treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / nvme / host / core.c
blob5dc32b72e7faab7875640106514ab88d4976ebf9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
25 #include "nvme.h"
26 #include "fabrics.h"
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
69 * nvme_wq will host works such are scan, aen handling, fw activation,
70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 unsigned nsid);
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
100 * Revalidating a dead namespace sets capacity to 0. This will end
101 * buffered writers dirtying pages that can't be synced.
103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 return;
105 blk_set_queue_dying(ns->queue);
106 /* Forcibly unquiesce queues to avoid blocking dispatch */
107 blk_mq_unquiesce_queue(ns->queue);
109 * Revalidate after unblocking dispatchers that may be holding bd_butex
111 revalidate_disk(ns->disk);
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
117 * Only new queue scan work when admin and IO queues are both alive
119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 queue_work(nvme_wq, &ctrl->scan_work);
124 * Use this function to proceed with scheduling reset_work for a controller
125 * that had previously been set to the resetting state. This is intended for
126 * code paths that can't be interrupted by other reset attempts. A hot removal
127 * may prevent this from succeeding.
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 if (ctrl->state != NVME_CTRL_RESETTING)
132 return -EBUSY;
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 return -EBUSY;
135 return 0;
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 return -EBUSY;
143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 return -EBUSY;
145 return 0;
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
151 int ret;
153 ret = nvme_reset_ctrl(ctrl);
154 if (!ret) {
155 flush_work(&ctrl->reset_work);
156 if (ctrl->state != NVME_CTRL_LIVE)
157 ret = -ENETRESET;
160 return ret;
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
166 dev_info(ctrl->device,
167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
169 flush_work(&ctrl->reset_work);
170 nvme_stop_ctrl(ctrl);
171 nvme_remove_namespaces(ctrl);
172 ctrl->ops->delete_ctrl(ctrl);
173 nvme_uninit_ctrl(ctrl);
174 nvme_put_ctrl(ctrl);
177 static void nvme_delete_ctrl_work(struct work_struct *work)
179 struct nvme_ctrl *ctrl =
180 container_of(work, struct nvme_ctrl, delete_work);
182 nvme_do_delete_ctrl(ctrl);
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 return -EBUSY;
189 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 return -EBUSY;
191 return 0;
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
197 int ret = 0;
200 * Keep a reference until nvme_do_delete_ctrl() complete,
201 * since ->delete_ctrl can free the controller.
203 nvme_get_ctrl(ctrl);
204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205 ret = -EBUSY;
206 if (!ret)
207 nvme_do_delete_ctrl(ctrl);
208 nvme_put_ctrl(ctrl);
209 return ret;
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
214 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
217 static blk_status_t nvme_error_status(u16 status)
219 switch (status & 0x7ff) {
220 case NVME_SC_SUCCESS:
221 return BLK_STS_OK;
222 case NVME_SC_CAP_EXCEEDED:
223 return BLK_STS_NOSPC;
224 case NVME_SC_LBA_RANGE:
225 case NVME_SC_CMD_INTERRUPTED:
226 case NVME_SC_NS_NOT_READY:
227 return BLK_STS_TARGET;
228 case NVME_SC_BAD_ATTRIBUTES:
229 case NVME_SC_ONCS_NOT_SUPPORTED:
230 case NVME_SC_INVALID_OPCODE:
231 case NVME_SC_INVALID_FIELD:
232 case NVME_SC_INVALID_NS:
233 return BLK_STS_NOTSUPP;
234 case NVME_SC_WRITE_FAULT:
235 case NVME_SC_READ_ERROR:
236 case NVME_SC_UNWRITTEN_BLOCK:
237 case NVME_SC_ACCESS_DENIED:
238 case NVME_SC_READ_ONLY:
239 case NVME_SC_COMPARE_FAILED:
240 return BLK_STS_MEDIUM;
241 case NVME_SC_GUARD_CHECK:
242 case NVME_SC_APPTAG_CHECK:
243 case NVME_SC_REFTAG_CHECK:
244 case NVME_SC_INVALID_PI:
245 return BLK_STS_PROTECTION;
246 case NVME_SC_RESERVATION_CONFLICT:
247 return BLK_STS_NEXUS;
248 case NVME_SC_HOST_PATH_ERROR:
249 return BLK_STS_TRANSPORT;
250 default:
251 return BLK_STS_IOERR;
255 static inline bool nvme_req_needs_retry(struct request *req)
257 if (blk_noretry_request(req))
258 return false;
259 if (nvme_req(req)->status & NVME_SC_DNR)
260 return false;
261 if (nvme_req(req)->retries >= nvme_max_retries)
262 return false;
263 return true;
266 static void nvme_retry_req(struct request *req)
268 struct nvme_ns *ns = req->q->queuedata;
269 unsigned long delay = 0;
270 u16 crd;
272 /* The mask and shift result must be <= 3 */
273 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
274 if (ns && crd)
275 delay = ns->ctrl->crdt[crd - 1] * 100;
277 nvme_req(req)->retries++;
278 blk_mq_requeue_request(req, false);
279 blk_mq_delay_kick_requeue_list(req->q, delay);
282 void nvme_complete_rq(struct request *req)
284 blk_status_t status = nvme_error_status(nvme_req(req)->status);
286 trace_nvme_complete_rq(req);
288 nvme_cleanup_cmd(req);
290 if (nvme_req(req)->ctrl->kas)
291 nvme_req(req)->ctrl->comp_seen = true;
293 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
294 if ((req->cmd_flags & REQ_NVME_MPATH) &&
295 blk_path_error(status)) {
296 nvme_failover_req(req);
297 return;
300 if (!blk_queue_dying(req->q)) {
301 nvme_retry_req(req);
302 return;
306 nvme_trace_bio_complete(req, status);
307 blk_mq_end_request(req, status);
309 EXPORT_SYMBOL_GPL(nvme_complete_rq);
311 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
313 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
314 "Cancelling I/O %d", req->tag);
316 /* don't abort one completed request */
317 if (blk_mq_request_completed(req))
318 return true;
320 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
321 blk_mq_complete_request(req);
322 return true;
324 EXPORT_SYMBOL_GPL(nvme_cancel_request);
326 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
327 enum nvme_ctrl_state new_state)
329 enum nvme_ctrl_state old_state;
330 unsigned long flags;
331 bool changed = false;
333 spin_lock_irqsave(&ctrl->lock, flags);
335 old_state = ctrl->state;
336 switch (new_state) {
337 case NVME_CTRL_LIVE:
338 switch (old_state) {
339 case NVME_CTRL_NEW:
340 case NVME_CTRL_RESETTING:
341 case NVME_CTRL_CONNECTING:
342 changed = true;
343 /* FALLTHRU */
344 default:
345 break;
347 break;
348 case NVME_CTRL_RESETTING:
349 switch (old_state) {
350 case NVME_CTRL_NEW:
351 case NVME_CTRL_LIVE:
352 changed = true;
353 /* FALLTHRU */
354 default:
355 break;
357 break;
358 case NVME_CTRL_CONNECTING:
359 switch (old_state) {
360 case NVME_CTRL_NEW:
361 case NVME_CTRL_RESETTING:
362 changed = true;
363 /* FALLTHRU */
364 default:
365 break;
367 break;
368 case NVME_CTRL_DELETING:
369 switch (old_state) {
370 case NVME_CTRL_LIVE:
371 case NVME_CTRL_RESETTING:
372 case NVME_CTRL_CONNECTING:
373 changed = true;
374 /* FALLTHRU */
375 default:
376 break;
378 break;
379 case NVME_CTRL_DEAD:
380 switch (old_state) {
381 case NVME_CTRL_DELETING:
382 changed = true;
383 /* FALLTHRU */
384 default:
385 break;
387 break;
388 default:
389 break;
392 if (changed) {
393 ctrl->state = new_state;
394 wake_up_all(&ctrl->state_wq);
397 spin_unlock_irqrestore(&ctrl->lock, flags);
398 if (changed && ctrl->state == NVME_CTRL_LIVE)
399 nvme_kick_requeue_lists(ctrl);
400 return changed;
402 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
405 * Returns true for sink states that can't ever transition back to live.
407 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
409 switch (ctrl->state) {
410 case NVME_CTRL_NEW:
411 case NVME_CTRL_LIVE:
412 case NVME_CTRL_RESETTING:
413 case NVME_CTRL_CONNECTING:
414 return false;
415 case NVME_CTRL_DELETING:
416 case NVME_CTRL_DEAD:
417 return true;
418 default:
419 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
420 return true;
425 * Waits for the controller state to be resetting, or returns false if it is
426 * not possible to ever transition to that state.
428 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
430 wait_event(ctrl->state_wq,
431 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
432 nvme_state_terminal(ctrl));
433 return ctrl->state == NVME_CTRL_RESETTING;
435 EXPORT_SYMBOL_GPL(nvme_wait_reset);
437 static void nvme_free_ns_head(struct kref *ref)
439 struct nvme_ns_head *head =
440 container_of(ref, struct nvme_ns_head, ref);
442 nvme_mpath_remove_disk(head);
443 ida_simple_remove(&head->subsys->ns_ida, head->instance);
444 list_del_init(&head->entry);
445 cleanup_srcu_struct(&head->srcu);
446 nvme_put_subsystem(head->subsys);
447 kfree(head);
450 static void nvme_put_ns_head(struct nvme_ns_head *head)
452 kref_put(&head->ref, nvme_free_ns_head);
455 static void nvme_free_ns(struct kref *kref)
457 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
459 if (ns->ndev)
460 nvme_nvm_unregister(ns);
462 put_disk(ns->disk);
463 nvme_put_ns_head(ns->head);
464 nvme_put_ctrl(ns->ctrl);
465 kfree(ns);
468 static void nvme_put_ns(struct nvme_ns *ns)
470 kref_put(&ns->kref, nvme_free_ns);
473 static inline void nvme_clear_nvme_request(struct request *req)
475 if (!(req->rq_flags & RQF_DONTPREP)) {
476 nvme_req(req)->retries = 0;
477 nvme_req(req)->flags = 0;
478 req->rq_flags |= RQF_DONTPREP;
482 struct request *nvme_alloc_request(struct request_queue *q,
483 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
485 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
486 struct request *req;
488 if (qid == NVME_QID_ANY) {
489 req = blk_mq_alloc_request(q, op, flags);
490 } else {
491 req = blk_mq_alloc_request_hctx(q, op, flags,
492 qid ? qid - 1 : 0);
494 if (IS_ERR(req))
495 return req;
497 req->cmd_flags |= REQ_FAILFAST_DRIVER;
498 nvme_clear_nvme_request(req);
499 nvme_req(req)->cmd = cmd;
501 return req;
503 EXPORT_SYMBOL_GPL(nvme_alloc_request);
505 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
507 struct nvme_command c;
509 memset(&c, 0, sizeof(c));
511 c.directive.opcode = nvme_admin_directive_send;
512 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
513 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
514 c.directive.dtype = NVME_DIR_IDENTIFY;
515 c.directive.tdtype = NVME_DIR_STREAMS;
516 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
518 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
521 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
523 return nvme_toggle_streams(ctrl, false);
526 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
528 return nvme_toggle_streams(ctrl, true);
531 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
532 struct streams_directive_params *s, u32 nsid)
534 struct nvme_command c;
536 memset(&c, 0, sizeof(c));
537 memset(s, 0, sizeof(*s));
539 c.directive.opcode = nvme_admin_directive_recv;
540 c.directive.nsid = cpu_to_le32(nsid);
541 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
542 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
543 c.directive.dtype = NVME_DIR_STREAMS;
545 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
548 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
550 struct streams_directive_params s;
551 int ret;
553 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
554 return 0;
555 if (!streams)
556 return 0;
558 ret = nvme_enable_streams(ctrl);
559 if (ret)
560 return ret;
562 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
563 if (ret)
564 return ret;
566 ctrl->nssa = le16_to_cpu(s.nssa);
567 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
568 dev_info(ctrl->device, "too few streams (%u) available\n",
569 ctrl->nssa);
570 nvme_disable_streams(ctrl);
571 return 0;
574 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
575 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
576 return 0;
580 * Check if 'req' has a write hint associated with it. If it does, assign
581 * a valid namespace stream to the write.
583 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
584 struct request *req, u16 *control,
585 u32 *dsmgmt)
587 enum rw_hint streamid = req->write_hint;
589 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
590 streamid = 0;
591 else {
592 streamid--;
593 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
594 return;
596 *control |= NVME_RW_DTYPE_STREAMS;
597 *dsmgmt |= streamid << 16;
600 if (streamid < ARRAY_SIZE(req->q->write_hints))
601 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
604 static inline void nvme_setup_flush(struct nvme_ns *ns,
605 struct nvme_command *cmnd)
607 cmnd->common.opcode = nvme_cmd_flush;
608 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
611 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
612 struct nvme_command *cmnd)
614 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
615 struct nvme_dsm_range *range;
616 struct bio *bio;
619 * Some devices do not consider the DSM 'Number of Ranges' field when
620 * determining how much data to DMA. Always allocate memory for maximum
621 * number of segments to prevent device reading beyond end of buffer.
623 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
625 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
626 if (!range) {
628 * If we fail allocation our range, fallback to the controller
629 * discard page. If that's also busy, it's safe to return
630 * busy, as we know we can make progress once that's freed.
632 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
633 return BLK_STS_RESOURCE;
635 range = page_address(ns->ctrl->discard_page);
638 __rq_for_each_bio(bio, req) {
639 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
640 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
642 if (n < segments) {
643 range[n].cattr = cpu_to_le32(0);
644 range[n].nlb = cpu_to_le32(nlb);
645 range[n].slba = cpu_to_le64(slba);
647 n++;
650 if (WARN_ON_ONCE(n != segments)) {
651 if (virt_to_page(range) == ns->ctrl->discard_page)
652 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
653 else
654 kfree(range);
655 return BLK_STS_IOERR;
658 cmnd->dsm.opcode = nvme_cmd_dsm;
659 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
660 cmnd->dsm.nr = cpu_to_le32(segments - 1);
661 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
663 req->special_vec.bv_page = virt_to_page(range);
664 req->special_vec.bv_offset = offset_in_page(range);
665 req->special_vec.bv_len = alloc_size;
666 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
668 return BLK_STS_OK;
671 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
672 struct request *req, struct nvme_command *cmnd)
674 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
675 return nvme_setup_discard(ns, req, cmnd);
677 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
678 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
679 cmnd->write_zeroes.slba =
680 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
681 cmnd->write_zeroes.length =
682 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
683 cmnd->write_zeroes.control = 0;
684 return BLK_STS_OK;
687 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
688 struct request *req, struct nvme_command *cmnd)
690 struct nvme_ctrl *ctrl = ns->ctrl;
691 u16 control = 0;
692 u32 dsmgmt = 0;
694 if (req->cmd_flags & REQ_FUA)
695 control |= NVME_RW_FUA;
696 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
697 control |= NVME_RW_LR;
699 if (req->cmd_flags & REQ_RAHEAD)
700 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
702 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
703 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
704 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
705 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
707 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
708 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
710 if (ns->ms) {
712 * If formated with metadata, the block layer always provides a
713 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
714 * we enable the PRACT bit for protection information or set the
715 * namespace capacity to zero to prevent any I/O.
717 if (!blk_integrity_rq(req)) {
718 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
719 return BLK_STS_NOTSUPP;
720 control |= NVME_RW_PRINFO_PRACT;
723 switch (ns->pi_type) {
724 case NVME_NS_DPS_PI_TYPE3:
725 control |= NVME_RW_PRINFO_PRCHK_GUARD;
726 break;
727 case NVME_NS_DPS_PI_TYPE1:
728 case NVME_NS_DPS_PI_TYPE2:
729 control |= NVME_RW_PRINFO_PRCHK_GUARD |
730 NVME_RW_PRINFO_PRCHK_REF;
731 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
732 break;
736 cmnd->rw.control = cpu_to_le16(control);
737 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
738 return 0;
741 void nvme_cleanup_cmd(struct request *req)
743 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
744 struct nvme_ns *ns = req->rq_disk->private_data;
745 struct page *page = req->special_vec.bv_page;
747 if (page == ns->ctrl->discard_page)
748 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
749 else
750 kfree(page_address(page) + req->special_vec.bv_offset);
753 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
755 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
756 struct nvme_command *cmd)
758 blk_status_t ret = BLK_STS_OK;
760 nvme_clear_nvme_request(req);
762 memset(cmd, 0, sizeof(*cmd));
763 switch (req_op(req)) {
764 case REQ_OP_DRV_IN:
765 case REQ_OP_DRV_OUT:
766 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
767 break;
768 case REQ_OP_FLUSH:
769 nvme_setup_flush(ns, cmd);
770 break;
771 case REQ_OP_WRITE_ZEROES:
772 ret = nvme_setup_write_zeroes(ns, req, cmd);
773 break;
774 case REQ_OP_DISCARD:
775 ret = nvme_setup_discard(ns, req, cmd);
776 break;
777 case REQ_OP_READ:
778 case REQ_OP_WRITE:
779 ret = nvme_setup_rw(ns, req, cmd);
780 break;
781 default:
782 WARN_ON_ONCE(1);
783 return BLK_STS_IOERR;
786 cmd->common.command_id = req->tag;
787 trace_nvme_setup_cmd(req, cmd);
788 return ret;
790 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
792 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
794 struct completion *waiting = rq->end_io_data;
796 rq->end_io_data = NULL;
797 complete(waiting);
800 static void nvme_execute_rq_polled(struct request_queue *q,
801 struct gendisk *bd_disk, struct request *rq, int at_head)
803 DECLARE_COMPLETION_ONSTACK(wait);
805 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
807 rq->cmd_flags |= REQ_HIPRI;
808 rq->end_io_data = &wait;
809 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
811 while (!completion_done(&wait)) {
812 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
813 cond_resched();
818 * Returns 0 on success. If the result is negative, it's a Linux error code;
819 * if the result is positive, it's an NVM Express status code
821 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
822 union nvme_result *result, void *buffer, unsigned bufflen,
823 unsigned timeout, int qid, int at_head,
824 blk_mq_req_flags_t flags, bool poll)
826 struct request *req;
827 int ret;
829 req = nvme_alloc_request(q, cmd, flags, qid);
830 if (IS_ERR(req))
831 return PTR_ERR(req);
833 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
835 if (buffer && bufflen) {
836 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
837 if (ret)
838 goto out;
841 if (poll)
842 nvme_execute_rq_polled(req->q, NULL, req, at_head);
843 else
844 blk_execute_rq(req->q, NULL, req, at_head);
845 if (result)
846 *result = nvme_req(req)->result;
847 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
848 ret = -EINTR;
849 else
850 ret = nvme_req(req)->status;
851 out:
852 blk_mq_free_request(req);
853 return ret;
855 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
857 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
858 void *buffer, unsigned bufflen)
860 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
861 NVME_QID_ANY, 0, 0, false);
863 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
865 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
866 unsigned len, u32 seed, bool write)
868 struct bio_integrity_payload *bip;
869 int ret = -ENOMEM;
870 void *buf;
872 buf = kmalloc(len, GFP_KERNEL);
873 if (!buf)
874 goto out;
876 ret = -EFAULT;
877 if (write && copy_from_user(buf, ubuf, len))
878 goto out_free_meta;
880 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
881 if (IS_ERR(bip)) {
882 ret = PTR_ERR(bip);
883 goto out_free_meta;
886 bip->bip_iter.bi_size = len;
887 bip->bip_iter.bi_sector = seed;
888 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
889 offset_in_page(buf));
890 if (ret == len)
891 return buf;
892 ret = -ENOMEM;
893 out_free_meta:
894 kfree(buf);
895 out:
896 return ERR_PTR(ret);
899 static int nvme_submit_user_cmd(struct request_queue *q,
900 struct nvme_command *cmd, void __user *ubuffer,
901 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
902 u32 meta_seed, u64 *result, unsigned timeout)
904 bool write = nvme_is_write(cmd);
905 struct nvme_ns *ns = q->queuedata;
906 struct gendisk *disk = ns ? ns->disk : NULL;
907 struct request *req;
908 struct bio *bio = NULL;
909 void *meta = NULL;
910 int ret;
912 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
913 if (IS_ERR(req))
914 return PTR_ERR(req);
916 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
917 nvme_req(req)->flags |= NVME_REQ_USERCMD;
919 if (ubuffer && bufflen) {
920 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
921 GFP_KERNEL);
922 if (ret)
923 goto out;
924 bio = req->bio;
925 bio->bi_disk = disk;
926 if (disk && meta_buffer && meta_len) {
927 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
928 meta_seed, write);
929 if (IS_ERR(meta)) {
930 ret = PTR_ERR(meta);
931 goto out_unmap;
933 req->cmd_flags |= REQ_INTEGRITY;
937 blk_execute_rq(req->q, disk, req, 0);
938 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
939 ret = -EINTR;
940 else
941 ret = nvme_req(req)->status;
942 if (result)
943 *result = le64_to_cpu(nvme_req(req)->result.u64);
944 if (meta && !ret && !write) {
945 if (copy_to_user(meta_buffer, meta, meta_len))
946 ret = -EFAULT;
948 kfree(meta);
949 out_unmap:
950 if (bio)
951 blk_rq_unmap_user(bio);
952 out:
953 blk_mq_free_request(req);
954 return ret;
957 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
959 struct nvme_ctrl *ctrl = rq->end_io_data;
960 unsigned long flags;
961 bool startka = false;
963 blk_mq_free_request(rq);
965 if (status) {
966 dev_err(ctrl->device,
967 "failed nvme_keep_alive_end_io error=%d\n",
968 status);
969 return;
972 ctrl->comp_seen = false;
973 spin_lock_irqsave(&ctrl->lock, flags);
974 if (ctrl->state == NVME_CTRL_LIVE ||
975 ctrl->state == NVME_CTRL_CONNECTING)
976 startka = true;
977 spin_unlock_irqrestore(&ctrl->lock, flags);
978 if (startka)
979 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
982 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
984 struct request *rq;
986 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
987 NVME_QID_ANY);
988 if (IS_ERR(rq))
989 return PTR_ERR(rq);
991 rq->timeout = ctrl->kato * HZ;
992 rq->end_io_data = ctrl;
994 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
996 return 0;
999 static void nvme_keep_alive_work(struct work_struct *work)
1001 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1002 struct nvme_ctrl, ka_work);
1003 bool comp_seen = ctrl->comp_seen;
1005 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1006 dev_dbg(ctrl->device,
1007 "reschedule traffic based keep-alive timer\n");
1008 ctrl->comp_seen = false;
1009 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1010 return;
1013 if (nvme_keep_alive(ctrl)) {
1014 /* allocation failure, reset the controller */
1015 dev_err(ctrl->device, "keep-alive failed\n");
1016 nvme_reset_ctrl(ctrl);
1017 return;
1021 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1023 if (unlikely(ctrl->kato == 0))
1024 return;
1026 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1029 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1031 if (unlikely(ctrl->kato == 0))
1032 return;
1034 cancel_delayed_work_sync(&ctrl->ka_work);
1036 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1038 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1040 struct nvme_command c = { };
1041 int error;
1043 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1044 c.identify.opcode = nvme_admin_identify;
1045 c.identify.cns = NVME_ID_CNS_CTRL;
1047 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1048 if (!*id)
1049 return -ENOMEM;
1051 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1052 sizeof(struct nvme_id_ctrl));
1053 if (error)
1054 kfree(*id);
1055 return error;
1058 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1059 struct nvme_ns_ids *ids)
1061 struct nvme_command c = { };
1062 int status;
1063 void *data;
1064 int pos;
1065 int len;
1067 c.identify.opcode = nvme_admin_identify;
1068 c.identify.nsid = cpu_to_le32(nsid);
1069 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1071 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1072 if (!data)
1073 return -ENOMEM;
1075 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1076 NVME_IDENTIFY_DATA_SIZE);
1077 if (status)
1078 goto free_data;
1080 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1081 struct nvme_ns_id_desc *cur = data + pos;
1083 if (cur->nidl == 0)
1084 break;
1086 switch (cur->nidt) {
1087 case NVME_NIDT_EUI64:
1088 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1089 dev_warn(ctrl->device,
1090 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1091 cur->nidl);
1092 goto free_data;
1094 len = NVME_NIDT_EUI64_LEN;
1095 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1096 break;
1097 case NVME_NIDT_NGUID:
1098 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1099 dev_warn(ctrl->device,
1100 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1101 cur->nidl);
1102 goto free_data;
1104 len = NVME_NIDT_NGUID_LEN;
1105 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1106 break;
1107 case NVME_NIDT_UUID:
1108 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1109 dev_warn(ctrl->device,
1110 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1111 cur->nidl);
1112 goto free_data;
1114 len = NVME_NIDT_UUID_LEN;
1115 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1116 break;
1117 default:
1118 /* Skip unknown types */
1119 len = cur->nidl;
1120 break;
1123 len += sizeof(*cur);
1125 free_data:
1126 kfree(data);
1127 return status;
1130 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1132 struct nvme_command c = { };
1134 c.identify.opcode = nvme_admin_identify;
1135 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1136 c.identify.nsid = cpu_to_le32(nsid);
1137 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1138 NVME_IDENTIFY_DATA_SIZE);
1141 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1142 unsigned nsid, struct nvme_id_ns **id)
1144 struct nvme_command c = { };
1145 int error;
1147 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1148 c.identify.opcode = nvme_admin_identify;
1149 c.identify.nsid = cpu_to_le32(nsid);
1150 c.identify.cns = NVME_ID_CNS_NS;
1152 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1153 if (!*id)
1154 return -ENOMEM;
1156 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1157 if (error) {
1158 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1159 kfree(*id);
1162 return error;
1165 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1166 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1168 struct nvme_command c;
1169 union nvme_result res;
1170 int ret;
1172 memset(&c, 0, sizeof(c));
1173 c.features.opcode = op;
1174 c.features.fid = cpu_to_le32(fid);
1175 c.features.dword11 = cpu_to_le32(dword11);
1177 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1178 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1179 if (ret >= 0 && result)
1180 *result = le32_to_cpu(res.u32);
1181 return ret;
1184 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1185 unsigned int dword11, void *buffer, size_t buflen,
1186 u32 *result)
1188 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1189 buflen, result);
1191 EXPORT_SYMBOL_GPL(nvme_set_features);
1193 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1194 unsigned int dword11, void *buffer, size_t buflen,
1195 u32 *result)
1197 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1198 buflen, result);
1200 EXPORT_SYMBOL_GPL(nvme_get_features);
1202 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1204 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1205 u32 result;
1206 int status, nr_io_queues;
1208 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1209 &result);
1210 if (status < 0)
1211 return status;
1214 * Degraded controllers might return an error when setting the queue
1215 * count. We still want to be able to bring them online and offer
1216 * access to the admin queue, as that might be only way to fix them up.
1218 if (status > 0) {
1219 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1220 *count = 0;
1221 } else {
1222 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1223 *count = min(*count, nr_io_queues);
1226 return 0;
1228 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1230 #define NVME_AEN_SUPPORTED \
1231 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1232 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1234 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1236 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1237 int status;
1239 if (!supported_aens)
1240 return;
1242 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1243 NULL, 0, &result);
1244 if (status)
1245 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1246 supported_aens);
1248 queue_work(nvme_wq, &ctrl->async_event_work);
1251 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1253 struct nvme_user_io io;
1254 struct nvme_command c;
1255 unsigned length, meta_len;
1256 void __user *metadata;
1258 if (copy_from_user(&io, uio, sizeof(io)))
1259 return -EFAULT;
1260 if (io.flags)
1261 return -EINVAL;
1263 switch (io.opcode) {
1264 case nvme_cmd_write:
1265 case nvme_cmd_read:
1266 case nvme_cmd_compare:
1267 break;
1268 default:
1269 return -EINVAL;
1272 length = (io.nblocks + 1) << ns->lba_shift;
1273 meta_len = (io.nblocks + 1) * ns->ms;
1274 metadata = (void __user *)(uintptr_t)io.metadata;
1276 if (ns->ext) {
1277 length += meta_len;
1278 meta_len = 0;
1279 } else if (meta_len) {
1280 if ((io.metadata & 3) || !io.metadata)
1281 return -EINVAL;
1284 memset(&c, 0, sizeof(c));
1285 c.rw.opcode = io.opcode;
1286 c.rw.flags = io.flags;
1287 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1288 c.rw.slba = cpu_to_le64(io.slba);
1289 c.rw.length = cpu_to_le16(io.nblocks);
1290 c.rw.control = cpu_to_le16(io.control);
1291 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1292 c.rw.reftag = cpu_to_le32(io.reftag);
1293 c.rw.apptag = cpu_to_le16(io.apptag);
1294 c.rw.appmask = cpu_to_le16(io.appmask);
1296 return nvme_submit_user_cmd(ns->queue, &c,
1297 (void __user *)(uintptr_t)io.addr, length,
1298 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1301 static u32 nvme_known_admin_effects(u8 opcode)
1303 switch (opcode) {
1304 case nvme_admin_format_nvm:
1305 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1306 NVME_CMD_EFFECTS_CSE_MASK;
1307 case nvme_admin_sanitize_nvm:
1308 return NVME_CMD_EFFECTS_CSE_MASK;
1309 default:
1310 break;
1312 return 0;
1315 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1316 u8 opcode)
1318 u32 effects = 0;
1320 if (ns) {
1321 if (ctrl->effects)
1322 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1323 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1324 dev_warn(ctrl->device,
1325 "IO command:%02x has unhandled effects:%08x\n",
1326 opcode, effects);
1327 return 0;
1330 if (ctrl->effects)
1331 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1332 effects |= nvme_known_admin_effects(opcode);
1335 * For simplicity, IO to all namespaces is quiesced even if the command
1336 * effects say only one namespace is affected.
1338 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1339 mutex_lock(&ctrl->scan_lock);
1340 mutex_lock(&ctrl->subsys->lock);
1341 nvme_mpath_start_freeze(ctrl->subsys);
1342 nvme_mpath_wait_freeze(ctrl->subsys);
1343 nvme_start_freeze(ctrl);
1344 nvme_wait_freeze(ctrl);
1346 return effects;
1349 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1351 struct nvme_ns *ns;
1353 down_read(&ctrl->namespaces_rwsem);
1354 list_for_each_entry(ns, &ctrl->namespaces, list)
1355 if (ns->disk && nvme_revalidate_disk(ns->disk))
1356 nvme_set_queue_dying(ns);
1357 up_read(&ctrl->namespaces_rwsem);
1360 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1363 * Revalidate LBA changes prior to unfreezing. This is necessary to
1364 * prevent memory corruption if a logical block size was changed by
1365 * this command.
1367 if (effects & NVME_CMD_EFFECTS_LBCC)
1368 nvme_update_formats(ctrl);
1369 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1370 nvme_unfreeze(ctrl);
1371 nvme_mpath_unfreeze(ctrl->subsys);
1372 mutex_unlock(&ctrl->subsys->lock);
1373 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1374 mutex_unlock(&ctrl->scan_lock);
1376 if (effects & NVME_CMD_EFFECTS_CCC)
1377 nvme_init_identify(ctrl);
1378 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1379 nvme_queue_scan(ctrl);
1382 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1383 struct nvme_passthru_cmd __user *ucmd)
1385 struct nvme_passthru_cmd cmd;
1386 struct nvme_command c;
1387 unsigned timeout = 0;
1388 u32 effects;
1389 u64 result;
1390 int status;
1392 if (!capable(CAP_SYS_ADMIN))
1393 return -EACCES;
1394 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1395 return -EFAULT;
1396 if (cmd.flags)
1397 return -EINVAL;
1399 memset(&c, 0, sizeof(c));
1400 c.common.opcode = cmd.opcode;
1401 c.common.flags = cmd.flags;
1402 c.common.nsid = cpu_to_le32(cmd.nsid);
1403 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1404 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1405 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1406 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1407 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1408 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1409 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1410 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1412 if (cmd.timeout_ms)
1413 timeout = msecs_to_jiffies(cmd.timeout_ms);
1415 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1416 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1417 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1418 (void __user *)(uintptr_t)cmd.metadata,
1419 cmd.metadata_len, 0, &result, timeout);
1420 nvme_passthru_end(ctrl, effects);
1422 if (status >= 0) {
1423 if (put_user(result, &ucmd->result))
1424 return -EFAULT;
1427 return status;
1430 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1431 struct nvme_passthru_cmd64 __user *ucmd)
1433 struct nvme_passthru_cmd64 cmd;
1434 struct nvme_command c;
1435 unsigned timeout = 0;
1436 u32 effects;
1437 int status;
1439 if (!capable(CAP_SYS_ADMIN))
1440 return -EACCES;
1441 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1442 return -EFAULT;
1443 if (cmd.flags)
1444 return -EINVAL;
1446 memset(&c, 0, sizeof(c));
1447 c.common.opcode = cmd.opcode;
1448 c.common.flags = cmd.flags;
1449 c.common.nsid = cpu_to_le32(cmd.nsid);
1450 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1451 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1452 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1453 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1454 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1455 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1456 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1457 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1459 if (cmd.timeout_ms)
1460 timeout = msecs_to_jiffies(cmd.timeout_ms);
1462 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1463 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1464 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1465 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1466 0, &cmd.result, timeout);
1467 nvme_passthru_end(ctrl, effects);
1469 if (status >= 0) {
1470 if (put_user(cmd.result, &ucmd->result))
1471 return -EFAULT;
1474 return status;
1478 * Issue ioctl requests on the first available path. Note that unlike normal
1479 * block layer requests we will not retry failed request on another controller.
1481 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1482 struct nvme_ns_head **head, int *srcu_idx)
1484 #ifdef CONFIG_NVME_MULTIPATH
1485 if (disk->fops == &nvme_ns_head_ops) {
1486 struct nvme_ns *ns;
1488 *head = disk->private_data;
1489 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1490 ns = nvme_find_path(*head);
1491 if (!ns)
1492 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1493 return ns;
1495 #endif
1496 *head = NULL;
1497 *srcu_idx = -1;
1498 return disk->private_data;
1501 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1503 if (head)
1504 srcu_read_unlock(&head->srcu, idx);
1507 static bool is_ctrl_ioctl(unsigned int cmd)
1509 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1510 return true;
1511 if (is_sed_ioctl(cmd))
1512 return true;
1513 return false;
1516 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1517 void __user *argp,
1518 struct nvme_ns_head *head,
1519 int srcu_idx)
1521 struct nvme_ctrl *ctrl = ns->ctrl;
1522 int ret;
1524 nvme_get_ctrl(ns->ctrl);
1525 nvme_put_ns_from_disk(head, srcu_idx);
1527 switch (cmd) {
1528 case NVME_IOCTL_ADMIN_CMD:
1529 ret = nvme_user_cmd(ctrl, NULL, argp);
1530 break;
1531 case NVME_IOCTL_ADMIN64_CMD:
1532 ret = nvme_user_cmd64(ctrl, NULL, argp);
1533 break;
1534 default:
1535 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1536 break;
1538 nvme_put_ctrl(ctrl);
1539 return ret;
1542 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1543 unsigned int cmd, unsigned long arg)
1545 struct nvme_ns_head *head = NULL;
1546 void __user *argp = (void __user *)arg;
1547 struct nvme_ns *ns;
1548 int srcu_idx, ret;
1550 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1551 if (unlikely(!ns))
1552 return -EWOULDBLOCK;
1555 * Handle ioctls that apply to the controller instead of the namespace
1556 * seperately and drop the ns SRCU reference early. This avoids a
1557 * deadlock when deleting namespaces using the passthrough interface.
1559 if (is_ctrl_ioctl(cmd))
1560 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1562 switch (cmd) {
1563 case NVME_IOCTL_ID:
1564 force_successful_syscall_return();
1565 ret = ns->head->ns_id;
1566 break;
1567 case NVME_IOCTL_IO_CMD:
1568 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1569 break;
1570 case NVME_IOCTL_SUBMIT_IO:
1571 ret = nvme_submit_io(ns, argp);
1572 break;
1573 case NVME_IOCTL_IO64_CMD:
1574 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1575 break;
1576 default:
1577 if (ns->ndev)
1578 ret = nvme_nvm_ioctl(ns, cmd, arg);
1579 else
1580 ret = -ENOTTY;
1583 nvme_put_ns_from_disk(head, srcu_idx);
1584 return ret;
1587 static int nvme_open(struct block_device *bdev, fmode_t mode)
1589 struct nvme_ns *ns = bdev->bd_disk->private_data;
1591 #ifdef CONFIG_NVME_MULTIPATH
1592 /* should never be called due to GENHD_FL_HIDDEN */
1593 if (WARN_ON_ONCE(ns->head->disk))
1594 goto fail;
1595 #endif
1596 if (!kref_get_unless_zero(&ns->kref))
1597 goto fail;
1598 if (!try_module_get(ns->ctrl->ops->module))
1599 goto fail_put_ns;
1601 return 0;
1603 fail_put_ns:
1604 nvme_put_ns(ns);
1605 fail:
1606 return -ENXIO;
1609 static void nvme_release(struct gendisk *disk, fmode_t mode)
1611 struct nvme_ns *ns = disk->private_data;
1613 module_put(ns->ctrl->ops->module);
1614 nvme_put_ns(ns);
1617 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1619 /* some standard values */
1620 geo->heads = 1 << 6;
1621 geo->sectors = 1 << 5;
1622 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1623 return 0;
1626 #ifdef CONFIG_BLK_DEV_INTEGRITY
1627 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1629 struct blk_integrity integrity;
1631 memset(&integrity, 0, sizeof(integrity));
1632 switch (pi_type) {
1633 case NVME_NS_DPS_PI_TYPE3:
1634 integrity.profile = &t10_pi_type3_crc;
1635 integrity.tag_size = sizeof(u16) + sizeof(u32);
1636 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1637 break;
1638 case NVME_NS_DPS_PI_TYPE1:
1639 case NVME_NS_DPS_PI_TYPE2:
1640 integrity.profile = &t10_pi_type1_crc;
1641 integrity.tag_size = sizeof(u16);
1642 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1643 break;
1644 default:
1645 integrity.profile = NULL;
1646 break;
1648 integrity.tuple_size = ms;
1649 blk_integrity_register(disk, &integrity);
1650 blk_queue_max_integrity_segments(disk->queue, 1);
1652 #else
1653 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1656 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1658 static void nvme_set_chunk_size(struct nvme_ns *ns)
1660 u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1661 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1664 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1666 struct nvme_ctrl *ctrl = ns->ctrl;
1667 struct request_queue *queue = disk->queue;
1668 u32 size = queue_logical_block_size(queue);
1670 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1671 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1672 return;
1675 if (ctrl->nr_streams && ns->sws && ns->sgs)
1676 size *= ns->sws * ns->sgs;
1678 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1679 NVME_DSM_MAX_RANGES);
1681 queue->limits.discard_alignment = 0;
1682 queue->limits.discard_granularity = size;
1684 /* If discard is already enabled, don't reset queue limits */
1685 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1686 return;
1688 blk_queue_max_discard_sectors(queue, UINT_MAX);
1689 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1691 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1692 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1695 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1697 u64 max_blocks;
1699 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1700 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1701 return;
1703 * Even though NVMe spec explicitly states that MDTS is not
1704 * applicable to the write-zeroes:- "The restriction does not apply to
1705 * commands that do not transfer data between the host and the
1706 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1707 * In order to be more cautious use controller's max_hw_sectors value
1708 * to configure the maximum sectors for the write-zeroes which is
1709 * configured based on the controller's MDTS field in the
1710 * nvme_init_identify() if available.
1712 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1713 max_blocks = (u64)USHRT_MAX + 1;
1714 else
1715 max_blocks = ns->ctrl->max_hw_sectors + 1;
1717 blk_queue_max_write_zeroes_sectors(disk->queue,
1718 nvme_lba_to_sect(ns, max_blocks));
1721 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1722 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1724 int ret = 0;
1726 memset(ids, 0, sizeof(*ids));
1728 if (ctrl->vs >= NVME_VS(1, 1, 0))
1729 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1730 if (ctrl->vs >= NVME_VS(1, 2, 0))
1731 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1732 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1733 /* Don't treat error as fatal we potentially
1734 * already have a NGUID or EUI-64
1736 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1737 if (ret)
1738 dev_warn(ctrl->device,
1739 "Identify Descriptors failed (%d)\n", ret);
1740 if (ret > 0)
1741 ret = 0;
1743 return ret;
1746 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1748 return !uuid_is_null(&ids->uuid) ||
1749 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1750 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1753 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1755 return uuid_equal(&a->uuid, &b->uuid) &&
1756 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1757 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1760 static void nvme_update_disk_info(struct gendisk *disk,
1761 struct nvme_ns *ns, struct nvme_id_ns *id)
1763 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1764 unsigned short bs = 1 << ns->lba_shift;
1765 u32 atomic_bs, phys_bs, io_opt;
1767 if (ns->lba_shift > PAGE_SHIFT) {
1768 /* unsupported block size, set capacity to 0 later */
1769 bs = (1 << 9);
1771 blk_mq_freeze_queue(disk->queue);
1772 blk_integrity_unregister(disk);
1774 if (id->nabo == 0) {
1776 * Bit 1 indicates whether NAWUPF is defined for this namespace
1777 * and whether it should be used instead of AWUPF. If NAWUPF ==
1778 * 0 then AWUPF must be used instead.
1780 if (id->nsfeat & (1 << 1) && id->nawupf)
1781 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1782 else
1783 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1784 } else {
1785 atomic_bs = bs;
1787 phys_bs = bs;
1788 io_opt = bs;
1789 if (id->nsfeat & (1 << 4)) {
1790 /* NPWG = Namespace Preferred Write Granularity */
1791 phys_bs *= 1 + le16_to_cpu(id->npwg);
1792 /* NOWS = Namespace Optimal Write Size */
1793 io_opt *= 1 + le16_to_cpu(id->nows);
1796 blk_queue_logical_block_size(disk->queue, bs);
1798 * Linux filesystems assume writing a single physical block is
1799 * an atomic operation. Hence limit the physical block size to the
1800 * value of the Atomic Write Unit Power Fail parameter.
1802 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1803 blk_queue_io_min(disk->queue, phys_bs);
1804 blk_queue_io_opt(disk->queue, io_opt);
1806 if (ns->ms && !ns->ext &&
1807 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1808 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1809 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1810 ns->lba_shift > PAGE_SHIFT)
1811 capacity = 0;
1813 set_capacity(disk, capacity);
1815 nvme_config_discard(disk, ns);
1816 nvme_config_write_zeroes(disk, ns);
1818 if (id->nsattr & (1 << 0))
1819 set_disk_ro(disk, true);
1820 else
1821 set_disk_ro(disk, false);
1823 blk_mq_unfreeze_queue(disk->queue);
1826 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1828 struct nvme_ns *ns = disk->private_data;
1831 * If identify namespace failed, use default 512 byte block size so
1832 * block layer can use before failing read/write for 0 capacity.
1834 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1835 if (ns->lba_shift == 0)
1836 ns->lba_shift = 9;
1837 ns->noiob = le16_to_cpu(id->noiob);
1838 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1839 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1840 /* the PI implementation requires metadata equal t10 pi tuple size */
1841 if (ns->ms == sizeof(struct t10_pi_tuple))
1842 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1843 else
1844 ns->pi_type = 0;
1846 if (ns->noiob)
1847 nvme_set_chunk_size(ns);
1848 nvme_update_disk_info(disk, ns, id);
1849 #ifdef CONFIG_NVME_MULTIPATH
1850 if (ns->head->disk) {
1851 nvme_update_disk_info(ns->head->disk, ns, id);
1852 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1853 revalidate_disk(ns->head->disk);
1855 #endif
1858 static int nvme_revalidate_disk(struct gendisk *disk)
1860 struct nvme_ns *ns = disk->private_data;
1861 struct nvme_ctrl *ctrl = ns->ctrl;
1862 struct nvme_id_ns *id;
1863 struct nvme_ns_ids ids;
1864 int ret = 0;
1866 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1867 set_capacity(disk, 0);
1868 return -ENODEV;
1871 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1872 if (ret)
1873 goto out;
1875 if (id->ncap == 0) {
1876 ret = -ENODEV;
1877 goto free_id;
1880 __nvme_revalidate_disk(disk, id);
1881 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1882 if (ret)
1883 goto free_id;
1885 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1886 dev_err(ctrl->device,
1887 "identifiers changed for nsid %d\n", ns->head->ns_id);
1888 ret = -ENODEV;
1891 free_id:
1892 kfree(id);
1893 out:
1895 * Only fail the function if we got a fatal error back from the
1896 * device, otherwise ignore the error and just move on.
1898 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1899 ret = 0;
1900 else if (ret > 0)
1901 ret = blk_status_to_errno(nvme_error_status(ret));
1902 return ret;
1905 static char nvme_pr_type(enum pr_type type)
1907 switch (type) {
1908 case PR_WRITE_EXCLUSIVE:
1909 return 1;
1910 case PR_EXCLUSIVE_ACCESS:
1911 return 2;
1912 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1913 return 3;
1914 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1915 return 4;
1916 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1917 return 5;
1918 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1919 return 6;
1920 default:
1921 return 0;
1925 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1926 u64 key, u64 sa_key, u8 op)
1928 struct nvme_ns_head *head = NULL;
1929 struct nvme_ns *ns;
1930 struct nvme_command c;
1931 int srcu_idx, ret;
1932 u8 data[16] = { 0, };
1934 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1935 if (unlikely(!ns))
1936 return -EWOULDBLOCK;
1938 put_unaligned_le64(key, &data[0]);
1939 put_unaligned_le64(sa_key, &data[8]);
1941 memset(&c, 0, sizeof(c));
1942 c.common.opcode = op;
1943 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1944 c.common.cdw10 = cpu_to_le32(cdw10);
1946 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1947 nvme_put_ns_from_disk(head, srcu_idx);
1948 return ret;
1951 static int nvme_pr_register(struct block_device *bdev, u64 old,
1952 u64 new, unsigned flags)
1954 u32 cdw10;
1956 if (flags & ~PR_FL_IGNORE_KEY)
1957 return -EOPNOTSUPP;
1959 cdw10 = old ? 2 : 0;
1960 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1961 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1962 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1965 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1966 enum pr_type type, unsigned flags)
1968 u32 cdw10;
1970 if (flags & ~PR_FL_IGNORE_KEY)
1971 return -EOPNOTSUPP;
1973 cdw10 = nvme_pr_type(type) << 8;
1974 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1975 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1978 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1979 enum pr_type type, bool abort)
1981 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1982 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1985 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1987 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1988 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1991 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1993 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1994 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1997 static const struct pr_ops nvme_pr_ops = {
1998 .pr_register = nvme_pr_register,
1999 .pr_reserve = nvme_pr_reserve,
2000 .pr_release = nvme_pr_release,
2001 .pr_preempt = nvme_pr_preempt,
2002 .pr_clear = nvme_pr_clear,
2005 #ifdef CONFIG_BLK_SED_OPAL
2006 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2007 bool send)
2009 struct nvme_ctrl *ctrl = data;
2010 struct nvme_command cmd;
2012 memset(&cmd, 0, sizeof(cmd));
2013 if (send)
2014 cmd.common.opcode = nvme_admin_security_send;
2015 else
2016 cmd.common.opcode = nvme_admin_security_recv;
2017 cmd.common.nsid = 0;
2018 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2019 cmd.common.cdw11 = cpu_to_le32(len);
2021 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2022 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2024 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2025 #endif /* CONFIG_BLK_SED_OPAL */
2027 static const struct block_device_operations nvme_fops = {
2028 .owner = THIS_MODULE,
2029 .ioctl = nvme_ioctl,
2030 .compat_ioctl = nvme_ioctl,
2031 .open = nvme_open,
2032 .release = nvme_release,
2033 .getgeo = nvme_getgeo,
2034 .revalidate_disk= nvme_revalidate_disk,
2035 .pr_ops = &nvme_pr_ops,
2038 #ifdef CONFIG_NVME_MULTIPATH
2039 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2041 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2043 if (!kref_get_unless_zero(&head->ref))
2044 return -ENXIO;
2045 return 0;
2048 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2050 nvme_put_ns_head(disk->private_data);
2053 const struct block_device_operations nvme_ns_head_ops = {
2054 .owner = THIS_MODULE,
2055 .open = nvme_ns_head_open,
2056 .release = nvme_ns_head_release,
2057 .ioctl = nvme_ioctl,
2058 .compat_ioctl = nvme_ioctl,
2059 .getgeo = nvme_getgeo,
2060 .pr_ops = &nvme_pr_ops,
2062 #endif /* CONFIG_NVME_MULTIPATH */
2064 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2066 unsigned long timeout =
2067 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2068 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2069 int ret;
2071 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2072 if (csts == ~0)
2073 return -ENODEV;
2074 if ((csts & NVME_CSTS_RDY) == bit)
2075 break;
2077 msleep(100);
2078 if (fatal_signal_pending(current))
2079 return -EINTR;
2080 if (time_after(jiffies, timeout)) {
2081 dev_err(ctrl->device,
2082 "Device not ready; aborting %s\n", enabled ?
2083 "initialisation" : "reset");
2084 return -ENODEV;
2088 return ret;
2092 * If the device has been passed off to us in an enabled state, just clear
2093 * the enabled bit. The spec says we should set the 'shutdown notification
2094 * bits', but doing so may cause the device to complete commands to the
2095 * admin queue ... and we don't know what memory that might be pointing at!
2097 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2099 int ret;
2101 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2102 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2104 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2105 if (ret)
2106 return ret;
2108 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2109 msleep(NVME_QUIRK_DELAY_AMOUNT);
2111 return nvme_wait_ready(ctrl, ctrl->cap, false);
2113 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2115 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2118 * Default to a 4K page size, with the intention to update this
2119 * path in the future to accomodate architectures with differing
2120 * kernel and IO page sizes.
2122 unsigned dev_page_min, page_shift = 12;
2123 int ret;
2125 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2126 if (ret) {
2127 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2128 return ret;
2130 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2132 if (page_shift < dev_page_min) {
2133 dev_err(ctrl->device,
2134 "Minimum device page size %u too large for host (%u)\n",
2135 1 << dev_page_min, 1 << page_shift);
2136 return -ENODEV;
2139 ctrl->page_size = 1 << page_shift;
2141 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2142 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2143 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2144 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2145 ctrl->ctrl_config |= NVME_CC_ENABLE;
2147 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2148 if (ret)
2149 return ret;
2150 return nvme_wait_ready(ctrl, ctrl->cap, true);
2152 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2154 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2156 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2157 u32 csts;
2158 int ret;
2160 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2161 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2163 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2164 if (ret)
2165 return ret;
2167 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2168 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2169 break;
2171 msleep(100);
2172 if (fatal_signal_pending(current))
2173 return -EINTR;
2174 if (time_after(jiffies, timeout)) {
2175 dev_err(ctrl->device,
2176 "Device shutdown incomplete; abort shutdown\n");
2177 return -ENODEV;
2181 return ret;
2183 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2185 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2186 struct request_queue *q)
2188 bool vwc = false;
2190 if (ctrl->max_hw_sectors) {
2191 u32 max_segments =
2192 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2194 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2195 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2196 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2198 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2199 is_power_of_2(ctrl->max_hw_sectors))
2200 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2201 blk_queue_virt_boundary(q, ctrl->page_size - 1);
2202 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2203 vwc = true;
2204 blk_queue_write_cache(q, vwc, vwc);
2207 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2209 __le64 ts;
2210 int ret;
2212 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2213 return 0;
2215 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2216 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2217 NULL);
2218 if (ret)
2219 dev_warn_once(ctrl->device,
2220 "could not set timestamp (%d)\n", ret);
2221 return ret;
2224 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2226 struct nvme_feat_host_behavior *host;
2227 int ret;
2229 /* Don't bother enabling the feature if retry delay is not reported */
2230 if (!ctrl->crdt[0])
2231 return 0;
2233 host = kzalloc(sizeof(*host), GFP_KERNEL);
2234 if (!host)
2235 return 0;
2237 host->acre = NVME_ENABLE_ACRE;
2238 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2239 host, sizeof(*host), NULL);
2240 kfree(host);
2241 return ret;
2244 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2247 * APST (Autonomous Power State Transition) lets us program a
2248 * table of power state transitions that the controller will
2249 * perform automatically. We configure it with a simple
2250 * heuristic: we are willing to spend at most 2% of the time
2251 * transitioning between power states. Therefore, when running
2252 * in any given state, we will enter the next lower-power
2253 * non-operational state after waiting 50 * (enlat + exlat)
2254 * microseconds, as long as that state's exit latency is under
2255 * the requested maximum latency.
2257 * We will not autonomously enter any non-operational state for
2258 * which the total latency exceeds ps_max_latency_us. Users
2259 * can set ps_max_latency_us to zero to turn off APST.
2262 unsigned apste;
2263 struct nvme_feat_auto_pst *table;
2264 u64 max_lat_us = 0;
2265 int max_ps = -1;
2266 int ret;
2269 * If APST isn't supported or if we haven't been initialized yet,
2270 * then don't do anything.
2272 if (!ctrl->apsta)
2273 return 0;
2275 if (ctrl->npss > 31) {
2276 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2277 return 0;
2280 table = kzalloc(sizeof(*table), GFP_KERNEL);
2281 if (!table)
2282 return 0;
2284 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2285 /* Turn off APST. */
2286 apste = 0;
2287 dev_dbg(ctrl->device, "APST disabled\n");
2288 } else {
2289 __le64 target = cpu_to_le64(0);
2290 int state;
2293 * Walk through all states from lowest- to highest-power.
2294 * According to the spec, lower-numbered states use more
2295 * power. NPSS, despite the name, is the index of the
2296 * lowest-power state, not the number of states.
2298 for (state = (int)ctrl->npss; state >= 0; state--) {
2299 u64 total_latency_us, exit_latency_us, transition_ms;
2301 if (target)
2302 table->entries[state] = target;
2305 * Don't allow transitions to the deepest state
2306 * if it's quirked off.
2308 if (state == ctrl->npss &&
2309 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2310 continue;
2313 * Is this state a useful non-operational state for
2314 * higher-power states to autonomously transition to?
2316 if (!(ctrl->psd[state].flags &
2317 NVME_PS_FLAGS_NON_OP_STATE))
2318 continue;
2320 exit_latency_us =
2321 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2322 if (exit_latency_us > ctrl->ps_max_latency_us)
2323 continue;
2325 total_latency_us =
2326 exit_latency_us +
2327 le32_to_cpu(ctrl->psd[state].entry_lat);
2330 * This state is good. Use it as the APST idle
2331 * target for higher power states.
2333 transition_ms = total_latency_us + 19;
2334 do_div(transition_ms, 20);
2335 if (transition_ms > (1 << 24) - 1)
2336 transition_ms = (1 << 24) - 1;
2338 target = cpu_to_le64((state << 3) |
2339 (transition_ms << 8));
2341 if (max_ps == -1)
2342 max_ps = state;
2344 if (total_latency_us > max_lat_us)
2345 max_lat_us = total_latency_us;
2348 apste = 1;
2350 if (max_ps == -1) {
2351 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2352 } else {
2353 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2354 max_ps, max_lat_us, (int)sizeof(*table), table);
2358 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2359 table, sizeof(*table), NULL);
2360 if (ret)
2361 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2363 kfree(table);
2364 return ret;
2367 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2369 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2370 u64 latency;
2372 switch (val) {
2373 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2374 case PM_QOS_LATENCY_ANY:
2375 latency = U64_MAX;
2376 break;
2378 default:
2379 latency = val;
2382 if (ctrl->ps_max_latency_us != latency) {
2383 ctrl->ps_max_latency_us = latency;
2384 nvme_configure_apst(ctrl);
2388 struct nvme_core_quirk_entry {
2390 * NVMe model and firmware strings are padded with spaces. For
2391 * simplicity, strings in the quirk table are padded with NULLs
2392 * instead.
2394 u16 vid;
2395 const char *mn;
2396 const char *fr;
2397 unsigned long quirks;
2400 static const struct nvme_core_quirk_entry core_quirks[] = {
2403 * This Toshiba device seems to die using any APST states. See:
2404 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2406 .vid = 0x1179,
2407 .mn = "THNSF5256GPUK TOSHIBA",
2408 .quirks = NVME_QUIRK_NO_APST,
2412 * This LiteON CL1-3D*-Q11 firmware version has a race
2413 * condition associated with actions related to suspend to idle
2414 * LiteON has resolved the problem in future firmware
2416 .vid = 0x14a4,
2417 .fr = "22301111",
2418 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2422 /* match is null-terminated but idstr is space-padded. */
2423 static bool string_matches(const char *idstr, const char *match, size_t len)
2425 size_t matchlen;
2427 if (!match)
2428 return true;
2430 matchlen = strlen(match);
2431 WARN_ON_ONCE(matchlen > len);
2433 if (memcmp(idstr, match, matchlen))
2434 return false;
2436 for (; matchlen < len; matchlen++)
2437 if (idstr[matchlen] != ' ')
2438 return false;
2440 return true;
2443 static bool quirk_matches(const struct nvme_id_ctrl *id,
2444 const struct nvme_core_quirk_entry *q)
2446 return q->vid == le16_to_cpu(id->vid) &&
2447 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2448 string_matches(id->fr, q->fr, sizeof(id->fr));
2451 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2452 struct nvme_id_ctrl *id)
2454 size_t nqnlen;
2455 int off;
2457 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2458 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2459 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2460 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2461 return;
2464 if (ctrl->vs >= NVME_VS(1, 2, 1))
2465 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2468 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2469 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2470 "nqn.2014.08.org.nvmexpress:%04x%04x",
2471 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2472 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2473 off += sizeof(id->sn);
2474 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2475 off += sizeof(id->mn);
2476 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2479 static void nvme_release_subsystem(struct device *dev)
2481 struct nvme_subsystem *subsys =
2482 container_of(dev, struct nvme_subsystem, dev);
2484 if (subsys->instance >= 0)
2485 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2486 kfree(subsys);
2489 static void nvme_destroy_subsystem(struct kref *ref)
2491 struct nvme_subsystem *subsys =
2492 container_of(ref, struct nvme_subsystem, ref);
2494 mutex_lock(&nvme_subsystems_lock);
2495 list_del(&subsys->entry);
2496 mutex_unlock(&nvme_subsystems_lock);
2498 ida_destroy(&subsys->ns_ida);
2499 device_del(&subsys->dev);
2500 put_device(&subsys->dev);
2503 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2505 kref_put(&subsys->ref, nvme_destroy_subsystem);
2508 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2510 struct nvme_subsystem *subsys;
2512 lockdep_assert_held(&nvme_subsystems_lock);
2515 * Fail matches for discovery subsystems. This results
2516 * in each discovery controller bound to a unique subsystem.
2517 * This avoids issues with validating controller values
2518 * that can only be true when there is a single unique subsystem.
2519 * There may be multiple and completely independent entities
2520 * that provide discovery controllers.
2522 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2523 return NULL;
2525 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2526 if (strcmp(subsys->subnqn, subsysnqn))
2527 continue;
2528 if (!kref_get_unless_zero(&subsys->ref))
2529 continue;
2530 return subsys;
2533 return NULL;
2536 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2537 struct device_attribute subsys_attr_##_name = \
2538 __ATTR(_name, _mode, _show, NULL)
2540 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2541 struct device_attribute *attr,
2542 char *buf)
2544 struct nvme_subsystem *subsys =
2545 container_of(dev, struct nvme_subsystem, dev);
2547 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2549 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2551 #define nvme_subsys_show_str_function(field) \
2552 static ssize_t subsys_##field##_show(struct device *dev, \
2553 struct device_attribute *attr, char *buf) \
2555 struct nvme_subsystem *subsys = \
2556 container_of(dev, struct nvme_subsystem, dev); \
2557 return sprintf(buf, "%.*s\n", \
2558 (int)sizeof(subsys->field), subsys->field); \
2560 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2562 nvme_subsys_show_str_function(model);
2563 nvme_subsys_show_str_function(serial);
2564 nvme_subsys_show_str_function(firmware_rev);
2566 static struct attribute *nvme_subsys_attrs[] = {
2567 &subsys_attr_model.attr,
2568 &subsys_attr_serial.attr,
2569 &subsys_attr_firmware_rev.attr,
2570 &subsys_attr_subsysnqn.attr,
2571 #ifdef CONFIG_NVME_MULTIPATH
2572 &subsys_attr_iopolicy.attr,
2573 #endif
2574 NULL,
2577 static struct attribute_group nvme_subsys_attrs_group = {
2578 .attrs = nvme_subsys_attrs,
2581 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2582 &nvme_subsys_attrs_group,
2583 NULL,
2586 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2587 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2589 struct nvme_ctrl *tmp;
2591 lockdep_assert_held(&nvme_subsystems_lock);
2593 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2594 if (tmp->state == NVME_CTRL_DELETING ||
2595 tmp->state == NVME_CTRL_DEAD)
2596 continue;
2598 if (tmp->cntlid == ctrl->cntlid) {
2599 dev_err(ctrl->device,
2600 "Duplicate cntlid %u with %s, rejecting\n",
2601 ctrl->cntlid, dev_name(tmp->device));
2602 return false;
2605 if ((id->cmic & (1 << 1)) ||
2606 (ctrl->opts && ctrl->opts->discovery_nqn))
2607 continue;
2609 dev_err(ctrl->device,
2610 "Subsystem does not support multiple controllers\n");
2611 return false;
2614 return true;
2617 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2619 struct nvme_subsystem *subsys, *found;
2620 int ret;
2622 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2623 if (!subsys)
2624 return -ENOMEM;
2626 subsys->instance = -1;
2627 mutex_init(&subsys->lock);
2628 kref_init(&subsys->ref);
2629 INIT_LIST_HEAD(&subsys->ctrls);
2630 INIT_LIST_HEAD(&subsys->nsheads);
2631 nvme_init_subnqn(subsys, ctrl, id);
2632 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2633 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2634 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2635 subsys->vendor_id = le16_to_cpu(id->vid);
2636 subsys->cmic = id->cmic;
2637 subsys->awupf = le16_to_cpu(id->awupf);
2638 #ifdef CONFIG_NVME_MULTIPATH
2639 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2640 #endif
2642 subsys->dev.class = nvme_subsys_class;
2643 subsys->dev.release = nvme_release_subsystem;
2644 subsys->dev.groups = nvme_subsys_attrs_groups;
2645 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2646 device_initialize(&subsys->dev);
2648 mutex_lock(&nvme_subsystems_lock);
2649 found = __nvme_find_get_subsystem(subsys->subnqn);
2650 if (found) {
2651 put_device(&subsys->dev);
2652 subsys = found;
2654 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2655 ret = -EINVAL;
2656 goto out_put_subsystem;
2658 } else {
2659 ret = device_add(&subsys->dev);
2660 if (ret) {
2661 dev_err(ctrl->device,
2662 "failed to register subsystem device.\n");
2663 put_device(&subsys->dev);
2664 goto out_unlock;
2666 ida_init(&subsys->ns_ida);
2667 list_add_tail(&subsys->entry, &nvme_subsystems);
2670 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2671 dev_name(ctrl->device));
2672 if (ret) {
2673 dev_err(ctrl->device,
2674 "failed to create sysfs link from subsystem.\n");
2675 goto out_put_subsystem;
2678 if (!found)
2679 subsys->instance = ctrl->instance;
2680 ctrl->subsys = subsys;
2681 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2682 mutex_unlock(&nvme_subsystems_lock);
2683 return 0;
2685 out_put_subsystem:
2686 nvme_put_subsystem(subsys);
2687 out_unlock:
2688 mutex_unlock(&nvme_subsystems_lock);
2689 return ret;
2692 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2693 void *log, size_t size, u64 offset)
2695 struct nvme_command c = { };
2696 unsigned long dwlen = size / 4 - 1;
2698 c.get_log_page.opcode = nvme_admin_get_log_page;
2699 c.get_log_page.nsid = cpu_to_le32(nsid);
2700 c.get_log_page.lid = log_page;
2701 c.get_log_page.lsp = lsp;
2702 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2703 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2704 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2705 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2707 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2710 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2712 int ret;
2714 if (!ctrl->effects)
2715 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2717 if (!ctrl->effects)
2718 return 0;
2720 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2721 ctrl->effects, sizeof(*ctrl->effects), 0);
2722 if (ret) {
2723 kfree(ctrl->effects);
2724 ctrl->effects = NULL;
2726 return ret;
2730 * Initialize the cached copies of the Identify data and various controller
2731 * register in our nvme_ctrl structure. This should be called as soon as
2732 * the admin queue is fully up and running.
2734 int nvme_init_identify(struct nvme_ctrl *ctrl)
2736 struct nvme_id_ctrl *id;
2737 int ret, page_shift;
2738 u32 max_hw_sectors;
2739 bool prev_apst_enabled;
2741 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2742 if (ret) {
2743 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2744 return ret;
2746 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2747 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2749 if (ctrl->vs >= NVME_VS(1, 1, 0))
2750 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2752 ret = nvme_identify_ctrl(ctrl, &id);
2753 if (ret) {
2754 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2755 return -EIO;
2758 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2759 ret = nvme_get_effects_log(ctrl);
2760 if (ret < 0)
2761 goto out_free;
2764 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2765 ctrl->cntlid = le16_to_cpu(id->cntlid);
2767 if (!ctrl->identified) {
2768 int i;
2770 ret = nvme_init_subsystem(ctrl, id);
2771 if (ret)
2772 goto out_free;
2775 * Check for quirks. Quirk can depend on firmware version,
2776 * so, in principle, the set of quirks present can change
2777 * across a reset. As a possible future enhancement, we
2778 * could re-scan for quirks every time we reinitialize
2779 * the device, but we'd have to make sure that the driver
2780 * behaves intelligently if the quirks change.
2782 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2783 if (quirk_matches(id, &core_quirks[i]))
2784 ctrl->quirks |= core_quirks[i].quirks;
2788 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2789 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2790 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2793 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2794 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2795 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2797 ctrl->oacs = le16_to_cpu(id->oacs);
2798 ctrl->oncs = le16_to_cpu(id->oncs);
2799 ctrl->mtfa = le16_to_cpu(id->mtfa);
2800 ctrl->oaes = le32_to_cpu(id->oaes);
2801 ctrl->wctemp = le16_to_cpu(id->wctemp);
2802 ctrl->cctemp = le16_to_cpu(id->cctemp);
2804 atomic_set(&ctrl->abort_limit, id->acl + 1);
2805 ctrl->vwc = id->vwc;
2806 if (id->mdts)
2807 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2808 else
2809 max_hw_sectors = UINT_MAX;
2810 ctrl->max_hw_sectors =
2811 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2813 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2814 ctrl->sgls = le32_to_cpu(id->sgls);
2815 ctrl->kas = le16_to_cpu(id->kas);
2816 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2817 ctrl->ctratt = le32_to_cpu(id->ctratt);
2819 if (id->rtd3e) {
2820 /* us -> s */
2821 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2823 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2824 shutdown_timeout, 60);
2826 if (ctrl->shutdown_timeout != shutdown_timeout)
2827 dev_info(ctrl->device,
2828 "Shutdown timeout set to %u seconds\n",
2829 ctrl->shutdown_timeout);
2830 } else
2831 ctrl->shutdown_timeout = shutdown_timeout;
2833 ctrl->npss = id->npss;
2834 ctrl->apsta = id->apsta;
2835 prev_apst_enabled = ctrl->apst_enabled;
2836 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2837 if (force_apst && id->apsta) {
2838 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2839 ctrl->apst_enabled = true;
2840 } else {
2841 ctrl->apst_enabled = false;
2843 } else {
2844 ctrl->apst_enabled = id->apsta;
2846 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2848 if (ctrl->ops->flags & NVME_F_FABRICS) {
2849 ctrl->icdoff = le16_to_cpu(id->icdoff);
2850 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2851 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2852 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2855 * In fabrics we need to verify the cntlid matches the
2856 * admin connect
2858 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2859 dev_err(ctrl->device,
2860 "Mismatching cntlid: Connect %u vs Identify "
2861 "%u, rejecting\n",
2862 ctrl->cntlid, le16_to_cpu(id->cntlid));
2863 ret = -EINVAL;
2864 goto out_free;
2867 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2868 dev_err(ctrl->device,
2869 "keep-alive support is mandatory for fabrics\n");
2870 ret = -EINVAL;
2871 goto out_free;
2873 } else {
2874 ctrl->hmpre = le32_to_cpu(id->hmpre);
2875 ctrl->hmmin = le32_to_cpu(id->hmmin);
2876 ctrl->hmminds = le32_to_cpu(id->hmminds);
2877 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2880 ret = nvme_mpath_init(ctrl, id);
2881 kfree(id);
2883 if (ret < 0)
2884 return ret;
2886 if (ctrl->apst_enabled && !prev_apst_enabled)
2887 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2888 else if (!ctrl->apst_enabled && prev_apst_enabled)
2889 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2891 ret = nvme_configure_apst(ctrl);
2892 if (ret < 0)
2893 return ret;
2895 ret = nvme_configure_timestamp(ctrl);
2896 if (ret < 0)
2897 return ret;
2899 ret = nvme_configure_directives(ctrl);
2900 if (ret < 0)
2901 return ret;
2903 ret = nvme_configure_acre(ctrl);
2904 if (ret < 0)
2905 return ret;
2907 if (!ctrl->identified)
2908 nvme_hwmon_init(ctrl);
2910 ctrl->identified = true;
2912 return 0;
2914 out_free:
2915 kfree(id);
2916 return ret;
2918 EXPORT_SYMBOL_GPL(nvme_init_identify);
2920 static int nvme_dev_open(struct inode *inode, struct file *file)
2922 struct nvme_ctrl *ctrl =
2923 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2925 switch (ctrl->state) {
2926 case NVME_CTRL_LIVE:
2927 break;
2928 default:
2929 return -EWOULDBLOCK;
2932 file->private_data = ctrl;
2933 return 0;
2936 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2938 struct nvme_ns *ns;
2939 int ret;
2941 down_read(&ctrl->namespaces_rwsem);
2942 if (list_empty(&ctrl->namespaces)) {
2943 ret = -ENOTTY;
2944 goto out_unlock;
2947 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2948 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2949 dev_warn(ctrl->device,
2950 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2951 ret = -EINVAL;
2952 goto out_unlock;
2955 dev_warn(ctrl->device,
2956 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2957 kref_get(&ns->kref);
2958 up_read(&ctrl->namespaces_rwsem);
2960 ret = nvme_user_cmd(ctrl, ns, argp);
2961 nvme_put_ns(ns);
2962 return ret;
2964 out_unlock:
2965 up_read(&ctrl->namespaces_rwsem);
2966 return ret;
2969 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2970 unsigned long arg)
2972 struct nvme_ctrl *ctrl = file->private_data;
2973 void __user *argp = (void __user *)arg;
2975 switch (cmd) {
2976 case NVME_IOCTL_ADMIN_CMD:
2977 return nvme_user_cmd(ctrl, NULL, argp);
2978 case NVME_IOCTL_ADMIN64_CMD:
2979 return nvme_user_cmd64(ctrl, NULL, argp);
2980 case NVME_IOCTL_IO_CMD:
2981 return nvme_dev_user_cmd(ctrl, argp);
2982 case NVME_IOCTL_RESET:
2983 dev_warn(ctrl->device, "resetting controller\n");
2984 return nvme_reset_ctrl_sync(ctrl);
2985 case NVME_IOCTL_SUBSYS_RESET:
2986 return nvme_reset_subsystem(ctrl);
2987 case NVME_IOCTL_RESCAN:
2988 nvme_queue_scan(ctrl);
2989 return 0;
2990 default:
2991 return -ENOTTY;
2995 static const struct file_operations nvme_dev_fops = {
2996 .owner = THIS_MODULE,
2997 .open = nvme_dev_open,
2998 .unlocked_ioctl = nvme_dev_ioctl,
2999 .compat_ioctl = compat_ptr_ioctl,
3002 static ssize_t nvme_sysfs_reset(struct device *dev,
3003 struct device_attribute *attr, const char *buf,
3004 size_t count)
3006 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3007 int ret;
3009 ret = nvme_reset_ctrl_sync(ctrl);
3010 if (ret < 0)
3011 return ret;
3012 return count;
3014 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3016 static ssize_t nvme_sysfs_rescan(struct device *dev,
3017 struct device_attribute *attr, const char *buf,
3018 size_t count)
3020 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3022 nvme_queue_scan(ctrl);
3023 return count;
3025 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3027 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3029 struct gendisk *disk = dev_to_disk(dev);
3031 if (disk->fops == &nvme_fops)
3032 return nvme_get_ns_from_dev(dev)->head;
3033 else
3034 return disk->private_data;
3037 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3038 char *buf)
3040 struct nvme_ns_head *head = dev_to_ns_head(dev);
3041 struct nvme_ns_ids *ids = &head->ids;
3042 struct nvme_subsystem *subsys = head->subsys;
3043 int serial_len = sizeof(subsys->serial);
3044 int model_len = sizeof(subsys->model);
3046 if (!uuid_is_null(&ids->uuid))
3047 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3049 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3050 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3052 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3053 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3055 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3056 subsys->serial[serial_len - 1] == '\0'))
3057 serial_len--;
3058 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3059 subsys->model[model_len - 1] == '\0'))
3060 model_len--;
3062 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3063 serial_len, subsys->serial, model_len, subsys->model,
3064 head->ns_id);
3066 static DEVICE_ATTR_RO(wwid);
3068 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3069 char *buf)
3071 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3073 static DEVICE_ATTR_RO(nguid);
3075 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3076 char *buf)
3078 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3080 /* For backward compatibility expose the NGUID to userspace if
3081 * we have no UUID set
3083 if (uuid_is_null(&ids->uuid)) {
3084 printk_ratelimited(KERN_WARNING
3085 "No UUID available providing old NGUID\n");
3086 return sprintf(buf, "%pU\n", ids->nguid);
3088 return sprintf(buf, "%pU\n", &ids->uuid);
3090 static DEVICE_ATTR_RO(uuid);
3092 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3093 char *buf)
3095 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3097 static DEVICE_ATTR_RO(eui);
3099 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3100 char *buf)
3102 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3104 static DEVICE_ATTR_RO(nsid);
3106 static struct attribute *nvme_ns_id_attrs[] = {
3107 &dev_attr_wwid.attr,
3108 &dev_attr_uuid.attr,
3109 &dev_attr_nguid.attr,
3110 &dev_attr_eui.attr,
3111 &dev_attr_nsid.attr,
3112 #ifdef CONFIG_NVME_MULTIPATH
3113 &dev_attr_ana_grpid.attr,
3114 &dev_attr_ana_state.attr,
3115 #endif
3116 NULL,
3119 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3120 struct attribute *a, int n)
3122 struct device *dev = container_of(kobj, struct device, kobj);
3123 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3125 if (a == &dev_attr_uuid.attr) {
3126 if (uuid_is_null(&ids->uuid) &&
3127 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3128 return 0;
3130 if (a == &dev_attr_nguid.attr) {
3131 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3132 return 0;
3134 if (a == &dev_attr_eui.attr) {
3135 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3136 return 0;
3138 #ifdef CONFIG_NVME_MULTIPATH
3139 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3140 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3141 return 0;
3142 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3143 return 0;
3145 #endif
3146 return a->mode;
3149 static const struct attribute_group nvme_ns_id_attr_group = {
3150 .attrs = nvme_ns_id_attrs,
3151 .is_visible = nvme_ns_id_attrs_are_visible,
3154 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3155 &nvme_ns_id_attr_group,
3156 #ifdef CONFIG_NVM
3157 &nvme_nvm_attr_group,
3158 #endif
3159 NULL,
3162 #define nvme_show_str_function(field) \
3163 static ssize_t field##_show(struct device *dev, \
3164 struct device_attribute *attr, char *buf) \
3166 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3167 return sprintf(buf, "%.*s\n", \
3168 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3170 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3172 nvme_show_str_function(model);
3173 nvme_show_str_function(serial);
3174 nvme_show_str_function(firmware_rev);
3176 #define nvme_show_int_function(field) \
3177 static ssize_t field##_show(struct device *dev, \
3178 struct device_attribute *attr, char *buf) \
3180 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3181 return sprintf(buf, "%d\n", ctrl->field); \
3183 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3185 nvme_show_int_function(cntlid);
3186 nvme_show_int_function(numa_node);
3187 nvme_show_int_function(queue_count);
3188 nvme_show_int_function(sqsize);
3190 static ssize_t nvme_sysfs_delete(struct device *dev,
3191 struct device_attribute *attr, const char *buf,
3192 size_t count)
3194 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3196 if (device_remove_file_self(dev, attr))
3197 nvme_delete_ctrl_sync(ctrl);
3198 return count;
3200 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3202 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3203 struct device_attribute *attr,
3204 char *buf)
3206 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3208 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3210 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3212 static ssize_t nvme_sysfs_show_state(struct device *dev,
3213 struct device_attribute *attr,
3214 char *buf)
3216 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3217 static const char *const state_name[] = {
3218 [NVME_CTRL_NEW] = "new",
3219 [NVME_CTRL_LIVE] = "live",
3220 [NVME_CTRL_RESETTING] = "resetting",
3221 [NVME_CTRL_CONNECTING] = "connecting",
3222 [NVME_CTRL_DELETING] = "deleting",
3223 [NVME_CTRL_DEAD] = "dead",
3226 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3227 state_name[ctrl->state])
3228 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3230 return sprintf(buf, "unknown state\n");
3233 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3235 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3236 struct device_attribute *attr,
3237 char *buf)
3239 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3241 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3243 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3245 static ssize_t nvme_sysfs_show_address(struct device *dev,
3246 struct device_attribute *attr,
3247 char *buf)
3249 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3251 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3253 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3255 static struct attribute *nvme_dev_attrs[] = {
3256 &dev_attr_reset_controller.attr,
3257 &dev_attr_rescan_controller.attr,
3258 &dev_attr_model.attr,
3259 &dev_attr_serial.attr,
3260 &dev_attr_firmware_rev.attr,
3261 &dev_attr_cntlid.attr,
3262 &dev_attr_delete_controller.attr,
3263 &dev_attr_transport.attr,
3264 &dev_attr_subsysnqn.attr,
3265 &dev_attr_address.attr,
3266 &dev_attr_state.attr,
3267 &dev_attr_numa_node.attr,
3268 &dev_attr_queue_count.attr,
3269 &dev_attr_sqsize.attr,
3270 NULL
3273 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3274 struct attribute *a, int n)
3276 struct device *dev = container_of(kobj, struct device, kobj);
3277 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3279 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3280 return 0;
3281 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3282 return 0;
3284 return a->mode;
3287 static struct attribute_group nvme_dev_attrs_group = {
3288 .attrs = nvme_dev_attrs,
3289 .is_visible = nvme_dev_attrs_are_visible,
3292 static const struct attribute_group *nvme_dev_attr_groups[] = {
3293 &nvme_dev_attrs_group,
3294 NULL,
3297 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3298 unsigned nsid)
3300 struct nvme_ns_head *h;
3302 lockdep_assert_held(&subsys->lock);
3304 list_for_each_entry(h, &subsys->nsheads, entry) {
3305 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3306 return h;
3309 return NULL;
3312 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3313 struct nvme_ns_head *new)
3315 struct nvme_ns_head *h;
3317 lockdep_assert_held(&subsys->lock);
3319 list_for_each_entry(h, &subsys->nsheads, entry) {
3320 if (nvme_ns_ids_valid(&new->ids) &&
3321 !list_empty(&h->list) &&
3322 nvme_ns_ids_equal(&new->ids, &h->ids))
3323 return -EINVAL;
3326 return 0;
3329 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3330 unsigned nsid, struct nvme_id_ns *id)
3332 struct nvme_ns_head *head;
3333 size_t size = sizeof(*head);
3334 int ret = -ENOMEM;
3336 #ifdef CONFIG_NVME_MULTIPATH
3337 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3338 #endif
3340 head = kzalloc(size, GFP_KERNEL);
3341 if (!head)
3342 goto out;
3343 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3344 if (ret < 0)
3345 goto out_free_head;
3346 head->instance = ret;
3347 INIT_LIST_HEAD(&head->list);
3348 ret = init_srcu_struct(&head->srcu);
3349 if (ret)
3350 goto out_ida_remove;
3351 head->subsys = ctrl->subsys;
3352 head->ns_id = nsid;
3353 kref_init(&head->ref);
3355 ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3356 if (ret)
3357 goto out_cleanup_srcu;
3359 ret = __nvme_check_ids(ctrl->subsys, head);
3360 if (ret) {
3361 dev_err(ctrl->device,
3362 "duplicate IDs for nsid %d\n", nsid);
3363 goto out_cleanup_srcu;
3366 ret = nvme_mpath_alloc_disk(ctrl, head);
3367 if (ret)
3368 goto out_cleanup_srcu;
3370 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3372 kref_get(&ctrl->subsys->ref);
3374 return head;
3375 out_cleanup_srcu:
3376 cleanup_srcu_struct(&head->srcu);
3377 out_ida_remove:
3378 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3379 out_free_head:
3380 kfree(head);
3381 out:
3382 if (ret > 0)
3383 ret = blk_status_to_errno(nvme_error_status(ret));
3384 return ERR_PTR(ret);
3387 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3388 struct nvme_id_ns *id)
3390 struct nvme_ctrl *ctrl = ns->ctrl;
3391 bool is_shared = id->nmic & (1 << 0);
3392 struct nvme_ns_head *head = NULL;
3393 int ret = 0;
3395 mutex_lock(&ctrl->subsys->lock);
3396 if (is_shared)
3397 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3398 if (!head) {
3399 head = nvme_alloc_ns_head(ctrl, nsid, id);
3400 if (IS_ERR(head)) {
3401 ret = PTR_ERR(head);
3402 goto out_unlock;
3404 } else {
3405 struct nvme_ns_ids ids;
3407 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3408 if (ret)
3409 goto out_unlock;
3411 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3412 dev_err(ctrl->device,
3413 "IDs don't match for shared namespace %d\n",
3414 nsid);
3415 ret = -EINVAL;
3416 goto out_unlock;
3420 list_add_tail(&ns->siblings, &head->list);
3421 ns->head = head;
3423 out_unlock:
3424 mutex_unlock(&ctrl->subsys->lock);
3425 if (ret > 0)
3426 ret = blk_status_to_errno(nvme_error_status(ret));
3427 return ret;
3430 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3432 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3433 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3435 return nsa->head->ns_id - nsb->head->ns_id;
3438 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3440 struct nvme_ns *ns, *ret = NULL;
3442 down_read(&ctrl->namespaces_rwsem);
3443 list_for_each_entry(ns, &ctrl->namespaces, list) {
3444 if (ns->head->ns_id == nsid) {
3445 if (!kref_get_unless_zero(&ns->kref))
3446 continue;
3447 ret = ns;
3448 break;
3450 if (ns->head->ns_id > nsid)
3451 break;
3453 up_read(&ctrl->namespaces_rwsem);
3454 return ret;
3457 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3459 struct streams_directive_params s;
3460 int ret;
3462 if (!ctrl->nr_streams)
3463 return 0;
3465 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3466 if (ret)
3467 return ret;
3469 ns->sws = le32_to_cpu(s.sws);
3470 ns->sgs = le16_to_cpu(s.sgs);
3472 if (ns->sws) {
3473 unsigned int bs = 1 << ns->lba_shift;
3475 blk_queue_io_min(ns->queue, bs * ns->sws);
3476 if (ns->sgs)
3477 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3480 return 0;
3483 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3485 struct nvme_ns *ns;
3486 struct gendisk *disk;
3487 struct nvme_id_ns *id;
3488 char disk_name[DISK_NAME_LEN];
3489 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3491 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3492 if (!ns)
3493 return -ENOMEM;
3495 ns->queue = blk_mq_init_queue(ctrl->tagset);
3496 if (IS_ERR(ns->queue)) {
3497 ret = PTR_ERR(ns->queue);
3498 goto out_free_ns;
3501 if (ctrl->opts && ctrl->opts->data_digest)
3502 ns->queue->backing_dev_info->capabilities
3503 |= BDI_CAP_STABLE_WRITES;
3505 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3506 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3507 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3509 ns->queue->queuedata = ns;
3510 ns->ctrl = ctrl;
3512 kref_init(&ns->kref);
3513 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3515 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3516 nvme_set_queue_limits(ctrl, ns->queue);
3518 ret = nvme_identify_ns(ctrl, nsid, &id);
3519 if (ret)
3520 goto out_free_queue;
3522 if (id->ncap == 0) {
3523 ret = -EINVAL;
3524 goto out_free_id;
3527 ret = nvme_init_ns_head(ns, nsid, id);
3528 if (ret)
3529 goto out_free_id;
3530 nvme_setup_streams_ns(ctrl, ns);
3531 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3533 disk = alloc_disk_node(0, node);
3534 if (!disk) {
3535 ret = -ENOMEM;
3536 goto out_unlink_ns;
3539 disk->fops = &nvme_fops;
3540 disk->private_data = ns;
3541 disk->queue = ns->queue;
3542 disk->flags = flags;
3543 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3544 ns->disk = disk;
3546 __nvme_revalidate_disk(disk, id);
3548 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3549 ret = nvme_nvm_register(ns, disk_name, node);
3550 if (ret) {
3551 dev_warn(ctrl->device, "LightNVM init failure\n");
3552 goto out_put_disk;
3556 down_write(&ctrl->namespaces_rwsem);
3557 list_add_tail(&ns->list, &ctrl->namespaces);
3558 up_write(&ctrl->namespaces_rwsem);
3560 nvme_get_ctrl(ctrl);
3562 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3564 nvme_mpath_add_disk(ns, id);
3565 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3566 kfree(id);
3568 return 0;
3569 out_put_disk:
3570 put_disk(ns->disk);
3571 out_unlink_ns:
3572 mutex_lock(&ctrl->subsys->lock);
3573 list_del_rcu(&ns->siblings);
3574 mutex_unlock(&ctrl->subsys->lock);
3575 nvme_put_ns_head(ns->head);
3576 out_free_id:
3577 kfree(id);
3578 out_free_queue:
3579 blk_cleanup_queue(ns->queue);
3580 out_free_ns:
3581 kfree(ns);
3582 if (ret > 0)
3583 ret = blk_status_to_errno(nvme_error_status(ret));
3584 return ret;
3587 static void nvme_ns_remove(struct nvme_ns *ns)
3589 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3590 return;
3592 nvme_fault_inject_fini(&ns->fault_inject);
3594 mutex_lock(&ns->ctrl->subsys->lock);
3595 list_del_rcu(&ns->siblings);
3596 mutex_unlock(&ns->ctrl->subsys->lock);
3597 synchronize_rcu(); /* guarantee not available in head->list */
3598 nvme_mpath_clear_current_path(ns);
3599 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3601 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3602 del_gendisk(ns->disk);
3603 blk_cleanup_queue(ns->queue);
3604 if (blk_get_integrity(ns->disk))
3605 blk_integrity_unregister(ns->disk);
3608 down_write(&ns->ctrl->namespaces_rwsem);
3609 list_del_init(&ns->list);
3610 up_write(&ns->ctrl->namespaces_rwsem);
3612 nvme_mpath_check_last_path(ns);
3613 nvme_put_ns(ns);
3616 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3618 struct nvme_ns *ns;
3620 ns = nvme_find_get_ns(ctrl, nsid);
3621 if (ns) {
3622 if (ns->disk && revalidate_disk(ns->disk))
3623 nvme_ns_remove(ns);
3624 nvme_put_ns(ns);
3625 } else
3626 nvme_alloc_ns(ctrl, nsid);
3629 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3630 unsigned nsid)
3632 struct nvme_ns *ns, *next;
3633 LIST_HEAD(rm_list);
3635 down_write(&ctrl->namespaces_rwsem);
3636 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3637 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3638 list_move_tail(&ns->list, &rm_list);
3640 up_write(&ctrl->namespaces_rwsem);
3642 list_for_each_entry_safe(ns, next, &rm_list, list)
3643 nvme_ns_remove(ns);
3647 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3649 struct nvme_ns *ns;
3650 __le32 *ns_list;
3651 unsigned i, j, nsid, prev = 0;
3652 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3653 int ret = 0;
3655 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3656 if (!ns_list)
3657 return -ENOMEM;
3659 for (i = 0; i < num_lists; i++) {
3660 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3661 if (ret)
3662 goto free;
3664 for (j = 0; j < min(nn, 1024U); j++) {
3665 nsid = le32_to_cpu(ns_list[j]);
3666 if (!nsid)
3667 goto out;
3669 nvme_validate_ns(ctrl, nsid);
3671 while (++prev < nsid) {
3672 ns = nvme_find_get_ns(ctrl, prev);
3673 if (ns) {
3674 nvme_ns_remove(ns);
3675 nvme_put_ns(ns);
3679 nn -= j;
3681 out:
3682 nvme_remove_invalid_namespaces(ctrl, prev);
3683 free:
3684 kfree(ns_list);
3685 return ret;
3688 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3690 unsigned i;
3692 for (i = 1; i <= nn; i++)
3693 nvme_validate_ns(ctrl, i);
3695 nvme_remove_invalid_namespaces(ctrl, nn);
3698 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3700 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3701 __le32 *log;
3702 int error;
3704 log = kzalloc(log_size, GFP_KERNEL);
3705 if (!log)
3706 return;
3709 * We need to read the log to clear the AEN, but we don't want to rely
3710 * on it for the changed namespace information as userspace could have
3711 * raced with us in reading the log page, which could cause us to miss
3712 * updates.
3714 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3715 log_size, 0);
3716 if (error)
3717 dev_warn(ctrl->device,
3718 "reading changed ns log failed: %d\n", error);
3720 kfree(log);
3723 static void nvme_scan_work(struct work_struct *work)
3725 struct nvme_ctrl *ctrl =
3726 container_of(work, struct nvme_ctrl, scan_work);
3727 struct nvme_id_ctrl *id;
3728 unsigned nn;
3730 /* No tagset on a live ctrl means IO queues could not created */
3731 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3732 return;
3734 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3735 dev_info(ctrl->device, "rescanning namespaces.\n");
3736 nvme_clear_changed_ns_log(ctrl);
3739 if (nvme_identify_ctrl(ctrl, &id))
3740 return;
3742 mutex_lock(&ctrl->scan_lock);
3743 nn = le32_to_cpu(id->nn);
3744 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3745 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3746 if (!nvme_scan_ns_list(ctrl, nn))
3747 goto out_free_id;
3749 nvme_scan_ns_sequential(ctrl, nn);
3750 out_free_id:
3751 mutex_unlock(&ctrl->scan_lock);
3752 kfree(id);
3753 down_write(&ctrl->namespaces_rwsem);
3754 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3755 up_write(&ctrl->namespaces_rwsem);
3759 * This function iterates the namespace list unlocked to allow recovery from
3760 * controller failure. It is up to the caller to ensure the namespace list is
3761 * not modified by scan work while this function is executing.
3763 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3765 struct nvme_ns *ns, *next;
3766 LIST_HEAD(ns_list);
3769 * make sure to requeue I/O to all namespaces as these
3770 * might result from the scan itself and must complete
3771 * for the scan_work to make progress
3773 nvme_mpath_clear_ctrl_paths(ctrl);
3775 /* prevent racing with ns scanning */
3776 flush_work(&ctrl->scan_work);
3779 * The dead states indicates the controller was not gracefully
3780 * disconnected. In that case, we won't be able to flush any data while
3781 * removing the namespaces' disks; fail all the queues now to avoid
3782 * potentially having to clean up the failed sync later.
3784 if (ctrl->state == NVME_CTRL_DEAD)
3785 nvme_kill_queues(ctrl);
3787 down_write(&ctrl->namespaces_rwsem);
3788 list_splice_init(&ctrl->namespaces, &ns_list);
3789 up_write(&ctrl->namespaces_rwsem);
3791 list_for_each_entry_safe(ns, next, &ns_list, list)
3792 nvme_ns_remove(ns);
3794 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3796 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3798 struct nvme_ctrl *ctrl =
3799 container_of(dev, struct nvme_ctrl, ctrl_device);
3800 struct nvmf_ctrl_options *opts = ctrl->opts;
3801 int ret;
3803 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3804 if (ret)
3805 return ret;
3807 if (opts) {
3808 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3809 if (ret)
3810 return ret;
3812 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3813 opts->trsvcid ?: "none");
3814 if (ret)
3815 return ret;
3817 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3818 opts->host_traddr ?: "none");
3820 return ret;
3823 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3825 char *envp[2] = { NULL, NULL };
3826 u32 aen_result = ctrl->aen_result;
3828 ctrl->aen_result = 0;
3829 if (!aen_result)
3830 return;
3832 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3833 if (!envp[0])
3834 return;
3835 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3836 kfree(envp[0]);
3839 static void nvme_async_event_work(struct work_struct *work)
3841 struct nvme_ctrl *ctrl =
3842 container_of(work, struct nvme_ctrl, async_event_work);
3844 nvme_aen_uevent(ctrl);
3845 ctrl->ops->submit_async_event(ctrl);
3848 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3851 u32 csts;
3853 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3854 return false;
3856 if (csts == ~0)
3857 return false;
3859 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3862 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3864 struct nvme_fw_slot_info_log *log;
3866 log = kmalloc(sizeof(*log), GFP_KERNEL);
3867 if (!log)
3868 return;
3870 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3871 sizeof(*log), 0))
3872 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3873 kfree(log);
3876 static void nvme_fw_act_work(struct work_struct *work)
3878 struct nvme_ctrl *ctrl = container_of(work,
3879 struct nvme_ctrl, fw_act_work);
3880 unsigned long fw_act_timeout;
3882 if (ctrl->mtfa)
3883 fw_act_timeout = jiffies +
3884 msecs_to_jiffies(ctrl->mtfa * 100);
3885 else
3886 fw_act_timeout = jiffies +
3887 msecs_to_jiffies(admin_timeout * 1000);
3889 nvme_stop_queues(ctrl);
3890 while (nvme_ctrl_pp_status(ctrl)) {
3891 if (time_after(jiffies, fw_act_timeout)) {
3892 dev_warn(ctrl->device,
3893 "Fw activation timeout, reset controller\n");
3894 nvme_try_sched_reset(ctrl);
3895 return;
3897 msleep(100);
3900 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3901 return;
3903 nvme_start_queues(ctrl);
3904 /* read FW slot information to clear the AER */
3905 nvme_get_fw_slot_info(ctrl);
3908 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3910 u32 aer_notice_type = (result & 0xff00) >> 8;
3912 trace_nvme_async_event(ctrl, aer_notice_type);
3914 switch (aer_notice_type) {
3915 case NVME_AER_NOTICE_NS_CHANGED:
3916 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3917 nvme_queue_scan(ctrl);
3918 break;
3919 case NVME_AER_NOTICE_FW_ACT_STARTING:
3921 * We are (ab)using the RESETTING state to prevent subsequent
3922 * recovery actions from interfering with the controller's
3923 * firmware activation.
3925 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3926 queue_work(nvme_wq, &ctrl->fw_act_work);
3927 break;
3928 #ifdef CONFIG_NVME_MULTIPATH
3929 case NVME_AER_NOTICE_ANA:
3930 if (!ctrl->ana_log_buf)
3931 break;
3932 queue_work(nvme_wq, &ctrl->ana_work);
3933 break;
3934 #endif
3935 case NVME_AER_NOTICE_DISC_CHANGED:
3936 ctrl->aen_result = result;
3937 break;
3938 default:
3939 dev_warn(ctrl->device, "async event result %08x\n", result);
3943 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3944 volatile union nvme_result *res)
3946 u32 result = le32_to_cpu(res->u32);
3947 u32 aer_type = result & 0x07;
3949 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3950 return;
3952 switch (aer_type) {
3953 case NVME_AER_NOTICE:
3954 nvme_handle_aen_notice(ctrl, result);
3955 break;
3956 case NVME_AER_ERROR:
3957 case NVME_AER_SMART:
3958 case NVME_AER_CSS:
3959 case NVME_AER_VS:
3960 trace_nvme_async_event(ctrl, aer_type);
3961 ctrl->aen_result = result;
3962 break;
3963 default:
3964 break;
3966 queue_work(nvme_wq, &ctrl->async_event_work);
3968 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3970 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3972 nvme_mpath_stop(ctrl);
3973 nvme_stop_keep_alive(ctrl);
3974 flush_work(&ctrl->async_event_work);
3975 cancel_work_sync(&ctrl->fw_act_work);
3977 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3979 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3981 if (ctrl->kato)
3982 nvme_start_keep_alive(ctrl);
3984 nvme_enable_aen(ctrl);
3986 if (ctrl->queue_count > 1) {
3987 nvme_queue_scan(ctrl);
3988 nvme_start_queues(ctrl);
3991 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3993 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3995 nvme_fault_inject_fini(&ctrl->fault_inject);
3996 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3997 cdev_device_del(&ctrl->cdev, ctrl->device);
3999 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4001 static void nvme_free_ctrl(struct device *dev)
4003 struct nvme_ctrl *ctrl =
4004 container_of(dev, struct nvme_ctrl, ctrl_device);
4005 struct nvme_subsystem *subsys = ctrl->subsys;
4007 if (subsys && ctrl->instance != subsys->instance)
4008 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4010 kfree(ctrl->effects);
4011 nvme_mpath_uninit(ctrl);
4012 __free_page(ctrl->discard_page);
4014 if (subsys) {
4015 mutex_lock(&nvme_subsystems_lock);
4016 list_del(&ctrl->subsys_entry);
4017 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4018 mutex_unlock(&nvme_subsystems_lock);
4021 ctrl->ops->free_ctrl(ctrl);
4023 if (subsys)
4024 nvme_put_subsystem(subsys);
4028 * Initialize a NVMe controller structures. This needs to be called during
4029 * earliest initialization so that we have the initialized structured around
4030 * during probing.
4032 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4033 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4035 int ret;
4037 ctrl->state = NVME_CTRL_NEW;
4038 spin_lock_init(&ctrl->lock);
4039 mutex_init(&ctrl->scan_lock);
4040 INIT_LIST_HEAD(&ctrl->namespaces);
4041 init_rwsem(&ctrl->namespaces_rwsem);
4042 ctrl->dev = dev;
4043 ctrl->ops = ops;
4044 ctrl->quirks = quirks;
4045 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4046 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4047 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4048 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4049 init_waitqueue_head(&ctrl->state_wq);
4051 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4052 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4053 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4055 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4056 PAGE_SIZE);
4057 ctrl->discard_page = alloc_page(GFP_KERNEL);
4058 if (!ctrl->discard_page) {
4059 ret = -ENOMEM;
4060 goto out;
4063 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4064 if (ret < 0)
4065 goto out;
4066 ctrl->instance = ret;
4068 device_initialize(&ctrl->ctrl_device);
4069 ctrl->device = &ctrl->ctrl_device;
4070 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4071 ctrl->device->class = nvme_class;
4072 ctrl->device->parent = ctrl->dev;
4073 ctrl->device->groups = nvme_dev_attr_groups;
4074 ctrl->device->release = nvme_free_ctrl;
4075 dev_set_drvdata(ctrl->device, ctrl);
4076 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4077 if (ret)
4078 goto out_release_instance;
4080 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4081 ctrl->cdev.owner = ops->module;
4082 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4083 if (ret)
4084 goto out_free_name;
4087 * Initialize latency tolerance controls. The sysfs files won't
4088 * be visible to userspace unless the device actually supports APST.
4090 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4091 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4092 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4094 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4096 return 0;
4097 out_free_name:
4098 kfree_const(ctrl->device->kobj.name);
4099 out_release_instance:
4100 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4101 out:
4102 if (ctrl->discard_page)
4103 __free_page(ctrl->discard_page);
4104 return ret;
4106 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4109 * nvme_kill_queues(): Ends all namespace queues
4110 * @ctrl: the dead controller that needs to end
4112 * Call this function when the driver determines it is unable to get the
4113 * controller in a state capable of servicing IO.
4115 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4117 struct nvme_ns *ns;
4119 down_read(&ctrl->namespaces_rwsem);
4121 /* Forcibly unquiesce queues to avoid blocking dispatch */
4122 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4123 blk_mq_unquiesce_queue(ctrl->admin_q);
4125 list_for_each_entry(ns, &ctrl->namespaces, list)
4126 nvme_set_queue_dying(ns);
4128 up_read(&ctrl->namespaces_rwsem);
4130 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4132 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4134 struct nvme_ns *ns;
4136 down_read(&ctrl->namespaces_rwsem);
4137 list_for_each_entry(ns, &ctrl->namespaces, list)
4138 blk_mq_unfreeze_queue(ns->queue);
4139 up_read(&ctrl->namespaces_rwsem);
4141 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4143 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4145 struct nvme_ns *ns;
4147 down_read(&ctrl->namespaces_rwsem);
4148 list_for_each_entry(ns, &ctrl->namespaces, list) {
4149 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4150 if (timeout <= 0)
4151 break;
4153 up_read(&ctrl->namespaces_rwsem);
4155 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4157 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4159 struct nvme_ns *ns;
4161 down_read(&ctrl->namespaces_rwsem);
4162 list_for_each_entry(ns, &ctrl->namespaces, list)
4163 blk_mq_freeze_queue_wait(ns->queue);
4164 up_read(&ctrl->namespaces_rwsem);
4166 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4168 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4170 struct nvme_ns *ns;
4172 down_read(&ctrl->namespaces_rwsem);
4173 list_for_each_entry(ns, &ctrl->namespaces, list)
4174 blk_freeze_queue_start(ns->queue);
4175 up_read(&ctrl->namespaces_rwsem);
4177 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4179 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4181 struct nvme_ns *ns;
4183 down_read(&ctrl->namespaces_rwsem);
4184 list_for_each_entry(ns, &ctrl->namespaces, list)
4185 blk_mq_quiesce_queue(ns->queue);
4186 up_read(&ctrl->namespaces_rwsem);
4188 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4190 void nvme_start_queues(struct nvme_ctrl *ctrl)
4192 struct nvme_ns *ns;
4194 down_read(&ctrl->namespaces_rwsem);
4195 list_for_each_entry(ns, &ctrl->namespaces, list)
4196 blk_mq_unquiesce_queue(ns->queue);
4197 up_read(&ctrl->namespaces_rwsem);
4199 EXPORT_SYMBOL_GPL(nvme_start_queues);
4202 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4204 struct nvme_ns *ns;
4206 down_read(&ctrl->namespaces_rwsem);
4207 list_for_each_entry(ns, &ctrl->namespaces, list)
4208 blk_sync_queue(ns->queue);
4209 up_read(&ctrl->namespaces_rwsem);
4211 if (ctrl->admin_q)
4212 blk_sync_queue(ctrl->admin_q);
4214 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4217 * Check we didn't inadvertently grow the command structure sizes:
4219 static inline void _nvme_check_size(void)
4221 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4222 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4223 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4224 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4225 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4226 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4227 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4228 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4229 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4230 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4231 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4232 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4233 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4234 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4235 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4236 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4237 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4241 static int __init nvme_core_init(void)
4243 int result = -ENOMEM;
4245 _nvme_check_size();
4247 nvme_wq = alloc_workqueue("nvme-wq",
4248 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4249 if (!nvme_wq)
4250 goto out;
4252 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4253 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4254 if (!nvme_reset_wq)
4255 goto destroy_wq;
4257 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4258 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4259 if (!nvme_delete_wq)
4260 goto destroy_reset_wq;
4262 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4263 if (result < 0)
4264 goto destroy_delete_wq;
4266 nvme_class = class_create(THIS_MODULE, "nvme");
4267 if (IS_ERR(nvme_class)) {
4268 result = PTR_ERR(nvme_class);
4269 goto unregister_chrdev;
4271 nvme_class->dev_uevent = nvme_class_uevent;
4273 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4274 if (IS_ERR(nvme_subsys_class)) {
4275 result = PTR_ERR(nvme_subsys_class);
4276 goto destroy_class;
4278 return 0;
4280 destroy_class:
4281 class_destroy(nvme_class);
4282 unregister_chrdev:
4283 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4284 destroy_delete_wq:
4285 destroy_workqueue(nvme_delete_wq);
4286 destroy_reset_wq:
4287 destroy_workqueue(nvme_reset_wq);
4288 destroy_wq:
4289 destroy_workqueue(nvme_wq);
4290 out:
4291 return result;
4294 static void __exit nvme_core_exit(void)
4296 class_destroy(nvme_subsys_class);
4297 class_destroy(nvme_class);
4298 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4299 destroy_workqueue(nvme_delete_wq);
4300 destroy_workqueue(nvme_reset_wq);
4301 destroy_workqueue(nvme_wq);
4304 MODULE_LICENSE("GPL");
4305 MODULE_VERSION("1.0");
4306 module_init(nvme_core_init);
4307 module_exit(nvme_core_exit);