treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / nvme / target / rdma.c
blob37d262a65877c9e22f71b443d425e9d10d1030ae
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
24 #include <linux/nvme-rdma.h>
25 #include "nvmet.h"
28 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
31 #define NVMET_RDMA_MAX_INLINE_SGE 4
32 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
34 struct nvmet_rdma_cmd {
35 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
36 struct ib_cqe cqe;
37 struct ib_recv_wr wr;
38 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
39 struct nvme_command *nvme_cmd;
40 struct nvmet_rdma_queue *queue;
43 enum {
44 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
45 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
48 struct nvmet_rdma_rsp {
49 struct ib_sge send_sge;
50 struct ib_cqe send_cqe;
51 struct ib_send_wr send_wr;
53 struct nvmet_rdma_cmd *cmd;
54 struct nvmet_rdma_queue *queue;
56 struct ib_cqe read_cqe;
57 struct rdma_rw_ctx rw;
59 struct nvmet_req req;
61 bool allocated;
62 u8 n_rdma;
63 u32 flags;
64 u32 invalidate_rkey;
66 struct list_head wait_list;
67 struct list_head free_list;
70 enum nvmet_rdma_queue_state {
71 NVMET_RDMA_Q_CONNECTING,
72 NVMET_RDMA_Q_LIVE,
73 NVMET_RDMA_Q_DISCONNECTING,
76 struct nvmet_rdma_queue {
77 struct rdma_cm_id *cm_id;
78 struct nvmet_port *port;
79 struct ib_cq *cq;
80 atomic_t sq_wr_avail;
81 struct nvmet_rdma_device *dev;
82 spinlock_t state_lock;
83 enum nvmet_rdma_queue_state state;
84 struct nvmet_cq nvme_cq;
85 struct nvmet_sq nvme_sq;
87 struct nvmet_rdma_rsp *rsps;
88 struct list_head free_rsps;
89 spinlock_t rsps_lock;
90 struct nvmet_rdma_cmd *cmds;
92 struct work_struct release_work;
93 struct list_head rsp_wait_list;
94 struct list_head rsp_wr_wait_list;
95 spinlock_t rsp_wr_wait_lock;
97 int idx;
98 int host_qid;
99 int recv_queue_size;
100 int send_queue_size;
102 struct list_head queue_list;
105 struct nvmet_rdma_device {
106 struct ib_device *device;
107 struct ib_pd *pd;
108 struct ib_srq *srq;
109 struct nvmet_rdma_cmd *srq_cmds;
110 size_t srq_size;
111 struct kref ref;
112 struct list_head entry;
113 int inline_data_size;
114 int inline_page_count;
117 static bool nvmet_rdma_use_srq;
118 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
119 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
121 static DEFINE_IDA(nvmet_rdma_queue_ida);
122 static LIST_HEAD(nvmet_rdma_queue_list);
123 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
125 static LIST_HEAD(device_list);
126 static DEFINE_MUTEX(device_list_mutex);
128 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
129 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
130 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
131 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
132 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
133 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
134 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
135 struct nvmet_rdma_rsp *r);
136 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
137 struct nvmet_rdma_rsp *r);
139 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
141 static int num_pages(int len)
143 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
146 /* XXX: really should move to a generic header sooner or later.. */
147 static inline u32 get_unaligned_le24(const u8 *p)
149 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
152 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
154 return nvme_is_write(rsp->req.cmd) &&
155 rsp->req.transfer_len &&
156 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
159 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
161 return !nvme_is_write(rsp->req.cmd) &&
162 rsp->req.transfer_len &&
163 !rsp->req.cqe->status &&
164 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
167 static inline struct nvmet_rdma_rsp *
168 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
170 struct nvmet_rdma_rsp *rsp;
171 unsigned long flags;
173 spin_lock_irqsave(&queue->rsps_lock, flags);
174 rsp = list_first_entry_or_null(&queue->free_rsps,
175 struct nvmet_rdma_rsp, free_list);
176 if (likely(rsp))
177 list_del(&rsp->free_list);
178 spin_unlock_irqrestore(&queue->rsps_lock, flags);
180 if (unlikely(!rsp)) {
181 int ret;
183 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
184 if (unlikely(!rsp))
185 return NULL;
186 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
187 if (unlikely(ret)) {
188 kfree(rsp);
189 return NULL;
192 rsp->allocated = true;
195 return rsp;
198 static inline void
199 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
201 unsigned long flags;
203 if (unlikely(rsp->allocated)) {
204 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
205 kfree(rsp);
206 return;
209 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
210 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
211 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
214 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
215 struct nvmet_rdma_cmd *c)
217 struct scatterlist *sg;
218 struct ib_sge *sge;
219 int i;
221 if (!ndev->inline_data_size)
222 return;
224 sg = c->inline_sg;
225 sge = &c->sge[1];
227 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
228 if (sge->length)
229 ib_dma_unmap_page(ndev->device, sge->addr,
230 sge->length, DMA_FROM_DEVICE);
231 if (sg_page(sg))
232 __free_page(sg_page(sg));
236 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
237 struct nvmet_rdma_cmd *c)
239 struct scatterlist *sg;
240 struct ib_sge *sge;
241 struct page *pg;
242 int len;
243 int i;
245 if (!ndev->inline_data_size)
246 return 0;
248 sg = c->inline_sg;
249 sg_init_table(sg, ndev->inline_page_count);
250 sge = &c->sge[1];
251 len = ndev->inline_data_size;
253 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
254 pg = alloc_page(GFP_KERNEL);
255 if (!pg)
256 goto out_err;
257 sg_assign_page(sg, pg);
258 sge->addr = ib_dma_map_page(ndev->device,
259 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
260 if (ib_dma_mapping_error(ndev->device, sge->addr))
261 goto out_err;
262 sge->length = min_t(int, len, PAGE_SIZE);
263 sge->lkey = ndev->pd->local_dma_lkey;
264 len -= sge->length;
267 return 0;
268 out_err:
269 for (; i >= 0; i--, sg--, sge--) {
270 if (sge->length)
271 ib_dma_unmap_page(ndev->device, sge->addr,
272 sge->length, DMA_FROM_DEVICE);
273 if (sg_page(sg))
274 __free_page(sg_page(sg));
276 return -ENOMEM;
279 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
280 struct nvmet_rdma_cmd *c, bool admin)
282 /* NVMe command / RDMA RECV */
283 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
284 if (!c->nvme_cmd)
285 goto out;
287 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
288 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
289 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
290 goto out_free_cmd;
292 c->sge[0].length = sizeof(*c->nvme_cmd);
293 c->sge[0].lkey = ndev->pd->local_dma_lkey;
295 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
296 goto out_unmap_cmd;
298 c->cqe.done = nvmet_rdma_recv_done;
300 c->wr.wr_cqe = &c->cqe;
301 c->wr.sg_list = c->sge;
302 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
304 return 0;
306 out_unmap_cmd:
307 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
308 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
309 out_free_cmd:
310 kfree(c->nvme_cmd);
312 out:
313 return -ENOMEM;
316 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
317 struct nvmet_rdma_cmd *c, bool admin)
319 if (!admin)
320 nvmet_rdma_free_inline_pages(ndev, c);
321 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
322 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
323 kfree(c->nvme_cmd);
326 static struct nvmet_rdma_cmd *
327 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
328 int nr_cmds, bool admin)
330 struct nvmet_rdma_cmd *cmds;
331 int ret = -EINVAL, i;
333 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
334 if (!cmds)
335 goto out;
337 for (i = 0; i < nr_cmds; i++) {
338 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
339 if (ret)
340 goto out_free;
343 return cmds;
345 out_free:
346 while (--i >= 0)
347 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
348 kfree(cmds);
349 out:
350 return ERR_PTR(ret);
353 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
354 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
356 int i;
358 for (i = 0; i < nr_cmds; i++)
359 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
360 kfree(cmds);
363 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
364 struct nvmet_rdma_rsp *r)
366 /* NVMe CQE / RDMA SEND */
367 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
368 if (!r->req.cqe)
369 goto out;
371 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
372 sizeof(*r->req.cqe), DMA_TO_DEVICE);
373 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
374 goto out_free_rsp;
376 r->req.p2p_client = &ndev->device->dev;
377 r->send_sge.length = sizeof(*r->req.cqe);
378 r->send_sge.lkey = ndev->pd->local_dma_lkey;
380 r->send_cqe.done = nvmet_rdma_send_done;
382 r->send_wr.wr_cqe = &r->send_cqe;
383 r->send_wr.sg_list = &r->send_sge;
384 r->send_wr.num_sge = 1;
385 r->send_wr.send_flags = IB_SEND_SIGNALED;
387 /* Data In / RDMA READ */
388 r->read_cqe.done = nvmet_rdma_read_data_done;
389 return 0;
391 out_free_rsp:
392 kfree(r->req.cqe);
393 out:
394 return -ENOMEM;
397 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
398 struct nvmet_rdma_rsp *r)
400 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
401 sizeof(*r->req.cqe), DMA_TO_DEVICE);
402 kfree(r->req.cqe);
405 static int
406 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
408 struct nvmet_rdma_device *ndev = queue->dev;
409 int nr_rsps = queue->recv_queue_size * 2;
410 int ret = -EINVAL, i;
412 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
413 GFP_KERNEL);
414 if (!queue->rsps)
415 goto out;
417 for (i = 0; i < nr_rsps; i++) {
418 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
420 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
421 if (ret)
422 goto out_free;
424 list_add_tail(&rsp->free_list, &queue->free_rsps);
427 return 0;
429 out_free:
430 while (--i >= 0) {
431 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
433 list_del(&rsp->free_list);
434 nvmet_rdma_free_rsp(ndev, rsp);
436 kfree(queue->rsps);
437 out:
438 return ret;
441 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
443 struct nvmet_rdma_device *ndev = queue->dev;
444 int i, nr_rsps = queue->recv_queue_size * 2;
446 for (i = 0; i < nr_rsps; i++) {
447 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
449 list_del(&rsp->free_list);
450 nvmet_rdma_free_rsp(ndev, rsp);
452 kfree(queue->rsps);
455 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
456 struct nvmet_rdma_cmd *cmd)
458 int ret;
460 ib_dma_sync_single_for_device(ndev->device,
461 cmd->sge[0].addr, cmd->sge[0].length,
462 DMA_FROM_DEVICE);
464 if (ndev->srq)
465 ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
466 else
467 ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
469 if (unlikely(ret))
470 pr_err("post_recv cmd failed\n");
472 return ret;
475 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
477 spin_lock(&queue->rsp_wr_wait_lock);
478 while (!list_empty(&queue->rsp_wr_wait_list)) {
479 struct nvmet_rdma_rsp *rsp;
480 bool ret;
482 rsp = list_entry(queue->rsp_wr_wait_list.next,
483 struct nvmet_rdma_rsp, wait_list);
484 list_del(&rsp->wait_list);
486 spin_unlock(&queue->rsp_wr_wait_lock);
487 ret = nvmet_rdma_execute_command(rsp);
488 spin_lock(&queue->rsp_wr_wait_lock);
490 if (!ret) {
491 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
492 break;
495 spin_unlock(&queue->rsp_wr_wait_lock);
499 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
501 struct nvmet_rdma_queue *queue = rsp->queue;
503 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
505 if (rsp->n_rdma) {
506 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
507 queue->cm_id->port_num, rsp->req.sg,
508 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
511 if (rsp->req.sg != rsp->cmd->inline_sg)
512 nvmet_req_free_sgl(&rsp->req);
514 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
515 nvmet_rdma_process_wr_wait_list(queue);
517 nvmet_rdma_put_rsp(rsp);
520 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
522 if (queue->nvme_sq.ctrl) {
523 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
524 } else {
526 * we didn't setup the controller yet in case
527 * of admin connect error, just disconnect and
528 * cleanup the queue
530 nvmet_rdma_queue_disconnect(queue);
534 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
536 struct nvmet_rdma_rsp *rsp =
537 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
538 struct nvmet_rdma_queue *queue = cq->cq_context;
540 nvmet_rdma_release_rsp(rsp);
542 if (unlikely(wc->status != IB_WC_SUCCESS &&
543 wc->status != IB_WC_WR_FLUSH_ERR)) {
544 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
545 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
546 nvmet_rdma_error_comp(queue);
550 static void nvmet_rdma_queue_response(struct nvmet_req *req)
552 struct nvmet_rdma_rsp *rsp =
553 container_of(req, struct nvmet_rdma_rsp, req);
554 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
555 struct ib_send_wr *first_wr;
557 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
558 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
559 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
560 } else {
561 rsp->send_wr.opcode = IB_WR_SEND;
564 if (nvmet_rdma_need_data_out(rsp))
565 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
566 cm_id->port_num, NULL, &rsp->send_wr);
567 else
568 first_wr = &rsp->send_wr;
570 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
572 ib_dma_sync_single_for_device(rsp->queue->dev->device,
573 rsp->send_sge.addr, rsp->send_sge.length,
574 DMA_TO_DEVICE);
576 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
577 pr_err("sending cmd response failed\n");
578 nvmet_rdma_release_rsp(rsp);
582 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
584 struct nvmet_rdma_rsp *rsp =
585 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
586 struct nvmet_rdma_queue *queue = cq->cq_context;
588 WARN_ON(rsp->n_rdma <= 0);
589 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
590 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
591 queue->cm_id->port_num, rsp->req.sg,
592 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
593 rsp->n_rdma = 0;
595 if (unlikely(wc->status != IB_WC_SUCCESS)) {
596 nvmet_req_uninit(&rsp->req);
597 nvmet_rdma_release_rsp(rsp);
598 if (wc->status != IB_WC_WR_FLUSH_ERR) {
599 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
600 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
601 nvmet_rdma_error_comp(queue);
603 return;
606 rsp->req.execute(&rsp->req);
609 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
610 u64 off)
612 int sg_count = num_pages(len);
613 struct scatterlist *sg;
614 int i;
616 sg = rsp->cmd->inline_sg;
617 for (i = 0; i < sg_count; i++, sg++) {
618 if (i < sg_count - 1)
619 sg_unmark_end(sg);
620 else
621 sg_mark_end(sg);
622 sg->offset = off;
623 sg->length = min_t(int, len, PAGE_SIZE - off);
624 len -= sg->length;
625 if (!i)
626 off = 0;
629 rsp->req.sg = rsp->cmd->inline_sg;
630 rsp->req.sg_cnt = sg_count;
633 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
635 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
636 u64 off = le64_to_cpu(sgl->addr);
637 u32 len = le32_to_cpu(sgl->length);
639 if (!nvme_is_write(rsp->req.cmd)) {
640 rsp->req.error_loc =
641 offsetof(struct nvme_common_command, opcode);
642 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
645 if (off + len > rsp->queue->dev->inline_data_size) {
646 pr_err("invalid inline data offset!\n");
647 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
650 /* no data command? */
651 if (!len)
652 return 0;
654 nvmet_rdma_use_inline_sg(rsp, len, off);
655 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
656 rsp->req.transfer_len += len;
657 return 0;
660 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
661 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
663 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
664 u64 addr = le64_to_cpu(sgl->addr);
665 u32 key = get_unaligned_le32(sgl->key);
666 int ret;
668 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
670 /* no data command? */
671 if (!rsp->req.transfer_len)
672 return 0;
674 ret = nvmet_req_alloc_sgl(&rsp->req);
675 if (unlikely(ret < 0))
676 goto error_out;
678 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
679 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
680 nvmet_data_dir(&rsp->req));
681 if (unlikely(ret < 0))
682 goto error_out;
683 rsp->n_rdma += ret;
685 if (invalidate) {
686 rsp->invalidate_rkey = key;
687 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
690 return 0;
692 error_out:
693 rsp->req.transfer_len = 0;
694 return NVME_SC_INTERNAL;
697 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
699 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
701 switch (sgl->type >> 4) {
702 case NVME_SGL_FMT_DATA_DESC:
703 switch (sgl->type & 0xf) {
704 case NVME_SGL_FMT_OFFSET:
705 return nvmet_rdma_map_sgl_inline(rsp);
706 default:
707 pr_err("invalid SGL subtype: %#x\n", sgl->type);
708 rsp->req.error_loc =
709 offsetof(struct nvme_common_command, dptr);
710 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
712 case NVME_KEY_SGL_FMT_DATA_DESC:
713 switch (sgl->type & 0xf) {
714 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
715 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
716 case NVME_SGL_FMT_ADDRESS:
717 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
718 default:
719 pr_err("invalid SGL subtype: %#x\n", sgl->type);
720 rsp->req.error_loc =
721 offsetof(struct nvme_common_command, dptr);
722 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
724 default:
725 pr_err("invalid SGL type: %#x\n", sgl->type);
726 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
727 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
731 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
733 struct nvmet_rdma_queue *queue = rsp->queue;
735 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
736 &queue->sq_wr_avail) < 0)) {
737 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
738 1 + rsp->n_rdma, queue->idx,
739 queue->nvme_sq.ctrl->cntlid);
740 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
741 return false;
744 if (nvmet_rdma_need_data_in(rsp)) {
745 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
746 queue->cm_id->port_num, &rsp->read_cqe, NULL))
747 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
748 } else {
749 rsp->req.execute(&rsp->req);
752 return true;
755 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
756 struct nvmet_rdma_rsp *cmd)
758 u16 status;
760 ib_dma_sync_single_for_cpu(queue->dev->device,
761 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
762 DMA_FROM_DEVICE);
763 ib_dma_sync_single_for_cpu(queue->dev->device,
764 cmd->send_sge.addr, cmd->send_sge.length,
765 DMA_TO_DEVICE);
767 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
768 &queue->nvme_sq, &nvmet_rdma_ops))
769 return;
771 status = nvmet_rdma_map_sgl(cmd);
772 if (status)
773 goto out_err;
775 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
776 spin_lock(&queue->rsp_wr_wait_lock);
777 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
778 spin_unlock(&queue->rsp_wr_wait_lock);
781 return;
783 out_err:
784 nvmet_req_complete(&cmd->req, status);
787 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
789 struct nvmet_rdma_cmd *cmd =
790 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
791 struct nvmet_rdma_queue *queue = cq->cq_context;
792 struct nvmet_rdma_rsp *rsp;
794 if (unlikely(wc->status != IB_WC_SUCCESS)) {
795 if (wc->status != IB_WC_WR_FLUSH_ERR) {
796 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
797 wc->wr_cqe, ib_wc_status_msg(wc->status),
798 wc->status);
799 nvmet_rdma_error_comp(queue);
801 return;
804 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
805 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
806 nvmet_rdma_error_comp(queue);
807 return;
810 cmd->queue = queue;
811 rsp = nvmet_rdma_get_rsp(queue);
812 if (unlikely(!rsp)) {
814 * we get here only under memory pressure,
815 * silently drop and have the host retry
816 * as we can't even fail it.
818 nvmet_rdma_post_recv(queue->dev, cmd);
819 return;
821 rsp->queue = queue;
822 rsp->cmd = cmd;
823 rsp->flags = 0;
824 rsp->req.cmd = cmd->nvme_cmd;
825 rsp->req.port = queue->port;
826 rsp->n_rdma = 0;
828 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
829 unsigned long flags;
831 spin_lock_irqsave(&queue->state_lock, flags);
832 if (queue->state == NVMET_RDMA_Q_CONNECTING)
833 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
834 else
835 nvmet_rdma_put_rsp(rsp);
836 spin_unlock_irqrestore(&queue->state_lock, flags);
837 return;
840 nvmet_rdma_handle_command(queue, rsp);
843 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
845 if (!ndev->srq)
846 return;
848 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
849 ib_destroy_srq(ndev->srq);
852 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
854 struct ib_srq_init_attr srq_attr = { NULL, };
855 struct ib_srq *srq;
856 size_t srq_size;
857 int ret, i;
859 srq_size = 4095; /* XXX: tune */
861 srq_attr.attr.max_wr = srq_size;
862 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
863 srq_attr.attr.srq_limit = 0;
864 srq_attr.srq_type = IB_SRQT_BASIC;
865 srq = ib_create_srq(ndev->pd, &srq_attr);
866 if (IS_ERR(srq)) {
868 * If SRQs aren't supported we just go ahead and use normal
869 * non-shared receive queues.
871 pr_info("SRQ requested but not supported.\n");
872 return 0;
875 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
876 if (IS_ERR(ndev->srq_cmds)) {
877 ret = PTR_ERR(ndev->srq_cmds);
878 goto out_destroy_srq;
881 ndev->srq = srq;
882 ndev->srq_size = srq_size;
884 for (i = 0; i < srq_size; i++) {
885 ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
886 if (ret)
887 goto out_free_cmds;
890 return 0;
892 out_free_cmds:
893 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
894 out_destroy_srq:
895 ib_destroy_srq(srq);
896 return ret;
899 static void nvmet_rdma_free_dev(struct kref *ref)
901 struct nvmet_rdma_device *ndev =
902 container_of(ref, struct nvmet_rdma_device, ref);
904 mutex_lock(&device_list_mutex);
905 list_del(&ndev->entry);
906 mutex_unlock(&device_list_mutex);
908 nvmet_rdma_destroy_srq(ndev);
909 ib_dealloc_pd(ndev->pd);
911 kfree(ndev);
914 static struct nvmet_rdma_device *
915 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
917 struct nvmet_port *port = cm_id->context;
918 struct nvmet_rdma_device *ndev;
919 int inline_page_count;
920 int inline_sge_count;
921 int ret;
923 mutex_lock(&device_list_mutex);
924 list_for_each_entry(ndev, &device_list, entry) {
925 if (ndev->device->node_guid == cm_id->device->node_guid &&
926 kref_get_unless_zero(&ndev->ref))
927 goto out_unlock;
930 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
931 if (!ndev)
932 goto out_err;
934 inline_page_count = num_pages(port->inline_data_size);
935 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
936 cm_id->device->attrs.max_recv_sge) - 1;
937 if (inline_page_count > inline_sge_count) {
938 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
939 port->inline_data_size, cm_id->device->name,
940 inline_sge_count * PAGE_SIZE);
941 port->inline_data_size = inline_sge_count * PAGE_SIZE;
942 inline_page_count = inline_sge_count;
944 ndev->inline_data_size = port->inline_data_size;
945 ndev->inline_page_count = inline_page_count;
946 ndev->device = cm_id->device;
947 kref_init(&ndev->ref);
949 ndev->pd = ib_alloc_pd(ndev->device, 0);
950 if (IS_ERR(ndev->pd))
951 goto out_free_dev;
953 if (nvmet_rdma_use_srq) {
954 ret = nvmet_rdma_init_srq(ndev);
955 if (ret)
956 goto out_free_pd;
959 list_add(&ndev->entry, &device_list);
960 out_unlock:
961 mutex_unlock(&device_list_mutex);
962 pr_debug("added %s.\n", ndev->device->name);
963 return ndev;
965 out_free_pd:
966 ib_dealloc_pd(ndev->pd);
967 out_free_dev:
968 kfree(ndev);
969 out_err:
970 mutex_unlock(&device_list_mutex);
971 return NULL;
974 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
976 struct ib_qp_init_attr qp_attr;
977 struct nvmet_rdma_device *ndev = queue->dev;
978 int comp_vector, nr_cqe, ret, i;
981 * Spread the io queues across completion vectors,
982 * but still keep all admin queues on vector 0.
984 comp_vector = !queue->host_qid ? 0 :
985 queue->idx % ndev->device->num_comp_vectors;
988 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
990 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
992 queue->cq = ib_alloc_cq(ndev->device, queue,
993 nr_cqe + 1, comp_vector,
994 IB_POLL_WORKQUEUE);
995 if (IS_ERR(queue->cq)) {
996 ret = PTR_ERR(queue->cq);
997 pr_err("failed to create CQ cqe= %d ret= %d\n",
998 nr_cqe + 1, ret);
999 goto out;
1002 memset(&qp_attr, 0, sizeof(qp_attr));
1003 qp_attr.qp_context = queue;
1004 qp_attr.event_handler = nvmet_rdma_qp_event;
1005 qp_attr.send_cq = queue->cq;
1006 qp_attr.recv_cq = queue->cq;
1007 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1008 qp_attr.qp_type = IB_QPT_RC;
1009 /* +1 for drain */
1010 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1011 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
1012 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1013 ndev->device->attrs.max_send_sge);
1015 if (ndev->srq) {
1016 qp_attr.srq = ndev->srq;
1017 } else {
1018 /* +1 for drain */
1019 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1020 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1023 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1024 if (ret) {
1025 pr_err("failed to create_qp ret= %d\n", ret);
1026 goto err_destroy_cq;
1029 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1031 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1032 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1033 qp_attr.cap.max_send_wr, queue->cm_id);
1035 if (!ndev->srq) {
1036 for (i = 0; i < queue->recv_queue_size; i++) {
1037 queue->cmds[i].queue = queue;
1038 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1039 if (ret)
1040 goto err_destroy_qp;
1044 out:
1045 return ret;
1047 err_destroy_qp:
1048 rdma_destroy_qp(queue->cm_id);
1049 err_destroy_cq:
1050 ib_free_cq(queue->cq);
1051 goto out;
1054 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1056 struct ib_qp *qp = queue->cm_id->qp;
1058 ib_drain_qp(qp);
1059 rdma_destroy_id(queue->cm_id);
1060 ib_destroy_qp(qp);
1061 ib_free_cq(queue->cq);
1064 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1066 pr_debug("freeing queue %d\n", queue->idx);
1068 nvmet_sq_destroy(&queue->nvme_sq);
1070 nvmet_rdma_destroy_queue_ib(queue);
1071 if (!queue->dev->srq) {
1072 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1073 queue->recv_queue_size,
1074 !queue->host_qid);
1076 nvmet_rdma_free_rsps(queue);
1077 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1078 kfree(queue);
1081 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1083 struct nvmet_rdma_queue *queue =
1084 container_of(w, struct nvmet_rdma_queue, release_work);
1085 struct nvmet_rdma_device *dev = queue->dev;
1087 nvmet_rdma_free_queue(queue);
1089 kref_put(&dev->ref, nvmet_rdma_free_dev);
1092 static int
1093 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1094 struct nvmet_rdma_queue *queue)
1096 struct nvme_rdma_cm_req *req;
1098 req = (struct nvme_rdma_cm_req *)conn->private_data;
1099 if (!req || conn->private_data_len == 0)
1100 return NVME_RDMA_CM_INVALID_LEN;
1102 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1103 return NVME_RDMA_CM_INVALID_RECFMT;
1105 queue->host_qid = le16_to_cpu(req->qid);
1108 * req->hsqsize corresponds to our recv queue size plus 1
1109 * req->hrqsize corresponds to our send queue size
1111 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1112 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1114 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1115 return NVME_RDMA_CM_INVALID_HSQSIZE;
1117 /* XXX: Should we enforce some kind of max for IO queues? */
1119 return 0;
1122 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1123 enum nvme_rdma_cm_status status)
1125 struct nvme_rdma_cm_rej rej;
1127 pr_debug("rejecting connect request: status %d (%s)\n",
1128 status, nvme_rdma_cm_msg(status));
1130 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1131 rej.sts = cpu_to_le16(status);
1133 return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1136 static struct nvmet_rdma_queue *
1137 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1138 struct rdma_cm_id *cm_id,
1139 struct rdma_cm_event *event)
1141 struct nvmet_rdma_queue *queue;
1142 int ret;
1144 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1145 if (!queue) {
1146 ret = NVME_RDMA_CM_NO_RSC;
1147 goto out_reject;
1150 ret = nvmet_sq_init(&queue->nvme_sq);
1151 if (ret) {
1152 ret = NVME_RDMA_CM_NO_RSC;
1153 goto out_free_queue;
1156 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1157 if (ret)
1158 goto out_destroy_sq;
1161 * Schedules the actual release because calling rdma_destroy_id from
1162 * inside a CM callback would trigger a deadlock. (great API design..)
1164 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1165 queue->dev = ndev;
1166 queue->cm_id = cm_id;
1168 spin_lock_init(&queue->state_lock);
1169 queue->state = NVMET_RDMA_Q_CONNECTING;
1170 INIT_LIST_HEAD(&queue->rsp_wait_list);
1171 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1172 spin_lock_init(&queue->rsp_wr_wait_lock);
1173 INIT_LIST_HEAD(&queue->free_rsps);
1174 spin_lock_init(&queue->rsps_lock);
1175 INIT_LIST_HEAD(&queue->queue_list);
1177 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1178 if (queue->idx < 0) {
1179 ret = NVME_RDMA_CM_NO_RSC;
1180 goto out_destroy_sq;
1183 ret = nvmet_rdma_alloc_rsps(queue);
1184 if (ret) {
1185 ret = NVME_RDMA_CM_NO_RSC;
1186 goto out_ida_remove;
1189 if (!ndev->srq) {
1190 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1191 queue->recv_queue_size,
1192 !queue->host_qid);
1193 if (IS_ERR(queue->cmds)) {
1194 ret = NVME_RDMA_CM_NO_RSC;
1195 goto out_free_responses;
1199 ret = nvmet_rdma_create_queue_ib(queue);
1200 if (ret) {
1201 pr_err("%s: creating RDMA queue failed (%d).\n",
1202 __func__, ret);
1203 ret = NVME_RDMA_CM_NO_RSC;
1204 goto out_free_cmds;
1207 return queue;
1209 out_free_cmds:
1210 if (!ndev->srq) {
1211 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1212 queue->recv_queue_size,
1213 !queue->host_qid);
1215 out_free_responses:
1216 nvmet_rdma_free_rsps(queue);
1217 out_ida_remove:
1218 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1219 out_destroy_sq:
1220 nvmet_sq_destroy(&queue->nvme_sq);
1221 out_free_queue:
1222 kfree(queue);
1223 out_reject:
1224 nvmet_rdma_cm_reject(cm_id, ret);
1225 return NULL;
1228 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1230 struct nvmet_rdma_queue *queue = priv;
1232 switch (event->event) {
1233 case IB_EVENT_COMM_EST:
1234 rdma_notify(queue->cm_id, event->event);
1235 break;
1236 default:
1237 pr_err("received IB QP event: %s (%d)\n",
1238 ib_event_msg(event->event), event->event);
1239 break;
1243 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1244 struct nvmet_rdma_queue *queue,
1245 struct rdma_conn_param *p)
1247 struct rdma_conn_param param = { };
1248 struct nvme_rdma_cm_rep priv = { };
1249 int ret = -ENOMEM;
1251 param.rnr_retry_count = 7;
1252 param.flow_control = 1;
1253 param.initiator_depth = min_t(u8, p->initiator_depth,
1254 queue->dev->device->attrs.max_qp_init_rd_atom);
1255 param.private_data = &priv;
1256 param.private_data_len = sizeof(priv);
1257 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1258 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1260 ret = rdma_accept(cm_id, &param);
1261 if (ret)
1262 pr_err("rdma_accept failed (error code = %d)\n", ret);
1264 return ret;
1267 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1268 struct rdma_cm_event *event)
1270 struct nvmet_rdma_device *ndev;
1271 struct nvmet_rdma_queue *queue;
1272 int ret = -EINVAL;
1274 ndev = nvmet_rdma_find_get_device(cm_id);
1275 if (!ndev) {
1276 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1277 return -ECONNREFUSED;
1280 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1281 if (!queue) {
1282 ret = -ENOMEM;
1283 goto put_device;
1285 queue->port = cm_id->context;
1287 if (queue->host_qid == 0) {
1288 /* Let inflight controller teardown complete */
1289 flush_scheduled_work();
1292 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1293 if (ret) {
1294 schedule_work(&queue->release_work);
1295 /* Destroying rdma_cm id is not needed here */
1296 return 0;
1299 mutex_lock(&nvmet_rdma_queue_mutex);
1300 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1301 mutex_unlock(&nvmet_rdma_queue_mutex);
1303 return 0;
1305 put_device:
1306 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1308 return ret;
1311 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1313 unsigned long flags;
1315 spin_lock_irqsave(&queue->state_lock, flags);
1316 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1317 pr_warn("trying to establish a connected queue\n");
1318 goto out_unlock;
1320 queue->state = NVMET_RDMA_Q_LIVE;
1322 while (!list_empty(&queue->rsp_wait_list)) {
1323 struct nvmet_rdma_rsp *cmd;
1325 cmd = list_first_entry(&queue->rsp_wait_list,
1326 struct nvmet_rdma_rsp, wait_list);
1327 list_del(&cmd->wait_list);
1329 spin_unlock_irqrestore(&queue->state_lock, flags);
1330 nvmet_rdma_handle_command(queue, cmd);
1331 spin_lock_irqsave(&queue->state_lock, flags);
1334 out_unlock:
1335 spin_unlock_irqrestore(&queue->state_lock, flags);
1338 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1340 bool disconnect = false;
1341 unsigned long flags;
1343 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1345 spin_lock_irqsave(&queue->state_lock, flags);
1346 switch (queue->state) {
1347 case NVMET_RDMA_Q_CONNECTING:
1348 case NVMET_RDMA_Q_LIVE:
1349 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1350 disconnect = true;
1351 break;
1352 case NVMET_RDMA_Q_DISCONNECTING:
1353 break;
1355 spin_unlock_irqrestore(&queue->state_lock, flags);
1357 if (disconnect) {
1358 rdma_disconnect(queue->cm_id);
1359 schedule_work(&queue->release_work);
1363 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1365 bool disconnect = false;
1367 mutex_lock(&nvmet_rdma_queue_mutex);
1368 if (!list_empty(&queue->queue_list)) {
1369 list_del_init(&queue->queue_list);
1370 disconnect = true;
1372 mutex_unlock(&nvmet_rdma_queue_mutex);
1374 if (disconnect)
1375 __nvmet_rdma_queue_disconnect(queue);
1378 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1379 struct nvmet_rdma_queue *queue)
1381 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1383 mutex_lock(&nvmet_rdma_queue_mutex);
1384 if (!list_empty(&queue->queue_list))
1385 list_del_init(&queue->queue_list);
1386 mutex_unlock(&nvmet_rdma_queue_mutex);
1388 pr_err("failed to connect queue %d\n", queue->idx);
1389 schedule_work(&queue->release_work);
1393 * nvme_rdma_device_removal() - Handle RDMA device removal
1394 * @cm_id: rdma_cm id, used for nvmet port
1395 * @queue: nvmet rdma queue (cm id qp_context)
1397 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1398 * to unplug. Note that this event can be generated on a normal
1399 * queue cm_id and/or a device bound listener cm_id (where in this
1400 * case queue will be null).
1402 * We registered an ib_client to handle device removal for queues,
1403 * so we only need to handle the listening port cm_ids. In this case
1404 * we nullify the priv to prevent double cm_id destruction and destroying
1405 * the cm_id implicitely by returning a non-zero rc to the callout.
1407 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1408 struct nvmet_rdma_queue *queue)
1410 struct nvmet_port *port;
1412 if (queue) {
1414 * This is a queue cm_id. we have registered
1415 * an ib_client to handle queues removal
1416 * so don't interfear and just return.
1418 return 0;
1421 port = cm_id->context;
1424 * This is a listener cm_id. Make sure that
1425 * future remove_port won't invoke a double
1426 * cm_id destroy. use atomic xchg to make sure
1427 * we don't compete with remove_port.
1429 if (xchg(&port->priv, NULL) != cm_id)
1430 return 0;
1433 * We need to return 1 so that the core will destroy
1434 * it's own ID. What a great API design..
1436 return 1;
1439 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1440 struct rdma_cm_event *event)
1442 struct nvmet_rdma_queue *queue = NULL;
1443 int ret = 0;
1445 if (cm_id->qp)
1446 queue = cm_id->qp->qp_context;
1448 pr_debug("%s (%d): status %d id %p\n",
1449 rdma_event_msg(event->event), event->event,
1450 event->status, cm_id);
1452 switch (event->event) {
1453 case RDMA_CM_EVENT_CONNECT_REQUEST:
1454 ret = nvmet_rdma_queue_connect(cm_id, event);
1455 break;
1456 case RDMA_CM_EVENT_ESTABLISHED:
1457 nvmet_rdma_queue_established(queue);
1458 break;
1459 case RDMA_CM_EVENT_ADDR_CHANGE:
1460 case RDMA_CM_EVENT_DISCONNECTED:
1461 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1462 nvmet_rdma_queue_disconnect(queue);
1463 break;
1464 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1465 ret = nvmet_rdma_device_removal(cm_id, queue);
1466 break;
1467 case RDMA_CM_EVENT_REJECTED:
1468 pr_debug("Connection rejected: %s\n",
1469 rdma_reject_msg(cm_id, event->status));
1470 /* FALLTHROUGH */
1471 case RDMA_CM_EVENT_UNREACHABLE:
1472 case RDMA_CM_EVENT_CONNECT_ERROR:
1473 nvmet_rdma_queue_connect_fail(cm_id, queue);
1474 break;
1475 default:
1476 pr_err("received unrecognized RDMA CM event %d\n",
1477 event->event);
1478 break;
1481 return ret;
1484 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1486 struct nvmet_rdma_queue *queue;
1488 restart:
1489 mutex_lock(&nvmet_rdma_queue_mutex);
1490 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1491 if (queue->nvme_sq.ctrl == ctrl) {
1492 list_del_init(&queue->queue_list);
1493 mutex_unlock(&nvmet_rdma_queue_mutex);
1495 __nvmet_rdma_queue_disconnect(queue);
1496 goto restart;
1499 mutex_unlock(&nvmet_rdma_queue_mutex);
1502 static int nvmet_rdma_add_port(struct nvmet_port *port)
1504 struct rdma_cm_id *cm_id;
1505 struct sockaddr_storage addr = { };
1506 __kernel_sa_family_t af;
1507 int ret;
1509 switch (port->disc_addr.adrfam) {
1510 case NVMF_ADDR_FAMILY_IP4:
1511 af = AF_INET;
1512 break;
1513 case NVMF_ADDR_FAMILY_IP6:
1514 af = AF_INET6;
1515 break;
1516 default:
1517 pr_err("address family %d not supported\n",
1518 port->disc_addr.adrfam);
1519 return -EINVAL;
1522 if (port->inline_data_size < 0) {
1523 port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1524 } else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1525 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1526 port->inline_data_size,
1527 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1528 port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1531 ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
1532 port->disc_addr.trsvcid, &addr);
1533 if (ret) {
1534 pr_err("malformed ip/port passed: %s:%s\n",
1535 port->disc_addr.traddr, port->disc_addr.trsvcid);
1536 return ret;
1539 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1540 RDMA_PS_TCP, IB_QPT_RC);
1541 if (IS_ERR(cm_id)) {
1542 pr_err("CM ID creation failed\n");
1543 return PTR_ERR(cm_id);
1547 * Allow both IPv4 and IPv6 sockets to bind a single port
1548 * at the same time.
1550 ret = rdma_set_afonly(cm_id, 1);
1551 if (ret) {
1552 pr_err("rdma_set_afonly failed (%d)\n", ret);
1553 goto out_destroy_id;
1556 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1557 if (ret) {
1558 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1559 (struct sockaddr *)&addr, ret);
1560 goto out_destroy_id;
1563 ret = rdma_listen(cm_id, 128);
1564 if (ret) {
1565 pr_err("listening to %pISpcs failed (%d)\n",
1566 (struct sockaddr *)&addr, ret);
1567 goto out_destroy_id;
1570 pr_info("enabling port %d (%pISpcs)\n",
1571 le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1572 port->priv = cm_id;
1573 return 0;
1575 out_destroy_id:
1576 rdma_destroy_id(cm_id);
1577 return ret;
1580 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1582 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1584 if (cm_id)
1585 rdma_destroy_id(cm_id);
1588 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1589 struct nvmet_port *port, char *traddr)
1591 struct rdma_cm_id *cm_id = port->priv;
1593 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1594 struct nvmet_rdma_rsp *rsp =
1595 container_of(req, struct nvmet_rdma_rsp, req);
1596 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1597 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1599 sprintf(traddr, "%pISc", addr);
1600 } else {
1601 memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
1605 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1606 .owner = THIS_MODULE,
1607 .type = NVMF_TRTYPE_RDMA,
1608 .msdbd = 1,
1609 .has_keyed_sgls = 1,
1610 .add_port = nvmet_rdma_add_port,
1611 .remove_port = nvmet_rdma_remove_port,
1612 .queue_response = nvmet_rdma_queue_response,
1613 .delete_ctrl = nvmet_rdma_delete_ctrl,
1614 .disc_traddr = nvmet_rdma_disc_port_addr,
1617 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1619 struct nvmet_rdma_queue *queue, *tmp;
1620 struct nvmet_rdma_device *ndev;
1621 bool found = false;
1623 mutex_lock(&device_list_mutex);
1624 list_for_each_entry(ndev, &device_list, entry) {
1625 if (ndev->device == ib_device) {
1626 found = true;
1627 break;
1630 mutex_unlock(&device_list_mutex);
1632 if (!found)
1633 return;
1636 * IB Device that is used by nvmet controllers is being removed,
1637 * delete all queues using this device.
1639 mutex_lock(&nvmet_rdma_queue_mutex);
1640 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1641 queue_list) {
1642 if (queue->dev->device != ib_device)
1643 continue;
1645 pr_info("Removing queue %d\n", queue->idx);
1646 list_del_init(&queue->queue_list);
1647 __nvmet_rdma_queue_disconnect(queue);
1649 mutex_unlock(&nvmet_rdma_queue_mutex);
1651 flush_scheduled_work();
1654 static struct ib_client nvmet_rdma_ib_client = {
1655 .name = "nvmet_rdma",
1656 .remove = nvmet_rdma_remove_one
1659 static int __init nvmet_rdma_init(void)
1661 int ret;
1663 ret = ib_register_client(&nvmet_rdma_ib_client);
1664 if (ret)
1665 return ret;
1667 ret = nvmet_register_transport(&nvmet_rdma_ops);
1668 if (ret)
1669 goto err_ib_client;
1671 return 0;
1673 err_ib_client:
1674 ib_unregister_client(&nvmet_rdma_ib_client);
1675 return ret;
1678 static void __exit nvmet_rdma_exit(void)
1680 nvmet_unregister_transport(&nvmet_rdma_ops);
1681 ib_unregister_client(&nvmet_rdma_ib_client);
1682 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1683 ida_destroy(&nvmet_rdma_queue_ida);
1686 module_init(nvmet_rdma_init);
1687 module_exit(nvmet_rdma_exit);
1689 MODULE_LICENSE("GPL v2");
1690 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */