treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / nvme / host / rdma.c
blob2a47c6c5007e1280a320f9776afe10005e23b98a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
27 #include "nvme.h"
28 #include "fabrics.h"
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 struct nvme_rdma_device {
38 struct ib_device *dev;
39 struct ib_pd *pd;
40 struct kref ref;
41 struct list_head entry;
42 unsigned int num_inline_segments;
45 struct nvme_rdma_qe {
46 struct ib_cqe cqe;
47 void *data;
48 u64 dma;
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 struct nvme_request req;
54 struct ib_mr *mr;
55 struct nvme_rdma_qe sqe;
56 union nvme_result result;
57 __le16 status;
58 refcount_t ref;
59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 u32 num_sge;
61 int nents;
62 struct ib_reg_wr reg_wr;
63 struct ib_cqe reg_cqe;
64 struct nvme_rdma_queue *queue;
65 struct sg_table sg_table;
66 struct scatterlist first_sgl[];
69 enum nvme_rdma_queue_flags {
70 NVME_RDMA_Q_ALLOCATED = 0,
71 NVME_RDMA_Q_LIVE = 1,
72 NVME_RDMA_Q_TR_READY = 2,
75 struct nvme_rdma_queue {
76 struct nvme_rdma_qe *rsp_ring;
77 int queue_size;
78 size_t cmnd_capsule_len;
79 struct nvme_rdma_ctrl *ctrl;
80 struct nvme_rdma_device *device;
81 struct ib_cq *ib_cq;
82 struct ib_qp *qp;
84 unsigned long flags;
85 struct rdma_cm_id *cm_id;
86 int cm_error;
87 struct completion cm_done;
90 struct nvme_rdma_ctrl {
91 /* read only in the hot path */
92 struct nvme_rdma_queue *queues;
94 /* other member variables */
95 struct blk_mq_tag_set tag_set;
96 struct work_struct err_work;
98 struct nvme_rdma_qe async_event_sqe;
100 struct delayed_work reconnect_work;
102 struct list_head list;
104 struct blk_mq_tag_set admin_tag_set;
105 struct nvme_rdma_device *device;
107 u32 max_fr_pages;
109 struct sockaddr_storage addr;
110 struct sockaddr_storage src_addr;
112 struct nvme_ctrl ctrl;
113 bool use_inline_data;
114 u32 io_queues[HCTX_MAX_TYPES];
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
129 * Disabling this option makes small I/O goes faster, but is fundamentally
130 * unsafe. With it turned off we will have to register a global rkey that
131 * allows read and write access to all physical memory.
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 "Use memory registration even for contiguous memory regions");
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
148 *p++ = val;
149 *p++ = val >> 8;
150 *p++ = val >> 16;
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
155 return queue - queue->ctrl->queues;
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
160 return nvme_rdma_queue_idx(queue) >
161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 queue->ctrl->io_queues[HCTX_TYPE_READ];
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 kfree(qe->data);
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 if (!qe->data)
182 return -ENOMEM;
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 kfree(qe->data);
187 qe->data = NULL;
188 return -ENOMEM;
191 return 0;
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 size_t capsule_size, enum dma_data_direction dir)
198 int i;
200 for (i = 0; i < ib_queue_size; i++)
201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 kfree(ring);
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 size_t ib_queue_size, size_t capsule_size,
207 enum dma_data_direction dir)
209 struct nvme_rdma_qe *ring;
210 int i;
212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 if (!ring)
214 return NULL;
217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218 * lifetime. It's safe, since any chage in the underlying RDMA device
219 * will issue error recovery and queue re-creation.
221 for (i = 0; i < ib_queue_size; i++) {
222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223 goto out_free_ring;
226 return ring;
228 out_free_ring:
229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 return NULL;
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
235 pr_debug("QP event %s (%d)\n",
236 ib_event_msg(event->event), event->event);
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
242 int ret;
244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
246 if (ret < 0)
247 return ret;
248 if (ret == 0)
249 return -ETIMEDOUT;
250 WARN_ON_ONCE(queue->cm_error > 0);
251 return queue->cm_error;
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
256 struct nvme_rdma_device *dev = queue->device;
257 struct ib_qp_init_attr init_attr;
258 int ret;
260 memset(&init_attr, 0, sizeof(init_attr));
261 init_attr.event_handler = nvme_rdma_qp_event;
262 /* +1 for drain */
263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264 /* +1 for drain */
265 init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 init_attr.cap.max_recv_sge = 1;
267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 init_attr.qp_type = IB_QPT_RC;
270 init_attr.send_cq = queue->ib_cq;
271 init_attr.recv_cq = queue->ib_cq;
273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
275 queue->qp = queue->cm_id->qp;
276 return ret;
279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280 struct request *rq, unsigned int hctx_idx)
282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284 kfree(req->sqe.data);
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 struct request *rq, unsigned int hctx_idx,
289 unsigned int numa_node)
291 struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
296 nvme_req(rq)->ctrl = &ctrl->ctrl;
297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
298 if (!req->sqe.data)
299 return -ENOMEM;
301 req->queue = queue;
303 return 0;
306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307 unsigned int hctx_idx)
309 struct nvme_rdma_ctrl *ctrl = data;
310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
314 hctx->driver_data = queue;
315 return 0;
318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319 unsigned int hctx_idx)
321 struct nvme_rdma_ctrl *ctrl = data;
322 struct nvme_rdma_queue *queue = &ctrl->queues[0];
324 BUG_ON(hctx_idx != 0);
326 hctx->driver_data = queue;
327 return 0;
330 static void nvme_rdma_free_dev(struct kref *ref)
332 struct nvme_rdma_device *ndev =
333 container_of(ref, struct nvme_rdma_device, ref);
335 mutex_lock(&device_list_mutex);
336 list_del(&ndev->entry);
337 mutex_unlock(&device_list_mutex);
339 ib_dealloc_pd(ndev->pd);
340 kfree(ndev);
343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
345 kref_put(&dev->ref, nvme_rdma_free_dev);
348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
350 return kref_get_unless_zero(&dev->ref);
353 static struct nvme_rdma_device *
354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
356 struct nvme_rdma_device *ndev;
358 mutex_lock(&device_list_mutex);
359 list_for_each_entry(ndev, &device_list, entry) {
360 if (ndev->dev->node_guid == cm_id->device->node_guid &&
361 nvme_rdma_dev_get(ndev))
362 goto out_unlock;
365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
366 if (!ndev)
367 goto out_err;
369 ndev->dev = cm_id->device;
370 kref_init(&ndev->ref);
372 ndev->pd = ib_alloc_pd(ndev->dev,
373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374 if (IS_ERR(ndev->pd))
375 goto out_free_dev;
377 if (!(ndev->dev->attrs.device_cap_flags &
378 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379 dev_err(&ndev->dev->dev,
380 "Memory registrations not supported.\n");
381 goto out_free_pd;
384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385 ndev->dev->attrs.max_send_sge - 1);
386 list_add(&ndev->entry, &device_list);
387 out_unlock:
388 mutex_unlock(&device_list_mutex);
389 return ndev;
391 out_free_pd:
392 ib_dealloc_pd(ndev->pd);
393 out_free_dev:
394 kfree(ndev);
395 out_err:
396 mutex_unlock(&device_list_mutex);
397 return NULL;
400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
402 struct nvme_rdma_device *dev;
403 struct ib_device *ibdev;
405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
406 return;
408 dev = queue->device;
409 ibdev = dev->dev;
411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
414 * The cm_id object might have been destroyed during RDMA connection
415 * establishment error flow to avoid getting other cma events, thus
416 * the destruction of the QP shouldn't use rdma_cm API.
418 ib_destroy_qp(queue->qp);
419 ib_free_cq(queue->ib_cq);
421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
424 nvme_rdma_dev_put(dev);
427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430 ibdev->attrs.max_fast_reg_page_list_len - 1);
433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
435 struct ib_device *ibdev;
436 const int send_wr_factor = 3; /* MR, SEND, INV */
437 const int cq_factor = send_wr_factor + 1; /* + RECV */
438 int comp_vector, idx = nvme_rdma_queue_idx(queue);
439 enum ib_poll_context poll_ctx;
440 int ret, pages_per_mr;
442 queue->device = nvme_rdma_find_get_device(queue->cm_id);
443 if (!queue->device) {
444 dev_err(queue->cm_id->device->dev.parent,
445 "no client data found!\n");
446 return -ECONNREFUSED;
448 ibdev = queue->device->dev;
451 * Spread I/O queues completion vectors according their queue index.
452 * Admin queues can always go on completion vector 0.
454 comp_vector = idx == 0 ? idx : idx - 1;
456 /* Polling queues need direct cq polling context */
457 if (nvme_rdma_poll_queue(queue))
458 poll_ctx = IB_POLL_DIRECT;
459 else
460 poll_ctx = IB_POLL_SOFTIRQ;
462 /* +1 for ib_stop_cq */
463 queue->ib_cq = ib_alloc_cq(ibdev, queue,
464 cq_factor * queue->queue_size + 1,
465 comp_vector, poll_ctx);
466 if (IS_ERR(queue->ib_cq)) {
467 ret = PTR_ERR(queue->ib_cq);
468 goto out_put_dev;
471 ret = nvme_rdma_create_qp(queue, send_wr_factor);
472 if (ret)
473 goto out_destroy_ib_cq;
475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477 if (!queue->rsp_ring) {
478 ret = -ENOMEM;
479 goto out_destroy_qp;
483 * Currently we don't use SG_GAPS MR's so if the first entry is
484 * misaligned we'll end up using two entries for a single data page,
485 * so one additional entry is required.
487 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
488 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
489 queue->queue_size,
490 IB_MR_TYPE_MEM_REG,
491 pages_per_mr, 0);
492 if (ret) {
493 dev_err(queue->ctrl->ctrl.device,
494 "failed to initialize MR pool sized %d for QID %d\n",
495 queue->queue_size, idx);
496 goto out_destroy_ring;
499 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
501 return 0;
503 out_destroy_ring:
504 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
505 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
506 out_destroy_qp:
507 rdma_destroy_qp(queue->cm_id);
508 out_destroy_ib_cq:
509 ib_free_cq(queue->ib_cq);
510 out_put_dev:
511 nvme_rdma_dev_put(queue->device);
512 return ret;
515 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
516 int idx, size_t queue_size)
518 struct nvme_rdma_queue *queue;
519 struct sockaddr *src_addr = NULL;
520 int ret;
522 queue = &ctrl->queues[idx];
523 queue->ctrl = ctrl;
524 init_completion(&queue->cm_done);
526 if (idx > 0)
527 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
528 else
529 queue->cmnd_capsule_len = sizeof(struct nvme_command);
531 queue->queue_size = queue_size;
533 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
534 RDMA_PS_TCP, IB_QPT_RC);
535 if (IS_ERR(queue->cm_id)) {
536 dev_info(ctrl->ctrl.device,
537 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
538 return PTR_ERR(queue->cm_id);
541 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
542 src_addr = (struct sockaddr *)&ctrl->src_addr;
544 queue->cm_error = -ETIMEDOUT;
545 ret = rdma_resolve_addr(queue->cm_id, src_addr,
546 (struct sockaddr *)&ctrl->addr,
547 NVME_RDMA_CONNECT_TIMEOUT_MS);
548 if (ret) {
549 dev_info(ctrl->ctrl.device,
550 "rdma_resolve_addr failed (%d).\n", ret);
551 goto out_destroy_cm_id;
554 ret = nvme_rdma_wait_for_cm(queue);
555 if (ret) {
556 dev_info(ctrl->ctrl.device,
557 "rdma connection establishment failed (%d)\n", ret);
558 goto out_destroy_cm_id;
561 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
563 return 0;
565 out_destroy_cm_id:
566 rdma_destroy_id(queue->cm_id);
567 nvme_rdma_destroy_queue_ib(queue);
568 return ret;
571 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
573 rdma_disconnect(queue->cm_id);
574 ib_drain_qp(queue->qp);
577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
579 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
580 return;
581 __nvme_rdma_stop_queue(queue);
584 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
586 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
587 return;
589 nvme_rdma_destroy_queue_ib(queue);
590 rdma_destroy_id(queue->cm_id);
593 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
595 int i;
597 for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 nvme_rdma_free_queue(&ctrl->queues[i]);
601 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
603 int i;
605 for (i = 1; i < ctrl->ctrl.queue_count; i++)
606 nvme_rdma_stop_queue(&ctrl->queues[i]);
609 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
611 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
612 bool poll = nvme_rdma_poll_queue(queue);
613 int ret;
615 if (idx)
616 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
617 else
618 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
620 if (!ret) {
621 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
622 } else {
623 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
624 __nvme_rdma_stop_queue(queue);
625 dev_info(ctrl->ctrl.device,
626 "failed to connect queue: %d ret=%d\n", idx, ret);
628 return ret;
631 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
633 int i, ret = 0;
635 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
636 ret = nvme_rdma_start_queue(ctrl, i);
637 if (ret)
638 goto out_stop_queues;
641 return 0;
643 out_stop_queues:
644 for (i--; i >= 1; i--)
645 nvme_rdma_stop_queue(&ctrl->queues[i]);
646 return ret;
649 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
651 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
652 struct ib_device *ibdev = ctrl->device->dev;
653 unsigned int nr_io_queues, nr_default_queues;
654 unsigned int nr_read_queues, nr_poll_queues;
655 int i, ret;
657 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
658 min(opts->nr_io_queues, num_online_cpus()));
659 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
660 min(opts->nr_write_queues, num_online_cpus()));
661 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
662 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
664 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
665 if (ret)
666 return ret;
668 ctrl->ctrl.queue_count = nr_io_queues + 1;
669 if (ctrl->ctrl.queue_count < 2)
670 return 0;
672 dev_info(ctrl->ctrl.device,
673 "creating %d I/O queues.\n", nr_io_queues);
675 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
677 * separate read/write queues
678 * hand out dedicated default queues only after we have
679 * sufficient read queues.
681 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
682 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
683 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
684 min(nr_default_queues, nr_io_queues);
685 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
686 } else {
688 * shared read/write queues
689 * either no write queues were requested, or we don't have
690 * sufficient queue count to have dedicated default queues.
692 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
693 min(nr_read_queues, nr_io_queues);
694 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
697 if (opts->nr_poll_queues && nr_io_queues) {
698 /* map dedicated poll queues only if we have queues left */
699 ctrl->io_queues[HCTX_TYPE_POLL] =
700 min(nr_poll_queues, nr_io_queues);
703 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
704 ret = nvme_rdma_alloc_queue(ctrl, i,
705 ctrl->ctrl.sqsize + 1);
706 if (ret)
707 goto out_free_queues;
710 return 0;
712 out_free_queues:
713 for (i--; i >= 1; i--)
714 nvme_rdma_free_queue(&ctrl->queues[i]);
716 return ret;
719 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
720 bool admin)
722 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
723 struct blk_mq_tag_set *set;
724 int ret;
726 if (admin) {
727 set = &ctrl->admin_tag_set;
728 memset(set, 0, sizeof(*set));
729 set->ops = &nvme_rdma_admin_mq_ops;
730 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
731 set->reserved_tags = 2; /* connect + keep-alive */
732 set->numa_node = nctrl->numa_node;
733 set->cmd_size = sizeof(struct nvme_rdma_request) +
734 NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
735 set->driver_data = ctrl;
736 set->nr_hw_queues = 1;
737 set->timeout = ADMIN_TIMEOUT;
738 set->flags = BLK_MQ_F_NO_SCHED;
739 } else {
740 set = &ctrl->tag_set;
741 memset(set, 0, sizeof(*set));
742 set->ops = &nvme_rdma_mq_ops;
743 set->queue_depth = nctrl->sqsize + 1;
744 set->reserved_tags = 1; /* fabric connect */
745 set->numa_node = nctrl->numa_node;
746 set->flags = BLK_MQ_F_SHOULD_MERGE;
747 set->cmd_size = sizeof(struct nvme_rdma_request) +
748 NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
749 set->driver_data = ctrl;
750 set->nr_hw_queues = nctrl->queue_count - 1;
751 set->timeout = NVME_IO_TIMEOUT;
752 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
755 ret = blk_mq_alloc_tag_set(set);
756 if (ret)
757 return ERR_PTR(ret);
759 return set;
762 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
763 bool remove)
765 if (remove) {
766 blk_cleanup_queue(ctrl->ctrl.admin_q);
767 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
768 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
770 if (ctrl->async_event_sqe.data) {
771 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
772 sizeof(struct nvme_command), DMA_TO_DEVICE);
773 ctrl->async_event_sqe.data = NULL;
775 nvme_rdma_free_queue(&ctrl->queues[0]);
778 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
779 bool new)
781 int error;
783 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
784 if (error)
785 return error;
787 ctrl->device = ctrl->queues[0].device;
788 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
790 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
793 * Bind the async event SQE DMA mapping to the admin queue lifetime.
794 * It's safe, since any chage in the underlying RDMA device will issue
795 * error recovery and queue re-creation.
797 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
798 sizeof(struct nvme_command), DMA_TO_DEVICE);
799 if (error)
800 goto out_free_queue;
802 if (new) {
803 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
804 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
805 error = PTR_ERR(ctrl->ctrl.admin_tagset);
806 goto out_free_async_qe;
809 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
810 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
811 error = PTR_ERR(ctrl->ctrl.fabrics_q);
812 goto out_free_tagset;
815 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
816 if (IS_ERR(ctrl->ctrl.admin_q)) {
817 error = PTR_ERR(ctrl->ctrl.admin_q);
818 goto out_cleanup_fabrics_q;
822 error = nvme_rdma_start_queue(ctrl, 0);
823 if (error)
824 goto out_cleanup_queue;
826 error = nvme_enable_ctrl(&ctrl->ctrl);
827 if (error)
828 goto out_stop_queue;
830 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
831 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
833 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
835 error = nvme_init_identify(&ctrl->ctrl);
836 if (error)
837 goto out_stop_queue;
839 return 0;
841 out_stop_queue:
842 nvme_rdma_stop_queue(&ctrl->queues[0]);
843 out_cleanup_queue:
844 if (new)
845 blk_cleanup_queue(ctrl->ctrl.admin_q);
846 out_cleanup_fabrics_q:
847 if (new)
848 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
849 out_free_tagset:
850 if (new)
851 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
852 out_free_async_qe:
853 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
854 sizeof(struct nvme_command), DMA_TO_DEVICE);
855 ctrl->async_event_sqe.data = NULL;
856 out_free_queue:
857 nvme_rdma_free_queue(&ctrl->queues[0]);
858 return error;
861 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
862 bool remove)
864 if (remove) {
865 blk_cleanup_queue(ctrl->ctrl.connect_q);
866 blk_mq_free_tag_set(ctrl->ctrl.tagset);
868 nvme_rdma_free_io_queues(ctrl);
871 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
873 int ret;
875 ret = nvme_rdma_alloc_io_queues(ctrl);
876 if (ret)
877 return ret;
879 if (new) {
880 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
881 if (IS_ERR(ctrl->ctrl.tagset)) {
882 ret = PTR_ERR(ctrl->ctrl.tagset);
883 goto out_free_io_queues;
886 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
887 if (IS_ERR(ctrl->ctrl.connect_q)) {
888 ret = PTR_ERR(ctrl->ctrl.connect_q);
889 goto out_free_tag_set;
891 } else {
892 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
893 ctrl->ctrl.queue_count - 1);
896 ret = nvme_rdma_start_io_queues(ctrl);
897 if (ret)
898 goto out_cleanup_connect_q;
900 return 0;
902 out_cleanup_connect_q:
903 if (new)
904 blk_cleanup_queue(ctrl->ctrl.connect_q);
905 out_free_tag_set:
906 if (new)
907 blk_mq_free_tag_set(ctrl->ctrl.tagset);
908 out_free_io_queues:
909 nvme_rdma_free_io_queues(ctrl);
910 return ret;
913 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
914 bool remove)
916 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
917 nvme_rdma_stop_queue(&ctrl->queues[0]);
918 if (ctrl->ctrl.admin_tagset) {
919 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
920 nvme_cancel_request, &ctrl->ctrl);
921 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
923 if (remove)
924 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
925 nvme_rdma_destroy_admin_queue(ctrl, remove);
928 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
929 bool remove)
931 if (ctrl->ctrl.queue_count > 1) {
932 nvme_stop_queues(&ctrl->ctrl);
933 nvme_rdma_stop_io_queues(ctrl);
934 if (ctrl->ctrl.tagset) {
935 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
936 nvme_cancel_request, &ctrl->ctrl);
937 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
939 if (remove)
940 nvme_start_queues(&ctrl->ctrl);
941 nvme_rdma_destroy_io_queues(ctrl, remove);
945 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
947 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
949 if (list_empty(&ctrl->list))
950 goto free_ctrl;
952 mutex_lock(&nvme_rdma_ctrl_mutex);
953 list_del(&ctrl->list);
954 mutex_unlock(&nvme_rdma_ctrl_mutex);
956 nvmf_free_options(nctrl->opts);
957 free_ctrl:
958 kfree(ctrl->queues);
959 kfree(ctrl);
962 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
964 /* If we are resetting/deleting then do nothing */
965 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
966 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
967 ctrl->ctrl.state == NVME_CTRL_LIVE);
968 return;
971 if (nvmf_should_reconnect(&ctrl->ctrl)) {
972 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
973 ctrl->ctrl.opts->reconnect_delay);
974 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
975 ctrl->ctrl.opts->reconnect_delay * HZ);
976 } else {
977 nvme_delete_ctrl(&ctrl->ctrl);
981 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
983 int ret = -EINVAL;
984 bool changed;
986 ret = nvme_rdma_configure_admin_queue(ctrl, new);
987 if (ret)
988 return ret;
990 if (ctrl->ctrl.icdoff) {
991 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
992 goto destroy_admin;
995 if (!(ctrl->ctrl.sgls & (1 << 2))) {
996 dev_err(ctrl->ctrl.device,
997 "Mandatory keyed sgls are not supported!\n");
998 goto destroy_admin;
1001 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1002 dev_warn(ctrl->ctrl.device,
1003 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1004 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1007 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1008 dev_warn(ctrl->ctrl.device,
1009 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1010 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1011 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1014 if (ctrl->ctrl.sgls & (1 << 20))
1015 ctrl->use_inline_data = true;
1017 if (ctrl->ctrl.queue_count > 1) {
1018 ret = nvme_rdma_configure_io_queues(ctrl, new);
1019 if (ret)
1020 goto destroy_admin;
1023 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1024 if (!changed) {
1025 /* state change failure is ok if we're in DELETING state */
1026 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1027 ret = -EINVAL;
1028 goto destroy_io;
1031 nvme_start_ctrl(&ctrl->ctrl);
1032 return 0;
1034 destroy_io:
1035 if (ctrl->ctrl.queue_count > 1)
1036 nvme_rdma_destroy_io_queues(ctrl, new);
1037 destroy_admin:
1038 nvme_rdma_stop_queue(&ctrl->queues[0]);
1039 nvme_rdma_destroy_admin_queue(ctrl, new);
1040 return ret;
1043 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1045 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1046 struct nvme_rdma_ctrl, reconnect_work);
1048 ++ctrl->ctrl.nr_reconnects;
1050 if (nvme_rdma_setup_ctrl(ctrl, false))
1051 goto requeue;
1053 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1054 ctrl->ctrl.nr_reconnects);
1056 ctrl->ctrl.nr_reconnects = 0;
1058 return;
1060 requeue:
1061 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1062 ctrl->ctrl.nr_reconnects);
1063 nvme_rdma_reconnect_or_remove(ctrl);
1066 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1068 struct nvme_rdma_ctrl *ctrl = container_of(work,
1069 struct nvme_rdma_ctrl, err_work);
1071 nvme_stop_keep_alive(&ctrl->ctrl);
1072 nvme_rdma_teardown_io_queues(ctrl, false);
1073 nvme_start_queues(&ctrl->ctrl);
1074 nvme_rdma_teardown_admin_queue(ctrl, false);
1075 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1077 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1078 /* state change failure is ok if we're in DELETING state */
1079 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1080 return;
1083 nvme_rdma_reconnect_or_remove(ctrl);
1086 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1088 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1089 return;
1091 queue_work(nvme_wq, &ctrl->err_work);
1094 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1095 const char *op)
1097 struct nvme_rdma_queue *queue = cq->cq_context;
1098 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1100 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1101 dev_info(ctrl->ctrl.device,
1102 "%s for CQE 0x%p failed with status %s (%d)\n",
1103 op, wc->wr_cqe,
1104 ib_wc_status_msg(wc->status), wc->status);
1105 nvme_rdma_error_recovery(ctrl);
1108 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1110 if (unlikely(wc->status != IB_WC_SUCCESS))
1111 nvme_rdma_wr_error(cq, wc, "MEMREG");
1114 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1116 struct nvme_rdma_request *req =
1117 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1118 struct request *rq = blk_mq_rq_from_pdu(req);
1120 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1121 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1122 return;
1125 if (refcount_dec_and_test(&req->ref))
1126 nvme_end_request(rq, req->status, req->result);
1130 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1131 struct nvme_rdma_request *req)
1133 struct ib_send_wr wr = {
1134 .opcode = IB_WR_LOCAL_INV,
1135 .next = NULL,
1136 .num_sge = 0,
1137 .send_flags = IB_SEND_SIGNALED,
1138 .ex.invalidate_rkey = req->mr->rkey,
1141 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1142 wr.wr_cqe = &req->reg_cqe;
1144 return ib_post_send(queue->qp, &wr, NULL);
1147 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1148 struct request *rq)
1150 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1151 struct nvme_rdma_device *dev = queue->device;
1152 struct ib_device *ibdev = dev->dev;
1154 if (!blk_rq_nr_phys_segments(rq))
1155 return;
1157 if (req->mr) {
1158 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1159 req->mr = NULL;
1162 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1163 sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1166 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1168 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1170 sg->addr = 0;
1171 put_unaligned_le24(0, sg->length);
1172 put_unaligned_le32(0, sg->key);
1173 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1174 return 0;
1177 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1178 struct nvme_rdma_request *req, struct nvme_command *c,
1179 int count)
1181 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1182 struct scatterlist *sgl = req->sg_table.sgl;
1183 struct ib_sge *sge = &req->sge[1];
1184 u32 len = 0;
1185 int i;
1187 for (i = 0; i < count; i++, sgl++, sge++) {
1188 sge->addr = sg_dma_address(sgl);
1189 sge->length = sg_dma_len(sgl);
1190 sge->lkey = queue->device->pd->local_dma_lkey;
1191 len += sge->length;
1194 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1195 sg->length = cpu_to_le32(len);
1196 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1198 req->num_sge += count;
1199 return 0;
1202 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1203 struct nvme_rdma_request *req, struct nvme_command *c)
1205 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1207 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1208 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1209 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1210 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1211 return 0;
1214 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1215 struct nvme_rdma_request *req, struct nvme_command *c,
1216 int count)
1218 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1219 int nr;
1221 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1222 if (WARN_ON_ONCE(!req->mr))
1223 return -EAGAIN;
1226 * Align the MR to a 4K page size to match the ctrl page size and
1227 * the block virtual boundary.
1229 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1230 if (unlikely(nr < count)) {
1231 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1232 req->mr = NULL;
1233 if (nr < 0)
1234 return nr;
1235 return -EINVAL;
1238 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1240 req->reg_cqe.done = nvme_rdma_memreg_done;
1241 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1242 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1243 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1244 req->reg_wr.wr.num_sge = 0;
1245 req->reg_wr.mr = req->mr;
1246 req->reg_wr.key = req->mr->rkey;
1247 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1248 IB_ACCESS_REMOTE_READ |
1249 IB_ACCESS_REMOTE_WRITE;
1251 sg->addr = cpu_to_le64(req->mr->iova);
1252 put_unaligned_le24(req->mr->length, sg->length);
1253 put_unaligned_le32(req->mr->rkey, sg->key);
1254 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1255 NVME_SGL_FMT_INVALIDATE;
1257 return 0;
1260 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1261 struct request *rq, struct nvme_command *c)
1263 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1264 struct nvme_rdma_device *dev = queue->device;
1265 struct ib_device *ibdev = dev->dev;
1266 int count, ret;
1268 req->num_sge = 1;
1269 refcount_set(&req->ref, 2); /* send and recv completions */
1271 c->common.flags |= NVME_CMD_SGL_METABUF;
1273 if (!blk_rq_nr_phys_segments(rq))
1274 return nvme_rdma_set_sg_null(c);
1276 req->sg_table.sgl = req->first_sgl;
1277 ret = sg_alloc_table_chained(&req->sg_table,
1278 blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1279 NVME_INLINE_SG_CNT);
1280 if (ret)
1281 return -ENOMEM;
1283 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1285 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1286 rq_dma_dir(rq));
1287 if (unlikely(count <= 0)) {
1288 ret = -EIO;
1289 goto out_free_table;
1292 if (count <= dev->num_inline_segments) {
1293 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1294 queue->ctrl->use_inline_data &&
1295 blk_rq_payload_bytes(rq) <=
1296 nvme_rdma_inline_data_size(queue)) {
1297 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1298 goto out;
1301 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1302 ret = nvme_rdma_map_sg_single(queue, req, c);
1303 goto out;
1307 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1308 out:
1309 if (unlikely(ret))
1310 goto out_unmap_sg;
1312 return 0;
1314 out_unmap_sg:
1315 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1316 out_free_table:
1317 sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1318 return ret;
1321 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1323 struct nvme_rdma_qe *qe =
1324 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1325 struct nvme_rdma_request *req =
1326 container_of(qe, struct nvme_rdma_request, sqe);
1327 struct request *rq = blk_mq_rq_from_pdu(req);
1329 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1330 nvme_rdma_wr_error(cq, wc, "SEND");
1331 return;
1334 if (refcount_dec_and_test(&req->ref))
1335 nvme_end_request(rq, req->status, req->result);
1338 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1339 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1340 struct ib_send_wr *first)
1342 struct ib_send_wr wr;
1343 int ret;
1345 sge->addr = qe->dma;
1346 sge->length = sizeof(struct nvme_command),
1347 sge->lkey = queue->device->pd->local_dma_lkey;
1349 wr.next = NULL;
1350 wr.wr_cqe = &qe->cqe;
1351 wr.sg_list = sge;
1352 wr.num_sge = num_sge;
1353 wr.opcode = IB_WR_SEND;
1354 wr.send_flags = IB_SEND_SIGNALED;
1356 if (first)
1357 first->next = &wr;
1358 else
1359 first = &wr;
1361 ret = ib_post_send(queue->qp, first, NULL);
1362 if (unlikely(ret)) {
1363 dev_err(queue->ctrl->ctrl.device,
1364 "%s failed with error code %d\n", __func__, ret);
1366 return ret;
1369 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1370 struct nvme_rdma_qe *qe)
1372 struct ib_recv_wr wr;
1373 struct ib_sge list;
1374 int ret;
1376 list.addr = qe->dma;
1377 list.length = sizeof(struct nvme_completion);
1378 list.lkey = queue->device->pd->local_dma_lkey;
1380 qe->cqe.done = nvme_rdma_recv_done;
1382 wr.next = NULL;
1383 wr.wr_cqe = &qe->cqe;
1384 wr.sg_list = &list;
1385 wr.num_sge = 1;
1387 ret = ib_post_recv(queue->qp, &wr, NULL);
1388 if (unlikely(ret)) {
1389 dev_err(queue->ctrl->ctrl.device,
1390 "%s failed with error code %d\n", __func__, ret);
1392 return ret;
1395 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1397 u32 queue_idx = nvme_rdma_queue_idx(queue);
1399 if (queue_idx == 0)
1400 return queue->ctrl->admin_tag_set.tags[queue_idx];
1401 return queue->ctrl->tag_set.tags[queue_idx - 1];
1404 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1406 if (unlikely(wc->status != IB_WC_SUCCESS))
1407 nvme_rdma_wr_error(cq, wc, "ASYNC");
1410 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1412 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1413 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1414 struct ib_device *dev = queue->device->dev;
1415 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1416 struct nvme_command *cmd = sqe->data;
1417 struct ib_sge sge;
1418 int ret;
1420 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1422 memset(cmd, 0, sizeof(*cmd));
1423 cmd->common.opcode = nvme_admin_async_event;
1424 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1425 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1426 nvme_rdma_set_sg_null(cmd);
1428 sqe->cqe.done = nvme_rdma_async_done;
1430 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1431 DMA_TO_DEVICE);
1433 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1434 WARN_ON_ONCE(ret);
1437 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1438 struct nvme_completion *cqe, struct ib_wc *wc)
1440 struct request *rq;
1441 struct nvme_rdma_request *req;
1443 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1444 if (!rq) {
1445 dev_err(queue->ctrl->ctrl.device,
1446 "tag 0x%x on QP %#x not found\n",
1447 cqe->command_id, queue->qp->qp_num);
1448 nvme_rdma_error_recovery(queue->ctrl);
1449 return;
1451 req = blk_mq_rq_to_pdu(rq);
1453 req->status = cqe->status;
1454 req->result = cqe->result;
1456 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1457 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1458 dev_err(queue->ctrl->ctrl.device,
1459 "Bogus remote invalidation for rkey %#x\n",
1460 req->mr->rkey);
1461 nvme_rdma_error_recovery(queue->ctrl);
1463 } else if (req->mr) {
1464 int ret;
1466 ret = nvme_rdma_inv_rkey(queue, req);
1467 if (unlikely(ret < 0)) {
1468 dev_err(queue->ctrl->ctrl.device,
1469 "Queueing INV WR for rkey %#x failed (%d)\n",
1470 req->mr->rkey, ret);
1471 nvme_rdma_error_recovery(queue->ctrl);
1473 /* the local invalidation completion will end the request */
1474 return;
1477 if (refcount_dec_and_test(&req->ref))
1478 nvme_end_request(rq, req->status, req->result);
1481 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1483 struct nvme_rdma_qe *qe =
1484 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1485 struct nvme_rdma_queue *queue = cq->cq_context;
1486 struct ib_device *ibdev = queue->device->dev;
1487 struct nvme_completion *cqe = qe->data;
1488 const size_t len = sizeof(struct nvme_completion);
1490 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1491 nvme_rdma_wr_error(cq, wc, "RECV");
1492 return;
1495 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1497 * AEN requests are special as they don't time out and can
1498 * survive any kind of queue freeze and often don't respond to
1499 * aborts. We don't even bother to allocate a struct request
1500 * for them but rather special case them here.
1502 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1503 cqe->command_id)))
1504 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1505 &cqe->result);
1506 else
1507 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1508 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1510 nvme_rdma_post_recv(queue, qe);
1513 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1515 int ret, i;
1517 for (i = 0; i < queue->queue_size; i++) {
1518 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1519 if (ret)
1520 goto out_destroy_queue_ib;
1523 return 0;
1525 out_destroy_queue_ib:
1526 nvme_rdma_destroy_queue_ib(queue);
1527 return ret;
1530 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1531 struct rdma_cm_event *ev)
1533 struct rdma_cm_id *cm_id = queue->cm_id;
1534 int status = ev->status;
1535 const char *rej_msg;
1536 const struct nvme_rdma_cm_rej *rej_data;
1537 u8 rej_data_len;
1539 rej_msg = rdma_reject_msg(cm_id, status);
1540 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1542 if (rej_data && rej_data_len >= sizeof(u16)) {
1543 u16 sts = le16_to_cpu(rej_data->sts);
1545 dev_err(queue->ctrl->ctrl.device,
1546 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1547 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1548 } else {
1549 dev_err(queue->ctrl->ctrl.device,
1550 "Connect rejected: status %d (%s).\n", status, rej_msg);
1553 return -ECONNRESET;
1556 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1558 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1559 int ret;
1561 ret = nvme_rdma_create_queue_ib(queue);
1562 if (ret)
1563 return ret;
1565 if (ctrl->opts->tos >= 0)
1566 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1567 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1568 if (ret) {
1569 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1570 queue->cm_error);
1571 goto out_destroy_queue;
1574 return 0;
1576 out_destroy_queue:
1577 nvme_rdma_destroy_queue_ib(queue);
1578 return ret;
1581 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1583 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1584 struct rdma_conn_param param = { };
1585 struct nvme_rdma_cm_req priv = { };
1586 int ret;
1588 param.qp_num = queue->qp->qp_num;
1589 param.flow_control = 1;
1591 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1592 /* maximum retry count */
1593 param.retry_count = 7;
1594 param.rnr_retry_count = 7;
1595 param.private_data = &priv;
1596 param.private_data_len = sizeof(priv);
1598 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1599 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1601 * set the admin queue depth to the minimum size
1602 * specified by the Fabrics standard.
1604 if (priv.qid == 0) {
1605 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1606 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1607 } else {
1609 * current interpretation of the fabrics spec
1610 * is at minimum you make hrqsize sqsize+1, or a
1611 * 1's based representation of sqsize.
1613 priv.hrqsize = cpu_to_le16(queue->queue_size);
1614 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1617 ret = rdma_connect(queue->cm_id, &param);
1618 if (ret) {
1619 dev_err(ctrl->ctrl.device,
1620 "rdma_connect failed (%d).\n", ret);
1621 goto out_destroy_queue_ib;
1624 return 0;
1626 out_destroy_queue_ib:
1627 nvme_rdma_destroy_queue_ib(queue);
1628 return ret;
1631 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1632 struct rdma_cm_event *ev)
1634 struct nvme_rdma_queue *queue = cm_id->context;
1635 int cm_error = 0;
1637 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1638 rdma_event_msg(ev->event), ev->event,
1639 ev->status, cm_id);
1641 switch (ev->event) {
1642 case RDMA_CM_EVENT_ADDR_RESOLVED:
1643 cm_error = nvme_rdma_addr_resolved(queue);
1644 break;
1645 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1646 cm_error = nvme_rdma_route_resolved(queue);
1647 break;
1648 case RDMA_CM_EVENT_ESTABLISHED:
1649 queue->cm_error = nvme_rdma_conn_established(queue);
1650 /* complete cm_done regardless of success/failure */
1651 complete(&queue->cm_done);
1652 return 0;
1653 case RDMA_CM_EVENT_REJECTED:
1654 nvme_rdma_destroy_queue_ib(queue);
1655 cm_error = nvme_rdma_conn_rejected(queue, ev);
1656 break;
1657 case RDMA_CM_EVENT_ROUTE_ERROR:
1658 case RDMA_CM_EVENT_CONNECT_ERROR:
1659 case RDMA_CM_EVENT_UNREACHABLE:
1660 nvme_rdma_destroy_queue_ib(queue);
1661 /* fall through */
1662 case RDMA_CM_EVENT_ADDR_ERROR:
1663 dev_dbg(queue->ctrl->ctrl.device,
1664 "CM error event %d\n", ev->event);
1665 cm_error = -ECONNRESET;
1666 break;
1667 case RDMA_CM_EVENT_DISCONNECTED:
1668 case RDMA_CM_EVENT_ADDR_CHANGE:
1669 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1670 dev_dbg(queue->ctrl->ctrl.device,
1671 "disconnect received - connection closed\n");
1672 nvme_rdma_error_recovery(queue->ctrl);
1673 break;
1674 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1675 /* device removal is handled via the ib_client API */
1676 break;
1677 default:
1678 dev_err(queue->ctrl->ctrl.device,
1679 "Unexpected RDMA CM event (%d)\n", ev->event);
1680 nvme_rdma_error_recovery(queue->ctrl);
1681 break;
1684 if (cm_error) {
1685 queue->cm_error = cm_error;
1686 complete(&queue->cm_done);
1689 return 0;
1692 static enum blk_eh_timer_return
1693 nvme_rdma_timeout(struct request *rq, bool reserved)
1695 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1696 struct nvme_rdma_queue *queue = req->queue;
1697 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1699 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1700 rq->tag, nvme_rdma_queue_idx(queue));
1703 * Restart the timer if a controller reset is already scheduled. Any
1704 * timed out commands would be handled before entering the connecting
1705 * state.
1707 if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1708 return BLK_EH_RESET_TIMER;
1710 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1712 * Teardown immediately if controller times out while starting
1713 * or we are already started error recovery. all outstanding
1714 * requests are completed on shutdown, so we return BLK_EH_DONE.
1716 flush_work(&ctrl->err_work);
1717 nvme_rdma_teardown_io_queues(ctrl, false);
1718 nvme_rdma_teardown_admin_queue(ctrl, false);
1719 return BLK_EH_DONE;
1722 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1723 nvme_rdma_error_recovery(ctrl);
1725 return BLK_EH_RESET_TIMER;
1728 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1729 const struct blk_mq_queue_data *bd)
1731 struct nvme_ns *ns = hctx->queue->queuedata;
1732 struct nvme_rdma_queue *queue = hctx->driver_data;
1733 struct request *rq = bd->rq;
1734 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1735 struct nvme_rdma_qe *sqe = &req->sqe;
1736 struct nvme_command *c = sqe->data;
1737 struct ib_device *dev;
1738 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1739 blk_status_t ret;
1740 int err;
1742 WARN_ON_ONCE(rq->tag < 0);
1744 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1745 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1747 dev = queue->device->dev;
1749 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1750 sizeof(struct nvme_command),
1751 DMA_TO_DEVICE);
1752 err = ib_dma_mapping_error(dev, req->sqe.dma);
1753 if (unlikely(err))
1754 return BLK_STS_RESOURCE;
1756 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1757 sizeof(struct nvme_command), DMA_TO_DEVICE);
1759 ret = nvme_setup_cmd(ns, rq, c);
1760 if (ret)
1761 goto unmap_qe;
1763 blk_mq_start_request(rq);
1765 err = nvme_rdma_map_data(queue, rq, c);
1766 if (unlikely(err < 0)) {
1767 dev_err(queue->ctrl->ctrl.device,
1768 "Failed to map data (%d)\n", err);
1769 goto err;
1772 sqe->cqe.done = nvme_rdma_send_done;
1774 ib_dma_sync_single_for_device(dev, sqe->dma,
1775 sizeof(struct nvme_command), DMA_TO_DEVICE);
1777 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1778 req->mr ? &req->reg_wr.wr : NULL);
1779 if (unlikely(err))
1780 goto err_unmap;
1782 return BLK_STS_OK;
1784 err_unmap:
1785 nvme_rdma_unmap_data(queue, rq);
1786 err:
1787 if (err == -ENOMEM || err == -EAGAIN)
1788 ret = BLK_STS_RESOURCE;
1789 else
1790 ret = BLK_STS_IOERR;
1791 nvme_cleanup_cmd(rq);
1792 unmap_qe:
1793 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1794 DMA_TO_DEVICE);
1795 return ret;
1798 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1800 struct nvme_rdma_queue *queue = hctx->driver_data;
1802 return ib_process_cq_direct(queue->ib_cq, -1);
1805 static void nvme_rdma_complete_rq(struct request *rq)
1807 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1808 struct nvme_rdma_queue *queue = req->queue;
1809 struct ib_device *ibdev = queue->device->dev;
1811 nvme_rdma_unmap_data(queue, rq);
1812 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1813 DMA_TO_DEVICE);
1814 nvme_complete_rq(rq);
1817 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1819 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1820 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1822 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1823 /* separate read/write queues */
1824 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1825 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1826 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1827 set->map[HCTX_TYPE_READ].nr_queues =
1828 ctrl->io_queues[HCTX_TYPE_READ];
1829 set->map[HCTX_TYPE_READ].queue_offset =
1830 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1831 } else {
1832 /* shared read/write queues */
1833 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1834 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1835 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1836 set->map[HCTX_TYPE_READ].nr_queues =
1837 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1838 set->map[HCTX_TYPE_READ].queue_offset = 0;
1840 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1841 ctrl->device->dev, 0);
1842 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1843 ctrl->device->dev, 0);
1845 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1846 /* map dedicated poll queues only if we have queues left */
1847 set->map[HCTX_TYPE_POLL].nr_queues =
1848 ctrl->io_queues[HCTX_TYPE_POLL];
1849 set->map[HCTX_TYPE_POLL].queue_offset =
1850 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1851 ctrl->io_queues[HCTX_TYPE_READ];
1852 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1855 dev_info(ctrl->ctrl.device,
1856 "mapped %d/%d/%d default/read/poll queues.\n",
1857 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1858 ctrl->io_queues[HCTX_TYPE_READ],
1859 ctrl->io_queues[HCTX_TYPE_POLL]);
1861 return 0;
1864 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1865 .queue_rq = nvme_rdma_queue_rq,
1866 .complete = nvme_rdma_complete_rq,
1867 .init_request = nvme_rdma_init_request,
1868 .exit_request = nvme_rdma_exit_request,
1869 .init_hctx = nvme_rdma_init_hctx,
1870 .timeout = nvme_rdma_timeout,
1871 .map_queues = nvme_rdma_map_queues,
1872 .poll = nvme_rdma_poll,
1875 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1876 .queue_rq = nvme_rdma_queue_rq,
1877 .complete = nvme_rdma_complete_rq,
1878 .init_request = nvme_rdma_init_request,
1879 .exit_request = nvme_rdma_exit_request,
1880 .init_hctx = nvme_rdma_init_admin_hctx,
1881 .timeout = nvme_rdma_timeout,
1884 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1886 cancel_work_sync(&ctrl->err_work);
1887 cancel_delayed_work_sync(&ctrl->reconnect_work);
1889 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1890 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1891 if (shutdown)
1892 nvme_shutdown_ctrl(&ctrl->ctrl);
1893 else
1894 nvme_disable_ctrl(&ctrl->ctrl);
1895 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1898 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1900 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1903 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1905 struct nvme_rdma_ctrl *ctrl =
1906 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1908 nvme_stop_ctrl(&ctrl->ctrl);
1909 nvme_rdma_shutdown_ctrl(ctrl, false);
1911 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1912 /* state change failure should never happen */
1913 WARN_ON_ONCE(1);
1914 return;
1917 if (nvme_rdma_setup_ctrl(ctrl, false))
1918 goto out_fail;
1920 return;
1922 out_fail:
1923 ++ctrl->ctrl.nr_reconnects;
1924 nvme_rdma_reconnect_or_remove(ctrl);
1927 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1928 .name = "rdma",
1929 .module = THIS_MODULE,
1930 .flags = NVME_F_FABRICS,
1931 .reg_read32 = nvmf_reg_read32,
1932 .reg_read64 = nvmf_reg_read64,
1933 .reg_write32 = nvmf_reg_write32,
1934 .free_ctrl = nvme_rdma_free_ctrl,
1935 .submit_async_event = nvme_rdma_submit_async_event,
1936 .delete_ctrl = nvme_rdma_delete_ctrl,
1937 .get_address = nvmf_get_address,
1941 * Fails a connection request if it matches an existing controller
1942 * (association) with the same tuple:
1943 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1945 * if local address is not specified in the request, it will match an
1946 * existing controller with all the other parameters the same and no
1947 * local port address specified as well.
1949 * The ports don't need to be compared as they are intrinsically
1950 * already matched by the port pointers supplied.
1952 static bool
1953 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1955 struct nvme_rdma_ctrl *ctrl;
1956 bool found = false;
1958 mutex_lock(&nvme_rdma_ctrl_mutex);
1959 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1960 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1961 if (found)
1962 break;
1964 mutex_unlock(&nvme_rdma_ctrl_mutex);
1966 return found;
1969 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1970 struct nvmf_ctrl_options *opts)
1972 struct nvme_rdma_ctrl *ctrl;
1973 int ret;
1974 bool changed;
1976 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1977 if (!ctrl)
1978 return ERR_PTR(-ENOMEM);
1979 ctrl->ctrl.opts = opts;
1980 INIT_LIST_HEAD(&ctrl->list);
1982 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1983 opts->trsvcid =
1984 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1985 if (!opts->trsvcid) {
1986 ret = -ENOMEM;
1987 goto out_free_ctrl;
1989 opts->mask |= NVMF_OPT_TRSVCID;
1992 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1993 opts->traddr, opts->trsvcid, &ctrl->addr);
1994 if (ret) {
1995 pr_err("malformed address passed: %s:%s\n",
1996 opts->traddr, opts->trsvcid);
1997 goto out_free_ctrl;
2000 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2001 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2002 opts->host_traddr, NULL, &ctrl->src_addr);
2003 if (ret) {
2004 pr_err("malformed src address passed: %s\n",
2005 opts->host_traddr);
2006 goto out_free_ctrl;
2010 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2011 ret = -EALREADY;
2012 goto out_free_ctrl;
2015 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2016 nvme_rdma_reconnect_ctrl_work);
2017 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2018 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2020 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2021 opts->nr_poll_queues + 1;
2022 ctrl->ctrl.sqsize = opts->queue_size - 1;
2023 ctrl->ctrl.kato = opts->kato;
2025 ret = -ENOMEM;
2026 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2027 GFP_KERNEL);
2028 if (!ctrl->queues)
2029 goto out_free_ctrl;
2031 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2032 0 /* no quirks, we're perfect! */);
2033 if (ret)
2034 goto out_kfree_queues;
2036 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2037 WARN_ON_ONCE(!changed);
2039 ret = nvme_rdma_setup_ctrl(ctrl, true);
2040 if (ret)
2041 goto out_uninit_ctrl;
2043 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2044 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2046 nvme_get_ctrl(&ctrl->ctrl);
2048 mutex_lock(&nvme_rdma_ctrl_mutex);
2049 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2050 mutex_unlock(&nvme_rdma_ctrl_mutex);
2052 return &ctrl->ctrl;
2054 out_uninit_ctrl:
2055 nvme_uninit_ctrl(&ctrl->ctrl);
2056 nvme_put_ctrl(&ctrl->ctrl);
2057 if (ret > 0)
2058 ret = -EIO;
2059 return ERR_PTR(ret);
2060 out_kfree_queues:
2061 kfree(ctrl->queues);
2062 out_free_ctrl:
2063 kfree(ctrl);
2064 return ERR_PTR(ret);
2067 static struct nvmf_transport_ops nvme_rdma_transport = {
2068 .name = "rdma",
2069 .module = THIS_MODULE,
2070 .required_opts = NVMF_OPT_TRADDR,
2071 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2072 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2073 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2074 NVMF_OPT_TOS,
2075 .create_ctrl = nvme_rdma_create_ctrl,
2078 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2080 struct nvme_rdma_ctrl *ctrl;
2081 struct nvme_rdma_device *ndev;
2082 bool found = false;
2084 mutex_lock(&device_list_mutex);
2085 list_for_each_entry(ndev, &device_list, entry) {
2086 if (ndev->dev == ib_device) {
2087 found = true;
2088 break;
2091 mutex_unlock(&device_list_mutex);
2093 if (!found)
2094 return;
2096 /* Delete all controllers using this device */
2097 mutex_lock(&nvme_rdma_ctrl_mutex);
2098 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2099 if (ctrl->device->dev != ib_device)
2100 continue;
2101 nvme_delete_ctrl(&ctrl->ctrl);
2103 mutex_unlock(&nvme_rdma_ctrl_mutex);
2105 flush_workqueue(nvme_delete_wq);
2108 static struct ib_client nvme_rdma_ib_client = {
2109 .name = "nvme_rdma",
2110 .remove = nvme_rdma_remove_one
2113 static int __init nvme_rdma_init_module(void)
2115 int ret;
2117 ret = ib_register_client(&nvme_rdma_ib_client);
2118 if (ret)
2119 return ret;
2121 ret = nvmf_register_transport(&nvme_rdma_transport);
2122 if (ret)
2123 goto err_unreg_client;
2125 return 0;
2127 err_unreg_client:
2128 ib_unregister_client(&nvme_rdma_ib_client);
2129 return ret;
2132 static void __exit nvme_rdma_cleanup_module(void)
2134 struct nvme_rdma_ctrl *ctrl;
2136 nvmf_unregister_transport(&nvme_rdma_transport);
2137 ib_unregister_client(&nvme_rdma_ib_client);
2139 mutex_lock(&nvme_rdma_ctrl_mutex);
2140 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2141 nvme_delete_ctrl(&ctrl->ctrl);
2142 mutex_unlock(&nvme_rdma_ctrl_mutex);
2143 flush_workqueue(nvme_delete_wq);
2146 module_init(nvme_rdma_init_module);
2147 module_exit(nvme_rdma_cleanup_module);
2149 MODULE_LICENSE("GPL v2");