that level,
1359 * the tx queue is enabled again.
1361 * This technique avoids eccessive reading of RPTR and WPTR registers.
1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1365 /*************************************************************************
1367 *************************************************************************/
1368 static inline int bdx_tx_db_size(struct txdb
*db
)
1370 int taken
= db
->wptr
- db
->rptr
;
1372 taken
= db
->size
+ 1 + taken
; /* (size + 1) equals memsz */
1374 return db
->size
- taken
;
1378 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1380 * @pptr: read or write pointer
1382 static inline void __bdx_tx_db_ptr_next(struct txdb
*db
, struct tx_map
**pptr
)
1384 BDX_ASSERT(db
== NULL
|| pptr
== NULL
); /* sanity */
1386 BDX_ASSERT(*pptr
!= db
->rptr
&& /* expect either read */
1387 *pptr
!= db
->wptr
); /* or write pointer */
1389 BDX_ASSERT(*pptr
< db
->start
|| /* pointer has to be */
1390 *pptr
>= db
->end
); /* in range */
1393 if (unlikely(*pptr
== db
->end
))
1398 * bdx_tx_db_inc_rptr - increment read pointer
1401 static inline void bdx_tx_db_inc_rptr(struct txdb
*db
)
1403 BDX_ASSERT(db
->rptr
== db
->wptr
); /* can't read from empty db */
1404 __bdx_tx_db_ptr_next(db
, &db
->rptr
);
1408 * bdx_tx_db_inc_wptr - increment write pointer
1411 static inline void bdx_tx_db_inc_wptr(struct txdb
*db
)
1413 __bdx_tx_db_ptr_next(db
, &db
->wptr
);
1414 BDX_ASSERT(db
->rptr
== db
->wptr
); /* we can not get empty db as
1415 a result of write */
1419 * bdx_tx_db_init - creates and initializes tx db
1421 * @sz_type: size of tx fifo
1423 * Returns 0 on success, error code otherwise
1425 static int bdx_tx_db_init(struct txdb
*d
, int sz_type
)
1427 int memsz
= FIFO_SIZE
* (1 << (sz_type
+ 1));
1429 d
->start
= vmalloc(memsz
);
1434 * In order to differentiate between db is empty and db is full
1435 * states at least one element should always be empty in order to
1436 * avoid rptr == wptr which means db is empty
1438 d
->size
= memsz
/ sizeof(struct tx_map
) - 1;
1439 d
->end
= d
->start
+ d
->size
+ 1; /* just after last element */
1441 /* all dbs are created equally empty */
1449 * bdx_tx_db_close - closes tx db and frees all memory
1452 static void bdx_tx_db_close(struct txdb
*d
)
1454 BDX_ASSERT(d
== NULL
);
1460 /*************************************************************************
1462 *************************************************************************/
1464 /* sizes of tx desc (including padding if needed) as function
1465 * of skb's frag number */
1468 u16 qwords
; /* qword = 64 bit */
1469 } txd_sizes
[MAX_SKB_FRAGS
+ 1];
1472 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1473 * @priv: NIC private structure
1474 * @skb: socket buffer to map
1475 * @txdd: TX descriptor to use
1477 * It makes dma mappings for skb's data blocks and writes them to PBL of
1478 * new tx descriptor. It also stores them in the tx db, so they could be
1479 * unmaped after data was sent. It is reponsibility of a caller to make
1480 * sure that there is enough space in the tx db. Last element holds pointer
1481 * to skb itself and marked with zero length
1484 bdx_tx_map_skb(struct bdx_priv
*priv
, struct sk_buff
*skb
,
1485 struct txd_desc
*txdd
)
1487 struct txdb
*db
= &priv
->txdb
;
1488 struct pbl
*pbl
= &txdd
->pbl
[0];
1489 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1492 db
->wptr
->len
= skb_headlen(skb
);
1493 db
->wptr
->addr
.dma
= pci_map_single(priv
->pdev
, skb
->data
,
1494 db
->wptr
->len
, PCI_DMA_TODEVICE
);
1495 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1496 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1497 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1498 DBG("=== pbl len: 0x%x ================\n", pbl
->len
);
1499 DBG("=== pbl pa_lo: 0x%x ================\n", pbl
->pa_lo
);
1500 DBG("=== pbl pa_hi: 0x%x ================\n", pbl
->pa_hi
);
1501 bdx_tx_db_inc_wptr(db
);
1503 for (i
= 0; i
< nr_frags
; i
++) {
1504 const skb_frag_t
*frag
;
1506 frag
= &skb_shinfo(skb
)->frags
[i
];
1507 db
->wptr
->len
= skb_frag_size(frag
);
1508 db
->wptr
->addr
.dma
= skb_frag_dma_map(&priv
->pdev
->dev
, frag
,
1509 0, skb_frag_size(frag
),
1513 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1514 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1515 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1516 bdx_tx_db_inc_wptr(db
);
1519 /* add skb clean up info. */
1520 db
->wptr
->len
= -txd_sizes
[nr_frags
].bytes
;
1521 db
->wptr
->addr
.skb
= skb
;
1522 bdx_tx_db_inc_wptr(db
);
1525 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1526 * number of frags is used as index to fetch correct descriptors size,
1527 * instead of calculating it each time */
1528 static void __init
init_txd_sizes(void)
1532 /* 7 - is number of lwords in txd with one phys buffer
1533 * 3 - is number of lwords used for every additional phys buffer */
1534 for (i
= 0; i
< MAX_SKB_FRAGS
+ 1; i
++) {
1535 lwords
= 7 + (i
* 3);
1537 lwords
++; /* pad it with 1 lword */
1538 txd_sizes
[i
].qwords
= lwords
>> 1;
1539 txd_sizes
[i
].bytes
= lwords
<< 2;
1543 /* bdx_tx_init - initialize all Tx related stuff.
1544 * Namely, TXD and TXF fifos, database etc */
1545 static int bdx_tx_init(struct bdx_priv
*priv
)
1547 if (bdx_fifo_init(priv
, &priv
->txd_fifo0
.m
, priv
->txd_size
,
1549 regTXD_CFG1_0
, regTXD_RPTR_0
, regTXD_WPTR_0
))
1551 if (bdx_fifo_init(priv
, &priv
->txf_fifo0
.m
, priv
->txf_size
,
1553 regTXF_CFG1_0
, regTXF_RPTR_0
, regTXF_WPTR_0
))
1556 /* The TX db has to keep mappings for all packets sent (on TxD)
1557 * and not yet reclaimed (on TxF) */
1558 if (bdx_tx_db_init(&priv
->txdb
, max(priv
->txd_size
, priv
->txf_size
)))
1561 priv
->tx_level
= BDX_MAX_TX_LEVEL
;
1562 #ifdef BDX_DELAY_WPTR
1563 priv
->tx_update_mark
= priv
->tx_level
- 1024;
1568 netdev_err(priv
->ndev
, "Tx init failed\n");
1573 * bdx_tx_space - calculates available space in TX fifo
1574 * @priv: NIC private structure
1576 * Returns available space in TX fifo in bytes
1578 static inline int bdx_tx_space(struct bdx_priv
*priv
)
1580 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1583 f
->m
.rptr
= READ_REG(priv
, f
->m
.reg_RPTR
) & TXF_WPTR_WR_PTR
;
1584 fsize
= f
->m
.rptr
- f
->m
.wptr
;
1586 fsize
= f
->m
.memsz
+ fsize
;
1591 * bdx_tx_transmit - send packet to NIC
1592 * @skb: packet to send
1593 * @ndev: network device assigned to NIC
1595 * o NETDEV_TX_OK everything ok.
1596 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1597 * Usually a bug, means queue start/stop flow control is broken in
1598 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1600 static netdev_tx_t
bdx_tx_transmit(struct sk_buff
*skb
,
1601 struct net_device
*ndev
)
1603 struct bdx_priv
*priv
= netdev_priv(ndev
);
1604 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1605 int txd_checksum
= 7; /* full checksum */
1607 int txd_vlan_id
= 0;
1611 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1612 struct txd_desc
*txdd
;
1614 unsigned long flags
;
1617 local_irq_save(flags
);
1618 spin_lock(&priv
->tx_lock
);
1620 /* build tx descriptor */
1621 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* started with valid wptr */
1622 txdd
= (struct txd_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1623 if (unlikely(skb
->ip_summed
!= CHECKSUM_PARTIAL
))
1626 if (skb_shinfo(skb
)->gso_size
) {
1627 txd_mss
= skb_shinfo(skb
)->gso_size
;
1629 DBG("skb %p skb len %d gso size = %d\n", skb
, skb
->len
,
1633 if (skb_vlan_tag_present(skb
)) {
1634 /*Cut VLAN ID to 12 bits */
1635 txd_vlan_id
= skb_vlan_tag_get(skb
) & BITS_MASK(12);
1639 txdd
->length
= CPU_CHIP_SWAP16(skb
->len
);
1640 txdd
->mss
= CPU_CHIP_SWAP16(txd_mss
);
1642 CPU_CHIP_SWAP32(TXD_W1_VAL
1643 (txd_sizes
[nr_frags
].qwords
, txd_checksum
, txd_vtag
,
1644 txd_lgsnd
, txd_vlan_id
));
1645 DBG("=== TxD desc =====================\n");
1646 DBG("=== w1: 0x%x ================\n", txdd
->txd_val1
);
1647 DBG("=== w2: mss 0x%x len 0x%x\n", txdd
->mss
, txdd
->length
);
1649 bdx_tx_map_skb(priv
, skb
, txdd
);
1651 /* increment TXD write pointer. In case of
1652 fifo wrapping copy reminder of the descriptor
1654 f
->m
.wptr
+= txd_sizes
[nr_frags
].bytes
;
1655 len
= f
->m
.wptr
- f
->m
.memsz
;
1656 if (unlikely(len
>= 0)) {
1659 BDX_ASSERT(len
> f
->m
.memsz
);
1660 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, len
);
1663 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* finished with valid wptr */
1665 priv
->tx_level
-= txd_sizes
[nr_frags
].bytes
;
1666 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1667 #ifdef BDX_DELAY_WPTR
1668 if (priv
->tx_level
> priv
->tx_update_mark
) {
1669 /* Force memory writes to complete before letting h/w
1670 know there are new descriptors to fetch.
1671 (might be needed on platforms like IA64)
1673 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1675 if (priv
->tx_noupd
++ > BDX_NO_UPD_PACKETS
) {
1677 WRITE_REG(priv
, f
->m
.reg_WPTR
,
1678 f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1682 /* Force memory writes to complete before letting h/w
1683 know there are new descriptors to fetch.
1684 (might be needed on platforms like IA64)
1686 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1690 netif_trans_update(ndev
); /* NETIF_F_LLTX driver :( */
1692 ndev
->stats
.tx_packets
++;
1693 ndev
->stats
.tx_bytes
+= skb
->len
;
1695 if (priv
->tx_level
< BDX_MIN_TX_LEVEL
) {
1696 DBG("%s: %s: TX Q STOP level %d\n",
1697 BDX_DRV_NAME
, ndev
->name
, priv
->tx_level
);
1698 netif_stop_queue(ndev
);
1701 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1702 return NETDEV_TX_OK
;
1706 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1707 * @priv: bdx adapter
1709 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1710 * that those packets were sent
1712 static void bdx_tx_cleanup(struct bdx_priv
*priv
)
1714 struct txf_fifo
*f
= &priv
->txf_fifo0
;
1715 struct txdb
*db
= &priv
->txdb
;
1719 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_MASK
;
1720 BDX_ASSERT(f
->m
.rptr
>= f
->m
.memsz
); /* started with valid rptr */
1722 while (f
->m
.wptr
!= f
->m
.rptr
) {
1723 f
->m
.rptr
+= BDX_TXF_DESC_SZ
;
1724 f
->m
.rptr
&= f
->m
.size_mask
;
1726 /* unmap all the fragments */
1727 /* first has to come tx_maps containing dma */
1728 BDX_ASSERT(db
->rptr
->len
== 0);
1730 BDX_ASSERT(db
->rptr
->addr
.dma
== 0);
1731 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1732 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1733 bdx_tx_db_inc_rptr(db
);
1734 } while (db
->rptr
->len
> 0);
1735 tx_level
-= db
->rptr
->len
; /* '-' koz len is negative */
1737 /* now should come skb pointer - free it */
1738 dev_consume_skb_irq(db
->rptr
->addr
.skb
);
1739 bdx_tx_db_inc_rptr(db
);
1742 /* let h/w know which TXF descriptors were cleaned */
1743 BDX_ASSERT((f
->m
.wptr
& TXF_WPTR_WR_PTR
) >= f
->m
.memsz
);
1744 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1746 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1747 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1748 spin_lock(&priv
->tx_lock
);
1749 priv
->tx_level
+= tx_level
;
1750 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1751 #ifdef BDX_DELAY_WPTR
1752 if (priv
->tx_noupd
) {
1754 WRITE_REG(priv
, priv
->txd_fifo0
.m
.reg_WPTR
,
1755 priv
->txd_fifo0
.m
.wptr
& TXF_WPTR_WR_PTR
);
1759 if (unlikely(netif_queue_stopped(priv
->ndev
) &&
1760 netif_carrier_ok(priv
->ndev
) &&
1761 (priv
->tx_level
>= BDX_MIN_TX_LEVEL
))) {
1762 DBG("%s: %s: TX Q WAKE level %d\n",
1763 BDX_DRV_NAME
, priv
->ndev
->name
, priv
->tx_level
);
1764 netif_wake_queue(priv
->ndev
);
1766 spin_unlock(&priv
->tx_lock
);
1770 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1771 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1773 static void bdx_tx_free_skbs(struct bdx_priv
*priv
)
1775 struct txdb
*db
= &priv
->txdb
;
1778 while (db
->rptr
!= db
->wptr
) {
1779 if (likely(db
->rptr
->len
))
1780 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1781 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1783 dev_kfree_skb(db
->rptr
->addr
.skb
);
1784 bdx_tx_db_inc_rptr(db
);
1789 /* bdx_tx_free - frees all Tx resources */
1790 static void bdx_tx_free(struct bdx_priv
*priv
)
1793 bdx_tx_free_skbs(priv
);
1794 bdx_fifo_free(priv
, &priv
->txd_fifo0
.m
);
1795 bdx_fifo_free(priv
, &priv
->txf_fifo0
.m
);
1796 bdx_tx_db_close(&priv
->txdb
);
1800 * bdx_tx_push_desc - push descriptor to TxD fifo
1801 * @priv: NIC private structure
1802 * @data: desc's data
1803 * @size: desc's size
1805 * Pushes desc to TxD fifo and overlaps it if needed.
1806 * NOTE: this func does not check for available space. this is responsibility
1807 * of the caller. Neither does it check that data size is smaller than
1810 static void bdx_tx_push_desc(struct bdx_priv
*priv
, void *data
, int size
)
1812 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1813 int i
= f
->m
.memsz
- f
->m
.wptr
;
1819 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, size
);
1822 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, i
);
1823 f
->m
.wptr
= size
- i
;
1824 memcpy(f
->m
.va
, data
+ i
, f
->m
.wptr
);
1826 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1830 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1831 * @priv: NIC private structure
1832 * @data: desc's data
1833 * @size: desc's size
1835 * NOTE: this func does check for available space and, if necessary, waits for
1836 * NIC to read existing data before writing new one.
1838 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
)
1844 /* we substruct 8 because when fifo is full rptr == wptr
1845 which also means that fifo is empty, we can understand
1846 the difference, but could hw do the same ??? :) */
1847 int avail
= bdx_tx_space(priv
) - 8;
1849 if (timer
++ > 300) { /* prevent endless loop */
1850 DBG("timeout while writing desc to TxD fifo\n");
1853 udelay(50); /* give hw a chance to clean fifo */
1856 avail
= min(avail
, size
);
1857 DBG("about to push %d bytes starting %p size %d\n", avail
,
1859 bdx_tx_push_desc(priv
, data
, avail
);
1866 static const struct net_device_ops bdx_netdev_ops
= {
1867 .ndo_open
= bdx_open
,
1868 .ndo_stop
= bdx_close
,
1869 .ndo_start_xmit
= bdx_tx_transmit
,
1870 .ndo_validate_addr
= eth_validate_addr
,
1871 .ndo_do_ioctl
= bdx_ioctl
,
1872 .ndo_set_rx_mode
= bdx_setmulti
,
1873 .ndo_change_mtu
= bdx_change_mtu
,
1874 .ndo_set_mac_address
= bdx_set_mac
,
1875 .ndo_vlan_rx_add_vid
= bdx_vlan_rx_add_vid
,
1876 .ndo_vlan_rx_kill_vid
= bdx_vlan_rx_kill_vid
,
1880 * bdx_probe - Device Initialization Routine
1881 * @pdev: PCI device information struct
1882 * @ent: entry in bdx_pci_tbl
1884 * Returns 0 on success, negative on failure
1886 * bdx_probe initializes an adapter identified by a pci_dev structure.
1887 * The OS initialization, configuring of the adapter private structure,
1888 * and a hardware reset occur.
1890 * functions and their order used as explained in
1891 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1895 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1897 bdx_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1899 struct net_device
*ndev
;
1900 struct bdx_priv
*priv
;
1901 int err
, pci_using_dac
, port
;
1902 unsigned long pciaddr
;
1904 struct pci_nic
*nic
;
1908 nic
= vmalloc(sizeof(*nic
));
1912 /************** pci *****************/
1913 err
= pci_enable_device(pdev
);
1914 if (err
) /* it triggers interrupt, dunno why. */
1915 goto err_pci
; /* it's not a problem though */
1917 if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) &&
1918 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64)))) {
1921 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) ||
1922 (err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
1923 pr_err("No usable DMA configuration, aborting\n");
1929 err
= pci_request_regions(pdev
, BDX_DRV_NAME
);
1933 pci_set_master(pdev
);
1935 pciaddr
= pci_resource_start(pdev
, 0);
1938 pr_err("no MMIO resource\n");
1941 regionSize
= pci_resource_len(pdev
, 0);
1942 if (regionSize
< BDX_REGS_SIZE
) {
1944 pr_err("MMIO resource (%x) too small\n", regionSize
);
1948 nic
->regs
= ioremap(pciaddr
, regionSize
);
1951 pr_err("ioremap failed\n");
1955 if (pdev
->irq
< 2) {
1957 pr_err("invalid irq (%d)\n", pdev
->irq
);
1960 pci_set_drvdata(pdev
, nic
);
1962 if (pdev
->device
== 0x3014)
1969 bdx_hw_reset_direct(nic
->regs
);
1971 nic
->irq_type
= IRQ_INTX
;
1973 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) >= 378) {
1974 err
= pci_enable_msi(pdev
);
1976 pr_err("Can't enable msi. error is %d\n", err
);
1978 nic
->irq_type
= IRQ_MSI
;
1980 DBG("HW does not support MSI\n");
1983 /************** netdev **************/
1984 for (port
= 0; port
< nic
->port_num
; port
++) {
1985 ndev
= alloc_etherdev(sizeof(struct bdx_priv
));
1991 ndev
->netdev_ops
= &bdx_netdev_ops
;
1992 ndev
->tx_queue_len
= BDX_NDEV_TXQ_LEN
;
1994 bdx_set_ethtool_ops(ndev
); /* ethtool interface */
1996 /* these fields are used for info purposes only
1997 * so we can have them same for all ports of the board */
1998 ndev
->if_port
= port
;
1999 ndev
->features
= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
2000 | NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
|
2001 NETIF_F_HW_VLAN_CTAG_FILTER
| NETIF_F_RXCSUM
2003 ndev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
2004 NETIF_F_TSO
| NETIF_F_HW_VLAN_CTAG_TX
;
2007 ndev
->features
|= NETIF_F_HIGHDMA
;
2009 /************** priv ****************/
2010 priv
= nic
->priv
[port
] = netdev_priv(ndev
);
2012 priv
->pBdxRegs
= nic
->regs
+ port
* 0x8000;
2017 priv
->msg_enable
= BDX_DEF_MSG_ENABLE
;
2019 netif_napi_add(ndev
, &priv
->napi
, bdx_poll
, 64);
2021 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) == 308) {
2022 DBG("HW statistics not supported\n");
2023 priv
->stats_flag
= 0;
2025 priv
->stats_flag
= 1;
2028 /* Initialize fifo sizes. */
2034 /* Initialize the initial coalescing registers. */
2035 priv
->rdintcm
= INT_REG_VAL(0x20, 1, 4, 12);
2036 priv
->tdintcm
= INT_REG_VAL(0x20, 1, 0, 12);
2038 /* ndev->xmit_lock spinlock is not used.
2039 * Private priv->tx_lock is used for synchronization
2040 * between transmit and TX irq cleanup. In addition
2041 * set multicast list callback has to use priv->tx_lock.
2044 ndev
->features
|= NETIF_F_LLTX
;
2046 /* MTU range: 60 - 16384 */
2047 ndev
->min_mtu
= ETH_ZLEN
;
2048 ndev
->max_mtu
= BDX_MAX_MTU
;
2050 spin_lock_init(&priv
->tx_lock
);
2052 /*bdx_hw_reset(priv); */
2053 if (bdx_read_mac(priv
)) {
2054 pr_err("load MAC address failed\n");
2057 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2058 err
= register_netdev(ndev
);
2060 pr_err("register_netdev failed\n");
2063 netif_carrier_off(ndev
);
2064 netif_stop_queue(ndev
);
2075 pci_release_regions(pdev
);
2077 pci_disable_device(pdev
);
2084 /****************** Ethtool interface *********************/
2085 /* get strings for statistics counters */
2087 bdx_stat_names
[][ETH_GSTRING_LEN
] = {
2088 "InUCast", /* 0x7200 */
2089 "InMCast", /* 0x7210 */
2090 "InBCast", /* 0x7220 */
2091 "InPkts", /* 0x7230 */
2092 "InErrors", /* 0x7240 */
2093 "InDropped", /* 0x7250 */
2094 "FrameTooLong", /* 0x7260 */
2095 "FrameSequenceErrors", /* 0x7270 */
2096 "InVLAN", /* 0x7280 */
2097 "InDroppedDFE", /* 0x7290 */
2098 "InDroppedIntFull", /* 0x72A0 */
2099 "InFrameAlignErrors", /* 0x72B0 */
2101 /* 0x72C0-0x72E0 RSRV */
2103 "OutUCast", /* 0x72F0 */
2104 "OutMCast", /* 0x7300 */
2105 "OutBCast", /* 0x7310 */
2106 "OutPkts", /* 0x7320 */
2108 /* 0x7330-0x7360 RSRV */
2110 "OutVLAN", /* 0x7370 */
2111 "InUCastOctects", /* 0x7380 */
2112 "OutUCastOctects", /* 0x7390 */
2114 /* 0x73A0-0x73B0 RSRV */
2116 "InBCastOctects", /* 0x73C0 */
2117 "OutBCastOctects", /* 0x73D0 */
2118 "InOctects", /* 0x73E0 */
2119 "OutOctects", /* 0x73F0 */
2123 * bdx_get_link_ksettings - get device-specific settings
2127 static int bdx_get_link_ksettings(struct net_device
*netdev
,
2128 struct ethtool_link_ksettings
*ecmd
)
2130 ethtool_link_ksettings_zero_link_mode(ecmd
, supported
);
2131 ethtool_link_ksettings_add_link_mode(ecmd
, supported
,
2133 ethtool_link_ksettings_add_link_mode(ecmd
, supported
, FIBRE
);
2134 ethtool_link_ksettings_zero_link_mode(ecmd
, advertising
);
2135 ethtool_link_ksettings_add_link_mode(ecmd
, advertising
,
2137 ethtool_link_ksettings_add_link_mode(ecmd
, advertising
, FIBRE
);
2139 ecmd
->base
.speed
= SPEED_10000
;
2140 ecmd
->base
.duplex
= DUPLEX_FULL
;
2141 ecmd
->base
.port
= PORT_FIBRE
;
2142 ecmd
->base
.autoneg
= AUTONEG_DISABLE
;
2148 * bdx_get_drvinfo - report driver information
2153 bdx_get_drvinfo(struct net_device
*netdev
, struct ethtool_drvinfo
*drvinfo
)
2155 struct bdx_priv
*priv
= netdev_priv(netdev
);
2157 strlcpy(drvinfo
->driver
, BDX_DRV_NAME
, sizeof(drvinfo
->driver
));
2158 strlcpy(drvinfo
->version
, BDX_DRV_VERSION
, sizeof(drvinfo
->version
));
2159 strlcpy(drvinfo
->fw_version
, "N/A", sizeof(drvinfo
->fw_version
));
2160 strlcpy(drvinfo
->bus_info
, pci_name(priv
->pdev
),
2161 sizeof(drvinfo
->bus_info
));
2165 * bdx_get_coalesce - get interrupt coalescing parameters
2170 bdx_get_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2174 struct bdx_priv
*priv
= netdev_priv(netdev
);
2176 rdintcm
= priv
->rdintcm
;
2177 tdintcm
= priv
->tdintcm
;
2179 /* PCK_TH measures in multiples of FIFO bytes
2180 We translate to packets */
2181 ecoal
->rx_coalesce_usecs
= GET_INT_COAL(rdintcm
) * INT_COAL_MULT
;
2182 ecoal
->rx_max_coalesced_frames
=
2183 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2185 ecoal
->tx_coalesce_usecs
= GET_INT_COAL(tdintcm
) * INT_COAL_MULT
;
2186 ecoal
->tx_max_coalesced_frames
=
2187 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2189 /* adaptive parameters ignored */
2194 * bdx_set_coalesce - set interrupt coalescing parameters
2199 bdx_set_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2203 struct bdx_priv
*priv
= netdev_priv(netdev
);
2209 /* Check for valid input */
2210 rx_coal
= ecoal
->rx_coalesce_usecs
/ INT_COAL_MULT
;
2211 tx_coal
= ecoal
->tx_coalesce_usecs
/ INT_COAL_MULT
;
2212 rx_max_coal
= ecoal
->rx_max_coalesced_frames
;
2213 tx_max_coal
= ecoal
->tx_max_coalesced_frames
;
2215 /* Translate from packets to multiples of FIFO bytes */
2217 (((rx_max_coal
* sizeof(struct rxf_desc
)) + PCK_TH_MULT
- 1)
2220 (((tx_max_coal
* BDX_TXF_DESC_SZ
) + PCK_TH_MULT
- 1)
2223 if ((rx_coal
> 0x7FFF) || (tx_coal
> 0x7FFF) ||
2224 (rx_max_coal
> 0xF) || (tx_max_coal
> 0xF))
2227 rdintcm
= INT_REG_VAL(rx_coal
, GET_INT_COAL_RC(priv
->rdintcm
),
2228 GET_RXF_TH(priv
->rdintcm
), rx_max_coal
);
2229 tdintcm
= INT_REG_VAL(tx_coal
, GET_INT_COAL_RC(priv
->tdintcm
), 0,
2232 priv
->rdintcm
= rdintcm
;
2233 priv
->tdintcm
= tdintcm
;
2235 WRITE_REG(priv
, regRDINTCM0
, rdintcm
);
2236 WRITE_REG(priv
, regTDINTCM0
, tdintcm
);
2241 /* Convert RX fifo size to number of pending packets */
2242 static inline int bdx_rx_fifo_size_to_packets(int rx_size
)
2244 return (FIFO_SIZE
* (1 << rx_size
)) / sizeof(struct rxf_desc
);
2247 /* Convert TX fifo size to number of pending packets */
2248 static inline int bdx_tx_fifo_size_to_packets(int tx_size
)
2250 return (FIFO_SIZE
* (1 << tx_size
)) / BDX_TXF_DESC_SZ
;
2254 * bdx_get_ringparam - report ring sizes
2259 bdx_get_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2261 struct bdx_priv
*priv
= netdev_priv(netdev
);
2263 /*max_pending - the maximum-sized FIFO we allow */
2264 ring
->rx_max_pending
= bdx_rx_fifo_size_to_packets(3);
2265 ring
->tx_max_pending
= bdx_tx_fifo_size_to_packets(3);
2266 ring
->rx_pending
= bdx_rx_fifo_size_to_packets(priv
->rxf_size
);
2267 ring
->tx_pending
= bdx_tx_fifo_size_to_packets(priv
->txd_size
);
2271 * bdx_set_ringparam - set ring sizes
2276 bdx_set_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2278 struct bdx_priv
*priv
= netdev_priv(netdev
);
2282 for (; rx_size
< 4; rx_size
++) {
2283 if (bdx_rx_fifo_size_to_packets(rx_size
) >= ring
->rx_pending
)
2289 for (; tx_size
< 4; tx_size
++) {
2290 if (bdx_tx_fifo_size_to_packets(tx_size
) >= ring
->tx_pending
)
2296 /*Is there anything to do? */
2297 if ((rx_size
== priv
->rxf_size
) &&
2298 (tx_size
== priv
->txd_size
))
2301 priv
->rxf_size
= rx_size
;
2303 priv
->rxd_size
= rx_size
- 1;
2305 priv
->rxd_size
= rx_size
;
2307 priv
->txf_size
= priv
->txd_size
= tx_size
;
2309 if (netif_running(netdev
)) {
2317 * bdx_get_strings - return a set of strings that describe the requested objects
2321 static void bdx_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2323 switch (stringset
) {
2325 memcpy(data
, *bdx_stat_names
, sizeof(bdx_stat_names
));
2331 * bdx_get_sset_count - return number of statistics or tests
2334 static int bdx_get_sset_count(struct net_device
*netdev
, int stringset
)
2336 struct bdx_priv
*priv
= netdev_priv(netdev
);
2338 switch (stringset
) {
2340 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names
)
2341 != sizeof(struct bdx_stats
) / sizeof(u64
));
2342 return (priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0;
2349 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2354 static void bdx_get_ethtool_stats(struct net_device
*netdev
,
2355 struct ethtool_stats
*stats
, u64
*data
)
2357 struct bdx_priv
*priv
= netdev_priv(netdev
);
2359 if (priv
->stats_flag
) {
2361 /* Update stats from HW */
2362 bdx_update_stats(priv
);
2364 /* Copy data to user buffer */
2365 memcpy(data
, &priv
->hw_stats
, sizeof(priv
->hw_stats
));
2370 * bdx_set_ethtool_ops - ethtool interface implementation
2373 static void bdx_set_ethtool_ops(struct net_device
*netdev
)
2375 static const struct ethtool_ops bdx_ethtool_ops
= {
2376 .get_drvinfo
= bdx_get_drvinfo
,
2377 .get_link
= ethtool_op_get_link
,
2378 .get_coalesce
= bdx_get_coalesce
,
2379 .set_coalesce
= bdx_set_coalesce
,
2380 .get_ringparam
= bdx_get_ringparam
,
2381 .set_ringparam
= bdx_set_ringparam
,
2382 .get_strings
= bdx_get_strings
,
2383 .get_sset_count
= bdx_get_sset_count
,
2384 .get_ethtool_stats
= bdx_get_ethtool_stats
,
2385 .get_link_ksettings
= bdx_get_link_ksettings
,
2388 netdev
->ethtool_ops
= &bdx_ethtool_ops
;
2392 * bdx_remove - Device Removal Routine
2393 * @pdev: PCI device information struct
2395 * bdx_remove is called by the PCI subsystem to alert the driver
2396 * that it should release a PCI device. The could be caused by a
2397 * Hot-Plug event, or because the driver is going to be removed from
2400 static void bdx_remove(struct pci_dev
*pdev
)
2402 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
2403 struct net_device
*ndev
;
2406 for (port
= 0; port
< nic
->port_num
; port
++) {
2407 ndev
= nic
->priv
[port
]->ndev
;
2408 unregister_netdev(ndev
);
2412 /*bdx_hw_reset_direct(nic->regs); */
2414 if (nic
->irq_type
== IRQ_MSI
)
2415 pci_disable_msi(pdev
);
2419 pci_release_regions(pdev
);
2420 pci_disable_device(pdev
);
2426 static struct pci_driver bdx_pci_driver
= {
2427 .name
= BDX_DRV_NAME
,
2428 .id_table
= bdx_pci_tbl
,
2430 .remove
= bdx_remove
,
2434 * print_driver_id - print parameters of the driver build
2436 static void __init
print_driver_id(void)
2438 pr_info("%s, %s\n", BDX_DRV_DESC
, BDX_DRV_VERSION
);
2439 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING
);
2442 static int __init
bdx_module_init(void)
2447 RET(pci_register_driver(&bdx_pci_driver
));
2450 module_init(bdx_module_init
);
2452 static void __exit
bdx_module_exit(void)
2455 pci_unregister_driver(&bdx_pci_driver
);
2459 module_exit(bdx_module_exit
);
2461 MODULE_LICENSE("GPL");
2462 MODULE_AUTHOR(DRIVER_AUTHOR
);
2463 MODULE_DESCRIPTION(BDX_DRV_DESC
);
2464 MODULE_FIRMWARE("tehuti/bdx.bin");