1 // SPDX-License-Identifier: GPL-2.0-only
3 * Remote Processor Framework
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
17 #define pr_fmt(fmt) "%s: " fmt, __func__
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
40 #include "remoteproc_internal.h"
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
44 static DEFINE_MUTEX(rproc_list_mutex
);
45 static LIST_HEAD(rproc_list
);
47 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
,
48 void *, int offset
, int avail
);
50 static int rproc_alloc_carveout(struct rproc
*rproc
,
51 struct rproc_mem_entry
*mem
);
52 static int rproc_release_carveout(struct rproc
*rproc
,
53 struct rproc_mem_entry
*mem
);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index
);
58 static const char * const rproc_crash_names
[] = {
59 [RPROC_MMUFAULT
] = "mmufault",
60 [RPROC_WATCHDOG
] = "watchdog",
61 [RPROC_FATAL_ERROR
] = "fatal error",
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type
)
67 if (type
< ARRAY_SIZE(rproc_crash_names
))
68 return rproc_crash_names
[type
];
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
80 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
81 unsigned long iova
, int flags
, void *token
)
83 struct rproc
*rproc
= token
;
85 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
87 rproc_report_crash(rproc
, RPROC_MMUFAULT
);
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
96 static int rproc_enable_iommu(struct rproc
*rproc
)
98 struct iommu_domain
*domain
;
99 struct device
*dev
= rproc
->dev
.parent
;
102 if (!rproc
->has_iommu
) {
103 dev_dbg(dev
, "iommu not present\n");
107 domain
= iommu_domain_alloc(dev
->bus
);
109 dev_err(dev
, "can't alloc iommu domain\n");
113 iommu_set_fault_handler(domain
, rproc_iommu_fault
, rproc
);
115 ret
= iommu_attach_device(domain
, dev
);
117 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
121 rproc
->domain
= domain
;
126 iommu_domain_free(domain
);
130 static void rproc_disable_iommu(struct rproc
*rproc
)
132 struct iommu_domain
*domain
= rproc
->domain
;
133 struct device
*dev
= rproc
->dev
.parent
;
138 iommu_detach_device(domain
, dev
);
139 iommu_domain_free(domain
);
142 phys_addr_t
rproc_va_to_pa(void *cpu_addr
)
145 * Return physical address according to virtual address location
146 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
147 * - in kernel: if region allocated in generic dma memory pool
149 if (is_vmalloc_addr(cpu_addr
)) {
150 return page_to_phys(vmalloc_to_page(cpu_addr
)) +
151 offset_in_page(cpu_addr
);
154 WARN_ON(!virt_addr_valid(cpu_addr
));
155 return virt_to_phys(cpu_addr
);
157 EXPORT_SYMBOL(rproc_va_to_pa
);
160 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
161 * @rproc: handle of a remote processor
162 * @da: remoteproc device address to translate
163 * @len: length of the memory region @da is pointing to
165 * Some remote processors will ask us to allocate them physically contiguous
166 * memory regions (which we call "carveouts"), and map them to specific
167 * device addresses (which are hardcoded in the firmware). They may also have
168 * dedicated memory regions internal to the processors, and use them either
169 * exclusively or alongside carveouts.
171 * They may then ask us to copy objects into specific device addresses (e.g.
172 * code/data sections) or expose us certain symbols in other device address
173 * (e.g. their trace buffer).
175 * This function is a helper function with which we can go over the allocated
176 * carveouts and translate specific device addresses to kernel virtual addresses
177 * so we can access the referenced memory. This function also allows to perform
178 * translations on the internal remoteproc memory regions through a platform
179 * implementation specific da_to_va ops, if present.
181 * The function returns a valid kernel address on success or NULL on failure.
183 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
184 * but only on kernel direct mapped RAM memory. Instead, we're just using
185 * here the output of the DMA API for the carveouts, which should be more
188 void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, int len
)
190 struct rproc_mem_entry
*carveout
;
193 if (rproc
->ops
->da_to_va
) {
194 ptr
= rproc
->ops
->da_to_va(rproc
, da
, len
);
199 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
200 int offset
= da
- carveout
->da
;
202 /* Verify that carveout is allocated */
206 /* try next carveout if da is too small */
210 /* try next carveout if da is too large */
211 if (offset
+ len
> carveout
->len
)
214 ptr
= carveout
->va
+ offset
;
222 EXPORT_SYMBOL(rproc_da_to_va
);
225 * rproc_find_carveout_by_name() - lookup the carveout region by a name
226 * @rproc: handle of a remote processor
227 * @name,..: carveout name to find (standard printf format)
229 * Platform driver has the capability to register some pre-allacoted carveout
230 * (physically contiguous memory regions) before rproc firmware loading and
231 * associated resource table analysis. These regions may be dedicated memory
232 * regions internal to the coprocessor or specified DDR region with specific
235 * This function is a helper function with which we can go over the
236 * allocated carveouts and return associated region characteristics like
237 * coprocessor address, length or processor virtual address.
239 * Return: a valid pointer on carveout entry on success or NULL on failure.
241 struct rproc_mem_entry
*
242 rproc_find_carveout_by_name(struct rproc
*rproc
, const char *name
, ...)
246 struct rproc_mem_entry
*carveout
, *mem
= NULL
;
251 va_start(args
, name
);
252 vsnprintf(_name
, sizeof(_name
), name
, args
);
255 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
256 /* Compare carveout and requested names */
257 if (!strcmp(carveout
->name
, _name
)) {
267 * rproc_check_carveout_da() - Check specified carveout da configuration
268 * @rproc: handle of a remote processor
269 * @mem: pointer on carveout to check
270 * @da: area device address
271 * @len: associated area size
273 * This function is a helper function to verify requested device area (couple
274 * da, len) is part of specified carveout.
275 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
278 * Return: 0 if carveout matches request else error
280 static int rproc_check_carveout_da(struct rproc
*rproc
,
281 struct rproc_mem_entry
*mem
, u32 da
, u32 len
)
283 struct device
*dev
= &rproc
->dev
;
286 /* Check requested resource length */
287 if (len
> mem
->len
) {
288 dev_err(dev
, "Registered carveout doesn't fit len request\n");
292 if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
== FW_RSC_ADDR_ANY
) {
293 /* Address doesn't match registered carveout configuration */
295 } else if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
!= FW_RSC_ADDR_ANY
) {
296 delta
= da
- mem
->da
;
298 /* Check requested resource belongs to registered carveout */
301 "Registered carveout doesn't fit da request\n");
305 if (delta
+ len
> mem
->len
) {
307 "Registered carveout doesn't fit len request\n");
315 int rproc_alloc_vring(struct rproc_vdev
*rvdev
, int i
)
317 struct rproc
*rproc
= rvdev
->rproc
;
318 struct device
*dev
= &rproc
->dev
;
319 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
320 struct fw_rsc_vdev
*rsc
;
321 int ret
, size
, notifyid
;
322 struct rproc_mem_entry
*mem
;
324 /* actual size of vring (in bytes) */
325 size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
327 rsc
= (void *)rproc
->table_ptr
+ rvdev
->rsc_offset
;
329 /* Search for pre-registered carveout */
330 mem
= rproc_find_carveout_by_name(rproc
, "vdev%dvring%d", rvdev
->index
,
333 if (rproc_check_carveout_da(rproc
, mem
, rsc
->vring
[i
].da
, size
))
336 /* Register carveout in in list */
337 mem
= rproc_mem_entry_init(dev
, NULL
, 0,
338 size
, rsc
->vring
[i
].da
,
339 rproc_alloc_carveout
,
340 rproc_release_carveout
,
344 dev_err(dev
, "Can't allocate memory entry structure\n");
348 rproc_add_carveout(rproc
, mem
);
352 * Assign an rproc-wide unique index for this vring
353 * TODO: assign a notifyid for rvdev updates as well
354 * TODO: support predefined notifyids (via resource table)
356 ret
= idr_alloc(&rproc
->notifyids
, rvring
, 0, 0, GFP_KERNEL
);
358 dev_err(dev
, "idr_alloc failed: %d\n", ret
);
363 /* Potentially bump max_notifyid */
364 if (notifyid
> rproc
->max_notifyid
)
365 rproc
->max_notifyid
= notifyid
;
367 rvring
->notifyid
= notifyid
;
369 /* Let the rproc know the notifyid of this vring.*/
370 rsc
->vring
[i
].notifyid
= notifyid
;
375 rproc_parse_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
377 struct rproc
*rproc
= rvdev
->rproc
;
378 struct device
*dev
= &rproc
->dev
;
379 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
380 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
382 dev_dbg(dev
, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
383 i
, vring
->da
, vring
->num
, vring
->align
);
385 /* verify queue size and vring alignment are sane */
386 if (!vring
->num
|| !vring
->align
) {
387 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
388 vring
->num
, vring
->align
);
392 rvring
->len
= vring
->num
;
393 rvring
->align
= vring
->align
;
394 rvring
->rvdev
= rvdev
;
399 void rproc_free_vring(struct rproc_vring
*rvring
)
401 struct rproc
*rproc
= rvring
->rvdev
->rproc
;
402 int idx
= rvring
- rvring
->rvdev
->vring
;
403 struct fw_rsc_vdev
*rsc
;
405 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
407 /* reset resource entry info */
408 rsc
= (void *)rproc
->table_ptr
+ rvring
->rvdev
->rsc_offset
;
409 rsc
->vring
[idx
].da
= 0;
410 rsc
->vring
[idx
].notifyid
= -1;
413 static int rproc_vdev_do_start(struct rproc_subdev
*subdev
)
415 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
417 return rproc_add_virtio_dev(rvdev
, rvdev
->id
);
420 static void rproc_vdev_do_stop(struct rproc_subdev
*subdev
, bool crashed
)
422 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
425 ret
= device_for_each_child(&rvdev
->dev
, NULL
, rproc_remove_virtio_dev
);
427 dev_warn(&rvdev
->dev
, "can't remove vdev child device: %d\n", ret
);
431 * rproc_rvdev_release() - release the existence of a rvdev
433 * @dev: the subdevice's dev
435 static void rproc_rvdev_release(struct device
*dev
)
437 struct rproc_vdev
*rvdev
= container_of(dev
, struct rproc_vdev
, dev
);
439 of_reserved_mem_device_release(dev
);
445 * rproc_handle_vdev() - handle a vdev fw resource
446 * @rproc: the remote processor
447 * @rsc: the vring resource descriptor
448 * @avail: size of available data (for sanity checking the image)
450 * This resource entry requests the host to statically register a virtio
451 * device (vdev), and setup everything needed to support it. It contains
452 * everything needed to make it possible: the virtio device id, virtio
453 * device features, vrings information, virtio config space, etc...
455 * Before registering the vdev, the vrings are allocated from non-cacheable
456 * physically contiguous memory. Currently we only support two vrings per
457 * remote processor (temporary limitation). We might also want to consider
458 * doing the vring allocation only later when ->find_vqs() is invoked, and
459 * then release them upon ->del_vqs().
461 * Note: @da is currently not really handled correctly: we dynamically
462 * allocate it using the DMA API, ignoring requested hard coded addresses,
463 * and we don't take care of any required IOMMU programming. This is all
464 * going to be taken care of when the generic iommu-based DMA API will be
465 * merged. Meanwhile, statically-addressed iommu-based firmware images should
466 * use RSC_DEVMEM resource entries to map their required @da to the physical
467 * address of their base CMA region (ouch, hacky!).
469 * Returns 0 on success, or an appropriate error code otherwise
471 static int rproc_handle_vdev(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
472 int offset
, int avail
)
474 struct device
*dev
= &rproc
->dev
;
475 struct rproc_vdev
*rvdev
;
479 /* make sure resource isn't truncated */
480 if (sizeof(*rsc
) + rsc
->num_of_vrings
* sizeof(struct fw_rsc_vdev_vring
)
481 + rsc
->config_len
> avail
) {
482 dev_err(dev
, "vdev rsc is truncated\n");
486 /* make sure reserved bytes are zeroes */
487 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
488 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
492 dev_dbg(dev
, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
493 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
495 /* we currently support only two vrings per rvdev */
496 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
497 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
501 rvdev
= kzalloc(sizeof(*rvdev
), GFP_KERNEL
);
505 kref_init(&rvdev
->refcount
);
508 rvdev
->rproc
= rproc
;
509 rvdev
->index
= rproc
->nb_vdev
++;
511 /* Initialise vdev subdevice */
512 snprintf(name
, sizeof(name
), "vdev%dbuffer", rvdev
->index
);
513 rvdev
->dev
.parent
= rproc
->dev
.parent
;
514 rvdev
->dev
.dma_pfn_offset
= rproc
->dev
.parent
->dma_pfn_offset
;
515 rvdev
->dev
.release
= rproc_rvdev_release
;
516 dev_set_name(&rvdev
->dev
, "%s#%s", dev_name(rvdev
->dev
.parent
), name
);
517 dev_set_drvdata(&rvdev
->dev
, rvdev
);
519 ret
= device_register(&rvdev
->dev
);
521 put_device(&rvdev
->dev
);
524 /* Make device dma capable by inheriting from parent's capabilities */
525 set_dma_ops(&rvdev
->dev
, get_dma_ops(rproc
->dev
.parent
));
527 ret
= dma_coerce_mask_and_coherent(&rvdev
->dev
,
528 dma_get_mask(rproc
->dev
.parent
));
531 "Failed to set DMA mask %llx. Trying to continue... %x\n",
532 dma_get_mask(rproc
->dev
.parent
), ret
);
535 /* parse the vrings */
536 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
537 ret
= rproc_parse_vring(rvdev
, rsc
, i
);
542 /* remember the resource offset*/
543 rvdev
->rsc_offset
= offset
;
545 /* allocate the vring resources */
546 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
547 ret
= rproc_alloc_vring(rvdev
, i
);
549 goto unwind_vring_allocations
;
552 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
554 rvdev
->subdev
.start
= rproc_vdev_do_start
;
555 rvdev
->subdev
.stop
= rproc_vdev_do_stop
;
557 rproc_add_subdev(rproc
, &rvdev
->subdev
);
561 unwind_vring_allocations
:
562 for (i
--; i
>= 0; i
--)
563 rproc_free_vring(&rvdev
->vring
[i
]);
565 device_unregister(&rvdev
->dev
);
569 void rproc_vdev_release(struct kref
*ref
)
571 struct rproc_vdev
*rvdev
= container_of(ref
, struct rproc_vdev
, refcount
);
572 struct rproc_vring
*rvring
;
573 struct rproc
*rproc
= rvdev
->rproc
;
576 for (id
= 0; id
< ARRAY_SIZE(rvdev
->vring
); id
++) {
577 rvring
= &rvdev
->vring
[id
];
578 rproc_free_vring(rvring
);
581 rproc_remove_subdev(rproc
, &rvdev
->subdev
);
582 list_del(&rvdev
->node
);
583 device_unregister(&rvdev
->dev
);
587 * rproc_handle_trace() - handle a shared trace buffer resource
588 * @rproc: the remote processor
589 * @rsc: the trace resource descriptor
590 * @avail: size of available data (for sanity checking the image)
592 * In case the remote processor dumps trace logs into memory,
593 * export it via debugfs.
595 * Currently, the 'da' member of @rsc should contain the device address
596 * where the remote processor is dumping the traces. Later we could also
597 * support dynamically allocating this address using the generic
598 * DMA API (but currently there isn't a use case for that).
600 * Returns 0 on success, or an appropriate error code otherwise
602 static int rproc_handle_trace(struct rproc
*rproc
, struct fw_rsc_trace
*rsc
,
603 int offset
, int avail
)
605 struct rproc_debug_trace
*trace
;
606 struct device
*dev
= &rproc
->dev
;
609 if (sizeof(*rsc
) > avail
) {
610 dev_err(dev
, "trace rsc is truncated\n");
614 /* make sure reserved bytes are zeroes */
616 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
620 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
624 /* set the trace buffer dma properties */
625 trace
->trace_mem
.len
= rsc
->len
;
626 trace
->trace_mem
.da
= rsc
->da
;
628 /* set pointer on rproc device */
629 trace
->rproc
= rproc
;
631 /* make sure snprintf always null terminates, even if truncating */
632 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
634 /* create the debugfs entry */
635 trace
->tfile
= rproc_create_trace_file(name
, rproc
, trace
);
641 list_add_tail(&trace
->node
, &rproc
->traces
);
645 dev_dbg(dev
, "%s added: da 0x%x, len 0x%x\n",
646 name
, rsc
->da
, rsc
->len
);
652 * rproc_handle_devmem() - handle devmem resource entry
653 * @rproc: remote processor handle
654 * @rsc: the devmem resource entry
655 * @avail: size of available data (for sanity checking the image)
657 * Remote processors commonly need to access certain on-chip peripherals.
659 * Some of these remote processors access memory via an iommu device,
660 * and might require us to configure their iommu before they can access
661 * the on-chip peripherals they need.
663 * This resource entry is a request to map such a peripheral device.
665 * These devmem entries will contain the physical address of the device in
666 * the 'pa' member. If a specific device address is expected, then 'da' will
667 * contain it (currently this is the only use case supported). 'len' will
668 * contain the size of the physical region we need to map.
670 * Currently we just "trust" those devmem entries to contain valid physical
671 * addresses, but this is going to change: we want the implementations to
672 * tell us ranges of physical addresses the firmware is allowed to request,
673 * and not allow firmwares to request access to physical addresses that
674 * are outside those ranges.
676 static int rproc_handle_devmem(struct rproc
*rproc
, struct fw_rsc_devmem
*rsc
,
677 int offset
, int avail
)
679 struct rproc_mem_entry
*mapping
;
680 struct device
*dev
= &rproc
->dev
;
683 /* no point in handling this resource without a valid iommu domain */
687 if (sizeof(*rsc
) > avail
) {
688 dev_err(dev
, "devmem rsc is truncated\n");
692 /* make sure reserved bytes are zeroes */
694 dev_err(dev
, "devmem rsc has non zero reserved bytes\n");
698 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
702 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
704 dev_err(dev
, "failed to map devmem: %d\n", ret
);
709 * We'll need this info later when we'll want to unmap everything
710 * (e.g. on shutdown).
712 * We can't trust the remote processor not to change the resource
713 * table, so we must maintain this info independently.
715 mapping
->da
= rsc
->da
;
716 mapping
->len
= rsc
->len
;
717 list_add_tail(&mapping
->node
, &rproc
->mappings
);
719 dev_dbg(dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
720 rsc
->pa
, rsc
->da
, rsc
->len
);
730 * rproc_alloc_carveout() - allocated specified carveout
731 * @rproc: rproc handle
732 * @mem: the memory entry to allocate
734 * This function allocate specified memory entry @mem using
735 * dma_alloc_coherent() as default allocator
737 static int rproc_alloc_carveout(struct rproc
*rproc
,
738 struct rproc_mem_entry
*mem
)
740 struct rproc_mem_entry
*mapping
= NULL
;
741 struct device
*dev
= &rproc
->dev
;
746 va
= dma_alloc_coherent(dev
->parent
, mem
->len
, &dma
, GFP_KERNEL
);
749 "failed to allocate dma memory: len 0x%x\n", mem
->len
);
753 dev_dbg(dev
, "carveout va %pK, dma %pad, len 0x%x\n",
756 if (mem
->da
!= FW_RSC_ADDR_ANY
&& !rproc
->domain
) {
758 * Check requested da is equal to dma address
759 * and print a warn message in case of missalignment.
760 * Don't stop rproc_start sequence as coprocessor may
761 * build pa to da translation on its side.
763 if (mem
->da
!= (u32
)dma
)
764 dev_warn(dev
->parent
,
765 "Allocated carveout doesn't fit device address request\n");
769 * Ok, this is non-standard.
771 * Sometimes we can't rely on the generic iommu-based DMA API
772 * to dynamically allocate the device address and then set the IOMMU
773 * tables accordingly, because some remote processors might
774 * _require_ us to use hard coded device addresses that their
775 * firmware was compiled with.
777 * In this case, we must use the IOMMU API directly and map
778 * the memory to the device address as expected by the remote
781 * Obviously such remote processor devices should not be configured
782 * to use the iommu-based DMA API: we expect 'dma' to contain the
783 * physical address in this case.
785 if (mem
->da
!= FW_RSC_ADDR_ANY
&& rproc
->domain
) {
786 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
792 ret
= iommu_map(rproc
->domain
, mem
->da
, dma
, mem
->len
,
795 dev_err(dev
, "iommu_map failed: %d\n", ret
);
800 * We'll need this info later when we'll want to unmap
801 * everything (e.g. on shutdown).
803 * We can't trust the remote processor not to change the
804 * resource table, so we must maintain this info independently.
806 mapping
->da
= mem
->da
;
807 mapping
->len
= mem
->len
;
808 list_add_tail(&mapping
->node
, &rproc
->mappings
);
810 dev_dbg(dev
, "carveout mapped 0x%x to %pad\n",
814 if (mem
->da
== FW_RSC_ADDR_ANY
) {
815 /* Update device address as undefined by requester */
816 if ((u64
)dma
& HIGH_BITS_MASK
)
817 dev_warn(dev
, "DMA address cast in 32bit to fit resource table format\n");
830 dma_free_coherent(dev
->parent
, mem
->len
, va
, dma
);
835 * rproc_release_carveout() - release acquired carveout
836 * @rproc: rproc handle
837 * @mem: the memory entry to release
839 * This function releases specified memory entry @mem allocated via
840 * rproc_alloc_carveout() function by @rproc.
842 static int rproc_release_carveout(struct rproc
*rproc
,
843 struct rproc_mem_entry
*mem
)
845 struct device
*dev
= &rproc
->dev
;
847 /* clean up carveout allocations */
848 dma_free_coherent(dev
->parent
, mem
->len
, mem
->va
, mem
->dma
);
853 * rproc_handle_carveout() - handle phys contig memory allocation requests
854 * @rproc: rproc handle
855 * @rsc: the resource entry
856 * @avail: size of available data (for image validation)
858 * This function will handle firmware requests for allocation of physically
859 * contiguous memory regions.
861 * These request entries should come first in the firmware's resource table,
862 * as other firmware entries might request placing other data objects inside
863 * these memory regions (e.g. data/code segments, trace resource entries, ...).
865 * Allocating memory this way helps utilizing the reserved physical memory
866 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
867 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
868 * pressure is important; it may have a substantial impact on performance.
870 static int rproc_handle_carveout(struct rproc
*rproc
,
871 struct fw_rsc_carveout
*rsc
,
872 int offset
, int avail
)
874 struct rproc_mem_entry
*carveout
;
875 struct device
*dev
= &rproc
->dev
;
877 if (sizeof(*rsc
) > avail
) {
878 dev_err(dev
, "carveout rsc is truncated\n");
882 /* make sure reserved bytes are zeroes */
884 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
888 dev_dbg(dev
, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
889 rsc
->name
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
892 * Check carveout rsc already part of a registered carveout,
893 * Search by name, then check the da and length
895 carveout
= rproc_find_carveout_by_name(rproc
, rsc
->name
);
898 if (carveout
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
900 "Carveout already associated to resource table\n");
904 if (rproc_check_carveout_da(rproc
, carveout
, rsc
->da
, rsc
->len
))
907 /* Update memory carveout with resource table info */
908 carveout
->rsc_offset
= offset
;
909 carveout
->flags
= rsc
->flags
;
914 /* Register carveout in in list */
915 carveout
= rproc_mem_entry_init(dev
, NULL
, 0, rsc
->len
, rsc
->da
,
916 rproc_alloc_carveout
,
917 rproc_release_carveout
, rsc
->name
);
919 dev_err(dev
, "Can't allocate memory entry structure\n");
923 carveout
->flags
= rsc
->flags
;
924 carveout
->rsc_offset
= offset
;
925 rproc_add_carveout(rproc
, carveout
);
931 * rproc_add_carveout() - register an allocated carveout region
932 * @rproc: rproc handle
933 * @mem: memory entry to register
935 * This function registers specified memory entry in @rproc carveouts list.
936 * Specified carveout should have been allocated before registering.
938 void rproc_add_carveout(struct rproc
*rproc
, struct rproc_mem_entry
*mem
)
940 list_add_tail(&mem
->node
, &rproc
->carveouts
);
942 EXPORT_SYMBOL(rproc_add_carveout
);
945 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946 * @dev: pointer on device struct
947 * @va: virtual address
949 * @len: memory carveout length
950 * @da: device address
951 * @alloc: memory carveout allocation function
952 * @release: memory carveout release function
953 * @name: carveout name
955 * This function allocates a rproc_mem_entry struct and fill it with parameters
956 * provided by client.
958 struct rproc_mem_entry
*
959 rproc_mem_entry_init(struct device
*dev
,
960 void *va
, dma_addr_t dma
, int len
, u32 da
,
961 int (*alloc
)(struct rproc
*, struct rproc_mem_entry
*),
962 int (*release
)(struct rproc
*, struct rproc_mem_entry
*),
963 const char *name
, ...)
965 struct rproc_mem_entry
*mem
;
968 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
977 mem
->release
= release
;
978 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
979 mem
->of_resm_idx
= -1;
981 va_start(args
, name
);
982 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
987 EXPORT_SYMBOL(rproc_mem_entry_init
);
990 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991 * from a reserved memory phandle
992 * @dev: pointer on device struct
993 * @of_resm_idx: reserved memory phandle index in "memory-region"
994 * @len: memory carveout length
995 * @da: device address
996 * @name: carveout name
998 * This function allocates a rproc_mem_entry struct and fill it with parameters
999 * provided by client.
1001 struct rproc_mem_entry
*
1002 rproc_of_resm_mem_entry_init(struct device
*dev
, u32 of_resm_idx
, int len
,
1003 u32 da
, const char *name
, ...)
1005 struct rproc_mem_entry
*mem
;
1008 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
1014 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
1015 mem
->of_resm_idx
= of_resm_idx
;
1017 va_start(args
, name
);
1018 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
1023 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init
);
1026 * A lookup table for resource handlers. The indices are defined in
1027 * enum fw_resource_type.
1029 static rproc_handle_resource_t rproc_loading_handlers
[RSC_LAST
] = {
1030 [RSC_CARVEOUT
] = (rproc_handle_resource_t
)rproc_handle_carveout
,
1031 [RSC_DEVMEM
] = (rproc_handle_resource_t
)rproc_handle_devmem
,
1032 [RSC_TRACE
] = (rproc_handle_resource_t
)rproc_handle_trace
,
1033 [RSC_VDEV
] = (rproc_handle_resource_t
)rproc_handle_vdev
,
1036 /* handle firmware resource entries before booting the remote processor */
1037 static int rproc_handle_resources(struct rproc
*rproc
,
1038 rproc_handle_resource_t handlers
[RSC_LAST
])
1040 struct device
*dev
= &rproc
->dev
;
1041 rproc_handle_resource_t handler
;
1044 if (!rproc
->table_ptr
)
1047 for (i
= 0; i
< rproc
->table_ptr
->num
; i
++) {
1048 int offset
= rproc
->table_ptr
->offset
[i
];
1049 struct fw_rsc_hdr
*hdr
= (void *)rproc
->table_ptr
+ offset
;
1050 int avail
= rproc
->table_sz
- offset
- sizeof(*hdr
);
1051 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
1053 /* make sure table isn't truncated */
1055 dev_err(dev
, "rsc table is truncated\n");
1059 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
1061 if (hdr
->type
>= RSC_VENDOR_START
&&
1062 hdr
->type
<= RSC_VENDOR_END
) {
1063 ret
= rproc_handle_rsc(rproc
, hdr
->type
, rsc
,
1064 offset
+ sizeof(*hdr
), avail
);
1065 if (ret
== RSC_HANDLED
)
1070 dev_warn(dev
, "unsupported vendor resource %d\n",
1075 if (hdr
->type
>= RSC_LAST
) {
1076 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
1080 handler
= handlers
[hdr
->type
];
1084 ret
= handler(rproc
, rsc
, offset
+ sizeof(*hdr
), avail
);
1092 static int rproc_prepare_subdevices(struct rproc
*rproc
)
1094 struct rproc_subdev
*subdev
;
1097 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1098 if (subdev
->prepare
) {
1099 ret
= subdev
->prepare(subdev
);
1101 goto unroll_preparation
;
1108 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1109 if (subdev
->unprepare
)
1110 subdev
->unprepare(subdev
);
1116 static int rproc_start_subdevices(struct rproc
*rproc
)
1118 struct rproc_subdev
*subdev
;
1121 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1122 if (subdev
->start
) {
1123 ret
= subdev
->start(subdev
);
1125 goto unroll_registration
;
1131 unroll_registration
:
1132 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1134 subdev
->stop(subdev
, true);
1140 static void rproc_stop_subdevices(struct rproc
*rproc
, bool crashed
)
1142 struct rproc_subdev
*subdev
;
1144 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1146 subdev
->stop(subdev
, crashed
);
1150 static void rproc_unprepare_subdevices(struct rproc
*rproc
)
1152 struct rproc_subdev
*subdev
;
1154 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1155 if (subdev
->unprepare
)
1156 subdev
->unprepare(subdev
);
1161 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1163 * @rproc: the remote processor handle
1165 * This function parses registered carveout list, performs allocation
1166 * if alloc() ops registered and updates resource table information
1167 * if rsc_offset set.
1169 * Return: 0 on success
1171 static int rproc_alloc_registered_carveouts(struct rproc
*rproc
)
1173 struct rproc_mem_entry
*entry
, *tmp
;
1174 struct fw_rsc_carveout
*rsc
;
1175 struct device
*dev
= &rproc
->dev
;
1179 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1181 ret
= entry
->alloc(rproc
, entry
);
1183 dev_err(dev
, "Unable to allocate carveout %s: %d\n",
1189 if (entry
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
1190 /* update resource table */
1191 rsc
= (void *)rproc
->table_ptr
+ entry
->rsc_offset
;
1194 * Some remote processors might need to know the pa
1195 * even though they are behind an IOMMU. E.g., OMAP4's
1196 * remote M3 processor needs this so it can control
1197 * on-chip hardware accelerators that are not behind
1198 * the IOMMU, and therefor must know the pa.
1200 * Generally we don't want to expose physical addresses
1201 * if we don't have to (remote processors are generally
1202 * _not_ trusted), so we might want to do this only for
1203 * remote processor that _must_ have this (e.g. OMAP4's
1204 * dual M3 subsystem).
1206 * Non-IOMMU processors might also want to have this info.
1207 * In this case, the device address and the physical address
1211 /* Use va if defined else dma to generate pa */
1213 pa
= (u64
)rproc_va_to_pa(entry
->va
);
1215 pa
= (u64
)entry
->dma
;
1217 if (((u64
)pa
) & HIGH_BITS_MASK
)
1219 "Physical address cast in 32bit to fit resource table format\n");
1222 rsc
->da
= entry
->da
;
1223 rsc
->len
= entry
->len
;
1231 * rproc_coredump_cleanup() - clean up dump_segments list
1232 * @rproc: the remote processor handle
1234 static void rproc_coredump_cleanup(struct rproc
*rproc
)
1236 struct rproc_dump_segment
*entry
, *tmp
;
1238 list_for_each_entry_safe(entry
, tmp
, &rproc
->dump_segments
, node
) {
1239 list_del(&entry
->node
);
1245 * rproc_resource_cleanup() - clean up and free all acquired resources
1246 * @rproc: rproc handle
1248 * This function will free all resources acquired for @rproc, and it
1249 * is called whenever @rproc either shuts down or fails to boot.
1251 static void rproc_resource_cleanup(struct rproc
*rproc
)
1253 struct rproc_mem_entry
*entry
, *tmp
;
1254 struct rproc_debug_trace
*trace
, *ttmp
;
1255 struct rproc_vdev
*rvdev
, *rvtmp
;
1256 struct device
*dev
= &rproc
->dev
;
1258 /* clean up debugfs trace entries */
1259 list_for_each_entry_safe(trace
, ttmp
, &rproc
->traces
, node
) {
1260 rproc_remove_trace_file(trace
->tfile
);
1261 rproc
->num_traces
--;
1262 list_del(&trace
->node
);
1266 /* clean up iommu mapping entries */
1267 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
1270 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
1271 if (unmapped
!= entry
->len
) {
1272 /* nothing much to do besides complaining */
1273 dev_err(dev
, "failed to unmap %u/%zu\n", entry
->len
,
1277 list_del(&entry
->node
);
1281 /* clean up carveout allocations */
1282 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1284 entry
->release(rproc
, entry
);
1285 list_del(&entry
->node
);
1289 /* clean up remote vdev entries */
1290 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
)
1291 kref_put(&rvdev
->refcount
, rproc_vdev_release
);
1293 rproc_coredump_cleanup(rproc
);
1296 static int rproc_start(struct rproc
*rproc
, const struct firmware
*fw
)
1298 struct resource_table
*loaded_table
;
1299 struct device
*dev
= &rproc
->dev
;
1302 /* load the ELF segments to memory */
1303 ret
= rproc_load_segments(rproc
, fw
);
1305 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
1310 * The starting device has been given the rproc->cached_table as the
1311 * resource table. The address of the vring along with the other
1312 * allocated resources (carveouts etc) is stored in cached_table.
1313 * In order to pass this information to the remote device we must copy
1314 * this information to device memory. We also update the table_ptr so
1315 * that any subsequent changes will be applied to the loaded version.
1317 loaded_table
= rproc_find_loaded_rsc_table(rproc
, fw
);
1319 memcpy(loaded_table
, rproc
->cached_table
, rproc
->table_sz
);
1320 rproc
->table_ptr
= loaded_table
;
1323 ret
= rproc_prepare_subdevices(rproc
);
1325 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1327 goto reset_table_ptr
;
1330 /* power up the remote processor */
1331 ret
= rproc
->ops
->start(rproc
);
1333 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
1334 goto unprepare_subdevices
;
1337 /* Start any subdevices for the remote processor */
1338 ret
= rproc_start_subdevices(rproc
);
1340 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1345 rproc
->state
= RPROC_RUNNING
;
1347 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
1352 rproc
->ops
->stop(rproc
);
1353 unprepare_subdevices
:
1354 rproc_unprepare_subdevices(rproc
);
1356 rproc
->table_ptr
= rproc
->cached_table
;
1362 * take a firmware and boot a remote processor with it.
1364 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
1366 struct device
*dev
= &rproc
->dev
;
1367 const char *name
= rproc
->firmware
;
1370 ret
= rproc_fw_sanity_check(rproc
, fw
);
1374 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
1377 * if enabling an IOMMU isn't relevant for this rproc, this is
1380 ret
= rproc_enable_iommu(rproc
);
1382 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1386 rproc
->bootaddr
= rproc_get_boot_addr(rproc
, fw
);
1388 /* Load resource table, core dump segment list etc from the firmware */
1389 ret
= rproc_parse_fw(rproc
, fw
);
1393 /* reset max_notifyid */
1394 rproc
->max_notifyid
= -1;
1396 /* reset handled vdev */
1399 /* handle fw resources which are required to boot rproc */
1400 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1402 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1403 goto clean_up_resources
;
1406 /* Allocate carveout resources associated to rproc */
1407 ret
= rproc_alloc_registered_carveouts(rproc
);
1409 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1411 goto clean_up_resources
;
1414 ret
= rproc_start(rproc
, fw
);
1416 goto clean_up_resources
;
1421 rproc_resource_cleanup(rproc
);
1422 kfree(rproc
->cached_table
);
1423 rproc
->cached_table
= NULL
;
1424 rproc
->table_ptr
= NULL
;
1426 rproc_disable_iommu(rproc
);
1431 * take a firmware and boot it up.
1433 * Note: this function is called asynchronously upon registration of the
1434 * remote processor (so we must wait until it completes before we try
1435 * to unregister the device. one other option is just to use kref here,
1436 * that might be cleaner).
1438 static void rproc_auto_boot_callback(const struct firmware
*fw
, void *context
)
1440 struct rproc
*rproc
= context
;
1444 release_firmware(fw
);
1447 static int rproc_trigger_auto_boot(struct rproc
*rproc
)
1452 * We're initiating an asynchronous firmware loading, so we can
1453 * be built-in kernel code, without hanging the boot process.
1455 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_HOTPLUG
,
1456 rproc
->firmware
, &rproc
->dev
, GFP_KERNEL
,
1457 rproc
, rproc_auto_boot_callback
);
1459 dev_err(&rproc
->dev
, "request_firmware_nowait err: %d\n", ret
);
1464 static int rproc_stop(struct rproc
*rproc
, bool crashed
)
1466 struct device
*dev
= &rproc
->dev
;
1469 /* Stop any subdevices for the remote processor */
1470 rproc_stop_subdevices(rproc
, crashed
);
1472 /* the installed resource table is no longer accessible */
1473 rproc
->table_ptr
= rproc
->cached_table
;
1475 /* power off the remote processor */
1476 ret
= rproc
->ops
->stop(rproc
);
1478 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1482 rproc_unprepare_subdevices(rproc
);
1484 rproc
->state
= RPROC_OFFLINE
;
1486 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1492 * rproc_coredump_add_segment() - add segment of device memory to coredump
1493 * @rproc: handle of a remote processor
1494 * @da: device address
1495 * @size: size of segment
1497 * Add device memory to the list of segments to be included in a coredump for
1500 * Return: 0 on success, negative errno on error.
1502 int rproc_coredump_add_segment(struct rproc
*rproc
, dma_addr_t da
, size_t size
)
1504 struct rproc_dump_segment
*segment
;
1506 segment
= kzalloc(sizeof(*segment
), GFP_KERNEL
);
1511 segment
->size
= size
;
1513 list_add_tail(&segment
->node
, &rproc
->dump_segments
);
1517 EXPORT_SYMBOL(rproc_coredump_add_segment
);
1520 * rproc_coredump_add_custom_segment() - add custom coredump segment
1521 * @rproc: handle of a remote processor
1522 * @da: device address
1523 * @size: size of segment
1524 * @dumpfn: custom dump function called for each segment during coredump
1525 * @priv: private data
1527 * Add device memory to the list of segments to be included in the coredump
1528 * and associate the segment with the given custom dump function and private
1531 * Return: 0 on success, negative errno on error.
1533 int rproc_coredump_add_custom_segment(struct rproc
*rproc
,
1534 dma_addr_t da
, size_t size
,
1535 void (*dumpfn
)(struct rproc
*rproc
,
1536 struct rproc_dump_segment
*segment
,
1540 struct rproc_dump_segment
*segment
;
1542 segment
= kzalloc(sizeof(*segment
), GFP_KERNEL
);
1547 segment
->size
= size
;
1548 segment
->priv
= priv
;
1549 segment
->dump
= dumpfn
;
1551 list_add_tail(&segment
->node
, &rproc
->dump_segments
);
1555 EXPORT_SYMBOL(rproc_coredump_add_custom_segment
);
1558 * rproc_coredump() - perform coredump
1559 * @rproc: rproc handle
1561 * This function will generate an ELF header for the registered segments
1562 * and create a devcoredump device associated with rproc.
1564 static void rproc_coredump(struct rproc
*rproc
)
1566 struct rproc_dump_segment
*segment
;
1567 struct elf32_phdr
*phdr
;
1568 struct elf32_hdr
*ehdr
;
1575 if (list_empty(&rproc
->dump_segments
))
1578 data_size
= sizeof(*ehdr
);
1579 list_for_each_entry(segment
, &rproc
->dump_segments
, node
) {
1580 data_size
+= sizeof(*phdr
) + segment
->size
;
1585 data
= vmalloc(data_size
);
1591 memset(ehdr
, 0, sizeof(*ehdr
));
1592 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
1593 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS32
;
1594 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
1595 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1596 ehdr
->e_ident
[EI_OSABI
] = ELFOSABI_NONE
;
1597 ehdr
->e_type
= ET_CORE
;
1598 ehdr
->e_machine
= EM_NONE
;
1599 ehdr
->e_version
= EV_CURRENT
;
1600 ehdr
->e_entry
= rproc
->bootaddr
;
1601 ehdr
->e_phoff
= sizeof(*ehdr
);
1602 ehdr
->e_ehsize
= sizeof(*ehdr
);
1603 ehdr
->e_phentsize
= sizeof(*phdr
);
1604 ehdr
->e_phnum
= phnum
;
1606 phdr
= data
+ ehdr
->e_phoff
;
1607 offset
= ehdr
->e_phoff
+ sizeof(*phdr
) * ehdr
->e_phnum
;
1608 list_for_each_entry(segment
, &rproc
->dump_segments
, node
) {
1609 memset(phdr
, 0, sizeof(*phdr
));
1610 phdr
->p_type
= PT_LOAD
;
1611 phdr
->p_offset
= offset
;
1612 phdr
->p_vaddr
= segment
->da
;
1613 phdr
->p_paddr
= segment
->da
;
1614 phdr
->p_filesz
= segment
->size
;
1615 phdr
->p_memsz
= segment
->size
;
1616 phdr
->p_flags
= PF_R
| PF_W
| PF_X
;
1619 if (segment
->dump
) {
1620 segment
->dump(rproc
, segment
, data
+ offset
);
1622 ptr
= rproc_da_to_va(rproc
, segment
->da
, segment
->size
);
1624 dev_err(&rproc
->dev
,
1625 "invalid coredump segment (%pad, %zu)\n",
1626 &segment
->da
, segment
->size
);
1627 memset(data
+ offset
, 0xff, segment
->size
);
1629 memcpy(data
+ offset
, ptr
, segment
->size
);
1633 offset
+= phdr
->p_filesz
;
1637 dev_coredumpv(&rproc
->dev
, data
, data_size
, GFP_KERNEL
);
1641 * rproc_trigger_recovery() - recover a remoteproc
1642 * @rproc: the remote processor
1644 * The recovery is done by resetting all the virtio devices, that way all the
1645 * rpmsg drivers will be reseted along with the remote processor making the
1646 * remoteproc functional again.
1648 * This function can sleep, so it cannot be called from atomic context.
1650 int rproc_trigger_recovery(struct rproc
*rproc
)
1652 const struct firmware
*firmware_p
;
1653 struct device
*dev
= &rproc
->dev
;
1656 dev_err(dev
, "recovering %s\n", rproc
->name
);
1658 ret
= mutex_lock_interruptible(&rproc
->lock
);
1662 ret
= rproc_stop(rproc
, true);
1666 /* generate coredump */
1667 rproc_coredump(rproc
);
1670 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1672 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1676 /* boot the remote processor up again */
1677 ret
= rproc_start(rproc
, firmware_p
);
1679 release_firmware(firmware_p
);
1682 mutex_unlock(&rproc
->lock
);
1687 * rproc_crash_handler_work() - handle a crash
1689 * This function needs to handle everything related to a crash, like cpu
1690 * registers and stack dump, information to help to debug the fatal error, etc.
1692 static void rproc_crash_handler_work(struct work_struct
*work
)
1694 struct rproc
*rproc
= container_of(work
, struct rproc
, crash_handler
);
1695 struct device
*dev
= &rproc
->dev
;
1697 dev_dbg(dev
, "enter %s\n", __func__
);
1699 mutex_lock(&rproc
->lock
);
1701 if (rproc
->state
== RPROC_CRASHED
|| rproc
->state
== RPROC_OFFLINE
) {
1702 /* handle only the first crash detected */
1703 mutex_unlock(&rproc
->lock
);
1707 rproc
->state
= RPROC_CRASHED
;
1708 dev_err(dev
, "handling crash #%u in %s\n", ++rproc
->crash_cnt
,
1711 mutex_unlock(&rproc
->lock
);
1713 if (!rproc
->recovery_disabled
)
1714 rproc_trigger_recovery(rproc
);
1718 * rproc_boot() - boot a remote processor
1719 * @rproc: handle of a remote processor
1721 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723 * If the remote processor is already powered on, this function immediately
1724 * returns (successfully).
1726 * Returns 0 on success, and an appropriate error value otherwise.
1728 int rproc_boot(struct rproc
*rproc
)
1730 const struct firmware
*firmware_p
;
1735 pr_err("invalid rproc handle\n");
1741 ret
= mutex_lock_interruptible(&rproc
->lock
);
1743 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1747 if (rproc
->state
== RPROC_DELETED
) {
1749 dev_err(dev
, "can't boot deleted rproc %s\n", rproc
->name
);
1753 /* skip the boot process if rproc is already powered up */
1754 if (atomic_inc_return(&rproc
->power
) > 1) {
1759 dev_info(dev
, "powering up %s\n", rproc
->name
);
1762 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1764 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1768 ret
= rproc_fw_boot(rproc
, firmware_p
);
1770 release_firmware(firmware_p
);
1774 atomic_dec(&rproc
->power
);
1776 mutex_unlock(&rproc
->lock
);
1779 EXPORT_SYMBOL(rproc_boot
);
1782 * rproc_shutdown() - power off the remote processor
1783 * @rproc: the remote processor
1785 * Power off a remote processor (previously booted with rproc_boot()).
1787 * In case @rproc is still being used by an additional user(s), then
1788 * this function will just decrement the power refcount and exit,
1789 * without really powering off the device.
1791 * Every call to rproc_boot() must (eventually) be accompanied by a call
1792 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1795 * - we're not decrementing the rproc's refcount, only the power refcount.
1796 * which means that the @rproc handle stays valid even after rproc_shutdown()
1797 * returns, and users can still use it with a subsequent rproc_boot(), if
1800 void rproc_shutdown(struct rproc
*rproc
)
1802 struct device
*dev
= &rproc
->dev
;
1805 ret
= mutex_lock_interruptible(&rproc
->lock
);
1807 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1811 /* if the remote proc is still needed, bail out */
1812 if (!atomic_dec_and_test(&rproc
->power
))
1815 ret
= rproc_stop(rproc
, false);
1817 atomic_inc(&rproc
->power
);
1821 /* clean up all acquired resources */
1822 rproc_resource_cleanup(rproc
);
1824 rproc_disable_iommu(rproc
);
1826 /* Free the copy of the resource table */
1827 kfree(rproc
->cached_table
);
1828 rproc
->cached_table
= NULL
;
1829 rproc
->table_ptr
= NULL
;
1831 mutex_unlock(&rproc
->lock
);
1833 EXPORT_SYMBOL(rproc_shutdown
);
1836 * rproc_get_by_phandle() - find a remote processor by phandle
1837 * @phandle: phandle to the rproc
1839 * Finds an rproc handle using the remote processor's phandle, and then
1840 * return a handle to the rproc.
1842 * This function increments the remote processor's refcount, so always
1843 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845 * Returns the rproc handle on success, and NULL on failure.
1848 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1850 struct rproc
*rproc
= NULL
, *r
;
1851 struct device_node
*np
;
1853 np
= of_find_node_by_phandle(phandle
);
1857 mutex_lock(&rproc_list_mutex
);
1858 list_for_each_entry(r
, &rproc_list
, node
) {
1859 if (r
->dev
.parent
&& r
->dev
.parent
->of_node
== np
) {
1860 /* prevent underlying implementation from being removed */
1861 if (!try_module_get(r
->dev
.parent
->driver
->owner
)) {
1862 dev_err(&r
->dev
, "can't get owner\n");
1867 get_device(&rproc
->dev
);
1871 mutex_unlock(&rproc_list_mutex
);
1878 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1883 EXPORT_SYMBOL(rproc_get_by_phandle
);
1886 * rproc_add() - register a remote processor
1887 * @rproc: the remote processor handle to register
1889 * Registers @rproc with the remoteproc framework, after it has been
1890 * allocated with rproc_alloc().
1892 * This is called by the platform-specific rproc implementation, whenever
1893 * a new remote processor device is probed.
1895 * Returns 0 on success and an appropriate error code otherwise.
1897 * Note: this function initiates an asynchronous firmware loading
1898 * context, which will look for virtio devices supported by the rproc's
1901 * If found, those virtio devices will be created and added, so as a result
1902 * of registering this remote processor, additional virtio drivers might be
1905 int rproc_add(struct rproc
*rproc
)
1907 struct device
*dev
= &rproc
->dev
;
1910 ret
= device_add(dev
);
1914 dev_info(dev
, "%s is available\n", rproc
->name
);
1916 /* create debugfs entries */
1917 rproc_create_debug_dir(rproc
);
1919 /* if rproc is marked always-on, request it to boot */
1920 if (rproc
->auto_boot
) {
1921 ret
= rproc_trigger_auto_boot(rproc
);
1926 /* expose to rproc_get_by_phandle users */
1927 mutex_lock(&rproc_list_mutex
);
1928 list_add(&rproc
->node
, &rproc_list
);
1929 mutex_unlock(&rproc_list_mutex
);
1933 EXPORT_SYMBOL(rproc_add
);
1936 * rproc_type_release() - release a remote processor instance
1937 * @dev: the rproc's device
1939 * This function should _never_ be called directly.
1941 * It will be called by the driver core when no one holds a valid pointer
1944 static void rproc_type_release(struct device
*dev
)
1946 struct rproc
*rproc
= container_of(dev
, struct rproc
, dev
);
1948 dev_info(&rproc
->dev
, "releasing %s\n", rproc
->name
);
1950 idr_destroy(&rproc
->notifyids
);
1952 if (rproc
->index
>= 0)
1953 ida_simple_remove(&rproc_dev_index
, rproc
->index
);
1955 kfree(rproc
->firmware
);
1960 static const struct device_type rproc_type
= {
1961 .name
= "remoteproc",
1962 .release
= rproc_type_release
,
1966 * rproc_alloc() - allocate a remote processor handle
1967 * @dev: the underlying device
1968 * @name: name of this remote processor
1969 * @ops: platform-specific handlers (mainly start/stop)
1970 * @firmware: name of firmware file to load, can be NULL
1971 * @len: length of private data needed by the rproc driver (in bytes)
1973 * Allocates a new remote processor handle, but does not register
1974 * it yet. if @firmware is NULL, a default name is used.
1976 * This function should be used by rproc implementations during initialization
1977 * of the remote processor.
1979 * After creating an rproc handle using this function, and when ready,
1980 * implementations should then call rproc_add() to complete
1981 * the registration of the remote processor.
1983 * On success the new rproc is returned, and on failure, NULL.
1985 * Note: _never_ directly deallocate @rproc, even if it was not registered
1986 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1988 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
1989 const struct rproc_ops
*ops
,
1990 const char *firmware
, int len
)
1992 struct rproc
*rproc
;
1993 char *p
, *template = "rproc-%s-fw";
1996 if (!dev
|| !name
|| !ops
)
2001 * If the caller didn't pass in a firmware name then
2002 * construct a default name.
2004 name_len
= strlen(name
) + strlen(template) - 2 + 1;
2005 p
= kmalloc(name_len
, GFP_KERNEL
);
2008 snprintf(p
, name_len
, template, name
);
2010 p
= kstrdup(firmware
, GFP_KERNEL
);
2015 rproc
= kzalloc(sizeof(struct rproc
) + len
, GFP_KERNEL
);
2021 rproc
->ops
= kmemdup(ops
, sizeof(*ops
), GFP_KERNEL
);
2028 rproc
->firmware
= p
;
2030 rproc
->priv
= &rproc
[1];
2031 rproc
->auto_boot
= true;
2033 device_initialize(&rproc
->dev
);
2034 rproc
->dev
.parent
= dev
;
2035 rproc
->dev
.type
= &rproc_type
;
2036 rproc
->dev
.class = &rproc_class
;
2037 rproc
->dev
.driver_data
= rproc
;
2039 /* Assign a unique device index and name */
2040 rproc
->index
= ida_simple_get(&rproc_dev_index
, 0, 0, GFP_KERNEL
);
2041 if (rproc
->index
< 0) {
2042 dev_err(dev
, "ida_simple_get failed: %d\n", rproc
->index
);
2043 put_device(&rproc
->dev
);
2047 dev_set_name(&rproc
->dev
, "remoteproc%d", rproc
->index
);
2049 atomic_set(&rproc
->power
, 0);
2051 /* Default to ELF loader if no load function is specified */
2052 if (!rproc
->ops
->load
) {
2053 rproc
->ops
->load
= rproc_elf_load_segments
;
2054 rproc
->ops
->parse_fw
= rproc_elf_load_rsc_table
;
2055 rproc
->ops
->find_loaded_rsc_table
= rproc_elf_find_loaded_rsc_table
;
2056 rproc
->ops
->sanity_check
= rproc_elf_sanity_check
;
2057 rproc
->ops
->get_boot_addr
= rproc_elf_get_boot_addr
;
2060 mutex_init(&rproc
->lock
);
2062 idr_init(&rproc
->notifyids
);
2064 INIT_LIST_HEAD(&rproc
->carveouts
);
2065 INIT_LIST_HEAD(&rproc
->mappings
);
2066 INIT_LIST_HEAD(&rproc
->traces
);
2067 INIT_LIST_HEAD(&rproc
->rvdevs
);
2068 INIT_LIST_HEAD(&rproc
->subdevs
);
2069 INIT_LIST_HEAD(&rproc
->dump_segments
);
2071 INIT_WORK(&rproc
->crash_handler
, rproc_crash_handler_work
);
2073 rproc
->state
= RPROC_OFFLINE
;
2077 EXPORT_SYMBOL(rproc_alloc
);
2080 * rproc_free() - unroll rproc_alloc()
2081 * @rproc: the remote processor handle
2083 * This function decrements the rproc dev refcount.
2085 * If no one holds any reference to rproc anymore, then its refcount would
2086 * now drop to zero, and it would be freed.
2088 void rproc_free(struct rproc
*rproc
)
2090 put_device(&rproc
->dev
);
2092 EXPORT_SYMBOL(rproc_free
);
2095 * rproc_put() - release rproc reference
2096 * @rproc: the remote processor handle
2098 * This function decrements the rproc dev refcount.
2100 * If no one holds any reference to rproc anymore, then its refcount would
2101 * now drop to zero, and it would be freed.
2103 void rproc_put(struct rproc
*rproc
)
2105 module_put(rproc
->dev
.parent
->driver
->owner
);
2106 put_device(&rproc
->dev
);
2108 EXPORT_SYMBOL(rproc_put
);
2111 * rproc_del() - unregister a remote processor
2112 * @rproc: rproc handle to unregister
2114 * This function should be called when the platform specific rproc
2115 * implementation decides to remove the rproc device. it should
2116 * _only_ be called if a previous invocation of rproc_add()
2117 * has completed successfully.
2119 * After rproc_del() returns, @rproc isn't freed yet, because
2120 * of the outstanding reference created by rproc_alloc. To decrement that
2121 * one last refcount, one still needs to call rproc_free().
2123 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125 int rproc_del(struct rproc
*rproc
)
2130 /* if rproc is marked always-on, rproc_add() booted it */
2131 /* TODO: make sure this works with rproc->power > 1 */
2132 if (rproc
->auto_boot
)
2133 rproc_shutdown(rproc
);
2135 mutex_lock(&rproc
->lock
);
2136 rproc
->state
= RPROC_DELETED
;
2137 mutex_unlock(&rproc
->lock
);
2139 rproc_delete_debug_dir(rproc
);
2141 /* the rproc is downref'ed as soon as it's removed from the klist */
2142 mutex_lock(&rproc_list_mutex
);
2143 list_del(&rproc
->node
);
2144 mutex_unlock(&rproc_list_mutex
);
2146 device_del(&rproc
->dev
);
2150 EXPORT_SYMBOL(rproc_del
);
2153 * rproc_add_subdev() - add a subdevice to a remoteproc
2154 * @rproc: rproc handle to add the subdevice to
2155 * @subdev: subdev handle to register
2157 * Caller is responsible for populating optional subdevice function pointers.
2159 void rproc_add_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2161 list_add_tail(&subdev
->node
, &rproc
->subdevs
);
2163 EXPORT_SYMBOL(rproc_add_subdev
);
2166 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2167 * @rproc: rproc handle to remove the subdevice from
2168 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170 void rproc_remove_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2172 list_del(&subdev
->node
);
2174 EXPORT_SYMBOL(rproc_remove_subdev
);
2177 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2178 * @dev: child device to find ancestor of
2180 * Returns the ancestor rproc instance, or NULL if not found.
2182 struct rproc
*rproc_get_by_child(struct device
*dev
)
2184 for (dev
= dev
->parent
; dev
; dev
= dev
->parent
) {
2185 if (dev
->type
== &rproc_type
)
2186 return dev
->driver_data
;
2191 EXPORT_SYMBOL(rproc_get_by_child
);
2194 * rproc_report_crash() - rproc crash reporter function
2195 * @rproc: remote processor
2198 * This function must be called every time a crash is detected by the low-level
2199 * drivers implementing a specific remoteproc. This should not be called from a
2200 * non-remoteproc driver.
2202 * This function can be called from atomic/interrupt context.
2204 void rproc_report_crash(struct rproc
*rproc
, enum rproc_crash_type type
)
2207 pr_err("NULL rproc pointer\n");
2211 dev_err(&rproc
->dev
, "crash detected in %s: type %s\n",
2212 rproc
->name
, rproc_crash_to_string(type
));
2214 /* create a new task to handle the error */
2215 schedule_work(&rproc
->crash_handler
);
2217 EXPORT_SYMBOL(rproc_report_crash
);
2219 static int __init
remoteproc_init(void)
2222 rproc_init_debugfs();
2226 module_init(remoteproc_init
);
2228 static void __exit
remoteproc_exit(void)
2230 ida_destroy(&rproc_dev_index
);
2232 rproc_exit_debugfs();
2235 module_exit(remoteproc_exit
);
2237 MODULE_LICENSE("GPL v2");
2238 MODULE_DESCRIPTION("Generic Remote Processor Framework");