treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blob307df98347ba24188d196e11f4cc29f3e7667202
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
40 #include "remoteproc_internal.h"
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
44 static DEFINE_MUTEX(rproc_list_mutex);
45 static LIST_HEAD(rproc_list);
47 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
48 void *, int offset, int avail);
50 static int rproc_alloc_carveout(struct rproc *rproc,
51 struct rproc_mem_entry *mem);
52 static int rproc_release_carveout(struct rproc *rproc,
53 struct rproc_mem_entry *mem);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
69 return "unknown";
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
83 struct rproc *rproc = token;
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
93 return -ENOSYS;
96 static int rproc_enable_iommu(struct rproc *rproc)
98 struct iommu_domain *domain;
99 struct device *dev = rproc->dev.parent;
100 int ret;
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
104 return 0;
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
121 rproc->domain = domain;
123 return 0;
125 free_domain:
126 iommu_domain_free(domain);
127 return ret;
130 static void rproc_disable_iommu(struct rproc *rproc)
132 struct iommu_domain *domain = rproc->domain;
133 struct device *dev = rproc->dev.parent;
135 if (!domain)
136 return;
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
142 phys_addr_t rproc_va_to_pa(void *cpu_addr)
145 * Return physical address according to virtual address location
146 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
147 * - in kernel: if region allocated in generic dma memory pool
149 if (is_vmalloc_addr(cpu_addr)) {
150 return page_to_phys(vmalloc_to_page(cpu_addr)) +
151 offset_in_page(cpu_addr);
154 WARN_ON(!virt_addr_valid(cpu_addr));
155 return virt_to_phys(cpu_addr);
157 EXPORT_SYMBOL(rproc_va_to_pa);
160 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
161 * @rproc: handle of a remote processor
162 * @da: remoteproc device address to translate
163 * @len: length of the memory region @da is pointing to
165 * Some remote processors will ask us to allocate them physically contiguous
166 * memory regions (which we call "carveouts"), and map them to specific
167 * device addresses (which are hardcoded in the firmware). They may also have
168 * dedicated memory regions internal to the processors, and use them either
169 * exclusively or alongside carveouts.
171 * They may then ask us to copy objects into specific device addresses (e.g.
172 * code/data sections) or expose us certain symbols in other device address
173 * (e.g. their trace buffer).
175 * This function is a helper function with which we can go over the allocated
176 * carveouts and translate specific device addresses to kernel virtual addresses
177 * so we can access the referenced memory. This function also allows to perform
178 * translations on the internal remoteproc memory regions through a platform
179 * implementation specific da_to_va ops, if present.
181 * The function returns a valid kernel address on success or NULL on failure.
183 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
184 * but only on kernel direct mapped RAM memory. Instead, we're just using
185 * here the output of the DMA API for the carveouts, which should be more
186 * correct.
188 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
190 struct rproc_mem_entry *carveout;
191 void *ptr = NULL;
193 if (rproc->ops->da_to_va) {
194 ptr = rproc->ops->da_to_va(rproc, da, len);
195 if (ptr)
196 goto out;
199 list_for_each_entry(carveout, &rproc->carveouts, node) {
200 int offset = da - carveout->da;
202 /* Verify that carveout is allocated */
203 if (!carveout->va)
204 continue;
206 /* try next carveout if da is too small */
207 if (offset < 0)
208 continue;
210 /* try next carveout if da is too large */
211 if (offset + len > carveout->len)
212 continue;
214 ptr = carveout->va + offset;
216 break;
219 out:
220 return ptr;
222 EXPORT_SYMBOL(rproc_da_to_va);
225 * rproc_find_carveout_by_name() - lookup the carveout region by a name
226 * @rproc: handle of a remote processor
227 * @name,..: carveout name to find (standard printf format)
229 * Platform driver has the capability to register some pre-allacoted carveout
230 * (physically contiguous memory regions) before rproc firmware loading and
231 * associated resource table analysis. These regions may be dedicated memory
232 * regions internal to the coprocessor or specified DDR region with specific
233 * attributes
235 * This function is a helper function with which we can go over the
236 * allocated carveouts and return associated region characteristics like
237 * coprocessor address, length or processor virtual address.
239 * Return: a valid pointer on carveout entry on success or NULL on failure.
241 struct rproc_mem_entry *
242 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
244 va_list args;
245 char _name[32];
246 struct rproc_mem_entry *carveout, *mem = NULL;
248 if (!name)
249 return NULL;
251 va_start(args, name);
252 vsnprintf(_name, sizeof(_name), name, args);
253 va_end(args);
255 list_for_each_entry(carveout, &rproc->carveouts, node) {
256 /* Compare carveout and requested names */
257 if (!strcmp(carveout->name, _name)) {
258 mem = carveout;
259 break;
263 return mem;
267 * rproc_check_carveout_da() - Check specified carveout da configuration
268 * @rproc: handle of a remote processor
269 * @mem: pointer on carveout to check
270 * @da: area device address
271 * @len: associated area size
273 * This function is a helper function to verify requested device area (couple
274 * da, len) is part of specified carveout.
275 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
276 * checked.
278 * Return: 0 if carveout matches request else error
280 static int rproc_check_carveout_da(struct rproc *rproc,
281 struct rproc_mem_entry *mem, u32 da, u32 len)
283 struct device *dev = &rproc->dev;
284 int delta;
286 /* Check requested resource length */
287 if (len > mem->len) {
288 dev_err(dev, "Registered carveout doesn't fit len request\n");
289 return -EINVAL;
292 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
293 /* Address doesn't match registered carveout configuration */
294 return -EINVAL;
295 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
296 delta = da - mem->da;
298 /* Check requested resource belongs to registered carveout */
299 if (delta < 0) {
300 dev_err(dev,
301 "Registered carveout doesn't fit da request\n");
302 return -EINVAL;
305 if (delta + len > mem->len) {
306 dev_err(dev,
307 "Registered carveout doesn't fit len request\n");
308 return -EINVAL;
312 return 0;
315 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
317 struct rproc *rproc = rvdev->rproc;
318 struct device *dev = &rproc->dev;
319 struct rproc_vring *rvring = &rvdev->vring[i];
320 struct fw_rsc_vdev *rsc;
321 int ret, size, notifyid;
322 struct rproc_mem_entry *mem;
324 /* actual size of vring (in bytes) */
325 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
327 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
329 /* Search for pre-registered carveout */
330 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
332 if (mem) {
333 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
334 return -ENOMEM;
335 } else {
336 /* Register carveout in in list */
337 mem = rproc_mem_entry_init(dev, NULL, 0,
338 size, rsc->vring[i].da,
339 rproc_alloc_carveout,
340 rproc_release_carveout,
341 "vdev%dvring%d",
342 rvdev->index, i);
343 if (!mem) {
344 dev_err(dev, "Can't allocate memory entry structure\n");
345 return -ENOMEM;
348 rproc_add_carveout(rproc, mem);
352 * Assign an rproc-wide unique index for this vring
353 * TODO: assign a notifyid for rvdev updates as well
354 * TODO: support predefined notifyids (via resource table)
356 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
357 if (ret < 0) {
358 dev_err(dev, "idr_alloc failed: %d\n", ret);
359 return ret;
361 notifyid = ret;
363 /* Potentially bump max_notifyid */
364 if (notifyid > rproc->max_notifyid)
365 rproc->max_notifyid = notifyid;
367 rvring->notifyid = notifyid;
369 /* Let the rproc know the notifyid of this vring.*/
370 rsc->vring[i].notifyid = notifyid;
371 return 0;
374 static int
375 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
377 struct rproc *rproc = rvdev->rproc;
378 struct device *dev = &rproc->dev;
379 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
380 struct rproc_vring *rvring = &rvdev->vring[i];
382 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
383 i, vring->da, vring->num, vring->align);
385 /* verify queue size and vring alignment are sane */
386 if (!vring->num || !vring->align) {
387 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
388 vring->num, vring->align);
389 return -EINVAL;
392 rvring->len = vring->num;
393 rvring->align = vring->align;
394 rvring->rvdev = rvdev;
396 return 0;
399 void rproc_free_vring(struct rproc_vring *rvring)
401 struct rproc *rproc = rvring->rvdev->rproc;
402 int idx = rvring - rvring->rvdev->vring;
403 struct fw_rsc_vdev *rsc;
405 idr_remove(&rproc->notifyids, rvring->notifyid);
407 /* reset resource entry info */
408 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
409 rsc->vring[idx].da = 0;
410 rsc->vring[idx].notifyid = -1;
413 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
415 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417 return rproc_add_virtio_dev(rvdev, rvdev->id);
420 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
422 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
423 int ret;
425 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
426 if (ret)
427 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
431 * rproc_rvdev_release() - release the existence of a rvdev
433 * @dev: the subdevice's dev
435 static void rproc_rvdev_release(struct device *dev)
437 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
439 of_reserved_mem_device_release(dev);
441 kfree(rvdev);
445 * rproc_handle_vdev() - handle a vdev fw resource
446 * @rproc: the remote processor
447 * @rsc: the vring resource descriptor
448 * @avail: size of available data (for sanity checking the image)
450 * This resource entry requests the host to statically register a virtio
451 * device (vdev), and setup everything needed to support it. It contains
452 * everything needed to make it possible: the virtio device id, virtio
453 * device features, vrings information, virtio config space, etc...
455 * Before registering the vdev, the vrings are allocated from non-cacheable
456 * physically contiguous memory. Currently we only support two vrings per
457 * remote processor (temporary limitation). We might also want to consider
458 * doing the vring allocation only later when ->find_vqs() is invoked, and
459 * then release them upon ->del_vqs().
461 * Note: @da is currently not really handled correctly: we dynamically
462 * allocate it using the DMA API, ignoring requested hard coded addresses,
463 * and we don't take care of any required IOMMU programming. This is all
464 * going to be taken care of when the generic iommu-based DMA API will be
465 * merged. Meanwhile, statically-addressed iommu-based firmware images should
466 * use RSC_DEVMEM resource entries to map their required @da to the physical
467 * address of their base CMA region (ouch, hacky!).
469 * Returns 0 on success, or an appropriate error code otherwise
471 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
472 int offset, int avail)
474 struct device *dev = &rproc->dev;
475 struct rproc_vdev *rvdev;
476 int i, ret;
477 char name[16];
479 /* make sure resource isn't truncated */
480 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
481 + rsc->config_len > avail) {
482 dev_err(dev, "vdev rsc is truncated\n");
483 return -EINVAL;
486 /* make sure reserved bytes are zeroes */
487 if (rsc->reserved[0] || rsc->reserved[1]) {
488 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
489 return -EINVAL;
492 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
493 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
495 /* we currently support only two vrings per rvdev */
496 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
497 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
498 return -EINVAL;
501 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
502 if (!rvdev)
503 return -ENOMEM;
505 kref_init(&rvdev->refcount);
507 rvdev->id = rsc->id;
508 rvdev->rproc = rproc;
509 rvdev->index = rproc->nb_vdev++;
511 /* Initialise vdev subdevice */
512 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
513 rvdev->dev.parent = rproc->dev.parent;
514 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
515 rvdev->dev.release = rproc_rvdev_release;
516 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
517 dev_set_drvdata(&rvdev->dev, rvdev);
519 ret = device_register(&rvdev->dev);
520 if (ret) {
521 put_device(&rvdev->dev);
522 return ret;
524 /* Make device dma capable by inheriting from parent's capabilities */
525 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
527 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
528 dma_get_mask(rproc->dev.parent));
529 if (ret) {
530 dev_warn(dev,
531 "Failed to set DMA mask %llx. Trying to continue... %x\n",
532 dma_get_mask(rproc->dev.parent), ret);
535 /* parse the vrings */
536 for (i = 0; i < rsc->num_of_vrings; i++) {
537 ret = rproc_parse_vring(rvdev, rsc, i);
538 if (ret)
539 goto free_rvdev;
542 /* remember the resource offset*/
543 rvdev->rsc_offset = offset;
545 /* allocate the vring resources */
546 for (i = 0; i < rsc->num_of_vrings; i++) {
547 ret = rproc_alloc_vring(rvdev, i);
548 if (ret)
549 goto unwind_vring_allocations;
552 list_add_tail(&rvdev->node, &rproc->rvdevs);
554 rvdev->subdev.start = rproc_vdev_do_start;
555 rvdev->subdev.stop = rproc_vdev_do_stop;
557 rproc_add_subdev(rproc, &rvdev->subdev);
559 return 0;
561 unwind_vring_allocations:
562 for (i--; i >= 0; i--)
563 rproc_free_vring(&rvdev->vring[i]);
564 free_rvdev:
565 device_unregister(&rvdev->dev);
566 return ret;
569 void rproc_vdev_release(struct kref *ref)
571 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
572 struct rproc_vring *rvring;
573 struct rproc *rproc = rvdev->rproc;
574 int id;
576 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
577 rvring = &rvdev->vring[id];
578 rproc_free_vring(rvring);
581 rproc_remove_subdev(rproc, &rvdev->subdev);
582 list_del(&rvdev->node);
583 device_unregister(&rvdev->dev);
587 * rproc_handle_trace() - handle a shared trace buffer resource
588 * @rproc: the remote processor
589 * @rsc: the trace resource descriptor
590 * @avail: size of available data (for sanity checking the image)
592 * In case the remote processor dumps trace logs into memory,
593 * export it via debugfs.
595 * Currently, the 'da' member of @rsc should contain the device address
596 * where the remote processor is dumping the traces. Later we could also
597 * support dynamically allocating this address using the generic
598 * DMA API (but currently there isn't a use case for that).
600 * Returns 0 on success, or an appropriate error code otherwise
602 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
603 int offset, int avail)
605 struct rproc_debug_trace *trace;
606 struct device *dev = &rproc->dev;
607 char name[15];
609 if (sizeof(*rsc) > avail) {
610 dev_err(dev, "trace rsc is truncated\n");
611 return -EINVAL;
614 /* make sure reserved bytes are zeroes */
615 if (rsc->reserved) {
616 dev_err(dev, "trace rsc has non zero reserved bytes\n");
617 return -EINVAL;
620 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
621 if (!trace)
622 return -ENOMEM;
624 /* set the trace buffer dma properties */
625 trace->trace_mem.len = rsc->len;
626 trace->trace_mem.da = rsc->da;
628 /* set pointer on rproc device */
629 trace->rproc = rproc;
631 /* make sure snprintf always null terminates, even if truncating */
632 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
634 /* create the debugfs entry */
635 trace->tfile = rproc_create_trace_file(name, rproc, trace);
636 if (!trace->tfile) {
637 kfree(trace);
638 return -EINVAL;
641 list_add_tail(&trace->node, &rproc->traces);
643 rproc->num_traces++;
645 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
646 name, rsc->da, rsc->len);
648 return 0;
652 * rproc_handle_devmem() - handle devmem resource entry
653 * @rproc: remote processor handle
654 * @rsc: the devmem resource entry
655 * @avail: size of available data (for sanity checking the image)
657 * Remote processors commonly need to access certain on-chip peripherals.
659 * Some of these remote processors access memory via an iommu device,
660 * and might require us to configure their iommu before they can access
661 * the on-chip peripherals they need.
663 * This resource entry is a request to map such a peripheral device.
665 * These devmem entries will contain the physical address of the device in
666 * the 'pa' member. If a specific device address is expected, then 'da' will
667 * contain it (currently this is the only use case supported). 'len' will
668 * contain the size of the physical region we need to map.
670 * Currently we just "trust" those devmem entries to contain valid physical
671 * addresses, but this is going to change: we want the implementations to
672 * tell us ranges of physical addresses the firmware is allowed to request,
673 * and not allow firmwares to request access to physical addresses that
674 * are outside those ranges.
676 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
677 int offset, int avail)
679 struct rproc_mem_entry *mapping;
680 struct device *dev = &rproc->dev;
681 int ret;
683 /* no point in handling this resource without a valid iommu domain */
684 if (!rproc->domain)
685 return -EINVAL;
687 if (sizeof(*rsc) > avail) {
688 dev_err(dev, "devmem rsc is truncated\n");
689 return -EINVAL;
692 /* make sure reserved bytes are zeroes */
693 if (rsc->reserved) {
694 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
695 return -EINVAL;
698 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
699 if (!mapping)
700 return -ENOMEM;
702 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
703 if (ret) {
704 dev_err(dev, "failed to map devmem: %d\n", ret);
705 goto out;
709 * We'll need this info later when we'll want to unmap everything
710 * (e.g. on shutdown).
712 * We can't trust the remote processor not to change the resource
713 * table, so we must maintain this info independently.
715 mapping->da = rsc->da;
716 mapping->len = rsc->len;
717 list_add_tail(&mapping->node, &rproc->mappings);
719 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
720 rsc->pa, rsc->da, rsc->len);
722 return 0;
724 out:
725 kfree(mapping);
726 return ret;
730 * rproc_alloc_carveout() - allocated specified carveout
731 * @rproc: rproc handle
732 * @mem: the memory entry to allocate
734 * This function allocate specified memory entry @mem using
735 * dma_alloc_coherent() as default allocator
737 static int rproc_alloc_carveout(struct rproc *rproc,
738 struct rproc_mem_entry *mem)
740 struct rproc_mem_entry *mapping = NULL;
741 struct device *dev = &rproc->dev;
742 dma_addr_t dma;
743 void *va;
744 int ret;
746 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
747 if (!va) {
748 dev_err(dev->parent,
749 "failed to allocate dma memory: len 0x%x\n", mem->len);
750 return -ENOMEM;
753 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
754 va, &dma, mem->len);
756 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
758 * Check requested da is equal to dma address
759 * and print a warn message in case of missalignment.
760 * Don't stop rproc_start sequence as coprocessor may
761 * build pa to da translation on its side.
763 if (mem->da != (u32)dma)
764 dev_warn(dev->parent,
765 "Allocated carveout doesn't fit device address request\n");
769 * Ok, this is non-standard.
771 * Sometimes we can't rely on the generic iommu-based DMA API
772 * to dynamically allocate the device address and then set the IOMMU
773 * tables accordingly, because some remote processors might
774 * _require_ us to use hard coded device addresses that their
775 * firmware was compiled with.
777 * In this case, we must use the IOMMU API directly and map
778 * the memory to the device address as expected by the remote
779 * processor.
781 * Obviously such remote processor devices should not be configured
782 * to use the iommu-based DMA API: we expect 'dma' to contain the
783 * physical address in this case.
785 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
786 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
787 if (!mapping) {
788 ret = -ENOMEM;
789 goto dma_free;
792 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
793 mem->flags);
794 if (ret) {
795 dev_err(dev, "iommu_map failed: %d\n", ret);
796 goto free_mapping;
800 * We'll need this info later when we'll want to unmap
801 * everything (e.g. on shutdown).
803 * We can't trust the remote processor not to change the
804 * resource table, so we must maintain this info independently.
806 mapping->da = mem->da;
807 mapping->len = mem->len;
808 list_add_tail(&mapping->node, &rproc->mappings);
810 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
811 mem->da, &dma);
814 if (mem->da == FW_RSC_ADDR_ANY) {
815 /* Update device address as undefined by requester */
816 if ((u64)dma & HIGH_BITS_MASK)
817 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
819 mem->da = (u32)dma;
822 mem->dma = dma;
823 mem->va = va;
825 return 0;
827 free_mapping:
828 kfree(mapping);
829 dma_free:
830 dma_free_coherent(dev->parent, mem->len, va, dma);
831 return ret;
835 * rproc_release_carveout() - release acquired carveout
836 * @rproc: rproc handle
837 * @mem: the memory entry to release
839 * This function releases specified memory entry @mem allocated via
840 * rproc_alloc_carveout() function by @rproc.
842 static int rproc_release_carveout(struct rproc *rproc,
843 struct rproc_mem_entry *mem)
845 struct device *dev = &rproc->dev;
847 /* clean up carveout allocations */
848 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
849 return 0;
853 * rproc_handle_carveout() - handle phys contig memory allocation requests
854 * @rproc: rproc handle
855 * @rsc: the resource entry
856 * @avail: size of available data (for image validation)
858 * This function will handle firmware requests for allocation of physically
859 * contiguous memory regions.
861 * These request entries should come first in the firmware's resource table,
862 * as other firmware entries might request placing other data objects inside
863 * these memory regions (e.g. data/code segments, trace resource entries, ...).
865 * Allocating memory this way helps utilizing the reserved physical memory
866 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
867 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
868 * pressure is important; it may have a substantial impact on performance.
870 static int rproc_handle_carveout(struct rproc *rproc,
871 struct fw_rsc_carveout *rsc,
872 int offset, int avail)
874 struct rproc_mem_entry *carveout;
875 struct device *dev = &rproc->dev;
877 if (sizeof(*rsc) > avail) {
878 dev_err(dev, "carveout rsc is truncated\n");
879 return -EINVAL;
882 /* make sure reserved bytes are zeroes */
883 if (rsc->reserved) {
884 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
885 return -EINVAL;
888 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
889 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
892 * Check carveout rsc already part of a registered carveout,
893 * Search by name, then check the da and length
895 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
897 if (carveout) {
898 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
899 dev_err(dev,
900 "Carveout already associated to resource table\n");
901 return -ENOMEM;
904 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
905 return -ENOMEM;
907 /* Update memory carveout with resource table info */
908 carveout->rsc_offset = offset;
909 carveout->flags = rsc->flags;
911 return 0;
914 /* Register carveout in in list */
915 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
916 rproc_alloc_carveout,
917 rproc_release_carveout, rsc->name);
918 if (!carveout) {
919 dev_err(dev, "Can't allocate memory entry structure\n");
920 return -ENOMEM;
923 carveout->flags = rsc->flags;
924 carveout->rsc_offset = offset;
925 rproc_add_carveout(rproc, carveout);
927 return 0;
931 * rproc_add_carveout() - register an allocated carveout region
932 * @rproc: rproc handle
933 * @mem: memory entry to register
935 * This function registers specified memory entry in @rproc carveouts list.
936 * Specified carveout should have been allocated before registering.
938 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
940 list_add_tail(&mem->node, &rproc->carveouts);
942 EXPORT_SYMBOL(rproc_add_carveout);
945 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946 * @dev: pointer on device struct
947 * @va: virtual address
948 * @dma: dma address
949 * @len: memory carveout length
950 * @da: device address
951 * @alloc: memory carveout allocation function
952 * @release: memory carveout release function
953 * @name: carveout name
955 * This function allocates a rproc_mem_entry struct and fill it with parameters
956 * provided by client.
958 struct rproc_mem_entry *
959 rproc_mem_entry_init(struct device *dev,
960 void *va, dma_addr_t dma, int len, u32 da,
961 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
962 int (*release)(struct rproc *, struct rproc_mem_entry *),
963 const char *name, ...)
965 struct rproc_mem_entry *mem;
966 va_list args;
968 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969 if (!mem)
970 return mem;
972 mem->va = va;
973 mem->dma = dma;
974 mem->da = da;
975 mem->len = len;
976 mem->alloc = alloc;
977 mem->release = release;
978 mem->rsc_offset = FW_RSC_ADDR_ANY;
979 mem->of_resm_idx = -1;
981 va_start(args, name);
982 vsnprintf(mem->name, sizeof(mem->name), name, args);
983 va_end(args);
985 return mem;
987 EXPORT_SYMBOL(rproc_mem_entry_init);
990 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991 * from a reserved memory phandle
992 * @dev: pointer on device struct
993 * @of_resm_idx: reserved memory phandle index in "memory-region"
994 * @len: memory carveout length
995 * @da: device address
996 * @name: carveout name
998 * This function allocates a rproc_mem_entry struct and fill it with parameters
999 * provided by client.
1001 struct rproc_mem_entry *
1002 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1003 u32 da, const char *name, ...)
1005 struct rproc_mem_entry *mem;
1006 va_list args;
1008 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1009 if (!mem)
1010 return mem;
1012 mem->da = da;
1013 mem->len = len;
1014 mem->rsc_offset = FW_RSC_ADDR_ANY;
1015 mem->of_resm_idx = of_resm_idx;
1017 va_start(args, name);
1018 vsnprintf(mem->name, sizeof(mem->name), name, args);
1019 va_end(args);
1021 return mem;
1023 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1026 * A lookup table for resource handlers. The indices are defined in
1027 * enum fw_resource_type.
1029 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1030 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1031 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1032 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1033 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1036 /* handle firmware resource entries before booting the remote processor */
1037 static int rproc_handle_resources(struct rproc *rproc,
1038 rproc_handle_resource_t handlers[RSC_LAST])
1040 struct device *dev = &rproc->dev;
1041 rproc_handle_resource_t handler;
1042 int ret = 0, i;
1044 if (!rproc->table_ptr)
1045 return 0;
1047 for (i = 0; i < rproc->table_ptr->num; i++) {
1048 int offset = rproc->table_ptr->offset[i];
1049 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1050 int avail = rproc->table_sz - offset - sizeof(*hdr);
1051 void *rsc = (void *)hdr + sizeof(*hdr);
1053 /* make sure table isn't truncated */
1054 if (avail < 0) {
1055 dev_err(dev, "rsc table is truncated\n");
1056 return -EINVAL;
1059 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1061 if (hdr->type >= RSC_VENDOR_START &&
1062 hdr->type <= RSC_VENDOR_END) {
1063 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1064 offset + sizeof(*hdr), avail);
1065 if (ret == RSC_HANDLED)
1066 continue;
1067 else if (ret < 0)
1068 break;
1070 dev_warn(dev, "unsupported vendor resource %d\n",
1071 hdr->type);
1072 continue;
1075 if (hdr->type >= RSC_LAST) {
1076 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1077 continue;
1080 handler = handlers[hdr->type];
1081 if (!handler)
1082 continue;
1084 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1085 if (ret)
1086 break;
1089 return ret;
1092 static int rproc_prepare_subdevices(struct rproc *rproc)
1094 struct rproc_subdev *subdev;
1095 int ret;
1097 list_for_each_entry(subdev, &rproc->subdevs, node) {
1098 if (subdev->prepare) {
1099 ret = subdev->prepare(subdev);
1100 if (ret)
1101 goto unroll_preparation;
1105 return 0;
1107 unroll_preparation:
1108 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1109 if (subdev->unprepare)
1110 subdev->unprepare(subdev);
1113 return ret;
1116 static int rproc_start_subdevices(struct rproc *rproc)
1118 struct rproc_subdev *subdev;
1119 int ret;
1121 list_for_each_entry(subdev, &rproc->subdevs, node) {
1122 if (subdev->start) {
1123 ret = subdev->start(subdev);
1124 if (ret)
1125 goto unroll_registration;
1129 return 0;
1131 unroll_registration:
1132 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1133 if (subdev->stop)
1134 subdev->stop(subdev, true);
1137 return ret;
1140 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1142 struct rproc_subdev *subdev;
1144 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1145 if (subdev->stop)
1146 subdev->stop(subdev, crashed);
1150 static void rproc_unprepare_subdevices(struct rproc *rproc)
1152 struct rproc_subdev *subdev;
1154 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1155 if (subdev->unprepare)
1156 subdev->unprepare(subdev);
1161 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1162 * in the list
1163 * @rproc: the remote processor handle
1165 * This function parses registered carveout list, performs allocation
1166 * if alloc() ops registered and updates resource table information
1167 * if rsc_offset set.
1169 * Return: 0 on success
1171 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1173 struct rproc_mem_entry *entry, *tmp;
1174 struct fw_rsc_carveout *rsc;
1175 struct device *dev = &rproc->dev;
1176 u64 pa;
1177 int ret;
1179 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1180 if (entry->alloc) {
1181 ret = entry->alloc(rproc, entry);
1182 if (ret) {
1183 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1184 entry->name, ret);
1185 return -ENOMEM;
1189 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1190 /* update resource table */
1191 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1194 * Some remote processors might need to know the pa
1195 * even though they are behind an IOMMU. E.g., OMAP4's
1196 * remote M3 processor needs this so it can control
1197 * on-chip hardware accelerators that are not behind
1198 * the IOMMU, and therefor must know the pa.
1200 * Generally we don't want to expose physical addresses
1201 * if we don't have to (remote processors are generally
1202 * _not_ trusted), so we might want to do this only for
1203 * remote processor that _must_ have this (e.g. OMAP4's
1204 * dual M3 subsystem).
1206 * Non-IOMMU processors might also want to have this info.
1207 * In this case, the device address and the physical address
1208 * are the same.
1211 /* Use va if defined else dma to generate pa */
1212 if (entry->va)
1213 pa = (u64)rproc_va_to_pa(entry->va);
1214 else
1215 pa = (u64)entry->dma;
1217 if (((u64)pa) & HIGH_BITS_MASK)
1218 dev_warn(dev,
1219 "Physical address cast in 32bit to fit resource table format\n");
1221 rsc->pa = (u32)pa;
1222 rsc->da = entry->da;
1223 rsc->len = entry->len;
1227 return 0;
1231 * rproc_coredump_cleanup() - clean up dump_segments list
1232 * @rproc: the remote processor handle
1234 static void rproc_coredump_cleanup(struct rproc *rproc)
1236 struct rproc_dump_segment *entry, *tmp;
1238 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1239 list_del(&entry->node);
1240 kfree(entry);
1245 * rproc_resource_cleanup() - clean up and free all acquired resources
1246 * @rproc: rproc handle
1248 * This function will free all resources acquired for @rproc, and it
1249 * is called whenever @rproc either shuts down or fails to boot.
1251 static void rproc_resource_cleanup(struct rproc *rproc)
1253 struct rproc_mem_entry *entry, *tmp;
1254 struct rproc_debug_trace *trace, *ttmp;
1255 struct rproc_vdev *rvdev, *rvtmp;
1256 struct device *dev = &rproc->dev;
1258 /* clean up debugfs trace entries */
1259 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1260 rproc_remove_trace_file(trace->tfile);
1261 rproc->num_traces--;
1262 list_del(&trace->node);
1263 kfree(trace);
1266 /* clean up iommu mapping entries */
1267 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1268 size_t unmapped;
1270 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1271 if (unmapped != entry->len) {
1272 /* nothing much to do besides complaining */
1273 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1274 unmapped);
1277 list_del(&entry->node);
1278 kfree(entry);
1281 /* clean up carveout allocations */
1282 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1283 if (entry->release)
1284 entry->release(rproc, entry);
1285 list_del(&entry->node);
1286 kfree(entry);
1289 /* clean up remote vdev entries */
1290 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1291 kref_put(&rvdev->refcount, rproc_vdev_release);
1293 rproc_coredump_cleanup(rproc);
1296 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1298 struct resource_table *loaded_table;
1299 struct device *dev = &rproc->dev;
1300 int ret;
1302 /* load the ELF segments to memory */
1303 ret = rproc_load_segments(rproc, fw);
1304 if (ret) {
1305 dev_err(dev, "Failed to load program segments: %d\n", ret);
1306 return ret;
1310 * The starting device has been given the rproc->cached_table as the
1311 * resource table. The address of the vring along with the other
1312 * allocated resources (carveouts etc) is stored in cached_table.
1313 * In order to pass this information to the remote device we must copy
1314 * this information to device memory. We also update the table_ptr so
1315 * that any subsequent changes will be applied to the loaded version.
1317 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1318 if (loaded_table) {
1319 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1320 rproc->table_ptr = loaded_table;
1323 ret = rproc_prepare_subdevices(rproc);
1324 if (ret) {
1325 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1326 rproc->name, ret);
1327 goto reset_table_ptr;
1330 /* power up the remote processor */
1331 ret = rproc->ops->start(rproc);
1332 if (ret) {
1333 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1334 goto unprepare_subdevices;
1337 /* Start any subdevices for the remote processor */
1338 ret = rproc_start_subdevices(rproc);
1339 if (ret) {
1340 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1341 rproc->name, ret);
1342 goto stop_rproc;
1345 rproc->state = RPROC_RUNNING;
1347 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1349 return 0;
1351 stop_rproc:
1352 rproc->ops->stop(rproc);
1353 unprepare_subdevices:
1354 rproc_unprepare_subdevices(rproc);
1355 reset_table_ptr:
1356 rproc->table_ptr = rproc->cached_table;
1358 return ret;
1362 * take a firmware and boot a remote processor with it.
1364 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1366 struct device *dev = &rproc->dev;
1367 const char *name = rproc->firmware;
1368 int ret;
1370 ret = rproc_fw_sanity_check(rproc, fw);
1371 if (ret)
1372 return ret;
1374 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1377 * if enabling an IOMMU isn't relevant for this rproc, this is
1378 * just a nop
1380 ret = rproc_enable_iommu(rproc);
1381 if (ret) {
1382 dev_err(dev, "can't enable iommu: %d\n", ret);
1383 return ret;
1386 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1388 /* Load resource table, core dump segment list etc from the firmware */
1389 ret = rproc_parse_fw(rproc, fw);
1390 if (ret)
1391 goto disable_iommu;
1393 /* reset max_notifyid */
1394 rproc->max_notifyid = -1;
1396 /* reset handled vdev */
1397 rproc->nb_vdev = 0;
1399 /* handle fw resources which are required to boot rproc */
1400 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1401 if (ret) {
1402 dev_err(dev, "Failed to process resources: %d\n", ret);
1403 goto clean_up_resources;
1406 /* Allocate carveout resources associated to rproc */
1407 ret = rproc_alloc_registered_carveouts(rproc);
1408 if (ret) {
1409 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1410 ret);
1411 goto clean_up_resources;
1414 ret = rproc_start(rproc, fw);
1415 if (ret)
1416 goto clean_up_resources;
1418 return 0;
1420 clean_up_resources:
1421 rproc_resource_cleanup(rproc);
1422 kfree(rproc->cached_table);
1423 rproc->cached_table = NULL;
1424 rproc->table_ptr = NULL;
1425 disable_iommu:
1426 rproc_disable_iommu(rproc);
1427 return ret;
1431 * take a firmware and boot it up.
1433 * Note: this function is called asynchronously upon registration of the
1434 * remote processor (so we must wait until it completes before we try
1435 * to unregister the device. one other option is just to use kref here,
1436 * that might be cleaner).
1438 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1440 struct rproc *rproc = context;
1442 rproc_boot(rproc);
1444 release_firmware(fw);
1447 static int rproc_trigger_auto_boot(struct rproc *rproc)
1449 int ret;
1452 * We're initiating an asynchronous firmware loading, so we can
1453 * be built-in kernel code, without hanging the boot process.
1455 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1456 rproc->firmware, &rproc->dev, GFP_KERNEL,
1457 rproc, rproc_auto_boot_callback);
1458 if (ret < 0)
1459 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1461 return ret;
1464 static int rproc_stop(struct rproc *rproc, bool crashed)
1466 struct device *dev = &rproc->dev;
1467 int ret;
1469 /* Stop any subdevices for the remote processor */
1470 rproc_stop_subdevices(rproc, crashed);
1472 /* the installed resource table is no longer accessible */
1473 rproc->table_ptr = rproc->cached_table;
1475 /* power off the remote processor */
1476 ret = rproc->ops->stop(rproc);
1477 if (ret) {
1478 dev_err(dev, "can't stop rproc: %d\n", ret);
1479 return ret;
1482 rproc_unprepare_subdevices(rproc);
1484 rproc->state = RPROC_OFFLINE;
1486 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1488 return 0;
1492 * rproc_coredump_add_segment() - add segment of device memory to coredump
1493 * @rproc: handle of a remote processor
1494 * @da: device address
1495 * @size: size of segment
1497 * Add device memory to the list of segments to be included in a coredump for
1498 * the remoteproc.
1500 * Return: 0 on success, negative errno on error.
1502 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1504 struct rproc_dump_segment *segment;
1506 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1507 if (!segment)
1508 return -ENOMEM;
1510 segment->da = da;
1511 segment->size = size;
1513 list_add_tail(&segment->node, &rproc->dump_segments);
1515 return 0;
1517 EXPORT_SYMBOL(rproc_coredump_add_segment);
1520 * rproc_coredump_add_custom_segment() - add custom coredump segment
1521 * @rproc: handle of a remote processor
1522 * @da: device address
1523 * @size: size of segment
1524 * @dumpfn: custom dump function called for each segment during coredump
1525 * @priv: private data
1527 * Add device memory to the list of segments to be included in the coredump
1528 * and associate the segment with the given custom dump function and private
1529 * data.
1531 * Return: 0 on success, negative errno on error.
1533 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1534 dma_addr_t da, size_t size,
1535 void (*dumpfn)(struct rproc *rproc,
1536 struct rproc_dump_segment *segment,
1537 void *dest),
1538 void *priv)
1540 struct rproc_dump_segment *segment;
1542 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1543 if (!segment)
1544 return -ENOMEM;
1546 segment->da = da;
1547 segment->size = size;
1548 segment->priv = priv;
1549 segment->dump = dumpfn;
1551 list_add_tail(&segment->node, &rproc->dump_segments);
1553 return 0;
1555 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1558 * rproc_coredump() - perform coredump
1559 * @rproc: rproc handle
1561 * This function will generate an ELF header for the registered segments
1562 * and create a devcoredump device associated with rproc.
1564 static void rproc_coredump(struct rproc *rproc)
1566 struct rproc_dump_segment *segment;
1567 struct elf32_phdr *phdr;
1568 struct elf32_hdr *ehdr;
1569 size_t data_size;
1570 size_t offset;
1571 void *data;
1572 void *ptr;
1573 int phnum = 0;
1575 if (list_empty(&rproc->dump_segments))
1576 return;
1578 data_size = sizeof(*ehdr);
1579 list_for_each_entry(segment, &rproc->dump_segments, node) {
1580 data_size += sizeof(*phdr) + segment->size;
1582 phnum++;
1585 data = vmalloc(data_size);
1586 if (!data)
1587 return;
1589 ehdr = data;
1591 memset(ehdr, 0, sizeof(*ehdr));
1592 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1593 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1594 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1595 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1596 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1597 ehdr->e_type = ET_CORE;
1598 ehdr->e_machine = EM_NONE;
1599 ehdr->e_version = EV_CURRENT;
1600 ehdr->e_entry = rproc->bootaddr;
1601 ehdr->e_phoff = sizeof(*ehdr);
1602 ehdr->e_ehsize = sizeof(*ehdr);
1603 ehdr->e_phentsize = sizeof(*phdr);
1604 ehdr->e_phnum = phnum;
1606 phdr = data + ehdr->e_phoff;
1607 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1608 list_for_each_entry(segment, &rproc->dump_segments, node) {
1609 memset(phdr, 0, sizeof(*phdr));
1610 phdr->p_type = PT_LOAD;
1611 phdr->p_offset = offset;
1612 phdr->p_vaddr = segment->da;
1613 phdr->p_paddr = segment->da;
1614 phdr->p_filesz = segment->size;
1615 phdr->p_memsz = segment->size;
1616 phdr->p_flags = PF_R | PF_W | PF_X;
1617 phdr->p_align = 0;
1619 if (segment->dump) {
1620 segment->dump(rproc, segment, data + offset);
1621 } else {
1622 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1623 if (!ptr) {
1624 dev_err(&rproc->dev,
1625 "invalid coredump segment (%pad, %zu)\n",
1626 &segment->da, segment->size);
1627 memset(data + offset, 0xff, segment->size);
1628 } else {
1629 memcpy(data + offset, ptr, segment->size);
1633 offset += phdr->p_filesz;
1634 phdr++;
1637 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1641 * rproc_trigger_recovery() - recover a remoteproc
1642 * @rproc: the remote processor
1644 * The recovery is done by resetting all the virtio devices, that way all the
1645 * rpmsg drivers will be reseted along with the remote processor making the
1646 * remoteproc functional again.
1648 * This function can sleep, so it cannot be called from atomic context.
1650 int rproc_trigger_recovery(struct rproc *rproc)
1652 const struct firmware *firmware_p;
1653 struct device *dev = &rproc->dev;
1654 int ret;
1656 dev_err(dev, "recovering %s\n", rproc->name);
1658 ret = mutex_lock_interruptible(&rproc->lock);
1659 if (ret)
1660 return ret;
1662 ret = rproc_stop(rproc, true);
1663 if (ret)
1664 goto unlock_mutex;
1666 /* generate coredump */
1667 rproc_coredump(rproc);
1669 /* load firmware */
1670 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1671 if (ret < 0) {
1672 dev_err(dev, "request_firmware failed: %d\n", ret);
1673 goto unlock_mutex;
1676 /* boot the remote processor up again */
1677 ret = rproc_start(rproc, firmware_p);
1679 release_firmware(firmware_p);
1681 unlock_mutex:
1682 mutex_unlock(&rproc->lock);
1683 return ret;
1687 * rproc_crash_handler_work() - handle a crash
1689 * This function needs to handle everything related to a crash, like cpu
1690 * registers and stack dump, information to help to debug the fatal error, etc.
1692 static void rproc_crash_handler_work(struct work_struct *work)
1694 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1695 struct device *dev = &rproc->dev;
1697 dev_dbg(dev, "enter %s\n", __func__);
1699 mutex_lock(&rproc->lock);
1701 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1702 /* handle only the first crash detected */
1703 mutex_unlock(&rproc->lock);
1704 return;
1707 rproc->state = RPROC_CRASHED;
1708 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1709 rproc->name);
1711 mutex_unlock(&rproc->lock);
1713 if (!rproc->recovery_disabled)
1714 rproc_trigger_recovery(rproc);
1718 * rproc_boot() - boot a remote processor
1719 * @rproc: handle of a remote processor
1721 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723 * If the remote processor is already powered on, this function immediately
1724 * returns (successfully).
1726 * Returns 0 on success, and an appropriate error value otherwise.
1728 int rproc_boot(struct rproc *rproc)
1730 const struct firmware *firmware_p;
1731 struct device *dev;
1732 int ret;
1734 if (!rproc) {
1735 pr_err("invalid rproc handle\n");
1736 return -EINVAL;
1739 dev = &rproc->dev;
1741 ret = mutex_lock_interruptible(&rproc->lock);
1742 if (ret) {
1743 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1744 return ret;
1747 if (rproc->state == RPROC_DELETED) {
1748 ret = -ENODEV;
1749 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1750 goto unlock_mutex;
1753 /* skip the boot process if rproc is already powered up */
1754 if (atomic_inc_return(&rproc->power) > 1) {
1755 ret = 0;
1756 goto unlock_mutex;
1759 dev_info(dev, "powering up %s\n", rproc->name);
1761 /* load firmware */
1762 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1763 if (ret < 0) {
1764 dev_err(dev, "request_firmware failed: %d\n", ret);
1765 goto downref_rproc;
1768 ret = rproc_fw_boot(rproc, firmware_p);
1770 release_firmware(firmware_p);
1772 downref_rproc:
1773 if (ret)
1774 atomic_dec(&rproc->power);
1775 unlock_mutex:
1776 mutex_unlock(&rproc->lock);
1777 return ret;
1779 EXPORT_SYMBOL(rproc_boot);
1782 * rproc_shutdown() - power off the remote processor
1783 * @rproc: the remote processor
1785 * Power off a remote processor (previously booted with rproc_boot()).
1787 * In case @rproc is still being used by an additional user(s), then
1788 * this function will just decrement the power refcount and exit,
1789 * without really powering off the device.
1791 * Every call to rproc_boot() must (eventually) be accompanied by a call
1792 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1794 * Notes:
1795 * - we're not decrementing the rproc's refcount, only the power refcount.
1796 * which means that the @rproc handle stays valid even after rproc_shutdown()
1797 * returns, and users can still use it with a subsequent rproc_boot(), if
1798 * needed.
1800 void rproc_shutdown(struct rproc *rproc)
1802 struct device *dev = &rproc->dev;
1803 int ret;
1805 ret = mutex_lock_interruptible(&rproc->lock);
1806 if (ret) {
1807 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1808 return;
1811 /* if the remote proc is still needed, bail out */
1812 if (!atomic_dec_and_test(&rproc->power))
1813 goto out;
1815 ret = rproc_stop(rproc, false);
1816 if (ret) {
1817 atomic_inc(&rproc->power);
1818 goto out;
1821 /* clean up all acquired resources */
1822 rproc_resource_cleanup(rproc);
1824 rproc_disable_iommu(rproc);
1826 /* Free the copy of the resource table */
1827 kfree(rproc->cached_table);
1828 rproc->cached_table = NULL;
1829 rproc->table_ptr = NULL;
1830 out:
1831 mutex_unlock(&rproc->lock);
1833 EXPORT_SYMBOL(rproc_shutdown);
1836 * rproc_get_by_phandle() - find a remote processor by phandle
1837 * @phandle: phandle to the rproc
1839 * Finds an rproc handle using the remote processor's phandle, and then
1840 * return a handle to the rproc.
1842 * This function increments the remote processor's refcount, so always
1843 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845 * Returns the rproc handle on success, and NULL on failure.
1847 #ifdef CONFIG_OF
1848 struct rproc *rproc_get_by_phandle(phandle phandle)
1850 struct rproc *rproc = NULL, *r;
1851 struct device_node *np;
1853 np = of_find_node_by_phandle(phandle);
1854 if (!np)
1855 return NULL;
1857 mutex_lock(&rproc_list_mutex);
1858 list_for_each_entry(r, &rproc_list, node) {
1859 if (r->dev.parent && r->dev.parent->of_node == np) {
1860 /* prevent underlying implementation from being removed */
1861 if (!try_module_get(r->dev.parent->driver->owner)) {
1862 dev_err(&r->dev, "can't get owner\n");
1863 break;
1866 rproc = r;
1867 get_device(&rproc->dev);
1868 break;
1871 mutex_unlock(&rproc_list_mutex);
1873 of_node_put(np);
1875 return rproc;
1877 #else
1878 struct rproc *rproc_get_by_phandle(phandle phandle)
1880 return NULL;
1882 #endif
1883 EXPORT_SYMBOL(rproc_get_by_phandle);
1886 * rproc_add() - register a remote processor
1887 * @rproc: the remote processor handle to register
1889 * Registers @rproc with the remoteproc framework, after it has been
1890 * allocated with rproc_alloc().
1892 * This is called by the platform-specific rproc implementation, whenever
1893 * a new remote processor device is probed.
1895 * Returns 0 on success and an appropriate error code otherwise.
1897 * Note: this function initiates an asynchronous firmware loading
1898 * context, which will look for virtio devices supported by the rproc's
1899 * firmware.
1901 * If found, those virtio devices will be created and added, so as a result
1902 * of registering this remote processor, additional virtio drivers might be
1903 * probed.
1905 int rproc_add(struct rproc *rproc)
1907 struct device *dev = &rproc->dev;
1908 int ret;
1910 ret = device_add(dev);
1911 if (ret < 0)
1912 return ret;
1914 dev_info(dev, "%s is available\n", rproc->name);
1916 /* create debugfs entries */
1917 rproc_create_debug_dir(rproc);
1919 /* if rproc is marked always-on, request it to boot */
1920 if (rproc->auto_boot) {
1921 ret = rproc_trigger_auto_boot(rproc);
1922 if (ret < 0)
1923 return ret;
1926 /* expose to rproc_get_by_phandle users */
1927 mutex_lock(&rproc_list_mutex);
1928 list_add(&rproc->node, &rproc_list);
1929 mutex_unlock(&rproc_list_mutex);
1931 return 0;
1933 EXPORT_SYMBOL(rproc_add);
1936 * rproc_type_release() - release a remote processor instance
1937 * @dev: the rproc's device
1939 * This function should _never_ be called directly.
1941 * It will be called by the driver core when no one holds a valid pointer
1942 * to @dev anymore.
1944 static void rproc_type_release(struct device *dev)
1946 struct rproc *rproc = container_of(dev, struct rproc, dev);
1948 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1950 idr_destroy(&rproc->notifyids);
1952 if (rproc->index >= 0)
1953 ida_simple_remove(&rproc_dev_index, rproc->index);
1955 kfree(rproc->firmware);
1956 kfree(rproc->ops);
1957 kfree(rproc);
1960 static const struct device_type rproc_type = {
1961 .name = "remoteproc",
1962 .release = rproc_type_release,
1966 * rproc_alloc() - allocate a remote processor handle
1967 * @dev: the underlying device
1968 * @name: name of this remote processor
1969 * @ops: platform-specific handlers (mainly start/stop)
1970 * @firmware: name of firmware file to load, can be NULL
1971 * @len: length of private data needed by the rproc driver (in bytes)
1973 * Allocates a new remote processor handle, but does not register
1974 * it yet. if @firmware is NULL, a default name is used.
1976 * This function should be used by rproc implementations during initialization
1977 * of the remote processor.
1979 * After creating an rproc handle using this function, and when ready,
1980 * implementations should then call rproc_add() to complete
1981 * the registration of the remote processor.
1983 * On success the new rproc is returned, and on failure, NULL.
1985 * Note: _never_ directly deallocate @rproc, even if it was not registered
1986 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1988 struct rproc *rproc_alloc(struct device *dev, const char *name,
1989 const struct rproc_ops *ops,
1990 const char *firmware, int len)
1992 struct rproc *rproc;
1993 char *p, *template = "rproc-%s-fw";
1994 int name_len;
1996 if (!dev || !name || !ops)
1997 return NULL;
1999 if (!firmware) {
2001 * If the caller didn't pass in a firmware name then
2002 * construct a default name.
2004 name_len = strlen(name) + strlen(template) - 2 + 1;
2005 p = kmalloc(name_len, GFP_KERNEL);
2006 if (!p)
2007 return NULL;
2008 snprintf(p, name_len, template, name);
2009 } else {
2010 p = kstrdup(firmware, GFP_KERNEL);
2011 if (!p)
2012 return NULL;
2015 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2016 if (!rproc) {
2017 kfree(p);
2018 return NULL;
2021 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2022 if (!rproc->ops) {
2023 kfree(p);
2024 kfree(rproc);
2025 return NULL;
2028 rproc->firmware = p;
2029 rproc->name = name;
2030 rproc->priv = &rproc[1];
2031 rproc->auto_boot = true;
2033 device_initialize(&rproc->dev);
2034 rproc->dev.parent = dev;
2035 rproc->dev.type = &rproc_type;
2036 rproc->dev.class = &rproc_class;
2037 rproc->dev.driver_data = rproc;
2039 /* Assign a unique device index and name */
2040 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2041 if (rproc->index < 0) {
2042 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2043 put_device(&rproc->dev);
2044 return NULL;
2047 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2049 atomic_set(&rproc->power, 0);
2051 /* Default to ELF loader if no load function is specified */
2052 if (!rproc->ops->load) {
2053 rproc->ops->load = rproc_elf_load_segments;
2054 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2055 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2056 rproc->ops->sanity_check = rproc_elf_sanity_check;
2057 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2060 mutex_init(&rproc->lock);
2062 idr_init(&rproc->notifyids);
2064 INIT_LIST_HEAD(&rproc->carveouts);
2065 INIT_LIST_HEAD(&rproc->mappings);
2066 INIT_LIST_HEAD(&rproc->traces);
2067 INIT_LIST_HEAD(&rproc->rvdevs);
2068 INIT_LIST_HEAD(&rproc->subdevs);
2069 INIT_LIST_HEAD(&rproc->dump_segments);
2071 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2073 rproc->state = RPROC_OFFLINE;
2075 return rproc;
2077 EXPORT_SYMBOL(rproc_alloc);
2080 * rproc_free() - unroll rproc_alloc()
2081 * @rproc: the remote processor handle
2083 * This function decrements the rproc dev refcount.
2085 * If no one holds any reference to rproc anymore, then its refcount would
2086 * now drop to zero, and it would be freed.
2088 void rproc_free(struct rproc *rproc)
2090 put_device(&rproc->dev);
2092 EXPORT_SYMBOL(rproc_free);
2095 * rproc_put() - release rproc reference
2096 * @rproc: the remote processor handle
2098 * This function decrements the rproc dev refcount.
2100 * If no one holds any reference to rproc anymore, then its refcount would
2101 * now drop to zero, and it would be freed.
2103 void rproc_put(struct rproc *rproc)
2105 module_put(rproc->dev.parent->driver->owner);
2106 put_device(&rproc->dev);
2108 EXPORT_SYMBOL(rproc_put);
2111 * rproc_del() - unregister a remote processor
2112 * @rproc: rproc handle to unregister
2114 * This function should be called when the platform specific rproc
2115 * implementation decides to remove the rproc device. it should
2116 * _only_ be called if a previous invocation of rproc_add()
2117 * has completed successfully.
2119 * After rproc_del() returns, @rproc isn't freed yet, because
2120 * of the outstanding reference created by rproc_alloc. To decrement that
2121 * one last refcount, one still needs to call rproc_free().
2123 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125 int rproc_del(struct rproc *rproc)
2127 if (!rproc)
2128 return -EINVAL;
2130 /* if rproc is marked always-on, rproc_add() booted it */
2131 /* TODO: make sure this works with rproc->power > 1 */
2132 if (rproc->auto_boot)
2133 rproc_shutdown(rproc);
2135 mutex_lock(&rproc->lock);
2136 rproc->state = RPROC_DELETED;
2137 mutex_unlock(&rproc->lock);
2139 rproc_delete_debug_dir(rproc);
2141 /* the rproc is downref'ed as soon as it's removed from the klist */
2142 mutex_lock(&rproc_list_mutex);
2143 list_del(&rproc->node);
2144 mutex_unlock(&rproc_list_mutex);
2146 device_del(&rproc->dev);
2148 return 0;
2150 EXPORT_SYMBOL(rproc_del);
2153 * rproc_add_subdev() - add a subdevice to a remoteproc
2154 * @rproc: rproc handle to add the subdevice to
2155 * @subdev: subdev handle to register
2157 * Caller is responsible for populating optional subdevice function pointers.
2159 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2161 list_add_tail(&subdev->node, &rproc->subdevs);
2163 EXPORT_SYMBOL(rproc_add_subdev);
2166 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2167 * @rproc: rproc handle to remove the subdevice from
2168 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2172 list_del(&subdev->node);
2174 EXPORT_SYMBOL(rproc_remove_subdev);
2177 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2178 * @dev: child device to find ancestor of
2180 * Returns the ancestor rproc instance, or NULL if not found.
2182 struct rproc *rproc_get_by_child(struct device *dev)
2184 for (dev = dev->parent; dev; dev = dev->parent) {
2185 if (dev->type == &rproc_type)
2186 return dev->driver_data;
2189 return NULL;
2191 EXPORT_SYMBOL(rproc_get_by_child);
2194 * rproc_report_crash() - rproc crash reporter function
2195 * @rproc: remote processor
2196 * @type: crash type
2198 * This function must be called every time a crash is detected by the low-level
2199 * drivers implementing a specific remoteproc. This should not be called from a
2200 * non-remoteproc driver.
2202 * This function can be called from atomic/interrupt context.
2204 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2206 if (!rproc) {
2207 pr_err("NULL rproc pointer\n");
2208 return;
2211 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2212 rproc->name, rproc_crash_to_string(type));
2214 /* create a new task to handle the error */
2215 schedule_work(&rproc->crash_handler);
2217 EXPORT_SYMBOL(rproc_report_crash);
2219 static int __init remoteproc_init(void)
2221 rproc_init_sysfs();
2222 rproc_init_debugfs();
2224 return 0;
2226 module_init(remoteproc_init);
2228 static void __exit remoteproc_exit(void)
2230 ida_destroy(&rproc_dev_index);
2232 rproc_exit_debugfs();
2233 rproc_exit_sysfs();
2235 module_exit(remoteproc_exit);
2237 MODULE_LICENSE("GPL v2");
2238 MODULE_DESCRIPTION("Generic Remote Processor Framework");