1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
43 static int use_threaded_interrupts
;
44 module_param(use_threaded_interrupts
, int, 0);
46 static bool use_cmb_sqes
= true;
47 module_param(use_cmb_sqes
, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
50 static unsigned int max_host_mem_size_mb
= 128;
51 module_param(max_host_mem_size_mb
, uint
, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb
,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
55 static unsigned int sgl_threshold
= SZ_32K
;
56 module_param(sgl_threshold
, uint
, 0644);
57 MODULE_PARM_DESC(sgl_threshold
,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
61 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
62 static const struct kernel_param_ops io_queue_depth_ops
= {
63 .set
= io_queue_depth_set
,
67 static int io_queue_depth
= 1024;
68 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
69 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2");
71 static unsigned int write_queues
;
72 module_param(write_queues
, uint
, 0644);
73 MODULE_PARM_DESC(write_queues
,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
77 static unsigned int poll_queues
;
78 module_param(poll_queues
, uint
, 0644);
79 MODULE_PARM_DESC(poll_queues
, "Number of queues to use for polled IO.");
84 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
85 static bool __nvme_disable_io_queues(struct nvme_dev
*dev
, u8 opcode
);
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
91 struct nvme_queue
*queues
;
92 struct blk_mq_tag_set tagset
;
93 struct blk_mq_tag_set admin_tagset
;
96 struct dma_pool
*prp_page_pool
;
97 struct dma_pool
*prp_small_pool
;
98 unsigned online_queues
;
100 unsigned io_queues
[HCTX_MAX_TYPES
];
101 unsigned int num_vecs
;
106 unsigned long bar_mapped_size
;
107 struct work_struct remove_work
;
108 struct mutex shutdown_lock
;
114 struct nvme_ctrl ctrl
;
117 mempool_t
*iod_mempool
;
119 /* shadow doorbell buffer support: */
121 dma_addr_t dbbuf_dbs_dma_addr
;
123 dma_addr_t dbbuf_eis_dma_addr
;
125 /* host memory buffer support: */
127 u32 nr_host_mem_descs
;
128 dma_addr_t host_mem_descs_dma
;
129 struct nvme_host_mem_buf_desc
*host_mem_descs
;
130 void **host_mem_desc_bufs
;
133 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
137 ret
= kstrtoint(val
, 10, &n
);
138 if (ret
!= 0 || n
< 2)
141 return param_set_int(val
, kp
);
144 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
146 return qid
* 2 * stride
;
149 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
151 return (qid
* 2 + 1) * stride
;
154 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
156 return container_of(ctrl
, struct nvme_dev
, ctrl
);
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
164 struct nvme_dev
*dev
;
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp
;
169 volatile struct nvme_completion
*cqes
;
170 struct blk_mq_tags
**tags
;
171 dma_addr_t sq_dma_addr
;
172 dma_addr_t cq_dma_addr
;
183 #define NVMEQ_ENABLED 0
184 #define NVMEQ_SQ_CMB 1
185 #define NVMEQ_DELETE_ERROR 2
186 #define NVMEQ_POLLED 3
191 struct completion delete_done
;
195 * The nvme_iod describes the data in an I/O.
197 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
198 * to the actual struct scatterlist.
201 struct nvme_request req
;
202 struct nvme_queue
*nvmeq
;
205 int npages
; /* In the PRP list. 0 means small pool in use */
206 int nents
; /* Used in scatterlist */
207 dma_addr_t first_dma
;
208 unsigned int dma_len
; /* length of single DMA segment mapping */
210 struct scatterlist
*sg
;
213 static unsigned int max_io_queues(void)
215 return num_possible_cpus() + write_queues
+ poll_queues
;
218 static unsigned int max_queue_count(void)
220 /* IO queues + admin queue */
221 return 1 + max_io_queues();
224 static inline unsigned int nvme_dbbuf_size(u32 stride
)
226 return (max_queue_count() * 8 * stride
);
229 static int nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
231 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
236 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
237 &dev
->dbbuf_dbs_dma_addr
,
241 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
242 &dev
->dbbuf_eis_dma_addr
,
244 if (!dev
->dbbuf_eis
) {
245 dma_free_coherent(dev
->dev
, mem_size
,
246 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
247 dev
->dbbuf_dbs
= NULL
;
254 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
256 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
258 if (dev
->dbbuf_dbs
) {
259 dma_free_coherent(dev
->dev
, mem_size
,
260 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
261 dev
->dbbuf_dbs
= NULL
;
263 if (dev
->dbbuf_eis
) {
264 dma_free_coherent(dev
->dev
, mem_size
,
265 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
266 dev
->dbbuf_eis
= NULL
;
270 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
271 struct nvme_queue
*nvmeq
, int qid
)
273 if (!dev
->dbbuf_dbs
|| !qid
)
276 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
277 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
278 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
279 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
282 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
284 struct nvme_command c
;
289 memset(&c
, 0, sizeof(c
));
290 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
291 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
292 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
294 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
295 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
296 /* Free memory and continue on */
297 nvme_dbbuf_dma_free(dev
);
301 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
303 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
306 /* Update dbbuf and return true if an MMIO is required */
307 static bool nvme_dbbuf_update_and_check_event(u16 value
, u32
*dbbuf_db
,
308 volatile u32
*dbbuf_ei
)
314 * Ensure that the queue is written before updating
315 * the doorbell in memory
319 old_value
= *dbbuf_db
;
323 * Ensure that the doorbell is updated before reading the event
324 * index from memory. The controller needs to provide similar
325 * ordering to ensure the envent index is updated before reading
330 if (!nvme_dbbuf_need_event(*dbbuf_ei
, value
, old_value
))
338 * Will slightly overestimate the number of pages needed. This is OK
339 * as it only leads to a small amount of wasted memory for the lifetime of
342 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
344 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
345 dev
->ctrl
.page_size
);
346 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
350 * Calculates the number of pages needed for the SGL segments. For example a 4k
351 * page can accommodate 256 SGL descriptors.
353 static int nvme_pci_npages_sgl(unsigned int num_seg
)
355 return DIV_ROUND_UP(num_seg
* sizeof(struct nvme_sgl_desc
), PAGE_SIZE
);
358 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev
*dev
,
359 unsigned int size
, unsigned int nseg
, bool use_sgl
)
364 alloc_size
= sizeof(__le64
*) * nvme_pci_npages_sgl(nseg
);
366 alloc_size
= sizeof(__le64
*) * nvme_npages(size
, dev
);
368 return alloc_size
+ sizeof(struct scatterlist
) * nseg
;
371 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
372 unsigned int hctx_idx
)
374 struct nvme_dev
*dev
= data
;
375 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
377 WARN_ON(hctx_idx
!= 0);
378 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
379 WARN_ON(nvmeq
->tags
);
381 hctx
->driver_data
= nvmeq
;
382 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
386 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
388 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
393 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
394 unsigned int hctx_idx
)
396 struct nvme_dev
*dev
= data
;
397 struct nvme_queue
*nvmeq
= &dev
->queues
[hctx_idx
+ 1];
400 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
402 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
403 hctx
->driver_data
= nvmeq
;
407 static int nvme_init_request(struct blk_mq_tag_set
*set
, struct request
*req
,
408 unsigned int hctx_idx
, unsigned int numa_node
)
410 struct nvme_dev
*dev
= set
->driver_data
;
411 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
412 int queue_idx
= (set
== &dev
->tagset
) ? hctx_idx
+ 1 : 0;
413 struct nvme_queue
*nvmeq
= &dev
->queues
[queue_idx
];
418 nvme_req(req
)->ctrl
= &dev
->ctrl
;
422 static int queue_irq_offset(struct nvme_dev
*dev
)
424 /* if we have more than 1 vec, admin queue offsets us by 1 */
425 if (dev
->num_vecs
> 1)
431 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
433 struct nvme_dev
*dev
= set
->driver_data
;
436 offset
= queue_irq_offset(dev
);
437 for (i
= 0, qoff
= 0; i
< set
->nr_maps
; i
++) {
438 struct blk_mq_queue_map
*map
= &set
->map
[i
];
440 map
->nr_queues
= dev
->io_queues
[i
];
441 if (!map
->nr_queues
) {
442 BUG_ON(i
== HCTX_TYPE_DEFAULT
);
447 * The poll queue(s) doesn't have an IRQ (and hence IRQ
448 * affinity), so use the regular blk-mq cpu mapping
450 map
->queue_offset
= qoff
;
451 if (i
!= HCTX_TYPE_POLL
&& offset
)
452 blk_mq_pci_map_queues(map
, to_pci_dev(dev
->dev
), offset
);
454 blk_mq_map_queues(map
);
455 qoff
+= map
->nr_queues
;
456 offset
+= map
->nr_queues
;
463 * Write sq tail if we are asked to, or if the next command would wrap.
465 static inline void nvme_write_sq_db(struct nvme_queue
*nvmeq
, bool write_sq
)
468 u16 next_tail
= nvmeq
->sq_tail
+ 1;
470 if (next_tail
== nvmeq
->q_depth
)
472 if (next_tail
!= nvmeq
->last_sq_tail
)
476 if (nvme_dbbuf_update_and_check_event(nvmeq
->sq_tail
,
477 nvmeq
->dbbuf_sq_db
, nvmeq
->dbbuf_sq_ei
))
478 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
479 nvmeq
->last_sq_tail
= nvmeq
->sq_tail
;
483 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
484 * @nvmeq: The queue to use
485 * @cmd: The command to send
486 * @write_sq: whether to write to the SQ doorbell
488 static void nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
,
491 spin_lock(&nvmeq
->sq_lock
);
492 memcpy(nvmeq
->sq_cmds
+ (nvmeq
->sq_tail
<< nvmeq
->sqes
),
494 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
496 nvme_write_sq_db(nvmeq
, write_sq
);
497 spin_unlock(&nvmeq
->sq_lock
);
500 static void nvme_commit_rqs(struct blk_mq_hw_ctx
*hctx
)
502 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
504 spin_lock(&nvmeq
->sq_lock
);
505 if (nvmeq
->sq_tail
!= nvmeq
->last_sq_tail
)
506 nvme_write_sq_db(nvmeq
, true);
507 spin_unlock(&nvmeq
->sq_lock
);
510 static void **nvme_pci_iod_list(struct request
*req
)
512 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
513 return (void **)(iod
->sg
+ blk_rq_nr_phys_segments(req
));
516 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
)
518 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
519 int nseg
= blk_rq_nr_phys_segments(req
);
520 unsigned int avg_seg_size
;
525 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
), nseg
);
527 if (!(dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))))
529 if (!iod
->nvmeq
->qid
)
531 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
536 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
538 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
539 const int last_prp
= dev
->ctrl
.page_size
/ sizeof(__le64
) - 1;
540 dma_addr_t dma_addr
= iod
->first_dma
, next_dma_addr
;
544 dma_unmap_page(dev
->dev
, dma_addr
, iod
->dma_len
,
549 WARN_ON_ONCE(!iod
->nents
);
551 if (is_pci_p2pdma_page(sg_page(iod
->sg
)))
552 pci_p2pdma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
,
555 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, rq_dma_dir(req
));
558 if (iod
->npages
== 0)
559 dma_pool_free(dev
->prp_small_pool
, nvme_pci_iod_list(req
)[0],
562 for (i
= 0; i
< iod
->npages
; i
++) {
563 void *addr
= nvme_pci_iod_list(req
)[i
];
566 struct nvme_sgl_desc
*sg_list
= addr
;
569 le64_to_cpu((sg_list
[SGES_PER_PAGE
- 1]).addr
);
571 __le64
*prp_list
= addr
;
573 next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
576 dma_pool_free(dev
->prp_page_pool
, addr
, dma_addr
);
577 dma_addr
= next_dma_addr
;
580 mempool_free(iod
->sg
, dev
->iod_mempool
);
583 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
586 struct scatterlist
*sg
;
588 for_each_sg(sgl
, sg
, nents
, i
) {
589 dma_addr_t phys
= sg_phys(sg
);
590 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
591 "dma_address:%pad dma_length:%d\n",
592 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
597 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
598 struct request
*req
, struct nvme_rw_command
*cmnd
)
600 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
601 struct dma_pool
*pool
;
602 int length
= blk_rq_payload_bytes(req
);
603 struct scatterlist
*sg
= iod
->sg
;
604 int dma_len
= sg_dma_len(sg
);
605 u64 dma_addr
= sg_dma_address(sg
);
606 u32 page_size
= dev
->ctrl
.page_size
;
607 int offset
= dma_addr
& (page_size
- 1);
609 void **list
= nvme_pci_iod_list(req
);
613 length
-= (page_size
- offset
);
619 dma_len
-= (page_size
- offset
);
621 dma_addr
+= (page_size
- offset
);
624 dma_addr
= sg_dma_address(sg
);
625 dma_len
= sg_dma_len(sg
);
628 if (length
<= page_size
) {
629 iod
->first_dma
= dma_addr
;
633 nprps
= DIV_ROUND_UP(length
, page_size
);
634 if (nprps
<= (256 / 8)) {
635 pool
= dev
->prp_small_pool
;
638 pool
= dev
->prp_page_pool
;
642 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
644 iod
->first_dma
= dma_addr
;
646 return BLK_STS_RESOURCE
;
649 iod
->first_dma
= prp_dma
;
652 if (i
== page_size
>> 3) {
653 __le64
*old_prp_list
= prp_list
;
654 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
656 return BLK_STS_RESOURCE
;
657 list
[iod
->npages
++] = prp_list
;
658 prp_list
[0] = old_prp_list
[i
- 1];
659 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
662 prp_list
[i
++] = cpu_to_le64(dma_addr
);
663 dma_len
-= page_size
;
664 dma_addr
+= page_size
;
670 if (unlikely(dma_len
< 0))
673 dma_addr
= sg_dma_address(sg
);
674 dma_len
= sg_dma_len(sg
);
678 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
679 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
684 WARN(DO_ONCE(nvme_print_sgl
, iod
->sg
, iod
->nents
),
685 "Invalid SGL for payload:%d nents:%d\n",
686 blk_rq_payload_bytes(req
), iod
->nents
);
687 return BLK_STS_IOERR
;
690 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
691 struct scatterlist
*sg
)
693 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
694 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
695 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
698 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
699 dma_addr_t dma_addr
, int entries
)
701 sge
->addr
= cpu_to_le64(dma_addr
);
702 if (entries
< SGES_PER_PAGE
) {
703 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
704 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
706 sge
->length
= cpu_to_le32(PAGE_SIZE
);
707 sge
->type
= NVME_SGL_FMT_SEG_DESC
<< 4;
711 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
712 struct request
*req
, struct nvme_rw_command
*cmd
, int entries
)
714 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
715 struct dma_pool
*pool
;
716 struct nvme_sgl_desc
*sg_list
;
717 struct scatterlist
*sg
= iod
->sg
;
721 /* setting the transfer type as SGL */
722 cmd
->flags
= NVME_CMD_SGL_METABUF
;
725 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
729 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
730 pool
= dev
->prp_small_pool
;
733 pool
= dev
->prp_page_pool
;
737 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
740 return BLK_STS_RESOURCE
;
743 nvme_pci_iod_list(req
)[0] = sg_list
;
744 iod
->first_dma
= sgl_dma
;
746 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
749 if (i
== SGES_PER_PAGE
) {
750 struct nvme_sgl_desc
*old_sg_desc
= sg_list
;
751 struct nvme_sgl_desc
*link
= &old_sg_desc
[i
- 1];
753 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
755 return BLK_STS_RESOURCE
;
758 nvme_pci_iod_list(req
)[iod
->npages
++] = sg_list
;
759 sg_list
[i
++] = *link
;
760 nvme_pci_sgl_set_seg(link
, sgl_dma
, entries
);
763 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
765 } while (--entries
> 0);
770 static blk_status_t
nvme_setup_prp_simple(struct nvme_dev
*dev
,
771 struct request
*req
, struct nvme_rw_command
*cmnd
,
774 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
775 unsigned int offset
= bv
->bv_offset
& (dev
->ctrl
.page_size
- 1);
776 unsigned int first_prp_len
= dev
->ctrl
.page_size
- offset
;
778 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
779 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
780 return BLK_STS_RESOURCE
;
781 iod
->dma_len
= bv
->bv_len
;
783 cmnd
->dptr
.prp1
= cpu_to_le64(iod
->first_dma
);
784 if (bv
->bv_len
> first_prp_len
)
785 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
+ first_prp_len
);
789 static blk_status_t
nvme_setup_sgl_simple(struct nvme_dev
*dev
,
790 struct request
*req
, struct nvme_rw_command
*cmnd
,
793 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
795 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
796 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
797 return BLK_STS_RESOURCE
;
798 iod
->dma_len
= bv
->bv_len
;
800 cmnd
->flags
= NVME_CMD_SGL_METABUF
;
801 cmnd
->dptr
.sgl
.addr
= cpu_to_le64(iod
->first_dma
);
802 cmnd
->dptr
.sgl
.length
= cpu_to_le32(iod
->dma_len
);
803 cmnd
->dptr
.sgl
.type
= NVME_SGL_FMT_DATA_DESC
<< 4;
807 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
808 struct nvme_command
*cmnd
)
810 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
811 blk_status_t ret
= BLK_STS_RESOURCE
;
814 if (blk_rq_nr_phys_segments(req
) == 1) {
815 struct bio_vec bv
= req_bvec(req
);
817 if (!is_pci_p2pdma_page(bv
.bv_page
)) {
818 if (bv
.bv_offset
+ bv
.bv_len
<= dev
->ctrl
.page_size
* 2)
819 return nvme_setup_prp_simple(dev
, req
,
822 if (iod
->nvmeq
->qid
&&
823 dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1)))
824 return nvme_setup_sgl_simple(dev
, req
,
830 iod
->sg
= mempool_alloc(dev
->iod_mempool
, GFP_ATOMIC
);
832 return BLK_STS_RESOURCE
;
833 sg_init_table(iod
->sg
, blk_rq_nr_phys_segments(req
));
834 iod
->nents
= blk_rq_map_sg(req
->q
, req
, iod
->sg
);
838 if (is_pci_p2pdma_page(sg_page(iod
->sg
)))
839 nr_mapped
= pci_p2pdma_map_sg_attrs(dev
->dev
, iod
->sg
,
840 iod
->nents
, rq_dma_dir(req
), DMA_ATTR_NO_WARN
);
842 nr_mapped
= dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
,
843 rq_dma_dir(req
), DMA_ATTR_NO_WARN
);
847 iod
->use_sgl
= nvme_pci_use_sgls(dev
, req
);
849 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
, nr_mapped
);
851 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
853 if (ret
!= BLK_STS_OK
)
854 nvme_unmap_data(dev
, req
);
858 static blk_status_t
nvme_map_metadata(struct nvme_dev
*dev
, struct request
*req
,
859 struct nvme_command
*cmnd
)
861 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
863 iod
->meta_dma
= dma_map_bvec(dev
->dev
, rq_integrity_vec(req
),
865 if (dma_mapping_error(dev
->dev
, iod
->meta_dma
))
866 return BLK_STS_IOERR
;
867 cmnd
->rw
.metadata
= cpu_to_le64(iod
->meta_dma
);
872 * NOTE: ns is NULL when called on the admin queue.
874 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
875 const struct blk_mq_queue_data
*bd
)
877 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
878 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
879 struct nvme_dev
*dev
= nvmeq
->dev
;
880 struct request
*req
= bd
->rq
;
881 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
882 struct nvme_command cmnd
;
890 * We should not need to do this, but we're still using this to
891 * ensure we can drain requests on a dying queue.
893 if (unlikely(!test_bit(NVMEQ_ENABLED
, &nvmeq
->flags
)))
894 return BLK_STS_IOERR
;
896 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
900 if (blk_rq_nr_phys_segments(req
)) {
901 ret
= nvme_map_data(dev
, req
, &cmnd
);
906 if (blk_integrity_rq(req
)) {
907 ret
= nvme_map_metadata(dev
, req
, &cmnd
);
912 blk_mq_start_request(req
);
913 nvme_submit_cmd(nvmeq
, &cmnd
, bd
->last
);
916 nvme_unmap_data(dev
, req
);
918 nvme_cleanup_cmd(req
);
922 static void nvme_pci_complete_rq(struct request
*req
)
924 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
925 struct nvme_dev
*dev
= iod
->nvmeq
->dev
;
927 if (blk_integrity_rq(req
))
928 dma_unmap_page(dev
->dev
, iod
->meta_dma
,
929 rq_integrity_vec(req
)->bv_len
, rq_data_dir(req
));
930 if (blk_rq_nr_phys_segments(req
))
931 nvme_unmap_data(dev
, req
);
932 nvme_complete_rq(req
);
935 /* We read the CQE phase first to check if the rest of the entry is valid */
936 static inline bool nvme_cqe_pending(struct nvme_queue
*nvmeq
)
938 return (le16_to_cpu(nvmeq
->cqes
[nvmeq
->cq_head
].status
) & 1) ==
942 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
944 u16 head
= nvmeq
->cq_head
;
946 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
948 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
951 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
, u16 idx
)
953 volatile struct nvme_completion
*cqe
= &nvmeq
->cqes
[idx
];
956 if (unlikely(cqe
->command_id
>= nvmeq
->q_depth
)) {
957 dev_warn(nvmeq
->dev
->ctrl
.device
,
958 "invalid id %d completed on queue %d\n",
959 cqe
->command_id
, le16_to_cpu(cqe
->sq_id
));
964 * AEN requests are special as they don't time out and can
965 * survive any kind of queue freeze and often don't respond to
966 * aborts. We don't even bother to allocate a struct request
967 * for them but rather special case them here.
969 if (unlikely(nvme_is_aen_req(nvmeq
->qid
, cqe
->command_id
))) {
970 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
971 cqe
->status
, &cqe
->result
);
975 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
->command_id
);
976 trace_nvme_sq(req
, cqe
->sq_head
, nvmeq
->sq_tail
);
977 nvme_end_request(req
, cqe
->status
, cqe
->result
);
980 static void nvme_complete_cqes(struct nvme_queue
*nvmeq
, u16 start
, u16 end
)
982 while (start
!= end
) {
983 nvme_handle_cqe(nvmeq
, start
);
984 if (++start
== nvmeq
->q_depth
)
989 static inline void nvme_update_cq_head(struct nvme_queue
*nvmeq
)
991 if (nvmeq
->cq_head
== nvmeq
->q_depth
- 1) {
993 nvmeq
->cq_phase
= !nvmeq
->cq_phase
;
999 static inline int nvme_process_cq(struct nvme_queue
*nvmeq
, u16
*start
,
1000 u16
*end
, unsigned int tag
)
1004 *start
= nvmeq
->cq_head
;
1005 while (nvme_cqe_pending(nvmeq
)) {
1006 if (tag
== -1U || nvmeq
->cqes
[nvmeq
->cq_head
].command_id
== tag
)
1008 nvme_update_cq_head(nvmeq
);
1010 *end
= nvmeq
->cq_head
;
1013 nvme_ring_cq_doorbell(nvmeq
);
1017 static irqreturn_t
nvme_irq(int irq
, void *data
)
1019 struct nvme_queue
*nvmeq
= data
;
1020 irqreturn_t ret
= IRQ_NONE
;
1024 * The rmb/wmb pair ensures we see all updates from a previous run of
1025 * the irq handler, even if that was on another CPU.
1028 nvme_process_cq(nvmeq
, &start
, &end
, -1);
1032 nvme_complete_cqes(nvmeq
, start
, end
);
1039 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1041 struct nvme_queue
*nvmeq
= data
;
1042 if (nvme_cqe_pending(nvmeq
))
1043 return IRQ_WAKE_THREAD
;
1048 * Poll for completions any queue, including those not dedicated to polling.
1049 * Can be called from any context.
1051 static int nvme_poll_irqdisable(struct nvme_queue
*nvmeq
, unsigned int tag
)
1053 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1058 * For a poll queue we need to protect against the polling thread
1059 * using the CQ lock. For normal interrupt driven threads we have
1060 * to disable the interrupt to avoid racing with it.
1062 if (test_bit(NVMEQ_POLLED
, &nvmeq
->flags
)) {
1063 spin_lock(&nvmeq
->cq_poll_lock
);
1064 found
= nvme_process_cq(nvmeq
, &start
, &end
, tag
);
1065 spin_unlock(&nvmeq
->cq_poll_lock
);
1067 disable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1068 found
= nvme_process_cq(nvmeq
, &start
, &end
, tag
);
1069 enable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1072 nvme_complete_cqes(nvmeq
, start
, end
);
1076 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
)
1078 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1082 if (!nvme_cqe_pending(nvmeq
))
1085 spin_lock(&nvmeq
->cq_poll_lock
);
1086 found
= nvme_process_cq(nvmeq
, &start
, &end
, -1);
1087 spin_unlock(&nvmeq
->cq_poll_lock
);
1089 nvme_complete_cqes(nvmeq
, start
, end
);
1093 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1095 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1096 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1097 struct nvme_command c
;
1099 memset(&c
, 0, sizeof(c
));
1100 c
.common
.opcode
= nvme_admin_async_event
;
1101 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1102 nvme_submit_cmd(nvmeq
, &c
, true);
1105 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1107 struct nvme_command c
;
1109 memset(&c
, 0, sizeof(c
));
1110 c
.delete_queue
.opcode
= opcode
;
1111 c
.delete_queue
.qid
= cpu_to_le16(id
);
1113 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1116 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1117 struct nvme_queue
*nvmeq
, s16 vector
)
1119 struct nvme_command c
;
1120 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1122 if (!test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1123 flags
|= NVME_CQ_IRQ_ENABLED
;
1126 * Note: we (ab)use the fact that the prp fields survive if no data
1127 * is attached to the request.
1129 memset(&c
, 0, sizeof(c
));
1130 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1131 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1132 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1133 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1134 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1135 c
.create_cq
.irq_vector
= cpu_to_le16(vector
);
1137 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1140 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1141 struct nvme_queue
*nvmeq
)
1143 struct nvme_ctrl
*ctrl
= &dev
->ctrl
;
1144 struct nvme_command c
;
1145 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1148 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1149 * set. Since URGENT priority is zeroes, it makes all queues
1152 if (ctrl
->quirks
& NVME_QUIRK_MEDIUM_PRIO_SQ
)
1153 flags
|= NVME_SQ_PRIO_MEDIUM
;
1156 * Note: we (ab)use the fact that the prp fields survive if no data
1157 * is attached to the request.
1159 memset(&c
, 0, sizeof(c
));
1160 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1161 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1162 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1163 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1164 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1165 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1167 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1170 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1172 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1175 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1177 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1180 static void abort_endio(struct request
*req
, blk_status_t error
)
1182 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1183 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1185 dev_warn(nvmeq
->dev
->ctrl
.device
,
1186 "Abort status: 0x%x", nvme_req(req
)->status
);
1187 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1188 blk_mq_free_request(req
);
1191 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1194 /* If true, indicates loss of adapter communication, possibly by a
1195 * NVMe Subsystem reset.
1197 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1199 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1200 switch (dev
->ctrl
.state
) {
1201 case NVME_CTRL_RESETTING
:
1202 case NVME_CTRL_CONNECTING
:
1208 /* We shouldn't reset unless the controller is on fatal error state
1209 * _or_ if we lost the communication with it.
1211 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1217 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1219 /* Read a config register to help see what died. */
1223 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1225 if (result
== PCIBIOS_SUCCESSFUL
)
1226 dev_warn(dev
->ctrl
.device
,
1227 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1230 dev_warn(dev
->ctrl
.device
,
1231 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1235 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1237 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1238 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1239 struct nvme_dev
*dev
= nvmeq
->dev
;
1240 struct request
*abort_req
;
1241 struct nvme_command cmd
;
1242 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1244 /* If PCI error recovery process is happening, we cannot reset or
1245 * the recovery mechanism will surely fail.
1248 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1249 return BLK_EH_RESET_TIMER
;
1252 * Reset immediately if the controller is failed
1254 if (nvme_should_reset(dev
, csts
)) {
1255 nvme_warn_reset(dev
, csts
);
1256 nvme_dev_disable(dev
, false);
1257 nvme_reset_ctrl(&dev
->ctrl
);
1262 * Did we miss an interrupt?
1264 if (nvme_poll_irqdisable(nvmeq
, req
->tag
)) {
1265 dev_warn(dev
->ctrl
.device
,
1266 "I/O %d QID %d timeout, completion polled\n",
1267 req
->tag
, nvmeq
->qid
);
1272 * Shutdown immediately if controller times out while starting. The
1273 * reset work will see the pci device disabled when it gets the forced
1274 * cancellation error. All outstanding requests are completed on
1275 * shutdown, so we return BLK_EH_DONE.
1277 switch (dev
->ctrl
.state
) {
1278 case NVME_CTRL_CONNECTING
:
1279 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1281 case NVME_CTRL_DELETING
:
1282 dev_warn_ratelimited(dev
->ctrl
.device
,
1283 "I/O %d QID %d timeout, disable controller\n",
1284 req
->tag
, nvmeq
->qid
);
1285 nvme_dev_disable(dev
, true);
1286 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1288 case NVME_CTRL_RESETTING
:
1289 return BLK_EH_RESET_TIMER
;
1295 * Shutdown the controller immediately and schedule a reset if the
1296 * command was already aborted once before and still hasn't been
1297 * returned to the driver, or if this is the admin queue.
1299 if (!nvmeq
->qid
|| iod
->aborted
) {
1300 dev_warn(dev
->ctrl
.device
,
1301 "I/O %d QID %d timeout, reset controller\n",
1302 req
->tag
, nvmeq
->qid
);
1303 nvme_dev_disable(dev
, false);
1304 nvme_reset_ctrl(&dev
->ctrl
);
1306 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1310 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1311 atomic_inc(&dev
->ctrl
.abort_limit
);
1312 return BLK_EH_RESET_TIMER
;
1316 memset(&cmd
, 0, sizeof(cmd
));
1317 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1318 cmd
.abort
.cid
= req
->tag
;
1319 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1321 dev_warn(nvmeq
->dev
->ctrl
.device
,
1322 "I/O %d QID %d timeout, aborting\n",
1323 req
->tag
, nvmeq
->qid
);
1325 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
1326 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1327 if (IS_ERR(abort_req
)) {
1328 atomic_inc(&dev
->ctrl
.abort_limit
);
1329 return BLK_EH_RESET_TIMER
;
1332 abort_req
->timeout
= ADMIN_TIMEOUT
;
1333 abort_req
->end_io_data
= NULL
;
1334 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
1337 * The aborted req will be completed on receiving the abort req.
1338 * We enable the timer again. If hit twice, it'll cause a device reset,
1339 * as the device then is in a faulty state.
1341 return BLK_EH_RESET_TIMER
;
1344 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1346 dma_free_coherent(nvmeq
->dev
->dev
, CQ_SIZE(nvmeq
),
1347 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1348 if (!nvmeq
->sq_cmds
)
1351 if (test_and_clear_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
)) {
1352 pci_free_p2pmem(to_pci_dev(nvmeq
->dev
->dev
),
1353 nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1355 dma_free_coherent(nvmeq
->dev
->dev
, SQ_SIZE(nvmeq
),
1356 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1360 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1364 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1365 dev
->ctrl
.queue_count
--;
1366 nvme_free_queue(&dev
->queues
[i
]);
1371 * nvme_suspend_queue - put queue into suspended state
1372 * @nvmeq: queue to suspend
1374 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1376 if (!test_and_clear_bit(NVMEQ_ENABLED
, &nvmeq
->flags
))
1379 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1382 nvmeq
->dev
->online_queues
--;
1383 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1384 blk_mq_quiesce_queue(nvmeq
->dev
->ctrl
.admin_q
);
1385 if (!test_and_clear_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1386 pci_free_irq(to_pci_dev(nvmeq
->dev
->dev
), nvmeq
->cq_vector
, nvmeq
);
1390 static void nvme_suspend_io_queues(struct nvme_dev
*dev
)
1394 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--)
1395 nvme_suspend_queue(&dev
->queues
[i
]);
1398 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
1400 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1403 nvme_shutdown_ctrl(&dev
->ctrl
);
1405 nvme_disable_ctrl(&dev
->ctrl
);
1407 nvme_poll_irqdisable(nvmeq
, -1);
1410 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1413 int q_depth
= dev
->q_depth
;
1414 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1415 dev
->ctrl
.page_size
);
1417 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1418 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1419 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1420 q_depth
= div_u64(mem_per_q
, entry_size
);
1423 * Ensure the reduced q_depth is above some threshold where it
1424 * would be better to map queues in system memory with the
1434 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1437 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1439 if (qid
&& dev
->cmb_use_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1440 nvmeq
->sq_cmds
= pci_alloc_p2pmem(pdev
, SQ_SIZE(nvmeq
));
1441 if (nvmeq
->sq_cmds
) {
1442 nvmeq
->sq_dma_addr
= pci_p2pmem_virt_to_bus(pdev
,
1444 if (nvmeq
->sq_dma_addr
) {
1445 set_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
);
1449 pci_free_p2pmem(pdev
, nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1453 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(nvmeq
),
1454 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1455 if (!nvmeq
->sq_cmds
)
1460 static int nvme_alloc_queue(struct nvme_dev
*dev
, int qid
, int depth
)
1462 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1464 if (dev
->ctrl
.queue_count
> qid
)
1467 nvmeq
->sqes
= qid
? dev
->io_sqes
: NVME_ADM_SQES
;
1468 nvmeq
->q_depth
= depth
;
1469 nvmeq
->cqes
= dma_alloc_coherent(dev
->dev
, CQ_SIZE(nvmeq
),
1470 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1474 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
))
1478 spin_lock_init(&nvmeq
->sq_lock
);
1479 spin_lock_init(&nvmeq
->cq_poll_lock
);
1481 nvmeq
->cq_phase
= 1;
1482 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1484 dev
->ctrl
.queue_count
++;
1489 dma_free_coherent(dev
->dev
, CQ_SIZE(nvmeq
), (void *)nvmeq
->cqes
,
1490 nvmeq
->cq_dma_addr
);
1495 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1497 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1498 int nr
= nvmeq
->dev
->ctrl
.instance
;
1500 if (use_threaded_interrupts
) {
1501 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1502 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1504 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1505 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1509 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1511 struct nvme_dev
*dev
= nvmeq
->dev
;
1514 nvmeq
->last_sq_tail
= 0;
1516 nvmeq
->cq_phase
= 1;
1517 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1518 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
));
1519 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1520 dev
->online_queues
++;
1521 wmb(); /* ensure the first interrupt sees the initialization */
1524 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
, bool polled
)
1526 struct nvme_dev
*dev
= nvmeq
->dev
;
1530 clear_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
1533 * A queue's vector matches the queue identifier unless the controller
1534 * has only one vector available.
1537 vector
= dev
->num_vecs
== 1 ? 0 : qid
;
1539 set_bit(NVMEQ_POLLED
, &nvmeq
->flags
);
1541 result
= adapter_alloc_cq(dev
, qid
, nvmeq
, vector
);
1545 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1551 nvmeq
->cq_vector
= vector
;
1552 nvme_init_queue(nvmeq
, qid
);
1555 result
= queue_request_irq(nvmeq
);
1560 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1564 dev
->online_queues
--;
1565 adapter_delete_sq(dev
, qid
);
1567 adapter_delete_cq(dev
, qid
);
1571 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1572 .queue_rq
= nvme_queue_rq
,
1573 .complete
= nvme_pci_complete_rq
,
1574 .init_hctx
= nvme_admin_init_hctx
,
1575 .exit_hctx
= nvme_admin_exit_hctx
,
1576 .init_request
= nvme_init_request
,
1577 .timeout
= nvme_timeout
,
1580 static const struct blk_mq_ops nvme_mq_ops
= {
1581 .queue_rq
= nvme_queue_rq
,
1582 .complete
= nvme_pci_complete_rq
,
1583 .commit_rqs
= nvme_commit_rqs
,
1584 .init_hctx
= nvme_init_hctx
,
1585 .init_request
= nvme_init_request
,
1586 .map_queues
= nvme_pci_map_queues
,
1587 .timeout
= nvme_timeout
,
1591 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1593 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1595 * If the controller was reset during removal, it's possible
1596 * user requests may be waiting on a stopped queue. Start the
1597 * queue to flush these to completion.
1599 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1600 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1601 blk_mq_free_tag_set(&dev
->admin_tagset
);
1605 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1607 if (!dev
->ctrl
.admin_q
) {
1608 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1609 dev
->admin_tagset
.nr_hw_queues
= 1;
1611 dev
->admin_tagset
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1612 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1613 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1614 dev
->admin_tagset
.cmd_size
= sizeof(struct nvme_iod
);
1615 dev
->admin_tagset
.flags
= BLK_MQ_F_NO_SCHED
;
1616 dev
->admin_tagset
.driver_data
= dev
;
1618 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1620 dev
->ctrl
.admin_tagset
= &dev
->admin_tagset
;
1622 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1623 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1624 blk_mq_free_tag_set(&dev
->admin_tagset
);
1627 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1628 nvme_dev_remove_admin(dev
);
1629 dev
->ctrl
.admin_q
= NULL
;
1633 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1638 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1640 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1643 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1645 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1647 if (size
<= dev
->bar_mapped_size
)
1649 if (size
> pci_resource_len(pdev
, 0))
1653 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1655 dev
->bar_mapped_size
= 0;
1658 dev
->bar_mapped_size
= size
;
1659 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1664 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1668 struct nvme_queue
*nvmeq
;
1670 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1674 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1675 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1677 if (dev
->subsystem
&&
1678 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1679 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1681 result
= nvme_disable_ctrl(&dev
->ctrl
);
1685 result
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1689 nvmeq
= &dev
->queues
[0];
1690 aqa
= nvmeq
->q_depth
- 1;
1693 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1694 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1695 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1697 result
= nvme_enable_ctrl(&dev
->ctrl
);
1701 nvmeq
->cq_vector
= 0;
1702 nvme_init_queue(nvmeq
, 0);
1703 result
= queue_request_irq(nvmeq
);
1705 dev
->online_queues
--;
1709 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1713 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1715 unsigned i
, max
, rw_queues
;
1718 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1719 if (nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1725 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1726 if (max
!= 1 && dev
->io_queues
[HCTX_TYPE_POLL
]) {
1727 rw_queues
= dev
->io_queues
[HCTX_TYPE_DEFAULT
] +
1728 dev
->io_queues
[HCTX_TYPE_READ
];
1733 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1734 bool polled
= i
> rw_queues
;
1736 ret
= nvme_create_queue(&dev
->queues
[i
], i
, polled
);
1742 * Ignore failing Create SQ/CQ commands, we can continue with less
1743 * than the desired amount of queues, and even a controller without
1744 * I/O queues can still be used to issue admin commands. This might
1745 * be useful to upgrade a buggy firmware for example.
1747 return ret
>= 0 ? 0 : ret
;
1750 static ssize_t
nvme_cmb_show(struct device
*dev
,
1751 struct device_attribute
*attr
,
1754 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1756 return scnprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1757 ndev
->cmbloc
, ndev
->cmbsz
);
1759 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1761 static u64
nvme_cmb_size_unit(struct nvme_dev
*dev
)
1763 u8 szu
= (dev
->cmbsz
>> NVME_CMBSZ_SZU_SHIFT
) & NVME_CMBSZ_SZU_MASK
;
1765 return 1ULL << (12 + 4 * szu
);
1768 static u32
nvme_cmb_size(struct nvme_dev
*dev
)
1770 return (dev
->cmbsz
>> NVME_CMBSZ_SZ_SHIFT
) & NVME_CMBSZ_SZ_MASK
;
1773 static void nvme_map_cmb(struct nvme_dev
*dev
)
1776 resource_size_t bar_size
;
1777 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1783 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1786 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1788 size
= nvme_cmb_size_unit(dev
) * nvme_cmb_size(dev
);
1789 offset
= nvme_cmb_size_unit(dev
) * NVME_CMB_OFST(dev
->cmbloc
);
1790 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1791 bar_size
= pci_resource_len(pdev
, bar
);
1793 if (offset
> bar_size
)
1797 * Controllers may support a CMB size larger than their BAR,
1798 * for example, due to being behind a bridge. Reduce the CMB to
1799 * the reported size of the BAR
1801 if (size
> bar_size
- offset
)
1802 size
= bar_size
- offset
;
1804 if (pci_p2pdma_add_resource(pdev
, bar
, size
, offset
)) {
1805 dev_warn(dev
->ctrl
.device
,
1806 "failed to register the CMB\n");
1810 dev
->cmb_size
= size
;
1811 dev
->cmb_use_sqes
= use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
);
1813 if ((dev
->cmbsz
& (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
)) ==
1814 (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
))
1815 pci_p2pmem_publish(pdev
, true);
1817 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
1818 &dev_attr_cmb
.attr
, NULL
))
1819 dev_warn(dev
->ctrl
.device
,
1820 "failed to add sysfs attribute for CMB\n");
1823 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1825 if (dev
->cmb_size
) {
1826 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1827 &dev_attr_cmb
.attr
, NULL
);
1832 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
1834 u64 dma_addr
= dev
->host_mem_descs_dma
;
1835 struct nvme_command c
;
1838 memset(&c
, 0, sizeof(c
));
1839 c
.features
.opcode
= nvme_admin_set_features
;
1840 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
1841 c
.features
.dword11
= cpu_to_le32(bits
);
1842 c
.features
.dword12
= cpu_to_le32(dev
->host_mem_size
>>
1843 ilog2(dev
->ctrl
.page_size
));
1844 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
1845 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
1846 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
1848 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1850 dev_warn(dev
->ctrl
.device
,
1851 "failed to set host mem (err %d, flags %#x).\n",
1857 static void nvme_free_host_mem(struct nvme_dev
*dev
)
1861 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
1862 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
1863 size_t size
= le32_to_cpu(desc
->size
) * dev
->ctrl
.page_size
;
1865 dma_free_attrs(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
1866 le64_to_cpu(desc
->addr
),
1867 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1870 kfree(dev
->host_mem_desc_bufs
);
1871 dev
->host_mem_desc_bufs
= NULL
;
1872 dma_free_coherent(dev
->dev
,
1873 dev
->nr_host_mem_descs
* sizeof(*dev
->host_mem_descs
),
1874 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
1875 dev
->host_mem_descs
= NULL
;
1876 dev
->nr_host_mem_descs
= 0;
1879 static int __nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 preferred
,
1882 struct nvme_host_mem_buf_desc
*descs
;
1883 u32 max_entries
, len
;
1884 dma_addr_t descs_dma
;
1889 tmp
= (preferred
+ chunk_size
- 1);
1890 do_div(tmp
, chunk_size
);
1893 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
1894 max_entries
= dev
->ctrl
.hmmaxd
;
1896 descs
= dma_alloc_coherent(dev
->dev
, max_entries
* sizeof(*descs
),
1897 &descs_dma
, GFP_KERNEL
);
1901 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
1903 goto out_free_descs
;
1905 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
1906 dma_addr_t dma_addr
;
1908 len
= min_t(u64
, chunk_size
, preferred
- size
);
1909 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
1910 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1914 descs
[i
].addr
= cpu_to_le64(dma_addr
);
1915 descs
[i
].size
= cpu_to_le32(len
/ dev
->ctrl
.page_size
);
1922 dev
->nr_host_mem_descs
= i
;
1923 dev
->host_mem_size
= size
;
1924 dev
->host_mem_descs
= descs
;
1925 dev
->host_mem_descs_dma
= descs_dma
;
1926 dev
->host_mem_desc_bufs
= bufs
;
1931 size_t size
= le32_to_cpu(descs
[i
].size
) * dev
->ctrl
.page_size
;
1933 dma_free_attrs(dev
->dev
, size
, bufs
[i
],
1934 le64_to_cpu(descs
[i
].addr
),
1935 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1940 dma_free_coherent(dev
->dev
, max_entries
* sizeof(*descs
), descs
,
1943 dev
->host_mem_descs
= NULL
;
1947 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
1951 /* start big and work our way down */
1952 for (chunk_size
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
1953 chunk_size
>= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
1955 if (!__nvme_alloc_host_mem(dev
, preferred
, chunk_size
)) {
1956 if (!min
|| dev
->host_mem_size
>= min
)
1958 nvme_free_host_mem(dev
);
1965 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
1967 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
1968 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
1969 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
1970 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
1973 preferred
= min(preferred
, max
);
1975 dev_warn(dev
->ctrl
.device
,
1976 "min host memory (%lld MiB) above limit (%d MiB).\n",
1977 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
1978 nvme_free_host_mem(dev
);
1983 * If we already have a buffer allocated check if we can reuse it.
1985 if (dev
->host_mem_descs
) {
1986 if (dev
->host_mem_size
>= min
)
1987 enable_bits
|= NVME_HOST_MEM_RETURN
;
1989 nvme_free_host_mem(dev
);
1992 if (!dev
->host_mem_descs
) {
1993 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
1994 dev_warn(dev
->ctrl
.device
,
1995 "failed to allocate host memory buffer.\n");
1996 return 0; /* controller must work without HMB */
1999 dev_info(dev
->ctrl
.device
,
2000 "allocated %lld MiB host memory buffer.\n",
2001 dev
->host_mem_size
>> ilog2(SZ_1M
));
2004 ret
= nvme_set_host_mem(dev
, enable_bits
);
2006 nvme_free_host_mem(dev
);
2011 * nirqs is the number of interrupts available for write and read
2012 * queues. The core already reserved an interrupt for the admin queue.
2014 static void nvme_calc_irq_sets(struct irq_affinity
*affd
, unsigned int nrirqs
)
2016 struct nvme_dev
*dev
= affd
->priv
;
2017 unsigned int nr_read_queues
;
2020 * If there is no interupt available for queues, ensure that
2021 * the default queue is set to 1. The affinity set size is
2022 * also set to one, but the irq core ignores it for this case.
2024 * If only one interrupt is available or 'write_queue' == 0, combine
2025 * write and read queues.
2027 * If 'write_queues' > 0, ensure it leaves room for at least one read
2033 } else if (nrirqs
== 1 || !write_queues
) {
2035 } else if (write_queues
>= nrirqs
) {
2038 nr_read_queues
= nrirqs
- write_queues
;
2041 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2042 affd
->set_size
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2043 dev
->io_queues
[HCTX_TYPE_READ
] = nr_read_queues
;
2044 affd
->set_size
[HCTX_TYPE_READ
] = nr_read_queues
;
2045 affd
->nr_sets
= nr_read_queues
? 2 : 1;
2048 static int nvme_setup_irqs(struct nvme_dev
*dev
, unsigned int nr_io_queues
)
2050 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2051 struct irq_affinity affd
= {
2053 .calc_sets
= nvme_calc_irq_sets
,
2056 unsigned int irq_queues
, this_p_queues
;
2059 * Poll queues don't need interrupts, but we need at least one IO
2060 * queue left over for non-polled IO.
2062 this_p_queues
= poll_queues
;
2063 if (this_p_queues
>= nr_io_queues
) {
2064 this_p_queues
= nr_io_queues
- 1;
2067 irq_queues
= nr_io_queues
- this_p_queues
+ 1;
2069 dev
->io_queues
[HCTX_TYPE_POLL
] = this_p_queues
;
2071 /* Initialize for the single interrupt case */
2072 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = 1;
2073 dev
->io_queues
[HCTX_TYPE_READ
] = 0;
2076 * Some Apple controllers require all queues to use the
2079 if (dev
->ctrl
.quirks
& NVME_QUIRK_SINGLE_VECTOR
)
2082 return pci_alloc_irq_vectors_affinity(pdev
, 1, irq_queues
,
2083 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
, &affd
);
2086 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2088 if (__nvme_disable_io_queues(dev
, nvme_admin_delete_sq
))
2089 __nvme_disable_io_queues(dev
, nvme_admin_delete_cq
);
2092 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
2094 struct nvme_queue
*adminq
= &dev
->queues
[0];
2095 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2096 int result
, nr_io_queues
;
2099 nr_io_queues
= max_io_queues();
2102 * If tags are shared with admin queue (Apple bug), then
2103 * make sure we only use one IO queue.
2105 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2108 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
2112 if (nr_io_queues
== 0)
2115 clear_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2117 if (dev
->cmb_use_sqes
) {
2118 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
2119 sizeof(struct nvme_command
));
2121 dev
->q_depth
= result
;
2123 dev
->cmb_use_sqes
= false;
2127 size
= db_bar_size(dev
, nr_io_queues
);
2128 result
= nvme_remap_bar(dev
, size
);
2131 if (!--nr_io_queues
)
2134 adminq
->q_db
= dev
->dbs
;
2137 /* Deregister the admin queue's interrupt */
2138 pci_free_irq(pdev
, 0, adminq
);
2141 * If we enable msix early due to not intx, disable it again before
2142 * setting up the full range we need.
2144 pci_free_irq_vectors(pdev
);
2146 result
= nvme_setup_irqs(dev
, nr_io_queues
);
2150 dev
->num_vecs
= result
;
2151 result
= max(result
- 1, 1);
2152 dev
->max_qid
= result
+ dev
->io_queues
[HCTX_TYPE_POLL
];
2155 * Should investigate if there's a performance win from allocating
2156 * more queues than interrupt vectors; it might allow the submission
2157 * path to scale better, even if the receive path is limited by the
2158 * number of interrupts.
2160 result
= queue_request_irq(adminq
);
2163 set_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2165 result
= nvme_create_io_queues(dev
);
2166 if (result
|| dev
->online_queues
< 2)
2169 if (dev
->online_queues
- 1 < dev
->max_qid
) {
2170 nr_io_queues
= dev
->online_queues
- 1;
2171 nvme_disable_io_queues(dev
);
2172 nvme_suspend_io_queues(dev
);
2175 dev_info(dev
->ctrl
.device
, "%d/%d/%d default/read/poll queues\n",
2176 dev
->io_queues
[HCTX_TYPE_DEFAULT
],
2177 dev
->io_queues
[HCTX_TYPE_READ
],
2178 dev
->io_queues
[HCTX_TYPE_POLL
]);
2182 static void nvme_del_queue_end(struct request
*req
, blk_status_t error
)
2184 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2186 blk_mq_free_request(req
);
2187 complete(&nvmeq
->delete_done
);
2190 static void nvme_del_cq_end(struct request
*req
, blk_status_t error
)
2192 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2195 set_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
2197 nvme_del_queue_end(req
, error
);
2200 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
2202 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
2203 struct request
*req
;
2204 struct nvme_command cmd
;
2206 memset(&cmd
, 0, sizeof(cmd
));
2207 cmd
.delete_queue
.opcode
= opcode
;
2208 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2210 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
2212 return PTR_ERR(req
);
2214 req
->timeout
= ADMIN_TIMEOUT
;
2215 req
->end_io_data
= nvmeq
;
2217 init_completion(&nvmeq
->delete_done
);
2218 blk_execute_rq_nowait(q
, NULL
, req
, false,
2219 opcode
== nvme_admin_delete_cq
?
2220 nvme_del_cq_end
: nvme_del_queue_end
);
2224 static bool __nvme_disable_io_queues(struct nvme_dev
*dev
, u8 opcode
)
2226 int nr_queues
= dev
->online_queues
- 1, sent
= 0;
2227 unsigned long timeout
;
2230 timeout
= ADMIN_TIMEOUT
;
2231 while (nr_queues
> 0) {
2232 if (nvme_delete_queue(&dev
->queues
[nr_queues
], opcode
))
2238 struct nvme_queue
*nvmeq
= &dev
->queues
[nr_queues
+ sent
];
2240 timeout
= wait_for_completion_io_timeout(&nvmeq
->delete_done
,
2245 /* handle any remaining CQEs */
2246 if (opcode
== nvme_admin_delete_cq
&&
2247 !test_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
))
2248 nvme_poll_irqdisable(nvmeq
, -1);
2257 static void nvme_dev_add(struct nvme_dev
*dev
)
2261 if (!dev
->ctrl
.tagset
) {
2262 dev
->tagset
.ops
= &nvme_mq_ops
;
2263 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2264 dev
->tagset
.nr_maps
= 2; /* default + read */
2265 if (dev
->io_queues
[HCTX_TYPE_POLL
])
2266 dev
->tagset
.nr_maps
++;
2267 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2268 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
2269 dev
->tagset
.queue_depth
=
2270 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2271 dev
->tagset
.cmd_size
= sizeof(struct nvme_iod
);
2272 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2273 dev
->tagset
.driver_data
= dev
;
2276 * Some Apple controllers requires tags to be unique
2277 * across admin and IO queue, so reserve the first 32
2278 * tags of the IO queue.
2280 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2281 dev
->tagset
.reserved_tags
= NVME_AQ_DEPTH
;
2283 ret
= blk_mq_alloc_tag_set(&dev
->tagset
);
2285 dev_warn(dev
->ctrl
.device
,
2286 "IO queues tagset allocation failed %d\n", ret
);
2289 dev
->ctrl
.tagset
= &dev
->tagset
;
2291 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2293 /* Free previously allocated queues that are no longer usable */
2294 nvme_free_queues(dev
, dev
->online_queues
);
2297 nvme_dbbuf_set(dev
);
2300 static int nvme_pci_enable(struct nvme_dev
*dev
)
2302 int result
= -ENOMEM
;
2303 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2305 if (pci_enable_device_mem(pdev
))
2308 pci_set_master(pdev
);
2310 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)))
2313 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2319 * Some devices and/or platforms don't advertise or work with INTx
2320 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2321 * adjust this later.
2323 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
2327 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2329 dev
->q_depth
= min_t(int, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2331 dev
->ctrl
.sqsize
= dev
->q_depth
- 1; /* 0's based queue depth */
2332 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2333 dev
->dbs
= dev
->bar
+ 4096;
2336 * Some Apple controllers require a non-standard SQE size.
2337 * Interestingly they also seem to ignore the CC:IOSQES register
2338 * so we don't bother updating it here.
2340 if (dev
->ctrl
.quirks
& NVME_QUIRK_128_BYTES_SQES
)
2343 dev
->io_sqes
= NVME_NVM_IOSQES
;
2346 * Temporary fix for the Apple controller found in the MacBook8,1 and
2347 * some MacBook7,1 to avoid controller resets and data loss.
2349 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
2351 dev_warn(dev
->ctrl
.device
, "detected Apple NVMe controller, "
2352 "set queue depth=%u to work around controller resets\n",
2354 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2355 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2356 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2358 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2359 "set queue depth=%u\n", dev
->q_depth
);
2363 * Controllers with the shared tags quirk need the IO queue to be
2364 * big enough so that we get 32 tags for the admin queue
2366 if ((dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
) &&
2367 (dev
->q_depth
< (NVME_AQ_DEPTH
+ 2))) {
2368 dev
->q_depth
= NVME_AQ_DEPTH
+ 2;
2369 dev_warn(dev
->ctrl
.device
, "IO queue depth clamped to %d\n",
2376 pci_enable_pcie_error_reporting(pdev
);
2377 pci_save_state(pdev
);
2381 pci_disable_device(pdev
);
2385 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2389 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2392 static void nvme_pci_disable(struct nvme_dev
*dev
)
2394 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2396 pci_free_irq_vectors(pdev
);
2398 if (pci_is_enabled(pdev
)) {
2399 pci_disable_pcie_error_reporting(pdev
);
2400 pci_disable_device(pdev
);
2404 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2406 bool dead
= true, freeze
= false;
2407 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2409 mutex_lock(&dev
->shutdown_lock
);
2410 if (pci_is_enabled(pdev
)) {
2411 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2413 if (dev
->ctrl
.state
== NVME_CTRL_LIVE
||
2414 dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
2416 nvme_start_freeze(&dev
->ctrl
);
2418 dead
= !!((csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
) ||
2419 pdev
->error_state
!= pci_channel_io_normal
);
2423 * Give the controller a chance to complete all entered requests if
2424 * doing a safe shutdown.
2426 if (!dead
&& shutdown
&& freeze
)
2427 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2429 nvme_stop_queues(&dev
->ctrl
);
2431 if (!dead
&& dev
->ctrl
.queue_count
> 0) {
2432 nvme_disable_io_queues(dev
);
2433 nvme_disable_admin_queue(dev
, shutdown
);
2435 nvme_suspend_io_queues(dev
);
2436 nvme_suspend_queue(&dev
->queues
[0]);
2437 nvme_pci_disable(dev
);
2439 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
2440 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
2441 blk_mq_tagset_wait_completed_request(&dev
->tagset
);
2442 blk_mq_tagset_wait_completed_request(&dev
->admin_tagset
);
2445 * The driver will not be starting up queues again if shutting down so
2446 * must flush all entered requests to their failed completion to avoid
2447 * deadlocking blk-mq hot-cpu notifier.
2450 nvme_start_queues(&dev
->ctrl
);
2451 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
))
2452 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
2454 mutex_unlock(&dev
->shutdown_lock
);
2457 static int nvme_disable_prepare_reset(struct nvme_dev
*dev
, bool shutdown
)
2459 if (!nvme_wait_reset(&dev
->ctrl
))
2461 nvme_dev_disable(dev
, shutdown
);
2465 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2467 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2468 PAGE_SIZE
, PAGE_SIZE
, 0);
2469 if (!dev
->prp_page_pool
)
2472 /* Optimisation for I/Os between 4k and 128k */
2473 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2475 if (!dev
->prp_small_pool
) {
2476 dma_pool_destroy(dev
->prp_page_pool
);
2482 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2484 dma_pool_destroy(dev
->prp_page_pool
);
2485 dma_pool_destroy(dev
->prp_small_pool
);
2488 static void nvme_free_tagset(struct nvme_dev
*dev
)
2490 if (dev
->tagset
.tags
)
2491 blk_mq_free_tag_set(&dev
->tagset
);
2492 dev
->ctrl
.tagset
= NULL
;
2495 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2497 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2499 nvme_dbbuf_dma_free(dev
);
2500 put_device(dev
->dev
);
2501 nvme_free_tagset(dev
);
2502 if (dev
->ctrl
.admin_q
)
2503 blk_put_queue(dev
->ctrl
.admin_q
);
2505 free_opal_dev(dev
->ctrl
.opal_dev
);
2506 mempool_destroy(dev
->iod_mempool
);
2510 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
)
2513 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2514 * may be holding this pci_dev's device lock.
2516 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2517 nvme_get_ctrl(&dev
->ctrl
);
2518 nvme_dev_disable(dev
, false);
2519 nvme_kill_queues(&dev
->ctrl
);
2520 if (!queue_work(nvme_wq
, &dev
->remove_work
))
2521 nvme_put_ctrl(&dev
->ctrl
);
2524 static void nvme_reset_work(struct work_struct
*work
)
2526 struct nvme_dev
*dev
=
2527 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2528 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2531 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
)) {
2537 * If we're called to reset a live controller first shut it down before
2540 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2541 nvme_dev_disable(dev
, false);
2542 nvme_sync_queues(&dev
->ctrl
);
2544 mutex_lock(&dev
->shutdown_lock
);
2545 result
= nvme_pci_enable(dev
);
2549 result
= nvme_pci_configure_admin_queue(dev
);
2553 result
= nvme_alloc_admin_tags(dev
);
2558 * Limit the max command size to prevent iod->sg allocations going
2559 * over a single page.
2561 dev
->ctrl
.max_hw_sectors
= min_t(u32
,
2562 NVME_MAX_KB_SZ
<< 1, dma_max_mapping_size(dev
->dev
) >> 9);
2563 dev
->ctrl
.max_segments
= NVME_MAX_SEGS
;
2566 * Don't limit the IOMMU merged segment size.
2568 dma_set_max_seg_size(dev
->dev
, 0xffffffff);
2570 mutex_unlock(&dev
->shutdown_lock
);
2573 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2574 * initializing procedure here.
2576 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
2577 dev_warn(dev
->ctrl
.device
,
2578 "failed to mark controller CONNECTING\n");
2583 result
= nvme_init_identify(&dev
->ctrl
);
2587 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_SEC_SUPP
) {
2588 if (!dev
->ctrl
.opal_dev
)
2589 dev
->ctrl
.opal_dev
=
2590 init_opal_dev(&dev
->ctrl
, &nvme_sec_submit
);
2591 else if (was_suspend
)
2592 opal_unlock_from_suspend(dev
->ctrl
.opal_dev
);
2594 free_opal_dev(dev
->ctrl
.opal_dev
);
2595 dev
->ctrl
.opal_dev
= NULL
;
2598 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
) {
2599 result
= nvme_dbbuf_dma_alloc(dev
);
2602 "unable to allocate dma for dbbuf\n");
2605 if (dev
->ctrl
.hmpre
) {
2606 result
= nvme_setup_host_mem(dev
);
2611 result
= nvme_setup_io_queues(dev
);
2616 * Keep the controller around but remove all namespaces if we don't have
2617 * any working I/O queue.
2619 if (dev
->online_queues
< 2) {
2620 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
2621 nvme_kill_queues(&dev
->ctrl
);
2622 nvme_remove_namespaces(&dev
->ctrl
);
2623 nvme_free_tagset(dev
);
2625 nvme_start_queues(&dev
->ctrl
);
2626 nvme_wait_freeze(&dev
->ctrl
);
2628 nvme_unfreeze(&dev
->ctrl
);
2632 * If only admin queue live, keep it to do further investigation or
2635 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
2636 dev_warn(dev
->ctrl
.device
,
2637 "failed to mark controller live state\n");
2642 nvme_start_ctrl(&dev
->ctrl
);
2646 mutex_unlock(&dev
->shutdown_lock
);
2649 dev_warn(dev
->ctrl
.device
,
2650 "Removing after probe failure status: %d\n", result
);
2651 nvme_remove_dead_ctrl(dev
);
2654 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
2656 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
2657 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2659 if (pci_get_drvdata(pdev
))
2660 device_release_driver(&pdev
->dev
);
2661 nvme_put_ctrl(&dev
->ctrl
);
2664 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
2666 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
2670 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
2672 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
2676 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
2678 *val
= lo_hi_readq(to_nvme_dev(ctrl
)->bar
+ off
);
2682 static int nvme_pci_get_address(struct nvme_ctrl
*ctrl
, char *buf
, int size
)
2684 struct pci_dev
*pdev
= to_pci_dev(to_nvme_dev(ctrl
)->dev
);
2686 return snprintf(buf
, size
, "%s", dev_name(&pdev
->dev
));
2689 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
2691 .module
= THIS_MODULE
,
2692 .flags
= NVME_F_METADATA_SUPPORTED
|
2694 .reg_read32
= nvme_pci_reg_read32
,
2695 .reg_write32
= nvme_pci_reg_write32
,
2696 .reg_read64
= nvme_pci_reg_read64
,
2697 .free_ctrl
= nvme_pci_free_ctrl
,
2698 .submit_async_event
= nvme_pci_submit_async_event
,
2699 .get_address
= nvme_pci_get_address
,
2702 static int nvme_dev_map(struct nvme_dev
*dev
)
2704 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2706 if (pci_request_mem_regions(pdev
, "nvme"))
2709 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
2714 pci_release_mem_regions(pdev
);
2718 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
2720 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
2722 * Several Samsung devices seem to drop off the PCIe bus
2723 * randomly when APST is on and uses the deepest sleep state.
2724 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2725 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2726 * 950 PRO 256GB", but it seems to be restricted to two Dell
2729 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
2730 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
2731 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
2732 return NVME_QUIRK_NO_DEEPEST_PS
;
2733 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
2735 * Samsung SSD 960 EVO drops off the PCIe bus after system
2736 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2737 * within few minutes after bootup on a Coffee Lake board -
2740 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
2741 (dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A") ||
2742 dmi_match(DMI_BOARD_NAME
, "PRIME Z370-A")))
2743 return NVME_QUIRK_NO_APST
;
2749 static void nvme_async_probe(void *data
, async_cookie_t cookie
)
2751 struct nvme_dev
*dev
= data
;
2753 flush_work(&dev
->ctrl
.reset_work
);
2754 flush_work(&dev
->ctrl
.scan_work
);
2755 nvme_put_ctrl(&dev
->ctrl
);
2758 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2760 int node
, result
= -ENOMEM
;
2761 struct nvme_dev
*dev
;
2762 unsigned long quirks
= id
->driver_data
;
2765 node
= dev_to_node(&pdev
->dev
);
2766 if (node
== NUMA_NO_NODE
)
2767 set_dev_node(&pdev
->dev
, first_memory_node
);
2769 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2773 dev
->queues
= kcalloc_node(max_queue_count(), sizeof(struct nvme_queue
),
2778 dev
->dev
= get_device(&pdev
->dev
);
2779 pci_set_drvdata(pdev
, dev
);
2781 result
= nvme_dev_map(dev
);
2785 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
2786 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
2787 mutex_init(&dev
->shutdown_lock
);
2789 result
= nvme_setup_prp_pools(dev
);
2793 quirks
|= check_vendor_combination_bug(pdev
);
2796 * Double check that our mempool alloc size will cover the biggest
2797 * command we support.
2799 alloc_size
= nvme_pci_iod_alloc_size(dev
, NVME_MAX_KB_SZ
,
2800 NVME_MAX_SEGS
, true);
2801 WARN_ON_ONCE(alloc_size
> PAGE_SIZE
);
2803 dev
->iod_mempool
= mempool_create_node(1, mempool_kmalloc
,
2805 (void *) alloc_size
,
2807 if (!dev
->iod_mempool
) {
2812 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
2815 goto release_mempool
;
2817 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
2819 nvme_reset_ctrl(&dev
->ctrl
);
2820 nvme_get_ctrl(&dev
->ctrl
);
2821 async_schedule(nvme_async_probe
, dev
);
2826 mempool_destroy(dev
->iod_mempool
);
2828 nvme_release_prp_pools(dev
);
2830 nvme_dev_unmap(dev
);
2832 put_device(dev
->dev
);
2839 static void nvme_reset_prepare(struct pci_dev
*pdev
)
2841 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2844 * We don't need to check the return value from waiting for the reset
2845 * state as pci_dev device lock is held, making it impossible to race
2848 nvme_disable_prepare_reset(dev
, false);
2849 nvme_sync_queues(&dev
->ctrl
);
2852 static void nvme_reset_done(struct pci_dev
*pdev
)
2854 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2856 if (!nvme_try_sched_reset(&dev
->ctrl
))
2857 flush_work(&dev
->ctrl
.reset_work
);
2860 static void nvme_shutdown(struct pci_dev
*pdev
)
2862 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2863 nvme_disable_prepare_reset(dev
, true);
2867 * The driver's remove may be called on a device in a partially initialized
2868 * state. This function must not have any dependencies on the device state in
2871 static void nvme_remove(struct pci_dev
*pdev
)
2873 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2875 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2876 pci_set_drvdata(pdev
, NULL
);
2878 if (!pci_device_is_present(pdev
)) {
2879 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2880 nvme_dev_disable(dev
, true);
2881 nvme_dev_remove_admin(dev
);
2884 flush_work(&dev
->ctrl
.reset_work
);
2885 nvme_stop_ctrl(&dev
->ctrl
);
2886 nvme_remove_namespaces(&dev
->ctrl
);
2887 nvme_dev_disable(dev
, true);
2888 nvme_release_cmb(dev
);
2889 nvme_free_host_mem(dev
);
2890 nvme_dev_remove_admin(dev
);
2891 nvme_free_queues(dev
, 0);
2892 nvme_uninit_ctrl(&dev
->ctrl
);
2893 nvme_release_prp_pools(dev
);
2894 nvme_dev_unmap(dev
);
2895 nvme_put_ctrl(&dev
->ctrl
);
2898 #ifdef CONFIG_PM_SLEEP
2899 static int nvme_get_power_state(struct nvme_ctrl
*ctrl
, u32
*ps
)
2901 return nvme_get_features(ctrl
, NVME_FEAT_POWER_MGMT
, 0, NULL
, 0, ps
);
2904 static int nvme_set_power_state(struct nvme_ctrl
*ctrl
, u32 ps
)
2906 return nvme_set_features(ctrl
, NVME_FEAT_POWER_MGMT
, ps
, NULL
, 0, NULL
);
2909 static int nvme_resume(struct device
*dev
)
2911 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
2912 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
2914 if (ndev
->last_ps
== U32_MAX
||
2915 nvme_set_power_state(ctrl
, ndev
->last_ps
) != 0)
2916 return nvme_try_sched_reset(&ndev
->ctrl
);
2920 static int nvme_suspend(struct device
*dev
)
2922 struct pci_dev
*pdev
= to_pci_dev(dev
);
2923 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2924 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
2927 ndev
->last_ps
= U32_MAX
;
2930 * The platform does not remove power for a kernel managed suspend so
2931 * use host managed nvme power settings for lowest idle power if
2932 * possible. This should have quicker resume latency than a full device
2933 * shutdown. But if the firmware is involved after the suspend or the
2934 * device does not support any non-default power states, shut down the
2937 * If ASPM is not enabled for the device, shut down the device and allow
2938 * the PCI bus layer to put it into D3 in order to take the PCIe link
2939 * down, so as to allow the platform to achieve its minimum low-power
2940 * state (which may not be possible if the link is up).
2942 if (pm_suspend_via_firmware() || !ctrl
->npss
||
2943 !pcie_aspm_enabled(pdev
) ||
2944 (ndev
->ctrl
.quirks
& NVME_QUIRK_SIMPLE_SUSPEND
))
2945 return nvme_disable_prepare_reset(ndev
, true);
2947 nvme_start_freeze(ctrl
);
2948 nvme_wait_freeze(ctrl
);
2949 nvme_sync_queues(ctrl
);
2951 if (ctrl
->state
!= NVME_CTRL_LIVE
)
2954 ret
= nvme_get_power_state(ctrl
, &ndev
->last_ps
);
2959 * A saved state prevents pci pm from generically controlling the
2960 * device's power. If we're using protocol specific settings, we don't
2961 * want pci interfering.
2963 pci_save_state(pdev
);
2965 ret
= nvme_set_power_state(ctrl
, ctrl
->npss
);
2970 /* discard the saved state */
2971 pci_load_saved_state(pdev
, NULL
);
2974 * Clearing npss forces a controller reset on resume. The
2975 * correct value will be rediscovered then.
2977 ret
= nvme_disable_prepare_reset(ndev
, true);
2981 nvme_unfreeze(ctrl
);
2985 static int nvme_simple_suspend(struct device
*dev
)
2987 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
2988 return nvme_disable_prepare_reset(ndev
, true);
2991 static int nvme_simple_resume(struct device
*dev
)
2993 struct pci_dev
*pdev
= to_pci_dev(dev
);
2994 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2996 return nvme_try_sched_reset(&ndev
->ctrl
);
2999 static const struct dev_pm_ops nvme_dev_pm_ops
= {
3000 .suspend
= nvme_suspend
,
3001 .resume
= nvme_resume
,
3002 .freeze
= nvme_simple_suspend
,
3003 .thaw
= nvme_simple_resume
,
3004 .poweroff
= nvme_simple_suspend
,
3005 .restore
= nvme_simple_resume
,
3007 #endif /* CONFIG_PM_SLEEP */
3009 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
3010 pci_channel_state_t state
)
3012 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3015 * A frozen channel requires a reset. When detected, this method will
3016 * shutdown the controller to quiesce. The controller will be restarted
3017 * after the slot reset through driver's slot_reset callback.
3020 case pci_channel_io_normal
:
3021 return PCI_ERS_RESULT_CAN_RECOVER
;
3022 case pci_channel_io_frozen
:
3023 dev_warn(dev
->ctrl
.device
,
3024 "frozen state error detected, reset controller\n");
3025 nvme_dev_disable(dev
, false);
3026 return PCI_ERS_RESULT_NEED_RESET
;
3027 case pci_channel_io_perm_failure
:
3028 dev_warn(dev
->ctrl
.device
,
3029 "failure state error detected, request disconnect\n");
3030 return PCI_ERS_RESULT_DISCONNECT
;
3032 return PCI_ERS_RESULT_NEED_RESET
;
3035 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
3037 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3039 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
3040 pci_restore_state(pdev
);
3041 nvme_reset_ctrl(&dev
->ctrl
);
3042 return PCI_ERS_RESULT_RECOVERED
;
3045 static void nvme_error_resume(struct pci_dev
*pdev
)
3047 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3049 flush_work(&dev
->ctrl
.reset_work
);
3052 static const struct pci_error_handlers nvme_err_handler
= {
3053 .error_detected
= nvme_error_detected
,
3054 .slot_reset
= nvme_slot_reset
,
3055 .resume
= nvme_error_resume
,
3056 .reset_prepare
= nvme_reset_prepare
,
3057 .reset_done
= nvme_reset_done
,
3060 static const struct pci_device_id nvme_id_table
[] = {
3061 { PCI_VDEVICE(INTEL
, 0x0953),
3062 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3063 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3064 { PCI_VDEVICE(INTEL
, 0x0a53),
3065 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3066 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3067 { PCI_VDEVICE(INTEL
, 0x0a54),
3068 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3069 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3070 { PCI_VDEVICE(INTEL
, 0x0a55),
3071 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3072 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3073 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
3074 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3075 NVME_QUIRK_MEDIUM_PRIO_SQ
|
3076 NVME_QUIRK_NO_TEMP_THRESH_CHANGE
},
3077 { PCI_VDEVICE(INTEL
, 0xf1a6), /* Intel 760p/Pro 7600p */
3078 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3079 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
3080 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
|
3081 NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3082 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3083 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3084 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3085 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3086 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3087 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3088 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3089 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3090 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3091 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3092 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3093 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3094 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3095 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3096 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3097 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3098 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3099 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
3100 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3101 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3102 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3103 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3104 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3105 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
3106 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
3107 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
3108 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2005),
3109 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
|
3110 NVME_QUIRK_128_BYTES_SQES
|
3111 NVME_QUIRK_SHARED_TAGS
},
3114 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
3116 static struct pci_driver nvme_driver
= {
3118 .id_table
= nvme_id_table
,
3119 .probe
= nvme_probe
,
3120 .remove
= nvme_remove
,
3121 .shutdown
= nvme_shutdown
,
3122 #ifdef CONFIG_PM_SLEEP
3124 .pm
= &nvme_dev_pm_ops
,
3127 .sriov_configure
= pci_sriov_configure_simple
,
3128 .err_handler
= &nvme_err_handler
,
3131 static int __init
nvme_init(void)
3133 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
3134 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
3135 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
3136 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS
< 2);
3138 write_queues
= min(write_queues
, num_possible_cpus());
3139 poll_queues
= min(poll_queues
, num_possible_cpus());
3140 return pci_register_driver(&nvme_driver
);
3143 static void __exit
nvme_exit(void)
3145 pci_unregister_driver(&nvme_driver
);
3146 flush_workqueue(nvme_wq
);
3149 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3150 MODULE_LICENSE("GPL");
3151 MODULE_VERSION("1.0");
3152 module_init(nvme_init
);
3153 module_exit(nvme_exit
);