treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / net / ethernet / tundra / tsi108_eth.c
blobc62f474b6d08eb74c159811c9ea32549845072e9
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
4 Copyright(c) 2006 Tundra Semiconductor Corporation.
7 *******************************************************************************/
9 /* This driver is based on the driver code originally developed
10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
13 * Currently changes from original version are:
14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15 * - modifications to handle two ports independently and support for
16 * additional PHY devices (alexandre.bounine@tundra.com)
17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
40 #include <asm/io.h>
41 #include <asm/tsi108.h>
43 #include "tsi108_eth.h"
45 #define MII_READ_DELAY 10000 /* max link wait time in msec */
47 #define TSI108_RXRING_LEN 256
49 /* NOTE: The driver currently does not support receiving packets
50 * larger than the buffer size, so don't decrease this (unless you
51 * want to add such support).
53 #define TSI108_RXBUF_SIZE 1536
55 #define TSI108_TXRING_LEN 256
57 #define TSI108_TX_INT_FREQ 64
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
62 static int tsi108_init_one(struct platform_device *pdev);
63 static int tsi108_ether_remove(struct platform_device *pdev);
65 struct tsi108_prv_data {
66 void __iomem *regs; /* Base of normal regs */
67 void __iomem *phyregs; /* Base of register bank used for PHY access */
69 struct net_device *dev;
70 struct napi_struct napi;
72 unsigned int phy; /* Index of PHY for this interface */
73 unsigned int irq_num;
74 unsigned int id;
75 unsigned int phy_type;
77 struct timer_list timer;/* Timer that triggers the check phy function */
78 unsigned int rxtail; /* Next entry in rxring to read */
79 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
80 unsigned int rxfree; /* Number of free, allocated RX buffers */
82 unsigned int rxpending; /* Non-zero if there are still descriptors
83 * to be processed from a previous descriptor
84 * interrupt condition that has been cleared */
86 unsigned int txtail; /* Next TX descriptor to check status on */
87 unsigned int txhead; /* Next TX descriptor to use */
89 /* Number of free TX descriptors. This could be calculated from
90 * rxhead and rxtail if one descriptor were left unused to disambiguate
91 * full and empty conditions, but it's simpler to just keep track
92 * explicitly. */
94 unsigned int txfree;
96 unsigned int phy_ok; /* The PHY is currently powered on. */
98 /* PHY status (duplex is 1 for half, 2 for full,
99 * so that the default 0 indicates that neither has
100 * yet been configured). */
102 unsigned int link_up;
103 unsigned int speed;
104 unsigned int duplex;
106 tx_desc *txring;
107 rx_desc *rxring;
108 struct sk_buff *txskbs[TSI108_TXRING_LEN];
109 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
111 dma_addr_t txdma, rxdma;
113 /* txlock nests in misclock and phy_lock */
115 spinlock_t txlock, misclock;
117 /* stats is used to hold the upper bits of each hardware counter,
118 * and tmpstats is used to hold the full values for returning
119 * to the caller of get_stats(). They must be separate in case
120 * an overflow interrupt occurs before the stats are consumed.
123 struct net_device_stats stats;
124 struct net_device_stats tmpstats;
126 /* These stats are kept separate in hardware, thus require individual
127 * fields for handling carry. They are combined in get_stats.
130 unsigned long rx_fcs; /* Add to rx_frame_errors */
131 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
132 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
133 unsigned long rx_underruns; /* Add to rx_length_errors */
134 unsigned long rx_overruns; /* Add to rx_length_errors */
136 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
137 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
139 unsigned long mc_hash[16];
140 u32 msg_enable; /* debug message level */
141 struct mii_if_info mii_if;
142 unsigned int init_media;
144 struct platform_device *pdev;
147 /* Structure for a device driver */
149 static struct platform_driver tsi_eth_driver = {
150 .probe = tsi108_init_one,
151 .remove = tsi108_ether_remove,
152 .driver = {
153 .name = "tsi-ethernet",
157 static void tsi108_timed_checker(struct timer_list *t);
159 #ifdef DEBUG
160 static void dump_eth_one(struct net_device *dev)
162 struct tsi108_prv_data *data = netdev_priv(dev);
164 printk("Dumping %s...\n", dev->name);
165 printk("intstat %x intmask %x phy_ok %d"
166 " link %d speed %d duplex %d\n",
167 TSI_READ(TSI108_EC_INTSTAT),
168 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
169 data->link_up, data->speed, data->duplex);
171 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
172 data->txhead, data->txtail, data->txfree,
173 TSI_READ(TSI108_EC_TXSTAT),
174 TSI_READ(TSI108_EC_TXESTAT),
175 TSI_READ(TSI108_EC_TXERR));
177 printk("RX: head %d, tail %d, free %d, stat %x,"
178 " estat %x, err %x, pending %d\n\n",
179 data->rxhead, data->rxtail, data->rxfree,
180 TSI_READ(TSI108_EC_RXSTAT),
181 TSI_READ(TSI108_EC_RXESTAT),
182 TSI_READ(TSI108_EC_RXERR), data->rxpending);
184 #endif
186 /* Synchronization is needed between the thread and up/down events.
187 * Note that the PHY is accessed through the same registers for both
188 * interfaces, so this can't be made interface-specific.
191 static DEFINE_SPINLOCK(phy_lock);
193 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
195 unsigned i;
197 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
198 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
199 (reg << TSI108_MAC_MII_ADDR_REG));
200 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
201 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
202 for (i = 0; i < 100; i++) {
203 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
204 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
205 break;
206 udelay(10);
209 if (i == 100)
210 return 0xffff;
211 else
212 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
215 static void tsi108_write_mii(struct tsi108_prv_data *data,
216 int reg, u16 val)
218 unsigned i = 100;
219 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
220 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
221 (reg << TSI108_MAC_MII_ADDR_REG));
222 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
223 while (i--) {
224 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
225 TSI108_MAC_MII_IND_BUSY))
226 break;
227 udelay(10);
231 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
233 struct tsi108_prv_data *data = netdev_priv(dev);
234 return tsi108_read_mii(data, reg);
237 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
239 struct tsi108_prv_data *data = netdev_priv(dev);
240 tsi108_write_mii(data, reg, val);
243 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
244 int reg, u16 val)
246 unsigned i = 1000;
247 TSI_WRITE(TSI108_MAC_MII_ADDR,
248 (0x1e << TSI108_MAC_MII_ADDR_PHY)
249 | (reg << TSI108_MAC_MII_ADDR_REG));
250 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
251 while(i--) {
252 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
253 return;
254 udelay(10);
256 printk(KERN_ERR "%s function time out\n", __func__);
259 static int mii_speed(struct mii_if_info *mii)
261 int advert, lpa, val, media;
262 int lpa2 = 0;
263 int speed;
265 if (!mii_link_ok(mii))
266 return 0;
268 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
269 if ((val & BMSR_ANEGCOMPLETE) == 0)
270 return 0;
272 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
273 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
274 media = mii_nway_result(advert & lpa);
276 if (mii->supports_gmii)
277 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
279 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
280 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
281 return speed;
284 static void tsi108_check_phy(struct net_device *dev)
286 struct tsi108_prv_data *data = netdev_priv(dev);
287 u32 mac_cfg2_reg, portctrl_reg;
288 u32 duplex;
289 u32 speed;
290 unsigned long flags;
292 spin_lock_irqsave(&phy_lock, flags);
294 if (!data->phy_ok)
295 goto out;
297 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
298 data->init_media = 0;
300 if (netif_carrier_ok(dev)) {
302 speed = mii_speed(&data->mii_if);
304 if ((speed != data->speed) || duplex) {
306 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
307 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
309 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
311 if (speed == 1000) {
312 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
313 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
314 } else {
315 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
316 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
319 data->speed = speed;
321 if (data->mii_if.full_duplex) {
322 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
323 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
324 data->duplex = 2;
325 } else {
326 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
327 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
328 data->duplex = 1;
331 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
332 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
335 if (data->link_up == 0) {
336 /* The manual says it can take 3-4 usecs for the speed change
337 * to take effect.
339 udelay(5);
341 spin_lock(&data->txlock);
342 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
343 netif_wake_queue(dev);
345 data->link_up = 1;
346 spin_unlock(&data->txlock);
348 } else {
349 if (data->link_up == 1) {
350 netif_stop_queue(dev);
351 data->link_up = 0;
352 printk(KERN_NOTICE "%s : link is down\n", dev->name);
355 goto out;
359 out:
360 spin_unlock_irqrestore(&phy_lock, flags);
363 static inline void
364 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
365 unsigned long *upper)
367 if (carry & carry_bit)
368 *upper += carry_shift;
371 static void tsi108_stat_carry(struct net_device *dev)
373 struct tsi108_prv_data *data = netdev_priv(dev);
374 unsigned long flags;
375 u32 carry1, carry2;
377 spin_lock_irqsave(&data->misclock, flags);
379 carry1 = TSI_READ(TSI108_STAT_CARRY1);
380 carry2 = TSI_READ(TSI108_STAT_CARRY2);
382 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
383 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
385 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
386 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
388 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
389 TSI108_STAT_RXPKTS_CARRY,
390 &data->stats.rx_packets);
392 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
393 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
395 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
396 TSI108_STAT_RXMCAST_CARRY,
397 &data->stats.multicast);
399 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
400 TSI108_STAT_RXALIGN_CARRY,
401 &data->stats.rx_frame_errors);
403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
404 TSI108_STAT_RXLENGTH_CARRY,
405 &data->stats.rx_length_errors);
407 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
408 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
410 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
411 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
413 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
414 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
416 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
417 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
419 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
420 TSI108_STAT_RXDROP_CARRY,
421 &data->stats.rx_missed_errors);
423 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
424 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
426 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
427 TSI108_STAT_TXPKTS_CARRY,
428 &data->stats.tx_packets);
430 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
431 TSI108_STAT_TXEXDEF_CARRY,
432 &data->stats.tx_aborted_errors);
434 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
435 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
437 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
438 TSI108_STAT_TXTCOL_CARRY,
439 &data->stats.collisions);
441 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
442 TSI108_STAT_TXPAUSEDROP_CARRY,
443 &data->tx_pause_drop);
445 spin_unlock_irqrestore(&data->misclock, flags);
448 /* Read a stat counter atomically with respect to carries.
449 * data->misclock must be held.
451 static inline unsigned long
452 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
453 int carry_shift, unsigned long *upper)
455 int carryreg;
456 unsigned long val;
458 if (reg < 0xb0)
459 carryreg = TSI108_STAT_CARRY1;
460 else
461 carryreg = TSI108_STAT_CARRY2;
463 again:
464 val = TSI_READ(reg) | *upper;
466 /* Check to see if it overflowed, but the interrupt hasn't
467 * been serviced yet. If so, handle the carry here, and
468 * try again.
471 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
472 *upper += carry_shift;
473 TSI_WRITE(carryreg, carry_bit);
474 goto again;
477 return val;
480 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
482 unsigned long excol;
484 struct tsi108_prv_data *data = netdev_priv(dev);
485 spin_lock_irq(&data->misclock);
487 data->tmpstats.rx_packets =
488 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
489 TSI108_STAT_CARRY1_RXPKTS,
490 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
492 data->tmpstats.tx_packets =
493 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
494 TSI108_STAT_CARRY2_TXPKTS,
495 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
497 data->tmpstats.rx_bytes =
498 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
499 TSI108_STAT_CARRY1_RXBYTES,
500 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
502 data->tmpstats.tx_bytes =
503 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
504 TSI108_STAT_CARRY2_TXBYTES,
505 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
507 data->tmpstats.multicast =
508 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
509 TSI108_STAT_CARRY1_RXMCAST,
510 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
512 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
513 TSI108_STAT_CARRY2_TXEXCOL,
514 TSI108_STAT_TXEXCOL_CARRY,
515 &data->tx_coll_abort);
517 data->tmpstats.collisions =
518 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
519 TSI108_STAT_CARRY2_TXTCOL,
520 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
522 data->tmpstats.collisions += excol;
524 data->tmpstats.rx_length_errors =
525 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
526 TSI108_STAT_CARRY1_RXLENGTH,
527 TSI108_STAT_RXLENGTH_CARRY,
528 &data->stats.rx_length_errors);
530 data->tmpstats.rx_length_errors +=
531 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
532 TSI108_STAT_CARRY1_RXRUNT,
533 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
535 data->tmpstats.rx_length_errors +=
536 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
537 TSI108_STAT_CARRY1_RXJUMBO,
538 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
540 data->tmpstats.rx_frame_errors =
541 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
542 TSI108_STAT_CARRY1_RXALIGN,
543 TSI108_STAT_RXALIGN_CARRY,
544 &data->stats.rx_frame_errors);
546 data->tmpstats.rx_frame_errors +=
547 tsi108_read_stat(data, TSI108_STAT_RXFCS,
548 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
549 &data->rx_fcs);
551 data->tmpstats.rx_frame_errors +=
552 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
553 TSI108_STAT_CARRY1_RXFRAG,
554 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
556 data->tmpstats.rx_missed_errors =
557 tsi108_read_stat(data, TSI108_STAT_RXDROP,
558 TSI108_STAT_CARRY1_RXDROP,
559 TSI108_STAT_RXDROP_CARRY,
560 &data->stats.rx_missed_errors);
562 /* These three are maintained by software. */
563 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
564 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
566 data->tmpstats.tx_aborted_errors =
567 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
568 TSI108_STAT_CARRY2_TXEXDEF,
569 TSI108_STAT_TXEXDEF_CARRY,
570 &data->stats.tx_aborted_errors);
572 data->tmpstats.tx_aborted_errors +=
573 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
574 TSI108_STAT_CARRY2_TXPAUSE,
575 TSI108_STAT_TXPAUSEDROP_CARRY,
576 &data->tx_pause_drop);
578 data->tmpstats.tx_aborted_errors += excol;
580 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
581 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
582 data->tmpstats.rx_crc_errors +
583 data->tmpstats.rx_frame_errors +
584 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
586 spin_unlock_irq(&data->misclock);
587 return &data->tmpstats;
590 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
592 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
593 TSI108_EC_RXQ_PTRHIGH_VALID);
595 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
596 | TSI108_EC_RXCTRL_QUEUE0);
599 static void tsi108_restart_tx(struct tsi108_prv_data * data)
601 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
602 TSI108_EC_TXQ_PTRHIGH_VALID);
604 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
605 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
608 /* txlock must be held by caller, with IRQs disabled, and
609 * with permission to re-enable them when the lock is dropped.
611 static void tsi108_complete_tx(struct net_device *dev)
613 struct tsi108_prv_data *data = netdev_priv(dev);
614 int tx;
615 struct sk_buff *skb;
616 int release = 0;
618 while (!data->txfree || data->txhead != data->txtail) {
619 tx = data->txtail;
621 if (data->txring[tx].misc & TSI108_TX_OWN)
622 break;
624 skb = data->txskbs[tx];
626 if (!(data->txring[tx].misc & TSI108_TX_OK))
627 printk("%s: bad tx packet, misc %x\n",
628 dev->name, data->txring[tx].misc);
630 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
631 data->txfree++;
633 if (data->txring[tx].misc & TSI108_TX_EOF) {
634 dev_kfree_skb_any(skb);
635 release++;
639 if (release) {
640 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
641 netif_wake_queue(dev);
645 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
647 struct tsi108_prv_data *data = netdev_priv(dev);
648 int frags = skb_shinfo(skb)->nr_frags + 1;
649 int i;
651 if (!data->phy_ok && net_ratelimit())
652 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
654 if (!data->link_up) {
655 printk(KERN_ERR "%s: Transmit while link is down!\n",
656 dev->name);
657 netif_stop_queue(dev);
658 return NETDEV_TX_BUSY;
661 if (data->txfree < MAX_SKB_FRAGS + 1) {
662 netif_stop_queue(dev);
664 if (net_ratelimit())
665 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
666 dev->name);
667 return NETDEV_TX_BUSY;
670 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
671 netif_stop_queue(dev);
674 spin_lock_irq(&data->txlock);
676 for (i = 0; i < frags; i++) {
677 int misc = 0;
678 int tx = data->txhead;
680 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
681 * the interrupt bit. TX descriptor-complete interrupts are
682 * enabled when the queue fills up, and masked when there is
683 * still free space. This way, when saturating the outbound
684 * link, the tx interrupts are kept to a reasonable level.
685 * When the queue is not full, reclamation of skbs still occurs
686 * as new packets are transmitted, or on a queue-empty
687 * interrupt.
690 if ((tx % TSI108_TX_INT_FREQ == 0) &&
691 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
692 misc = TSI108_TX_INT;
694 data->txskbs[tx] = skb;
696 if (i == 0) {
697 data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
698 skb->data, skb_headlen(skb),
699 DMA_TO_DEVICE);
700 data->txring[tx].len = skb_headlen(skb);
701 misc |= TSI108_TX_SOF;
702 } else {
703 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
705 data->txring[tx].buf0 =
706 skb_frag_dma_map(&data->pdev->dev, frag,
707 0, skb_frag_size(frag),
708 DMA_TO_DEVICE);
709 data->txring[tx].len = skb_frag_size(frag);
712 if (i == frags - 1)
713 misc |= TSI108_TX_EOF;
715 if (netif_msg_pktdata(data)) {
716 int i;
717 printk("%s: Tx Frame contents (%d)\n", dev->name,
718 skb->len);
719 for (i = 0; i < skb->len; i++)
720 printk(" %2.2x", skb->data[i]);
721 printk(".\n");
723 data->txring[tx].misc = misc | TSI108_TX_OWN;
725 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
726 data->txfree--;
729 tsi108_complete_tx(dev);
731 /* This must be done after the check for completed tx descriptors,
732 * so that the tail pointer is correct.
735 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
736 tsi108_restart_tx(data);
738 spin_unlock_irq(&data->txlock);
739 return NETDEV_TX_OK;
742 static int tsi108_complete_rx(struct net_device *dev, int budget)
744 struct tsi108_prv_data *data = netdev_priv(dev);
745 int done = 0;
747 while (data->rxfree && done != budget) {
748 int rx = data->rxtail;
749 struct sk_buff *skb;
751 if (data->rxring[rx].misc & TSI108_RX_OWN)
752 break;
754 skb = data->rxskbs[rx];
755 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
756 data->rxfree--;
757 done++;
759 if (data->rxring[rx].misc & TSI108_RX_BAD) {
760 spin_lock_irq(&data->misclock);
762 if (data->rxring[rx].misc & TSI108_RX_CRC)
763 data->stats.rx_crc_errors++;
764 if (data->rxring[rx].misc & TSI108_RX_OVER)
765 data->stats.rx_fifo_errors++;
767 spin_unlock_irq(&data->misclock);
769 dev_kfree_skb_any(skb);
770 continue;
772 if (netif_msg_pktdata(data)) {
773 int i;
774 printk("%s: Rx Frame contents (%d)\n",
775 dev->name, data->rxring[rx].len);
776 for (i = 0; i < data->rxring[rx].len; i++)
777 printk(" %2.2x", skb->data[i]);
778 printk(".\n");
781 skb_put(skb, data->rxring[rx].len);
782 skb->protocol = eth_type_trans(skb, dev);
783 netif_receive_skb(skb);
786 return done;
789 static int tsi108_refill_rx(struct net_device *dev, int budget)
791 struct tsi108_prv_data *data = netdev_priv(dev);
792 int done = 0;
794 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
795 int rx = data->rxhead;
796 struct sk_buff *skb;
798 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
799 data->rxskbs[rx] = skb;
800 if (!skb)
801 break;
803 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
804 skb->data, TSI108_RX_SKB_SIZE,
805 DMA_FROM_DEVICE);
807 /* Sometimes the hardware sets blen to zero after packet
808 * reception, even though the manual says that it's only ever
809 * modified by the driver.
812 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
813 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
815 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
816 data->rxfree++;
817 done++;
820 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
821 TSI108_EC_RXSTAT_QUEUE0))
822 tsi108_restart_rx(data, dev);
824 return done;
827 static int tsi108_poll(struct napi_struct *napi, int budget)
829 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
830 struct net_device *dev = data->dev;
831 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
832 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
833 int num_received = 0, num_filled = 0;
835 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
836 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
838 TSI_WRITE(TSI108_EC_RXESTAT, estat);
839 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
841 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
842 num_received = tsi108_complete_rx(dev, budget);
844 /* This should normally fill no more slots than the number of
845 * packets received in tsi108_complete_rx(). The exception
846 * is when we previously ran out of memory for RX SKBs. In that
847 * case, it's helpful to obey the budget, not only so that the
848 * CPU isn't hogged, but so that memory (which may still be low)
849 * is not hogged by one device.
851 * A work unit is considered to be two SKBs to allow us to catch
852 * up when the ring has shrunk due to out-of-memory but we're
853 * still removing the full budget's worth of packets each time.
856 if (data->rxfree < TSI108_RXRING_LEN)
857 num_filled = tsi108_refill_rx(dev, budget * 2);
859 if (intstat & TSI108_INT_RXERROR) {
860 u32 err = TSI_READ(TSI108_EC_RXERR);
861 TSI_WRITE(TSI108_EC_RXERR, err);
863 if (err) {
864 if (net_ratelimit())
865 printk(KERN_DEBUG "%s: RX error %x\n",
866 dev->name, err);
868 if (!(TSI_READ(TSI108_EC_RXSTAT) &
869 TSI108_EC_RXSTAT_QUEUE0))
870 tsi108_restart_rx(data, dev);
874 if (intstat & TSI108_INT_RXOVERRUN) {
875 spin_lock_irq(&data->misclock);
876 data->stats.rx_fifo_errors++;
877 spin_unlock_irq(&data->misclock);
880 if (num_received < budget) {
881 data->rxpending = 0;
882 napi_complete_done(napi, num_received);
884 TSI_WRITE(TSI108_EC_INTMASK,
885 TSI_READ(TSI108_EC_INTMASK)
886 & ~(TSI108_INT_RXQUEUE0
887 | TSI108_INT_RXTHRESH |
888 TSI108_INT_RXOVERRUN |
889 TSI108_INT_RXERROR |
890 TSI108_INT_RXWAIT));
891 } else {
892 data->rxpending = 1;
895 return num_received;
898 static void tsi108_rx_int(struct net_device *dev)
900 struct tsi108_prv_data *data = netdev_priv(dev);
902 /* A race could cause dev to already be scheduled, so it's not an
903 * error if that happens (and interrupts shouldn't be re-masked,
904 * because that can cause harmful races, if poll has already
905 * unmasked them but not cleared LINK_STATE_SCHED).
907 * This can happen if this code races with tsi108_poll(), which masks
908 * the interrupts after tsi108_irq_one() read the mask, but before
909 * napi_schedule is called. It could also happen due to calls
910 * from tsi108_check_rxring().
913 if (napi_schedule_prep(&data->napi)) {
914 /* Mask, rather than ack, the receive interrupts. The ack
915 * will happen in tsi108_poll().
918 TSI_WRITE(TSI108_EC_INTMASK,
919 TSI_READ(TSI108_EC_INTMASK) |
920 TSI108_INT_RXQUEUE0
921 | TSI108_INT_RXTHRESH |
922 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
923 TSI108_INT_RXWAIT);
924 __napi_schedule(&data->napi);
925 } else {
926 if (!netif_running(dev)) {
927 /* This can happen if an interrupt occurs while the
928 * interface is being brought down, as the START
929 * bit is cleared before the stop function is called.
931 * In this case, the interrupts must be masked, or
932 * they will continue indefinitely.
934 * There's a race here if the interface is brought down
935 * and then up in rapid succession, as the device could
936 * be made running after the above check and before
937 * the masking below. This will only happen if the IRQ
938 * thread has a lower priority than the task brining
939 * up the interface. Fixing this race would likely
940 * require changes in generic code.
943 TSI_WRITE(TSI108_EC_INTMASK,
944 TSI_READ
945 (TSI108_EC_INTMASK) |
946 TSI108_INT_RXQUEUE0 |
947 TSI108_INT_RXTHRESH |
948 TSI108_INT_RXOVERRUN |
949 TSI108_INT_RXERROR |
950 TSI108_INT_RXWAIT);
955 /* If the RX ring has run out of memory, try periodically
956 * to allocate some more, as otherwise poll would never
957 * get called (apart from the initial end-of-queue condition).
959 * This is called once per second (by default) from the thread.
962 static void tsi108_check_rxring(struct net_device *dev)
964 struct tsi108_prv_data *data = netdev_priv(dev);
966 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
967 * directly, so as to keep the receive path single-threaded
968 * (and thus not needing a lock).
971 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
972 tsi108_rx_int(dev);
975 static void tsi108_tx_int(struct net_device *dev)
977 struct tsi108_prv_data *data = netdev_priv(dev);
978 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
980 TSI_WRITE(TSI108_EC_TXESTAT, estat);
981 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
982 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
983 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
984 u32 err = TSI_READ(TSI108_EC_TXERR);
985 TSI_WRITE(TSI108_EC_TXERR, err);
987 if (err && net_ratelimit())
988 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
991 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
992 spin_lock(&data->txlock);
993 tsi108_complete_tx(dev);
994 spin_unlock(&data->txlock);
999 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1001 struct net_device *dev = dev_id;
1002 struct tsi108_prv_data *data = netdev_priv(dev);
1003 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1005 if (!(stat & TSI108_INT_ANY))
1006 return IRQ_NONE; /* Not our interrupt */
1008 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1010 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1011 TSI108_INT_TXERROR))
1012 tsi108_tx_int(dev);
1013 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1014 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1015 TSI108_INT_RXERROR))
1016 tsi108_rx_int(dev);
1018 if (stat & TSI108_INT_SFN) {
1019 if (net_ratelimit())
1020 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1021 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1024 if (stat & TSI108_INT_STATCARRY) {
1025 tsi108_stat_carry(dev);
1026 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1029 return IRQ_HANDLED;
1032 static void tsi108_stop_ethernet(struct net_device *dev)
1034 struct tsi108_prv_data *data = netdev_priv(dev);
1035 int i = 1000;
1036 /* Disable all TX and RX queues ... */
1037 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1038 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1040 /* ...and wait for them to become idle */
1041 while(i--) {
1042 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1043 break;
1044 udelay(10);
1046 i = 1000;
1047 while(i--){
1048 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1049 return;
1050 udelay(10);
1052 printk(KERN_ERR "%s function time out\n", __func__);
1055 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1057 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1058 udelay(100);
1059 TSI_WRITE(TSI108_MAC_CFG1, 0);
1061 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1062 udelay(100);
1063 TSI_WRITE(TSI108_EC_PORTCTRL,
1064 TSI_READ(TSI108_EC_PORTCTRL) &
1065 ~TSI108_EC_PORTCTRL_STATRST);
1067 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1068 udelay(100);
1069 TSI_WRITE(TSI108_EC_TXCFG,
1070 TSI_READ(TSI108_EC_TXCFG) &
1071 ~TSI108_EC_TXCFG_RST);
1073 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1074 udelay(100);
1075 TSI_WRITE(TSI108_EC_RXCFG,
1076 TSI_READ(TSI108_EC_RXCFG) &
1077 ~TSI108_EC_RXCFG_RST);
1079 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1080 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1081 TSI108_MAC_MII_MGMT_RST);
1082 udelay(100);
1083 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1084 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1085 ~(TSI108_MAC_MII_MGMT_RST |
1086 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1089 static int tsi108_get_mac(struct net_device *dev)
1091 struct tsi108_prv_data *data = netdev_priv(dev);
1092 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1093 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1095 /* Note that the octets are reversed from what the manual says,
1096 * producing an even weirder ordering...
1098 if (word2 == 0 && word1 == 0) {
1099 dev->dev_addr[0] = 0x00;
1100 dev->dev_addr[1] = 0x06;
1101 dev->dev_addr[2] = 0xd2;
1102 dev->dev_addr[3] = 0x00;
1103 dev->dev_addr[4] = 0x00;
1104 if (0x8 == data->phy)
1105 dev->dev_addr[5] = 0x01;
1106 else
1107 dev->dev_addr[5] = 0x02;
1109 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1111 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1112 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1114 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1115 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1116 } else {
1117 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1118 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1119 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1120 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1121 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1122 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1125 if (!is_valid_ether_addr(dev->dev_addr)) {
1126 printk(KERN_ERR
1127 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1128 dev->name, word1, word2);
1129 return -EINVAL;
1132 return 0;
1135 static int tsi108_set_mac(struct net_device *dev, void *addr)
1137 struct tsi108_prv_data *data = netdev_priv(dev);
1138 u32 word1, word2;
1139 int i;
1141 if (!is_valid_ether_addr(addr))
1142 return -EADDRNOTAVAIL;
1144 for (i = 0; i < 6; i++)
1145 /* +2 is for the offset of the HW addr type */
1146 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1148 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1150 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1151 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1153 spin_lock_irq(&data->misclock);
1154 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1155 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1156 spin_lock(&data->txlock);
1158 if (data->txfree && data->link_up)
1159 netif_wake_queue(dev);
1161 spin_unlock(&data->txlock);
1162 spin_unlock_irq(&data->misclock);
1163 return 0;
1166 /* Protected by dev->xmit_lock. */
1167 static void tsi108_set_rx_mode(struct net_device *dev)
1169 struct tsi108_prv_data *data = netdev_priv(dev);
1170 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1172 if (dev->flags & IFF_PROMISC) {
1173 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1174 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1175 goto out;
1178 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1180 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1181 int i;
1182 struct netdev_hw_addr *ha;
1183 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1185 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1187 netdev_for_each_mc_addr(ha, dev) {
1188 u32 hash, crc;
1190 crc = ether_crc(6, ha->addr);
1191 hash = crc >> 23;
1192 __set_bit(hash, &data->mc_hash[0]);
1195 TSI_WRITE(TSI108_EC_HASHADDR,
1196 TSI108_EC_HASHADDR_AUTOINC |
1197 TSI108_EC_HASHADDR_MCAST);
1199 for (i = 0; i < 16; i++) {
1200 /* The manual says that the hardware may drop
1201 * back-to-back writes to the data register.
1203 udelay(1);
1204 TSI_WRITE(TSI108_EC_HASHDATA,
1205 data->mc_hash[i]);
1209 out:
1210 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1213 static void tsi108_init_phy(struct net_device *dev)
1215 struct tsi108_prv_data *data = netdev_priv(dev);
1216 u32 i = 0;
1217 u16 phyval = 0;
1218 unsigned long flags;
1220 spin_lock_irqsave(&phy_lock, flags);
1222 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1223 while (--i) {
1224 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1225 break;
1226 udelay(10);
1228 if (i == 0)
1229 printk(KERN_ERR "%s function time out\n", __func__);
1231 if (data->phy_type == TSI108_PHY_BCM54XX) {
1232 tsi108_write_mii(data, 0x09, 0x0300);
1233 tsi108_write_mii(data, 0x10, 0x1020);
1234 tsi108_write_mii(data, 0x1c, 0x8c00);
1237 tsi108_write_mii(data,
1238 MII_BMCR,
1239 BMCR_ANENABLE | BMCR_ANRESTART);
1240 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1241 cpu_relax();
1243 /* Set G/MII mode and receive clock select in TBI control #2. The
1244 * second port won't work if this isn't done, even though we don't
1245 * use TBI mode.
1248 tsi108_write_tbi(data, 0x11, 0x30);
1250 /* FIXME: It seems to take more than 2 back-to-back reads to the
1251 * PHY_STAT register before the link up status bit is set.
1254 data->link_up = 0;
1256 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1257 BMSR_LSTATUS)) {
1258 if (i++ > (MII_READ_DELAY / 10)) {
1259 break;
1261 spin_unlock_irqrestore(&phy_lock, flags);
1262 msleep(10);
1263 spin_lock_irqsave(&phy_lock, flags);
1266 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1267 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1268 data->phy_ok = 1;
1269 data->init_media = 1;
1270 spin_unlock_irqrestore(&phy_lock, flags);
1273 static void tsi108_kill_phy(struct net_device *dev)
1275 struct tsi108_prv_data *data = netdev_priv(dev);
1276 unsigned long flags;
1278 spin_lock_irqsave(&phy_lock, flags);
1279 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1280 data->phy_ok = 0;
1281 spin_unlock_irqrestore(&phy_lock, flags);
1284 static int tsi108_open(struct net_device *dev)
1286 int i;
1287 struct tsi108_prv_data *data = netdev_priv(dev);
1288 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1289 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1291 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1292 if (i != 0) {
1293 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1294 data->id, data->irq_num);
1295 return i;
1296 } else {
1297 dev->irq = data->irq_num;
1298 printk(KERN_NOTICE
1299 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1300 data->id, dev->irq, dev->name);
1303 data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1304 &data->rxdma, GFP_KERNEL);
1305 if (!data->rxring)
1306 return -ENOMEM;
1308 data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1309 &data->txdma, GFP_KERNEL);
1310 if (!data->txring) {
1311 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1312 data->rxdma);
1313 return -ENOMEM;
1316 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1317 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1318 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1319 data->rxring[i].vlan = 0;
1322 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1324 data->rxtail = 0;
1325 data->rxhead = 0;
1327 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328 struct sk_buff *skb;
1330 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1331 if (!skb) {
1332 /* Bah. No memory for now, but maybe we'll get
1333 * some more later.
1334 * For now, we'll live with the smaller ring.
1336 printk(KERN_WARNING
1337 "%s: Could only allocate %d receive skb(s).\n",
1338 dev->name, i);
1339 data->rxhead = i;
1340 break;
1343 data->rxskbs[i] = skb;
1344 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1345 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1348 data->rxfree = i;
1349 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1351 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1352 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1353 data->txring[i].misc = 0;
1356 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1357 data->txtail = 0;
1358 data->txhead = 0;
1359 data->txfree = TSI108_TXRING_LEN;
1360 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1361 tsi108_init_phy(dev);
1363 napi_enable(&data->napi);
1365 timer_setup(&data->timer, tsi108_timed_checker, 0);
1366 mod_timer(&data->timer, jiffies + 1);
1368 tsi108_restart_rx(data, dev);
1370 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1372 TSI_WRITE(TSI108_EC_INTMASK,
1373 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1374 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1375 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1376 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1378 TSI_WRITE(TSI108_MAC_CFG1,
1379 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1380 netif_start_queue(dev);
1381 return 0;
1384 static int tsi108_close(struct net_device *dev)
1386 struct tsi108_prv_data *data = netdev_priv(dev);
1388 netif_stop_queue(dev);
1389 napi_disable(&data->napi);
1391 del_timer_sync(&data->timer);
1393 tsi108_stop_ethernet(dev);
1394 tsi108_kill_phy(dev);
1395 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1396 TSI_WRITE(TSI108_MAC_CFG1, 0);
1398 /* Check for any pending TX packets, and drop them. */
1400 while (!data->txfree || data->txhead != data->txtail) {
1401 int tx = data->txtail;
1402 struct sk_buff *skb;
1403 skb = data->txskbs[tx];
1404 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1405 data->txfree++;
1406 dev_kfree_skb(skb);
1409 free_irq(data->irq_num, dev);
1411 /* Discard the RX ring. */
1413 while (data->rxfree) {
1414 int rx = data->rxtail;
1415 struct sk_buff *skb;
1417 skb = data->rxskbs[rx];
1418 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1419 data->rxfree--;
1420 dev_kfree_skb(skb);
1423 dma_free_coherent(&data->pdev->dev,
1424 TSI108_RXRING_LEN * sizeof(rx_desc),
1425 data->rxring, data->rxdma);
1426 dma_free_coherent(&data->pdev->dev,
1427 TSI108_TXRING_LEN * sizeof(tx_desc),
1428 data->txring, data->txdma);
1430 return 0;
1433 static void tsi108_init_mac(struct net_device *dev)
1435 struct tsi108_prv_data *data = netdev_priv(dev);
1437 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1438 TSI108_MAC_CFG2_PADCRC);
1440 TSI_WRITE(TSI108_EC_TXTHRESH,
1441 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1442 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1444 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1445 ~(TSI108_STAT_CARRY1_RXBYTES |
1446 TSI108_STAT_CARRY1_RXPKTS |
1447 TSI108_STAT_CARRY1_RXFCS |
1448 TSI108_STAT_CARRY1_RXMCAST |
1449 TSI108_STAT_CARRY1_RXALIGN |
1450 TSI108_STAT_CARRY1_RXLENGTH |
1451 TSI108_STAT_CARRY1_RXRUNT |
1452 TSI108_STAT_CARRY1_RXJUMBO |
1453 TSI108_STAT_CARRY1_RXFRAG |
1454 TSI108_STAT_CARRY1_RXJABBER |
1455 TSI108_STAT_CARRY1_RXDROP));
1457 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1458 ~(TSI108_STAT_CARRY2_TXBYTES |
1459 TSI108_STAT_CARRY2_TXPKTS |
1460 TSI108_STAT_CARRY2_TXEXDEF |
1461 TSI108_STAT_CARRY2_TXEXCOL |
1462 TSI108_STAT_CARRY2_TXTCOL |
1463 TSI108_STAT_CARRY2_TXPAUSE));
1465 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1466 TSI_WRITE(TSI108_MAC_CFG1, 0);
1468 TSI_WRITE(TSI108_EC_RXCFG,
1469 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1471 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1472 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1473 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1474 TSI108_EC_TXQ_CFG_SFNPORT));
1476 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1477 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1478 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1479 TSI108_EC_RXQ_CFG_SFNPORT));
1481 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1482 TSI108_EC_TXQ_BUFCFG_BURST256 |
1483 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1484 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1486 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1487 TSI108_EC_RXQ_BUFCFG_BURST256 |
1488 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1489 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1491 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1494 static int tsi108_get_link_ksettings(struct net_device *dev,
1495 struct ethtool_link_ksettings *cmd)
1497 struct tsi108_prv_data *data = netdev_priv(dev);
1498 unsigned long flags;
1500 spin_lock_irqsave(&data->txlock, flags);
1501 mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1502 spin_unlock_irqrestore(&data->txlock, flags);
1504 return 0;
1507 static int tsi108_set_link_ksettings(struct net_device *dev,
1508 const struct ethtool_link_ksettings *cmd)
1510 struct tsi108_prv_data *data = netdev_priv(dev);
1511 unsigned long flags;
1512 int rc;
1514 spin_lock_irqsave(&data->txlock, flags);
1515 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1516 spin_unlock_irqrestore(&data->txlock, flags);
1518 return rc;
1521 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1523 struct tsi108_prv_data *data = netdev_priv(dev);
1524 if (!netif_running(dev))
1525 return -EINVAL;
1526 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1529 static const struct ethtool_ops tsi108_ethtool_ops = {
1530 .get_link = ethtool_op_get_link,
1531 .get_link_ksettings = tsi108_get_link_ksettings,
1532 .set_link_ksettings = tsi108_set_link_ksettings,
1535 static const struct net_device_ops tsi108_netdev_ops = {
1536 .ndo_open = tsi108_open,
1537 .ndo_stop = tsi108_close,
1538 .ndo_start_xmit = tsi108_send_packet,
1539 .ndo_set_rx_mode = tsi108_set_rx_mode,
1540 .ndo_get_stats = tsi108_get_stats,
1541 .ndo_do_ioctl = tsi108_do_ioctl,
1542 .ndo_set_mac_address = tsi108_set_mac,
1543 .ndo_validate_addr = eth_validate_addr,
1546 static int
1547 tsi108_init_one(struct platform_device *pdev)
1549 struct net_device *dev = NULL;
1550 struct tsi108_prv_data *data = NULL;
1551 hw_info *einfo;
1552 int err = 0;
1554 einfo = dev_get_platdata(&pdev->dev);
1556 if (NULL == einfo) {
1557 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1558 pdev->id);
1559 return -ENODEV;
1562 /* Create an ethernet device instance */
1564 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1565 if (!dev)
1566 return -ENOMEM;
1568 printk("tsi108_eth%d: probe...\n", pdev->id);
1569 data = netdev_priv(dev);
1570 data->dev = dev;
1571 data->pdev = pdev;
1573 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1574 pdev->id, einfo->regs, einfo->phyregs,
1575 einfo->phy, einfo->irq_num);
1577 data->regs = ioremap(einfo->regs, 0x400);
1578 if (NULL == data->regs) {
1579 err = -ENOMEM;
1580 goto regs_fail;
1583 data->phyregs = ioremap(einfo->phyregs, 0x400);
1584 if (NULL == data->phyregs) {
1585 err = -ENOMEM;
1586 goto phyregs_fail;
1588 /* MII setup */
1589 data->mii_if.dev = dev;
1590 data->mii_if.mdio_read = tsi108_mdio_read;
1591 data->mii_if.mdio_write = tsi108_mdio_write;
1592 data->mii_if.phy_id = einfo->phy;
1593 data->mii_if.phy_id_mask = 0x1f;
1594 data->mii_if.reg_num_mask = 0x1f;
1596 data->phy = einfo->phy;
1597 data->phy_type = einfo->phy_type;
1598 data->irq_num = einfo->irq_num;
1599 data->id = pdev->id;
1600 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1601 dev->netdev_ops = &tsi108_netdev_ops;
1602 dev->ethtool_ops = &tsi108_ethtool_ops;
1604 /* Apparently, the Linux networking code won't use scatter-gather
1605 * if the hardware doesn't do checksums. However, it's faster
1606 * to checksum in place and use SG, as (among other reasons)
1607 * the cache won't be dirtied (which then has to be flushed
1608 * before DMA). The checksumming is done by the driver (via
1609 * a new function skb_csum_dev() in net/core/skbuff.c).
1612 dev->features = NETIF_F_HIGHDMA;
1614 spin_lock_init(&data->txlock);
1615 spin_lock_init(&data->misclock);
1617 tsi108_reset_ether(data);
1618 tsi108_kill_phy(dev);
1620 if ((err = tsi108_get_mac(dev)) != 0) {
1621 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1622 dev->name);
1623 goto register_fail;
1626 tsi108_init_mac(dev);
1627 err = register_netdev(dev);
1628 if (err) {
1629 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1630 dev->name);
1631 goto register_fail;
1634 platform_set_drvdata(pdev, dev);
1635 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1636 dev->name, dev->dev_addr);
1637 #ifdef DEBUG
1638 data->msg_enable = DEBUG;
1639 dump_eth_one(dev);
1640 #endif
1642 return 0;
1644 register_fail:
1645 iounmap(data->phyregs);
1647 phyregs_fail:
1648 iounmap(data->regs);
1650 regs_fail:
1651 free_netdev(dev);
1652 return err;
1655 /* There's no way to either get interrupts from the PHY when
1656 * something changes, or to have the Tsi108 automatically communicate
1657 * with the PHY to reconfigure itself.
1659 * Thus, we have to do it using a timer.
1662 static void tsi108_timed_checker(struct timer_list *t)
1664 struct tsi108_prv_data *data = from_timer(data, t, timer);
1665 struct net_device *dev = data->dev;
1667 tsi108_check_phy(dev);
1668 tsi108_check_rxring(dev);
1669 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1672 static int tsi108_ether_remove(struct platform_device *pdev)
1674 struct net_device *dev = platform_get_drvdata(pdev);
1675 struct tsi108_prv_data *priv = netdev_priv(dev);
1677 unregister_netdev(dev);
1678 tsi108_stop_ethernet(dev);
1679 iounmap(priv->regs);
1680 iounmap(priv->phyregs);
1681 free_netdev(dev);
1683 return 0;
1685 module_platform_driver(tsi_eth_driver);
1687 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1688 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1689 MODULE_LICENSE("GPL");
1690 MODULE_ALIAS("platform:tsi-ethernet");