2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION
);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
87 static int hpsa_simple_mode
;
88 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
89 MODULE_PARM_DESC(hpsa_simple_mode
,
90 "Use 'simple mode' rather than 'performant mode'");
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id
[] = {
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
150 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
154 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
160 static struct board_type products
[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access
},
162 {0x40800E11, "Smart Array 5i", &SA5B_access
},
163 {0x40820E11, "Smart Array 532", &SA5B_access
},
164 {0x40830E11, "Smart Array 5312", &SA5B_access
},
165 {0x409A0E11, "Smart Array 641", &SA5A_access
},
166 {0x409B0E11, "Smart Array 642", &SA5A_access
},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
169 {0x40910E11, "Smart Array 6i", &SA5A_access
},
170 {0x3225103C, "Smart Array P600", &SA5A_access
},
171 {0x3223103C, "Smart Array P800", &SA5A_access
},
172 {0x3234103C, "Smart Array P400", &SA5A_access
},
173 {0x3235103C, "Smart Array P400i", &SA5A_access
},
174 {0x3211103C, "Smart Array E200i", &SA5A_access
},
175 {0x3212103C, "Smart Array E200", &SA5A_access
},
176 {0x3213103C, "Smart Array E200i", &SA5A_access
},
177 {0x3214103C, "Smart Array E200i", &SA5A_access
},
178 {0x3215103C, "Smart Array E200i", &SA5A_access
},
179 {0x3237103C, "Smart Array E500", &SA5A_access
},
180 {0x323D103C, "Smart Array P700m", &SA5A_access
},
181 {0x3241103C, "Smart Array P212", &SA5_access
},
182 {0x3243103C, "Smart Array P410", &SA5_access
},
183 {0x3245103C, "Smart Array P410i", &SA5_access
},
184 {0x3247103C, "Smart Array P411", &SA5_access
},
185 {0x3249103C, "Smart Array P812", &SA5_access
},
186 {0x324A103C, "Smart Array P712m", &SA5_access
},
187 {0x324B103C, "Smart Array P711m", &SA5_access
},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access
},
190 {0x3351103C, "Smart Array P420", &SA5_access
},
191 {0x3352103C, "Smart Array P421", &SA5_access
},
192 {0x3353103C, "Smart Array P822", &SA5_access
},
193 {0x3354103C, "Smart Array P420i", &SA5_access
},
194 {0x3355103C, "Smart Array P220i", &SA5_access
},
195 {0x3356103C, "Smart Array P721m", &SA5_access
},
196 {0x1920103C, "Smart Array P430i", &SA5_access
},
197 {0x1921103C, "Smart Array P830i", &SA5_access
},
198 {0x1922103C, "Smart Array P430", &SA5_access
},
199 {0x1923103C, "Smart Array P431", &SA5_access
},
200 {0x1924103C, "Smart Array P830", &SA5_access
},
201 {0x1925103C, "Smart Array P831", &SA5_access
},
202 {0x1926103C, "Smart Array P731m", &SA5_access
},
203 {0x1928103C, "Smart Array P230i", &SA5_access
},
204 {0x1929103C, "Smart Array P530", &SA5_access
},
205 {0x21BD103C, "Smart Array P244br", &SA5_access
},
206 {0x21BE103C, "Smart Array P741m", &SA5_access
},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
210 {0x21C2103C, "Smart Array P440", &SA5_access
},
211 {0x21C3103C, "Smart Array P441", &SA5_access
},
212 {0x21C4103C, "Smart Array", &SA5_access
},
213 {0x21C5103C, "Smart Array P841", &SA5_access
},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
215 {0x21C7103C, "Smart HBA H240", &SA5_access
},
216 {0x21C8103C, "Smart HBA H241", &SA5_access
},
217 {0x21C9103C, "Smart Array", &SA5_access
},
218 {0x21CA103C, "Smart Array P246br", &SA5_access
},
219 {0x21CB103C, "Smart Array P840", &SA5_access
},
220 {0x21CC103C, "Smart Array", &SA5_access
},
221 {0x21CD103C, "Smart Array", &SA5_access
},
222 {0x21CE103C, "Smart HBA", &SA5_access
},
223 {0x05809005, "SmartHBA-SA", &SA5_access
},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
237 static struct scsi_transport_template
*hpsa_sas_transport_template
;
238 static int hpsa_add_sas_host(struct ctlr_info
*h
);
239 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
240 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
241 struct hpsa_scsi_dev_t
*device
);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
245 struct sas_rphy
*rphy
);
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy
;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle
;
251 static int number_of_controllers
;
253 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
254 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
255 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
259 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
263 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
264 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
265 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
266 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
267 struct scsi_cmnd
*scmd
);
268 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
269 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
271 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
275 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
276 static void hpsa_scan_start(struct Scsi_Host
*);
277 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
278 unsigned long elapsed_time
);
279 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
282 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
283 static int hpsa_slave_configure(struct scsi_device
*sdev
);
284 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
286 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
287 static int check_for_unit_attention(struct ctlr_info
*h
,
288 struct CommandList
*c
);
289 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
290 struct CommandList
*c
);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket
, int num_buckets
,
293 int nsgs
, int min_blocks
, u32
*bucket_map
);
294 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
296 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
297 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
298 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
300 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
301 unsigned long *memory_bar
);
302 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
304 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
305 unsigned char lunaddr
[],
307 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
309 static inline void finish_cmd(struct CommandList
*c
);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
314 static void hpsa_flush_cache(struct ctlr_info
*h
);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
316 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
317 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
318 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
319 static u32
lockup_detected(struct ctlr_info
*h
);
320 static int detect_controller_lockup(struct ctlr_info
*h
);
321 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
323 struct ReportExtendedLUNdata
*buf
, int bufsize
);
324 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
325 unsigned char scsi3addr
[], u8 page
);
326 static int hpsa_luns_changed(struct ctlr_info
*h
);
327 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
328 struct hpsa_scsi_dev_t
*dev
,
329 unsigned char *scsi3addr
);
331 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
333 unsigned long *priv
= shost_priv(sdev
->host
);
334 return (struct ctlr_info
*) *priv
;
337 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
339 unsigned long *priv
= shost_priv(sh
);
340 return (struct ctlr_info
*) *priv
;
343 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
345 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
348 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
349 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
350 u8
*sense_key
, u8
*asc
, u8
*ascq
)
352 struct scsi_sense_hdr sshdr
;
359 if (sense_data_len
< 1)
362 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
364 *sense_key
= sshdr
.sense_key
;
370 static int check_for_unit_attention(struct ctlr_info
*h
,
371 struct CommandList
*c
)
373 u8 sense_key
, asc
, ascq
;
376 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
377 sense_len
= sizeof(c
->err_info
->SenseInfo
);
379 sense_len
= c
->err_info
->SenseLen
;
381 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
382 &sense_key
, &asc
, &ascq
);
383 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
388 dev_warn(&h
->pdev
->dev
,
389 "%s: a state change detected, command retried\n",
393 dev_warn(&h
->pdev
->dev
,
394 "%s: LUN failure detected\n", h
->devname
);
396 case REPORT_LUNS_CHANGED
:
397 dev_warn(&h
->pdev
->dev
,
398 "%s: report LUN data changed\n", h
->devname
);
400 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401 * target (array) devices.
405 dev_warn(&h
->pdev
->dev
,
406 "%s: a power on or device reset detected\n",
409 case UNIT_ATTENTION_CLEARED
:
410 dev_warn(&h
->pdev
->dev
,
411 "%s: unit attention cleared by another initiator\n",
415 dev_warn(&h
->pdev
->dev
,
416 "%s: unknown unit attention detected\n",
423 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
425 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
426 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
427 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
429 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
433 static u32
lockup_detected(struct ctlr_info
*h
);
434 static ssize_t
host_show_lockup_detected(struct device
*dev
,
435 struct device_attribute
*attr
, char *buf
)
439 struct Scsi_Host
*shost
= class_to_shost(dev
);
441 h
= shost_to_hba(shost
);
442 ld
= lockup_detected(h
);
444 return sprintf(buf
, "ld=%d\n", ld
);
447 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
448 struct device_attribute
*attr
,
449 const char *buf
, size_t count
)
453 struct Scsi_Host
*shost
= class_to_shost(dev
);
456 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
458 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
459 strncpy(tmpbuf
, buf
, len
);
461 if (sscanf(tmpbuf
, "%d", &status
) != 1)
463 h
= shost_to_hba(shost
);
464 h
->acciopath_status
= !!status
;
465 dev_warn(&h
->pdev
->dev
,
466 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
467 h
->acciopath_status
? "enabled" : "disabled");
471 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
472 struct device_attribute
*attr
,
473 const char *buf
, size_t count
)
475 int debug_level
, len
;
477 struct Scsi_Host
*shost
= class_to_shost(dev
);
480 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
482 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
483 strncpy(tmpbuf
, buf
, len
);
485 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
489 h
= shost_to_hba(shost
);
490 h
->raid_offload_debug
= debug_level
;
491 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
492 h
->raid_offload_debug
);
496 static ssize_t
host_store_rescan(struct device
*dev
,
497 struct device_attribute
*attr
,
498 const char *buf
, size_t count
)
501 struct Scsi_Host
*shost
= class_to_shost(dev
);
502 h
= shost_to_hba(shost
);
503 hpsa_scan_start(h
->scsi_host
);
507 static ssize_t
host_show_firmware_revision(struct device
*dev
,
508 struct device_attribute
*attr
, char *buf
)
511 struct Scsi_Host
*shost
= class_to_shost(dev
);
512 unsigned char *fwrev
;
514 h
= shost_to_hba(shost
);
515 if (!h
->hba_inquiry_data
)
517 fwrev
= &h
->hba_inquiry_data
[32];
518 return snprintf(buf
, 20, "%c%c%c%c\n",
519 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
522 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
523 struct device_attribute
*attr
, char *buf
)
525 struct Scsi_Host
*shost
= class_to_shost(dev
);
526 struct ctlr_info
*h
= shost_to_hba(shost
);
528 return snprintf(buf
, 20, "%d\n",
529 atomic_read(&h
->commands_outstanding
));
532 static ssize_t
host_show_transport_mode(struct device
*dev
,
533 struct device_attribute
*attr
, char *buf
)
536 struct Scsi_Host
*shost
= class_to_shost(dev
);
538 h
= shost_to_hba(shost
);
539 return snprintf(buf
, 20, "%s\n",
540 h
->transMethod
& CFGTBL_Trans_Performant
?
541 "performant" : "simple");
544 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
545 struct device_attribute
*attr
, char *buf
)
548 struct Scsi_Host
*shost
= class_to_shost(dev
);
550 h
= shost_to_hba(shost
);
551 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
552 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
555 /* List of controllers which cannot be hard reset on kexec with reset_devices */
556 static u32 unresettable_controller
[] = {
557 0x324a103C, /* Smart Array P712m */
558 0x324b103C, /* Smart Array P711m */
559 0x3223103C, /* Smart Array P800 */
560 0x3234103C, /* Smart Array P400 */
561 0x3235103C, /* Smart Array P400i */
562 0x3211103C, /* Smart Array E200i */
563 0x3212103C, /* Smart Array E200 */
564 0x3213103C, /* Smart Array E200i */
565 0x3214103C, /* Smart Array E200i */
566 0x3215103C, /* Smart Array E200i */
567 0x3237103C, /* Smart Array E500 */
568 0x323D103C, /* Smart Array P700m */
569 0x40800E11, /* Smart Array 5i */
570 0x409C0E11, /* Smart Array 6400 */
571 0x409D0E11, /* Smart Array 6400 EM */
572 0x40700E11, /* Smart Array 5300 */
573 0x40820E11, /* Smart Array 532 */
574 0x40830E11, /* Smart Array 5312 */
575 0x409A0E11, /* Smart Array 641 */
576 0x409B0E11, /* Smart Array 642 */
577 0x40910E11, /* Smart Array 6i */
580 /* List of controllers which cannot even be soft reset */
581 static u32 soft_unresettable_controller
[] = {
582 0x40800E11, /* Smart Array 5i */
583 0x40700E11, /* Smart Array 5300 */
584 0x40820E11, /* Smart Array 532 */
585 0x40830E11, /* Smart Array 5312 */
586 0x409A0E11, /* Smart Array 641 */
587 0x409B0E11, /* Smart Array 642 */
588 0x40910E11, /* Smart Array 6i */
589 /* Exclude 640x boards. These are two pci devices in one slot
590 * which share a battery backed cache module. One controls the
591 * cache, the other accesses the cache through the one that controls
592 * it. If we reset the one controlling the cache, the other will
593 * likely not be happy. Just forbid resetting this conjoined mess.
594 * The 640x isn't really supported by hpsa anyway.
596 0x409C0E11, /* Smart Array 6400 */
597 0x409D0E11, /* Smart Array 6400 EM */
600 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
604 for (i
= 0; i
< nelems
; i
++)
605 if (a
[i
] == board_id
)
610 static int ctlr_is_hard_resettable(u32 board_id
)
612 return !board_id_in_array(unresettable_controller
,
613 ARRAY_SIZE(unresettable_controller
), board_id
);
616 static int ctlr_is_soft_resettable(u32 board_id
)
618 return !board_id_in_array(soft_unresettable_controller
,
619 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
622 static int ctlr_is_resettable(u32 board_id
)
624 return ctlr_is_hard_resettable(board_id
) ||
625 ctlr_is_soft_resettable(board_id
);
628 static ssize_t
host_show_resettable(struct device
*dev
,
629 struct device_attribute
*attr
, char *buf
)
632 struct Scsi_Host
*shost
= class_to_shost(dev
);
634 h
= shost_to_hba(shost
);
635 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
638 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
640 return (scsi3addr
[3] & 0xC0) == 0x40;
643 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
644 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
646 #define HPSA_RAID_0 0
647 #define HPSA_RAID_4 1
648 #define HPSA_RAID_1 2 /* also used for RAID 10 */
649 #define HPSA_RAID_5 3 /* also used for RAID 50 */
650 #define HPSA_RAID_51 4
651 #define HPSA_RAID_6 5 /* also used for RAID 60 */
652 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
653 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
654 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
656 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
658 return !device
->physical_device
;
661 static ssize_t
raid_level_show(struct device
*dev
,
662 struct device_attribute
*attr
, char *buf
)
665 unsigned char rlevel
;
667 struct scsi_device
*sdev
;
668 struct hpsa_scsi_dev_t
*hdev
;
671 sdev
= to_scsi_device(dev
);
672 h
= sdev_to_hba(sdev
);
673 spin_lock_irqsave(&h
->lock
, flags
);
674 hdev
= sdev
->hostdata
;
676 spin_unlock_irqrestore(&h
->lock
, flags
);
680 /* Is this even a logical drive? */
681 if (!is_logical_device(hdev
)) {
682 spin_unlock_irqrestore(&h
->lock
, flags
);
683 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
687 rlevel
= hdev
->raid_level
;
688 spin_unlock_irqrestore(&h
->lock
, flags
);
689 if (rlevel
> RAID_UNKNOWN
)
690 rlevel
= RAID_UNKNOWN
;
691 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
695 static ssize_t
lunid_show(struct device
*dev
,
696 struct device_attribute
*attr
, char *buf
)
699 struct scsi_device
*sdev
;
700 struct hpsa_scsi_dev_t
*hdev
;
702 unsigned char lunid
[8];
704 sdev
= to_scsi_device(dev
);
705 h
= sdev_to_hba(sdev
);
706 spin_lock_irqsave(&h
->lock
, flags
);
707 hdev
= sdev
->hostdata
;
709 spin_unlock_irqrestore(&h
->lock
, flags
);
712 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
713 spin_unlock_irqrestore(&h
->lock
, flags
);
714 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
717 static ssize_t
unique_id_show(struct device
*dev
,
718 struct device_attribute
*attr
, char *buf
)
721 struct scsi_device
*sdev
;
722 struct hpsa_scsi_dev_t
*hdev
;
724 unsigned char sn
[16];
726 sdev
= to_scsi_device(dev
);
727 h
= sdev_to_hba(sdev
);
728 spin_lock_irqsave(&h
->lock
, flags
);
729 hdev
= sdev
->hostdata
;
731 spin_unlock_irqrestore(&h
->lock
, flags
);
734 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
735 spin_unlock_irqrestore(&h
->lock
, flags
);
736 return snprintf(buf
, 16 * 2 + 2,
737 "%02X%02X%02X%02X%02X%02X%02X%02X"
738 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
739 sn
[0], sn
[1], sn
[2], sn
[3],
740 sn
[4], sn
[5], sn
[6], sn
[7],
741 sn
[8], sn
[9], sn
[10], sn
[11],
742 sn
[12], sn
[13], sn
[14], sn
[15]);
745 static ssize_t
sas_address_show(struct device
*dev
,
746 struct device_attribute
*attr
, char *buf
)
749 struct scsi_device
*sdev
;
750 struct hpsa_scsi_dev_t
*hdev
;
754 sdev
= to_scsi_device(dev
);
755 h
= sdev_to_hba(sdev
);
756 spin_lock_irqsave(&h
->lock
, flags
);
757 hdev
= sdev
->hostdata
;
758 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
759 spin_unlock_irqrestore(&h
->lock
, flags
);
762 sas_address
= hdev
->sas_address
;
763 spin_unlock_irqrestore(&h
->lock
, flags
);
765 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
768 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
769 struct device_attribute
*attr
, char *buf
)
772 struct scsi_device
*sdev
;
773 struct hpsa_scsi_dev_t
*hdev
;
777 sdev
= to_scsi_device(dev
);
778 h
= sdev_to_hba(sdev
);
779 spin_lock_irqsave(&h
->lock
, flags
);
780 hdev
= sdev
->hostdata
;
782 spin_unlock_irqrestore(&h
->lock
, flags
);
785 offload_enabled
= hdev
->offload_enabled
;
786 spin_unlock_irqrestore(&h
->lock
, flags
);
788 if (hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
)
789 return snprintf(buf
, 20, "%d\n", offload_enabled
);
791 return snprintf(buf
, 40, "%s\n",
792 "Not applicable for a controller");
796 static ssize_t
path_info_show(struct device
*dev
,
797 struct device_attribute
*attr
, char *buf
)
800 struct scsi_device
*sdev
;
801 struct hpsa_scsi_dev_t
*hdev
;
807 u8 path_map_index
= 0;
809 unsigned char phys_connector
[2];
811 sdev
= to_scsi_device(dev
);
812 h
= sdev_to_hba(sdev
);
813 spin_lock_irqsave(&h
->devlock
, flags
);
814 hdev
= sdev
->hostdata
;
816 spin_unlock_irqrestore(&h
->devlock
, flags
);
821 for (i
= 0; i
< MAX_PATHS
; i
++) {
822 path_map_index
= 1<<i
;
823 if (i
== hdev
->active_path_index
)
825 else if (hdev
->path_map
& path_map_index
)
830 output_len
+= scnprintf(buf
+ output_len
,
831 PAGE_SIZE
- output_len
,
832 "[%d:%d:%d:%d] %20.20s ",
833 h
->scsi_host
->host_no
,
834 hdev
->bus
, hdev
->target
, hdev
->lun
,
835 scsi_device_type(hdev
->devtype
));
837 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
838 output_len
+= scnprintf(buf
+ output_len
,
839 PAGE_SIZE
- output_len
,
845 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
846 sizeof(phys_connector
));
847 if (phys_connector
[0] < '0')
848 phys_connector
[0] = '0';
849 if (phys_connector
[1] < '0')
850 phys_connector
[1] = '0';
851 output_len
+= scnprintf(buf
+ output_len
,
852 PAGE_SIZE
- output_len
,
855 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
856 hdev
->expose_device
) {
857 if (box
== 0 || box
== 0xFF) {
858 output_len
+= scnprintf(buf
+ output_len
,
859 PAGE_SIZE
- output_len
,
863 output_len
+= scnprintf(buf
+ output_len
,
864 PAGE_SIZE
- output_len
,
865 "BOX: %hhu BAY: %hhu %s\n",
868 } else if (box
!= 0 && box
!= 0xFF) {
869 output_len
+= scnprintf(buf
+ output_len
,
870 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
873 output_len
+= scnprintf(buf
+ output_len
,
874 PAGE_SIZE
- output_len
, "%s\n", active
);
877 spin_unlock_irqrestore(&h
->devlock
, flags
);
881 static ssize_t
host_show_ctlr_num(struct device
*dev
,
882 struct device_attribute
*attr
, char *buf
)
885 struct Scsi_Host
*shost
= class_to_shost(dev
);
887 h
= shost_to_hba(shost
);
888 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
891 static ssize_t
host_show_legacy_board(struct device
*dev
,
892 struct device_attribute
*attr
, char *buf
)
895 struct Scsi_Host
*shost
= class_to_shost(dev
);
897 h
= shost_to_hba(shost
);
898 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
901 static DEVICE_ATTR_RO(raid_level
);
902 static DEVICE_ATTR_RO(lunid
);
903 static DEVICE_ATTR_RO(unique_id
);
904 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
905 static DEVICE_ATTR_RO(sas_address
);
906 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
907 host_show_hp_ssd_smart_path_enabled
, NULL
);
908 static DEVICE_ATTR_RO(path_info
);
909 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
910 host_show_hp_ssd_smart_path_status
,
911 host_store_hp_ssd_smart_path_status
);
912 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
913 host_store_raid_offload_debug
);
914 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
915 host_show_firmware_revision
, NULL
);
916 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
917 host_show_commands_outstanding
, NULL
);
918 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
919 host_show_transport_mode
, NULL
);
920 static DEVICE_ATTR(resettable
, S_IRUGO
,
921 host_show_resettable
, NULL
);
922 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
923 host_show_lockup_detected
, NULL
);
924 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
925 host_show_ctlr_num
, NULL
);
926 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
927 host_show_legacy_board
, NULL
);
929 static struct device_attribute
*hpsa_sdev_attrs
[] = {
930 &dev_attr_raid_level
,
933 &dev_attr_hp_ssd_smart_path_enabled
,
935 &dev_attr_sas_address
,
939 static struct device_attribute
*hpsa_shost_attrs
[] = {
941 &dev_attr_firmware_revision
,
942 &dev_attr_commands_outstanding
,
943 &dev_attr_transport_mode
,
944 &dev_attr_resettable
,
945 &dev_attr_hp_ssd_smart_path_status
,
946 &dev_attr_raid_offload_debug
,
947 &dev_attr_lockup_detected
,
949 &dev_attr_legacy_board
,
953 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
954 HPSA_MAX_CONCURRENT_PASSTHRUS)
956 static struct scsi_host_template hpsa_driver_template
= {
957 .module
= THIS_MODULE
,
960 .queuecommand
= hpsa_scsi_queue_command
,
961 .scan_start
= hpsa_scan_start
,
962 .scan_finished
= hpsa_scan_finished
,
963 .change_queue_depth
= hpsa_change_queue_depth
,
965 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
967 .slave_alloc
= hpsa_slave_alloc
,
968 .slave_configure
= hpsa_slave_configure
,
969 .slave_destroy
= hpsa_slave_destroy
,
971 .compat_ioctl
= hpsa_compat_ioctl
,
973 .sdev_attrs
= hpsa_sdev_attrs
,
974 .shost_attrs
= hpsa_shost_attrs
,
979 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
982 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
984 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
985 return h
->access
.command_completed(h
, q
);
987 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
988 return h
->access
.command_completed(h
, q
);
990 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
991 a
= rq
->head
[rq
->current_entry
];
993 atomic_dec(&h
->commands_outstanding
);
997 /* Check for wraparound */
998 if (rq
->current_entry
== h
->max_commands
) {
999 rq
->current_entry
= 0;
1000 rq
->wraparound
^= 1;
1006 * There are some special bits in the bus address of the
1007 * command that we have to set for the controller to know
1008 * how to process the command:
1010 * Normal performant mode:
1011 * bit 0: 1 means performant mode, 0 means simple mode.
1012 * bits 1-3 = block fetch table entry
1013 * bits 4-6 = command type (== 0)
1016 * bit 0 = "performant mode" bit.
1017 * bits 1-3 = block fetch table entry
1018 * bits 4-6 = command type (== 110)
1019 * (command type is needed because ioaccel1 mode
1020 * commands are submitted through the same register as normal
1021 * mode commands, so this is how the controller knows whether
1022 * the command is normal mode or ioaccel1 mode.)
1025 * bit 0 = "performant mode" bit.
1026 * bits 1-4 = block fetch table entry (note extra bit)
1027 * bits 4-6 = not needed, because ioaccel2 mode has
1028 * a separate special register for submitting commands.
1032 * set_performant_mode: Modify the tag for cciss performant
1033 * set bit 0 for pull model, bits 3-1 for block fetch
1036 #define DEFAULT_REPLY_QUEUE (-1)
1037 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1040 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1041 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1042 if (unlikely(!h
->msix_vectors
))
1044 c
->Header
.ReplyQueue
= reply_queue
;
1048 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1049 struct CommandList
*c
,
1052 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1055 * Tell the controller to post the reply to the queue for this
1056 * processor. This seems to give the best I/O throughput.
1058 cp
->ReplyQueue
= reply_queue
;
1060 * Set the bits in the address sent down to include:
1061 * - performant mode bit (bit 0)
1062 * - pull count (bits 1-3)
1063 * - command type (bits 4-6)
1065 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1066 IOACCEL1_BUSADDR_CMDTYPE
;
1069 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1070 struct CommandList
*c
,
1073 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1074 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1076 /* Tell the controller to post the reply to the queue for this
1077 * processor. This seems to give the best I/O throughput.
1079 cp
->reply_queue
= reply_queue
;
1080 /* Set the bits in the address sent down to include:
1081 * - performant mode bit not used in ioaccel mode 2
1082 * - pull count (bits 0-3)
1083 * - command type isn't needed for ioaccel2
1085 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1088 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1089 struct CommandList
*c
,
1092 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1095 * Tell the controller to post the reply to the queue for this
1096 * processor. This seems to give the best I/O throughput.
1098 cp
->reply_queue
= reply_queue
;
1100 * Set the bits in the address sent down to include:
1101 * - performant mode bit not used in ioaccel mode 2
1102 * - pull count (bits 0-3)
1103 * - command type isn't needed for ioaccel2
1105 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1108 static int is_firmware_flash_cmd(u8
*cdb
)
1110 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1114 * During firmware flash, the heartbeat register may not update as frequently
1115 * as it should. So we dial down lockup detection during firmware flash. and
1116 * dial it back up when firmware flash completes.
1118 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1119 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1120 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1121 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1122 struct CommandList
*c
)
1124 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1126 atomic_inc(&h
->firmware_flash_in_progress
);
1127 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1130 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1131 struct CommandList
*c
)
1133 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1134 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1135 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1138 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1139 struct CommandList
*c
, int reply_queue
)
1141 dial_down_lockup_detection_during_fw_flash(h
, c
);
1142 atomic_inc(&h
->commands_outstanding
);
1144 atomic_inc(&c
->device
->commands_outstanding
);
1146 reply_queue
= h
->reply_map
[raw_smp_processor_id()];
1147 switch (c
->cmd_type
) {
1149 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1150 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1153 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1154 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1157 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1158 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1161 set_performant_mode(h
, c
, reply_queue
);
1162 h
->access
.submit_command(h
, c
);
1166 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1168 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1171 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1173 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1176 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1178 if (!h
->hba_inquiry_data
)
1180 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1185 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1186 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1188 /* finds an unused bus, target, lun for a new physical device
1189 * assumes h->devlock is held
1192 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1194 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1196 for (i
= 0; i
< h
->ndevices
; i
++) {
1197 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1198 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1201 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1202 if (i
< HPSA_MAX_DEVICES
) {
1211 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1212 struct hpsa_scsi_dev_t
*dev
, char *description
)
1214 #define LABEL_SIZE 25
1215 char label
[LABEL_SIZE
];
1217 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1220 switch (dev
->devtype
) {
1222 snprintf(label
, LABEL_SIZE
, "controller");
1224 case TYPE_ENCLOSURE
:
1225 snprintf(label
, LABEL_SIZE
, "enclosure");
1230 snprintf(label
, LABEL_SIZE
, "external");
1231 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1232 snprintf(label
, LABEL_SIZE
, "%s",
1233 raid_label
[PHYSICAL_DRIVE
]);
1235 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1236 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1237 raid_label
[dev
->raid_level
]);
1240 snprintf(label
, LABEL_SIZE
, "rom");
1243 snprintf(label
, LABEL_SIZE
, "tape");
1245 case TYPE_MEDIUM_CHANGER
:
1246 snprintf(label
, LABEL_SIZE
, "changer");
1249 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1253 dev_printk(level
, &h
->pdev
->dev
,
1254 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1257 scsi_device_type(dev
->devtype
),
1261 dev
->offload_config
? '+' : '-',
1262 dev
->offload_to_be_enabled
? '+' : '-',
1263 dev
->expose_device
);
1266 /* Add an entry into h->dev[] array. */
1267 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1268 struct hpsa_scsi_dev_t
*device
,
1269 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1271 /* assumes h->devlock is held */
1272 int n
= h
->ndevices
;
1274 unsigned char addr1
[8], addr2
[8];
1275 struct hpsa_scsi_dev_t
*sd
;
1277 if (n
>= HPSA_MAX_DEVICES
) {
1278 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1283 /* physical devices do not have lun or target assigned until now. */
1284 if (device
->lun
!= -1)
1285 /* Logical device, lun is already assigned. */
1288 /* If this device a non-zero lun of a multi-lun device
1289 * byte 4 of the 8-byte LUN addr will contain the logical
1290 * unit no, zero otherwise.
1292 if (device
->scsi3addr
[4] == 0) {
1293 /* This is not a non-zero lun of a multi-lun device */
1294 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1295 device
->bus
, &device
->target
, &device
->lun
) != 0)
1300 /* This is a non-zero lun of a multi-lun device.
1301 * Search through our list and find the device which
1302 * has the same 8 byte LUN address, excepting byte 4 and 5.
1303 * Assign the same bus and target for this new LUN.
1304 * Use the logical unit number from the firmware.
1306 memcpy(addr1
, device
->scsi3addr
, 8);
1309 for (i
= 0; i
< n
; i
++) {
1311 memcpy(addr2
, sd
->scsi3addr
, 8);
1314 /* differ only in byte 4 and 5? */
1315 if (memcmp(addr1
, addr2
, 8) == 0) {
1316 device
->bus
= sd
->bus
;
1317 device
->target
= sd
->target
;
1318 device
->lun
= device
->scsi3addr
[4];
1322 if (device
->lun
== -1) {
1323 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1324 " suspect firmware bug or unsupported hardware "
1325 "configuration.\n");
1333 added
[*nadded
] = device
;
1335 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1336 device
->expose_device
? "added" : "masked");
1341 * Called during a scan operation.
1343 * Update an entry in h->dev[] array.
1345 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1346 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1348 /* assumes h->devlock is held */
1349 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1351 /* Raid level changed. */
1352 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1355 * ioacccel_handle may have changed for a dual domain disk
1357 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1359 /* Raid offload parameters changed. Careful about the ordering. */
1360 if (new_entry
->offload_config
&& new_entry
->offload_to_be_enabled
) {
1362 * if drive is newly offload_enabled, we want to copy the
1363 * raid map data first. If previously offload_enabled and
1364 * offload_config were set, raid map data had better be
1365 * the same as it was before. If raid map data has changed
1366 * then it had better be the case that
1367 * h->dev[entry]->offload_enabled is currently 0.
1369 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1370 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1372 if (new_entry
->offload_to_be_enabled
) {
1373 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1374 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1376 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1377 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1378 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1379 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1382 * We can turn off ioaccel offload now, but need to delay turning
1383 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1384 * can't do that until all the devices are updated.
1386 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_to_be_enabled
;
1389 * turn ioaccel off immediately if told to do so.
1391 if (!new_entry
->offload_to_be_enabled
)
1392 h
->dev
[entry
]->offload_enabled
= 0;
1394 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1397 /* Replace an entry from h->dev[] array. */
1398 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1399 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1400 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1401 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1403 /* assumes h->devlock is held */
1404 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1405 removed
[*nremoved
] = h
->dev
[entry
];
1409 * New physical devices won't have target/lun assigned yet
1410 * so we need to preserve the values in the slot we are replacing.
1412 if (new_entry
->target
== -1) {
1413 new_entry
->target
= h
->dev
[entry
]->target
;
1414 new_entry
->lun
= h
->dev
[entry
]->lun
;
1417 h
->dev
[entry
] = new_entry
;
1418 added
[*nadded
] = new_entry
;
1421 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1424 /* Remove an entry from h->dev[] array. */
1425 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1426 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1428 /* assumes h->devlock is held */
1430 struct hpsa_scsi_dev_t
*sd
;
1432 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1435 removed
[*nremoved
] = h
->dev
[entry
];
1438 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1439 h
->dev
[i
] = h
->dev
[i
+1];
1441 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1444 #define SCSI3ADDR_EQ(a, b) ( \
1445 (a)[7] == (b)[7] && \
1446 (a)[6] == (b)[6] && \
1447 (a)[5] == (b)[5] && \
1448 (a)[4] == (b)[4] && \
1449 (a)[3] == (b)[3] && \
1450 (a)[2] == (b)[2] && \
1451 (a)[1] == (b)[1] && \
1454 static void fixup_botched_add(struct ctlr_info
*h
,
1455 struct hpsa_scsi_dev_t
*added
)
1457 /* called when scsi_add_device fails in order to re-adjust
1458 * h->dev[] to match the mid layer's view.
1460 unsigned long flags
;
1463 spin_lock_irqsave(&h
->lock
, flags
);
1464 for (i
= 0; i
< h
->ndevices
; i
++) {
1465 if (h
->dev
[i
] == added
) {
1466 for (j
= i
; j
< h
->ndevices
-1; j
++)
1467 h
->dev
[j
] = h
->dev
[j
+1];
1472 spin_unlock_irqrestore(&h
->lock
, flags
);
1476 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1477 struct hpsa_scsi_dev_t
*dev2
)
1479 /* we compare everything except lun and target as these
1480 * are not yet assigned. Compare parts likely
1483 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1484 sizeof(dev1
->scsi3addr
)) != 0)
1486 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1487 sizeof(dev1
->device_id
)) != 0)
1489 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1491 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1493 if (dev1
->devtype
!= dev2
->devtype
)
1495 if (dev1
->bus
!= dev2
->bus
)
1500 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1501 struct hpsa_scsi_dev_t
*dev2
)
1503 /* Device attributes that can change, but don't mean
1504 * that the device is a different device, nor that the OS
1505 * needs to be told anything about the change.
1507 if (dev1
->raid_level
!= dev2
->raid_level
)
1509 if (dev1
->offload_config
!= dev2
->offload_config
)
1511 if (dev1
->offload_to_be_enabled
!= dev2
->offload_to_be_enabled
)
1513 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1514 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1517 * This can happen for dual domain devices. An active
1518 * path change causes the ioaccel handle to change
1520 * for example note the handle differences between p0 and p1
1521 * Device WWN ,WWN hash,Handle
1522 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1523 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1525 if (dev1
->ioaccel_handle
!= dev2
->ioaccel_handle
)
1530 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1531 * and return needle location in *index. If scsi3addr matches, but not
1532 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1533 * location in *index.
1534 * In the case of a minor device attribute change, such as RAID level, just
1535 * return DEVICE_UPDATED, along with the updated device's location in index.
1536 * If needle not found, return DEVICE_NOT_FOUND.
1538 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1539 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1543 #define DEVICE_NOT_FOUND 0
1544 #define DEVICE_CHANGED 1
1545 #define DEVICE_SAME 2
1546 #define DEVICE_UPDATED 3
1548 return DEVICE_NOT_FOUND
;
1550 for (i
= 0; i
< haystack_size
; i
++) {
1551 if (haystack
[i
] == NULL
) /* previously removed. */
1553 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1555 if (device_is_the_same(needle
, haystack
[i
])) {
1556 if (device_updated(needle
, haystack
[i
]))
1557 return DEVICE_UPDATED
;
1560 /* Keep offline devices offline */
1561 if (needle
->volume_offline
)
1562 return DEVICE_NOT_FOUND
;
1563 return DEVICE_CHANGED
;
1568 return DEVICE_NOT_FOUND
;
1571 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1572 unsigned char scsi3addr
[])
1574 struct offline_device_entry
*device
;
1575 unsigned long flags
;
1577 /* Check to see if device is already on the list */
1578 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1579 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1580 if (memcmp(device
->scsi3addr
, scsi3addr
,
1581 sizeof(device
->scsi3addr
)) == 0) {
1582 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1586 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1588 /* Device is not on the list, add it. */
1589 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1593 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1594 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1595 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1596 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1599 /* Print a message explaining various offline volume states */
1600 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1601 struct hpsa_scsi_dev_t
*sd
)
1603 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1604 dev_info(&h
->pdev
->dev
,
1605 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1606 h
->scsi_host
->host_no
,
1607 sd
->bus
, sd
->target
, sd
->lun
);
1608 switch (sd
->volume_offline
) {
1611 case HPSA_LV_UNDERGOING_ERASE
:
1612 dev_info(&h
->pdev
->dev
,
1613 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1614 h
->scsi_host
->host_no
,
1615 sd
->bus
, sd
->target
, sd
->lun
);
1617 case HPSA_LV_NOT_AVAILABLE
:
1618 dev_info(&h
->pdev
->dev
,
1619 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1620 h
->scsi_host
->host_no
,
1621 sd
->bus
, sd
->target
, sd
->lun
);
1623 case HPSA_LV_UNDERGOING_RPI
:
1624 dev_info(&h
->pdev
->dev
,
1625 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1626 h
->scsi_host
->host_no
,
1627 sd
->bus
, sd
->target
, sd
->lun
);
1629 case HPSA_LV_PENDING_RPI
:
1630 dev_info(&h
->pdev
->dev
,
1631 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1632 h
->scsi_host
->host_no
,
1633 sd
->bus
, sd
->target
, sd
->lun
);
1635 case HPSA_LV_ENCRYPTED_NO_KEY
:
1636 dev_info(&h
->pdev
->dev
,
1637 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1638 h
->scsi_host
->host_no
,
1639 sd
->bus
, sd
->target
, sd
->lun
);
1641 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1642 dev_info(&h
->pdev
->dev
,
1643 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1644 h
->scsi_host
->host_no
,
1645 sd
->bus
, sd
->target
, sd
->lun
);
1647 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1648 dev_info(&h
->pdev
->dev
,
1649 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1650 h
->scsi_host
->host_no
,
1651 sd
->bus
, sd
->target
, sd
->lun
);
1653 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1654 dev_info(&h
->pdev
->dev
,
1655 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1656 h
->scsi_host
->host_no
,
1657 sd
->bus
, sd
->target
, sd
->lun
);
1659 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1660 dev_info(&h
->pdev
->dev
,
1661 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1662 h
->scsi_host
->host_no
,
1663 sd
->bus
, sd
->target
, sd
->lun
);
1665 case HPSA_LV_PENDING_ENCRYPTION
:
1666 dev_info(&h
->pdev
->dev
,
1667 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1668 h
->scsi_host
->host_no
,
1669 sd
->bus
, sd
->target
, sd
->lun
);
1671 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1672 dev_info(&h
->pdev
->dev
,
1673 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1674 h
->scsi_host
->host_no
,
1675 sd
->bus
, sd
->target
, sd
->lun
);
1681 * Figure the list of physical drive pointers for a logical drive with
1682 * raid offload configured.
1684 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1685 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1686 struct hpsa_scsi_dev_t
*logical_drive
)
1688 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1689 struct raid_map_disk_data
*dd
= &map
->data
[0];
1691 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1692 le16_to_cpu(map
->metadata_disks_per_row
);
1693 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1694 le16_to_cpu(map
->layout_map_count
) *
1695 total_disks_per_row
;
1696 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1697 total_disks_per_row
;
1700 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1701 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1703 logical_drive
->nphysical_disks
= nraid_map_entries
;
1706 for (i
= 0; i
< nraid_map_entries
; i
++) {
1707 logical_drive
->phys_disk
[i
] = NULL
;
1708 if (!logical_drive
->offload_config
)
1710 for (j
= 0; j
< ndevices
; j
++) {
1713 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1714 dev
[j
]->devtype
!= TYPE_ZBC
)
1716 if (is_logical_device(dev
[j
]))
1718 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1721 logical_drive
->phys_disk
[i
] = dev
[j
];
1723 qdepth
= min(h
->nr_cmds
, qdepth
+
1724 logical_drive
->phys_disk
[i
]->queue_depth
);
1729 * This can happen if a physical drive is removed and
1730 * the logical drive is degraded. In that case, the RAID
1731 * map data will refer to a physical disk which isn't actually
1732 * present. And in that case offload_enabled should already
1733 * be 0, but we'll turn it off here just in case
1735 if (!logical_drive
->phys_disk
[i
]) {
1736 dev_warn(&h
->pdev
->dev
,
1737 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1739 h
->scsi_host
->host_no
, logical_drive
->bus
,
1740 logical_drive
->target
, logical_drive
->lun
);
1741 logical_drive
->offload_enabled
= 0;
1742 logical_drive
->offload_to_be_enabled
= 0;
1743 logical_drive
->queue_depth
= 8;
1746 if (nraid_map_entries
)
1748 * This is correct for reads, too high for full stripe writes,
1749 * way too high for partial stripe writes
1751 logical_drive
->queue_depth
= qdepth
;
1753 if (logical_drive
->external
)
1754 logical_drive
->queue_depth
= EXTERNAL_QD
;
1756 logical_drive
->queue_depth
= h
->nr_cmds
;
1760 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1761 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1765 for (i
= 0; i
< ndevices
; i
++) {
1768 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1769 dev
[i
]->devtype
!= TYPE_ZBC
)
1771 if (!is_logical_device(dev
[i
]))
1775 * If offload is currently enabled, the RAID map and
1776 * phys_disk[] assignment *better* not be changing
1777 * because we would be changing ioaccel phsy_disk[] pointers
1778 * on a ioaccel volume processing I/O requests.
1780 * If an ioaccel volume status changed, initially because it was
1781 * re-configured and thus underwent a transformation, or
1782 * a drive failed, we would have received a state change
1783 * request and ioaccel should have been turned off. When the
1784 * transformation completes, we get another state change
1785 * request to turn ioaccel back on. In this case, we need
1786 * to update the ioaccel information.
1788 * Thus: If it is not currently enabled, but will be after
1789 * the scan completes, make sure the ioaccel pointers
1793 if (!dev
[i
]->offload_enabled
&& dev
[i
]->offload_to_be_enabled
)
1794 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1798 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1805 if (is_logical_device(device
)) /* RAID */
1806 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1807 device
->target
, device
->lun
);
1809 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1814 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1815 struct hpsa_scsi_dev_t
*dev
)
1820 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1821 struct CommandList
*c
= h
->cmd_pool
+ i
;
1822 int refcount
= atomic_inc_return(&c
->refcount
);
1824 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1826 unsigned long flags
;
1828 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1829 if (!hpsa_is_cmd_idle(c
))
1831 spin_unlock_irqrestore(&h
->lock
, flags
);
1841 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1842 struct hpsa_scsi_dev_t
*device
)
1846 int num_wait
= NUM_WAIT
;
1848 if (device
->external
)
1849 num_wait
= HPSA_EH_PTRAID_TIMEOUT
;
1852 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1855 if (++waits
> num_wait
)
1860 if (waits
> num_wait
) {
1861 dev_warn(&h
->pdev
->dev
,
1862 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1864 h
->scsi_host
->host_no
,
1865 device
->bus
, device
->target
, device
->lun
, cmds
);
1869 static void hpsa_remove_device(struct ctlr_info
*h
,
1870 struct hpsa_scsi_dev_t
*device
)
1872 struct scsi_device
*sdev
= NULL
;
1878 * Allow for commands to drain
1880 device
->removed
= 1;
1881 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1883 if (is_logical_device(device
)) { /* RAID */
1884 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1885 device
->target
, device
->lun
);
1887 scsi_remove_device(sdev
);
1888 scsi_device_put(sdev
);
1891 * We don't expect to get here. Future commands
1892 * to this device will get a selection timeout as
1893 * if the device were gone.
1895 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1896 "didn't find device for removal.");
1900 hpsa_remove_sas_device(device
);
1904 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1905 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1907 /* sd contains scsi3 addresses and devtypes, and inquiry
1908 * data. This function takes what's in sd to be the current
1909 * reality and updates h->dev[] to reflect that reality.
1911 int i
, entry
, device_change
, changes
= 0;
1912 struct hpsa_scsi_dev_t
*csd
;
1913 unsigned long flags
;
1914 struct hpsa_scsi_dev_t
**added
, **removed
;
1915 int nadded
, nremoved
;
1918 * A reset can cause a device status to change
1919 * re-schedule the scan to see what happened.
1921 spin_lock_irqsave(&h
->reset_lock
, flags
);
1922 if (h
->reset_in_progress
) {
1923 h
->drv_req_rescan
= 1;
1924 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1927 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1929 added
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*added
), GFP_KERNEL
);
1930 removed
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*removed
), GFP_KERNEL
);
1932 if (!added
|| !removed
) {
1933 dev_warn(&h
->pdev
->dev
, "out of memory in "
1934 "adjust_hpsa_scsi_table\n");
1938 spin_lock_irqsave(&h
->devlock
, flags
);
1940 /* find any devices in h->dev[] that are not in
1941 * sd[] and remove them from h->dev[], and for any
1942 * devices which have changed, remove the old device
1943 * info and add the new device info.
1944 * If minor device attributes change, just update
1945 * the existing device structure.
1950 while (i
< h
->ndevices
) {
1952 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1953 if (device_change
== DEVICE_NOT_FOUND
) {
1955 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1956 continue; /* remove ^^^, hence i not incremented */
1957 } else if (device_change
== DEVICE_CHANGED
) {
1959 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1960 added
, &nadded
, removed
, &nremoved
);
1961 /* Set it to NULL to prevent it from being freed
1962 * at the bottom of hpsa_update_scsi_devices()
1965 } else if (device_change
== DEVICE_UPDATED
) {
1966 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1971 /* Now, make sure every device listed in sd[] is also
1972 * listed in h->dev[], adding them if they aren't found
1975 for (i
= 0; i
< nsds
; i
++) {
1976 if (!sd
[i
]) /* if already added above. */
1979 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1980 * as the SCSI mid-layer does not handle such devices well.
1981 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1982 * at 160Hz, and prevents the system from coming up.
1984 if (sd
[i
]->volume_offline
) {
1985 hpsa_show_volume_status(h
, sd
[i
]);
1986 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1990 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1991 h
->ndevices
, &entry
);
1992 if (device_change
== DEVICE_NOT_FOUND
) {
1994 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1996 sd
[i
] = NULL
; /* prevent from being freed later. */
1997 } else if (device_change
== DEVICE_CHANGED
) {
1998 /* should never happen... */
2000 dev_warn(&h
->pdev
->dev
,
2001 "device unexpectedly changed.\n");
2002 /* but if it does happen, we just ignore that device */
2005 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
2008 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2009 * any logical drives that need it enabled.
2011 * The raid map should be current by now.
2013 * We are updating the device list used for I/O requests.
2015 for (i
= 0; i
< h
->ndevices
; i
++) {
2016 if (h
->dev
[i
] == NULL
)
2018 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
2021 spin_unlock_irqrestore(&h
->devlock
, flags
);
2023 /* Monitor devices which are in one of several NOT READY states to be
2024 * brought online later. This must be done without holding h->devlock,
2025 * so don't touch h->dev[]
2027 for (i
= 0; i
< nsds
; i
++) {
2028 if (!sd
[i
]) /* if already added above. */
2030 if (sd
[i
]->volume_offline
)
2031 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
2034 /* Don't notify scsi mid layer of any changes the first time through
2035 * (or if there are no changes) scsi_scan_host will do it later the
2036 * first time through.
2041 /* Notify scsi mid layer of any removed devices */
2042 for (i
= 0; i
< nremoved
; i
++) {
2043 if (removed
[i
] == NULL
)
2045 if (removed
[i
]->expose_device
)
2046 hpsa_remove_device(h
, removed
[i
]);
2051 /* Notify scsi mid layer of any added devices */
2052 for (i
= 0; i
< nadded
; i
++) {
2055 if (added
[i
] == NULL
)
2057 if (!(added
[i
]->expose_device
))
2059 rc
= hpsa_add_device(h
, added
[i
]);
2062 dev_warn(&h
->pdev
->dev
,
2063 "addition failed %d, device not added.", rc
);
2064 /* now we have to remove it from h->dev,
2065 * since it didn't get added to scsi mid layer
2067 fixup_botched_add(h
, added
[i
]);
2068 h
->drv_req_rescan
= 1;
2077 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2078 * Assume's h->devlock is held.
2080 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2081 int bus
, int target
, int lun
)
2084 struct hpsa_scsi_dev_t
*sd
;
2086 for (i
= 0; i
< h
->ndevices
; i
++) {
2088 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2094 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2096 struct hpsa_scsi_dev_t
*sd
= NULL
;
2097 unsigned long flags
;
2098 struct ctlr_info
*h
;
2100 h
= sdev_to_hba(sdev
);
2101 spin_lock_irqsave(&h
->devlock
, flags
);
2102 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2103 struct scsi_target
*starget
;
2104 struct sas_rphy
*rphy
;
2106 starget
= scsi_target(sdev
);
2107 rphy
= target_to_rphy(starget
);
2108 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2110 sd
->target
= sdev_id(sdev
);
2111 sd
->lun
= sdev
->lun
;
2115 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2116 sdev_id(sdev
), sdev
->lun
);
2118 if (sd
&& sd
->expose_device
) {
2119 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2120 sdev
->hostdata
= sd
;
2122 sdev
->hostdata
= NULL
;
2123 spin_unlock_irqrestore(&h
->devlock
, flags
);
2127 /* configure scsi device based on internal per-device structure */
2128 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2130 struct hpsa_scsi_dev_t
*sd
;
2133 sd
= sdev
->hostdata
;
2134 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2137 sd
->was_removed
= 0;
2139 queue_depth
= EXTERNAL_QD
;
2140 sdev
->eh_timeout
= HPSA_EH_PTRAID_TIMEOUT
;
2141 blk_queue_rq_timeout(sdev
->request_queue
,
2142 HPSA_EH_PTRAID_TIMEOUT
);
2144 queue_depth
= sd
->queue_depth
!= 0 ?
2145 sd
->queue_depth
: sdev
->host
->can_queue
;
2148 queue_depth
= sdev
->host
->can_queue
;
2150 scsi_change_queue_depth(sdev
, queue_depth
);
2155 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2157 struct hpsa_scsi_dev_t
*hdev
= NULL
;
2159 hdev
= sdev
->hostdata
;
2162 hdev
->was_removed
= 1;
2165 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2169 if (!h
->ioaccel2_cmd_sg_list
)
2171 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2172 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2173 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2175 kfree(h
->ioaccel2_cmd_sg_list
);
2176 h
->ioaccel2_cmd_sg_list
= NULL
;
2179 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2183 if (h
->chainsize
<= 0)
2186 h
->ioaccel2_cmd_sg_list
=
2187 kcalloc(h
->nr_cmds
, sizeof(*h
->ioaccel2_cmd_sg_list
),
2189 if (!h
->ioaccel2_cmd_sg_list
)
2191 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2192 h
->ioaccel2_cmd_sg_list
[i
] =
2193 kmalloc_array(h
->maxsgentries
,
2194 sizeof(*h
->ioaccel2_cmd_sg_list
[i
]),
2196 if (!h
->ioaccel2_cmd_sg_list
[i
])
2202 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2206 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2210 if (!h
->cmd_sg_list
)
2212 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2213 kfree(h
->cmd_sg_list
[i
]);
2214 h
->cmd_sg_list
[i
] = NULL
;
2216 kfree(h
->cmd_sg_list
);
2217 h
->cmd_sg_list
= NULL
;
2220 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2224 if (h
->chainsize
<= 0)
2227 h
->cmd_sg_list
= kcalloc(h
->nr_cmds
, sizeof(*h
->cmd_sg_list
),
2229 if (!h
->cmd_sg_list
)
2232 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2233 h
->cmd_sg_list
[i
] = kmalloc_array(h
->chainsize
,
2234 sizeof(*h
->cmd_sg_list
[i
]),
2236 if (!h
->cmd_sg_list
[i
])
2243 hpsa_free_sg_chain_blocks(h
);
2247 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2248 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2250 struct ioaccel2_sg_element
*chain_block
;
2254 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2255 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2256 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_size
,
2258 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2259 /* prevent subsequent unmapping */
2260 cp
->sg
->address
= 0;
2263 cp
->sg
->address
= cpu_to_le64(temp64
);
2267 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2268 struct io_accel2_cmd
*cp
)
2270 struct ioaccel2_sg_element
*chain_sg
;
2275 temp64
= le64_to_cpu(chain_sg
->address
);
2276 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2277 dma_unmap_single(&h
->pdev
->dev
, temp64
, chain_size
, DMA_TO_DEVICE
);
2280 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2281 struct CommandList
*c
)
2283 struct SGDescriptor
*chain_sg
, *chain_block
;
2287 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2288 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2289 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2290 chain_len
= sizeof(*chain_sg
) *
2291 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2292 chain_sg
->Len
= cpu_to_le32(chain_len
);
2293 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_len
,
2295 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2296 /* prevent subsequent unmapping */
2297 chain_sg
->Addr
= cpu_to_le64(0);
2300 chain_sg
->Addr
= cpu_to_le64(temp64
);
2304 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2305 struct CommandList
*c
)
2307 struct SGDescriptor
*chain_sg
;
2309 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2312 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2313 dma_unmap_single(&h
->pdev
->dev
, le64_to_cpu(chain_sg
->Addr
),
2314 le32_to_cpu(chain_sg
->Len
), DMA_TO_DEVICE
);
2318 /* Decode the various types of errors on ioaccel2 path.
2319 * Return 1 for any error that should generate a RAID path retry.
2320 * Return 0 for errors that don't require a RAID path retry.
2322 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2323 struct CommandList
*c
,
2324 struct scsi_cmnd
*cmd
,
2325 struct io_accel2_cmd
*c2
,
2326 struct hpsa_scsi_dev_t
*dev
)
2330 u32 ioaccel2_resid
= 0;
2332 switch (c2
->error_data
.serv_response
) {
2333 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2334 switch (c2
->error_data
.status
) {
2335 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2339 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2340 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2341 if (c2
->error_data
.data_present
!=
2342 IOACCEL2_SENSE_DATA_PRESENT
) {
2343 memset(cmd
->sense_buffer
, 0,
2344 SCSI_SENSE_BUFFERSIZE
);
2347 /* copy the sense data */
2348 data_len
= c2
->error_data
.sense_data_len
;
2349 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2350 data_len
= SCSI_SENSE_BUFFERSIZE
;
2351 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2353 sizeof(c2
->error_data
.sense_data_buff
);
2354 memcpy(cmd
->sense_buffer
,
2355 c2
->error_data
.sense_data_buff
, data_len
);
2358 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2361 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2364 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2367 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2375 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2376 switch (c2
->error_data
.status
) {
2377 case IOACCEL2_STATUS_SR_IO_ERROR
:
2378 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2379 case IOACCEL2_STATUS_SR_OVERRUN
:
2382 case IOACCEL2_STATUS_SR_UNDERRUN
:
2383 cmd
->result
= (DID_OK
<< 16); /* host byte */
2384 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2385 ioaccel2_resid
= get_unaligned_le32(
2386 &c2
->error_data
.resid_cnt
[0]);
2387 scsi_set_resid(cmd
, ioaccel2_resid
);
2389 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2390 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2391 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2393 * Did an HBA disk disappear? We will eventually
2394 * get a state change event from the controller but
2395 * in the meantime, we need to tell the OS that the
2396 * HBA disk is no longer there and stop I/O
2397 * from going down. This allows the potential re-insert
2398 * of the disk to get the same device node.
2400 if (dev
->physical_device
&& dev
->expose_device
) {
2401 cmd
->result
= DID_NO_CONNECT
<< 16;
2403 h
->drv_req_rescan
= 1;
2404 dev_warn(&h
->pdev
->dev
,
2405 "%s: device is gone!\n", __func__
);
2408 * Retry by sending down the RAID path.
2409 * We will get an event from ctlr to
2410 * trigger rescan regardless.
2418 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2420 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2422 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2425 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2435 return retry
; /* retry on raid path? */
2438 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2439 struct CommandList
*c
)
2441 struct hpsa_scsi_dev_t
*dev
= c
->device
;
2444 * Reset c->scsi_cmd here so that the reset handler will know
2445 * this command has completed. Then, check to see if the handler is
2446 * waiting for this command, and, if so, wake it.
2448 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2449 mb(); /* Declare command idle before checking for pending events. */
2451 atomic_dec(&dev
->commands_outstanding
);
2452 if (dev
->in_reset
&&
2453 atomic_read(&dev
->commands_outstanding
) <= 0)
2454 wake_up_all(&h
->event_sync_wait_queue
);
2458 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2459 struct CommandList
*c
)
2461 hpsa_cmd_resolve_events(h
, c
);
2462 cmd_tagged_free(h
, c
);
2465 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2466 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2468 hpsa_cmd_resolve_and_free(h
, c
);
2469 if (cmd
&& cmd
->scsi_done
)
2470 cmd
->scsi_done(cmd
);
2473 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2475 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2476 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2479 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2480 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2481 struct hpsa_scsi_dev_t
*dev
)
2483 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2485 /* check for good status */
2486 if (likely(c2
->error_data
.serv_response
== 0 &&
2487 c2
->error_data
.status
== 0)) {
2489 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2493 * Any RAID offload error results in retry which will use
2494 * the normal I/O path so the controller can handle whatever is
2497 if (is_logical_device(dev
) &&
2498 c2
->error_data
.serv_response
==
2499 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2500 if (c2
->error_data
.status
==
2501 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2502 dev
->offload_enabled
= 0;
2503 dev
->offload_to_be_enabled
= 0;
2506 if (dev
->in_reset
) {
2507 cmd
->result
= DID_RESET
<< 16;
2508 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2511 return hpsa_retry_cmd(h
, c
);
2514 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2515 return hpsa_retry_cmd(h
, c
);
2517 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2520 /* Returns 0 on success, < 0 otherwise. */
2521 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2522 struct CommandList
*cp
)
2524 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2526 switch (tmf_status
) {
2527 case CISS_TMF_COMPLETE
:
2529 * CISS_TMF_COMPLETE never happens, instead,
2530 * ei->CommandStatus == 0 for this case.
2532 case CISS_TMF_SUCCESS
:
2534 case CISS_TMF_INVALID_FRAME
:
2535 case CISS_TMF_NOT_SUPPORTED
:
2536 case CISS_TMF_FAILED
:
2537 case CISS_TMF_WRONG_LUN
:
2538 case CISS_TMF_OVERLAPPED_TAG
:
2541 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2548 static void complete_scsi_command(struct CommandList
*cp
)
2550 struct scsi_cmnd
*cmd
;
2551 struct ctlr_info
*h
;
2552 struct ErrorInfo
*ei
;
2553 struct hpsa_scsi_dev_t
*dev
;
2554 struct io_accel2_cmd
*c2
;
2557 u8 asc
; /* additional sense code */
2558 u8 ascq
; /* additional sense code qualifier */
2559 unsigned long sense_data_size
;
2566 cmd
->result
= DID_NO_CONNECT
<< 16;
2567 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2570 dev
= cmd
->device
->hostdata
;
2572 cmd
->result
= DID_NO_CONNECT
<< 16;
2573 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2575 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2577 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2578 if ((cp
->cmd_type
== CMD_SCSI
) &&
2579 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2580 hpsa_unmap_sg_chain_block(h
, cp
);
2582 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2583 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2584 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2586 cmd
->result
= (DID_OK
<< 16); /* host byte */
2587 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2589 /* SCSI command has already been cleaned up in SML */
2590 if (dev
->was_removed
) {
2591 hpsa_cmd_resolve_and_free(h
, cp
);
2595 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2596 if (dev
->physical_device
&& dev
->expose_device
&&
2598 cmd
->result
= DID_NO_CONNECT
<< 16;
2599 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2601 if (likely(cp
->phys_disk
!= NULL
))
2602 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2606 * We check for lockup status here as it may be set for
2607 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2608 * fail_all_oustanding_cmds()
2610 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2611 /* DID_NO_CONNECT will prevent a retry */
2612 cmd
->result
= DID_NO_CONNECT
<< 16;
2613 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2616 if (cp
->cmd_type
== CMD_IOACCEL2
)
2617 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2619 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2620 if (ei
->CommandStatus
== 0)
2621 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2623 /* For I/O accelerator commands, copy over some fields to the normal
2624 * CISS header used below for error handling.
2626 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2627 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2628 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2629 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2630 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2631 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2632 cp
->Header
.tag
= c
->tag
;
2633 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2634 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2636 /* Any RAID offload error results in retry which will use
2637 * the normal I/O path so the controller can handle whatever's
2640 if (is_logical_device(dev
)) {
2641 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2642 dev
->offload_enabled
= 0;
2643 return hpsa_retry_cmd(h
, cp
);
2647 /* an error has occurred */
2648 switch (ei
->CommandStatus
) {
2650 case CMD_TARGET_STATUS
:
2651 cmd
->result
|= ei
->ScsiStatus
;
2652 /* copy the sense data */
2653 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2654 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2656 sense_data_size
= sizeof(ei
->SenseInfo
);
2657 if (ei
->SenseLen
< sense_data_size
)
2658 sense_data_size
= ei
->SenseLen
;
2659 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2661 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2662 &sense_key
, &asc
, &ascq
);
2663 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2664 switch (sense_key
) {
2665 case ABORTED_COMMAND
:
2666 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2668 case UNIT_ATTENTION
:
2669 if (asc
== 0x3F && ascq
== 0x0E)
2670 h
->drv_req_rescan
= 1;
2672 case ILLEGAL_REQUEST
:
2673 if (asc
== 0x25 && ascq
== 0x00) {
2675 cmd
->result
= DID_NO_CONNECT
<< 16;
2681 /* Problem was not a check condition
2682 * Pass it up to the upper layers...
2684 if (ei
->ScsiStatus
) {
2685 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2686 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2687 "Returning result: 0x%x\n",
2689 sense_key
, asc
, ascq
,
2691 } else { /* scsi status is zero??? How??? */
2692 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2693 "Returning no connection.\n", cp
),
2695 /* Ordinarily, this case should never happen,
2696 * but there is a bug in some released firmware
2697 * revisions that allows it to happen if, for
2698 * example, a 4100 backplane loses power and
2699 * the tape drive is in it. We assume that
2700 * it's a fatal error of some kind because we
2701 * can't show that it wasn't. We will make it
2702 * look like selection timeout since that is
2703 * the most common reason for this to occur,
2704 * and it's severe enough.
2707 cmd
->result
= DID_NO_CONNECT
<< 16;
2711 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2713 case CMD_DATA_OVERRUN
:
2714 dev_warn(&h
->pdev
->dev
,
2715 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2718 /* print_bytes(cp, sizeof(*cp), 1, 0);
2720 /* We get CMD_INVALID if you address a non-existent device
2721 * instead of a selection timeout (no response). You will
2722 * see this if you yank out a drive, then try to access it.
2723 * This is kind of a shame because it means that any other
2724 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2725 * missing target. */
2726 cmd
->result
= DID_NO_CONNECT
<< 16;
2729 case CMD_PROTOCOL_ERR
:
2730 cmd
->result
= DID_ERROR
<< 16;
2731 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2734 case CMD_HARDWARE_ERR
:
2735 cmd
->result
= DID_ERROR
<< 16;
2736 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2739 case CMD_CONNECTION_LOST
:
2740 cmd
->result
= DID_ERROR
<< 16;
2741 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2745 cmd
->result
= DID_ABORT
<< 16;
2747 case CMD_ABORT_FAILED
:
2748 cmd
->result
= DID_ERROR
<< 16;
2749 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2752 case CMD_UNSOLICITED_ABORT
:
2753 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2754 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2758 cmd
->result
= DID_TIME_OUT
<< 16;
2759 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2762 case CMD_UNABORTABLE
:
2763 cmd
->result
= DID_ERROR
<< 16;
2764 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2766 case CMD_TMF_STATUS
:
2767 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2768 cmd
->result
= DID_ERROR
<< 16;
2770 case CMD_IOACCEL_DISABLED
:
2771 /* This only handles the direct pass-through case since RAID
2772 * offload is handled above. Just attempt a retry.
2774 cmd
->result
= DID_SOFT_ERROR
<< 16;
2775 dev_warn(&h
->pdev
->dev
,
2776 "cp %p had HP SSD Smart Path error\n", cp
);
2779 cmd
->result
= DID_ERROR
<< 16;
2780 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2781 cp
, ei
->CommandStatus
);
2784 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2787 static void hpsa_pci_unmap(struct pci_dev
*pdev
, struct CommandList
*c
,
2788 int sg_used
, enum dma_data_direction data_direction
)
2792 for (i
= 0; i
< sg_used
; i
++)
2793 dma_unmap_single(&pdev
->dev
, le64_to_cpu(c
->SG
[i
].Addr
),
2794 le32_to_cpu(c
->SG
[i
].Len
),
2798 static int hpsa_map_one(struct pci_dev
*pdev
,
2799 struct CommandList
*cp
,
2802 enum dma_data_direction data_direction
)
2806 if (buflen
== 0 || data_direction
== DMA_NONE
) {
2807 cp
->Header
.SGList
= 0;
2808 cp
->Header
.SGTotal
= cpu_to_le16(0);
2812 addr64
= dma_map_single(&pdev
->dev
, buf
, buflen
, data_direction
);
2813 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2814 /* Prevent subsequent unmap of something never mapped */
2815 cp
->Header
.SGList
= 0;
2816 cp
->Header
.SGTotal
= cpu_to_le16(0);
2819 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2820 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2821 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2822 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2823 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2827 #define NO_TIMEOUT ((unsigned long) -1)
2828 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2829 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2830 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2832 DECLARE_COMPLETION_ONSTACK(wait
);
2835 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2836 if (timeout_msecs
== NO_TIMEOUT
) {
2837 /* TODO: get rid of this no-timeout thing */
2838 wait_for_completion_io(&wait
);
2841 if (!wait_for_completion_io_timeout(&wait
,
2842 msecs_to_jiffies(timeout_msecs
))) {
2843 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2849 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2850 int reply_queue
, unsigned long timeout_msecs
)
2852 if (unlikely(lockup_detected(h
))) {
2853 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2856 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2859 static u32
lockup_detected(struct ctlr_info
*h
)
2862 u32 rc
, *lockup_detected
;
2865 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2866 rc
= *lockup_detected
;
2871 #define MAX_DRIVER_CMD_RETRIES 25
2872 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2873 struct CommandList
*c
, enum dma_data_direction data_direction
,
2874 unsigned long timeout_msecs
)
2876 int backoff_time
= 10, retry_count
= 0;
2880 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2881 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2886 if (retry_count
> 3) {
2887 msleep(backoff_time
);
2888 if (backoff_time
< 1000)
2891 } while ((check_for_unit_attention(h
, c
) ||
2892 check_for_busy(h
, c
)) &&
2893 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2894 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2895 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2900 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2901 struct CommandList
*c
)
2903 const u8
*cdb
= c
->Request
.CDB
;
2904 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2906 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2910 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2911 struct CommandList
*cp
)
2913 const struct ErrorInfo
*ei
= cp
->err_info
;
2914 struct device
*d
= &cp
->h
->pdev
->dev
;
2915 u8 sense_key
, asc
, ascq
;
2918 switch (ei
->CommandStatus
) {
2919 case CMD_TARGET_STATUS
:
2920 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2921 sense_len
= sizeof(ei
->SenseInfo
);
2923 sense_len
= ei
->SenseLen
;
2924 decode_sense_data(ei
->SenseInfo
, sense_len
,
2925 &sense_key
, &asc
, &ascq
);
2926 hpsa_print_cmd(h
, "SCSI status", cp
);
2927 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2928 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2929 sense_key
, asc
, ascq
);
2931 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2932 if (ei
->ScsiStatus
== 0)
2933 dev_warn(d
, "SCSI status is abnormally zero. "
2934 "(probably indicates selection timeout "
2935 "reported incorrectly due to a known "
2936 "firmware bug, circa July, 2001.)\n");
2938 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2940 case CMD_DATA_OVERRUN
:
2941 hpsa_print_cmd(h
, "overrun condition", cp
);
2944 /* controller unfortunately reports SCSI passthru's
2945 * to non-existent targets as invalid commands.
2947 hpsa_print_cmd(h
, "invalid command", cp
);
2948 dev_warn(d
, "probably means device no longer present\n");
2951 case CMD_PROTOCOL_ERR
:
2952 hpsa_print_cmd(h
, "protocol error", cp
);
2954 case CMD_HARDWARE_ERR
:
2955 hpsa_print_cmd(h
, "hardware error", cp
);
2957 case CMD_CONNECTION_LOST
:
2958 hpsa_print_cmd(h
, "connection lost", cp
);
2961 hpsa_print_cmd(h
, "aborted", cp
);
2963 case CMD_ABORT_FAILED
:
2964 hpsa_print_cmd(h
, "abort failed", cp
);
2966 case CMD_UNSOLICITED_ABORT
:
2967 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2970 hpsa_print_cmd(h
, "timed out", cp
);
2972 case CMD_UNABORTABLE
:
2973 hpsa_print_cmd(h
, "unabortable", cp
);
2975 case CMD_CTLR_LOCKUP
:
2976 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2979 hpsa_print_cmd(h
, "unknown status", cp
);
2980 dev_warn(d
, "Unknown command status %x\n",
2985 static int hpsa_do_receive_diagnostic(struct ctlr_info
*h
, u8
*scsi3addr
,
2986 u8 page
, u8
*buf
, size_t bufsize
)
2989 struct CommandList
*c
;
2990 struct ErrorInfo
*ei
;
2993 if (fill_cmd(c
, RECEIVE_DIAGNOSTIC
, h
, buf
, bufsize
,
2994 page
, scsi3addr
, TYPE_CMD
)) {
2998 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3003 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3004 hpsa_scsi_interpret_error(h
, c
);
3012 static u64
hpsa_get_enclosure_logical_identifier(struct ctlr_info
*h
,
3019 buf
= kzalloc(1024, GFP_KERNEL
);
3023 rc
= hpsa_do_receive_diagnostic(h
, scsi3addr
, RECEIVE_DIAGNOSTIC
,
3029 sa
= get_unaligned_be64(buf
+12);
3036 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3037 u16 page
, unsigned char *buf
,
3038 unsigned char bufsize
)
3041 struct CommandList
*c
;
3042 struct ErrorInfo
*ei
;
3046 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
3047 page
, scsi3addr
, TYPE_CMD
)) {
3051 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3056 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3057 hpsa_scsi_interpret_error(h
, c
);
3065 static int hpsa_send_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3066 u8 reset_type
, int reply_queue
)
3069 struct CommandList
*c
;
3070 struct ErrorInfo
*ei
;
3075 /* fill_cmd can't fail here, no data buffer to map. */
3076 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0, dev
->scsi3addr
, TYPE_MSG
);
3077 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
3079 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
3082 /* no unmap needed here because no data xfer. */
3085 if (ei
->CommandStatus
!= 0) {
3086 hpsa_scsi_interpret_error(h
, c
);
3094 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
3095 struct hpsa_scsi_dev_t
*dev
,
3096 unsigned char *scsi3addr
)
3100 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3101 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
3103 if (hpsa_is_cmd_idle(c
))
3106 switch (c
->cmd_type
) {
3108 case CMD_IOCTL_PEND
:
3109 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
3110 sizeof(c
->Header
.LUN
.LunAddrBytes
));
3115 if (c
->phys_disk
== dev
) {
3116 /* HBA mode match */
3119 /* Possible RAID mode -- check each phys dev. */
3120 /* FIXME: Do we need to take out a lock here? If
3121 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3123 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3124 /* FIXME: an alternate test might be
3126 * match = dev->phys_disk[i]->ioaccel_handle
3127 * == c2->scsi_nexus; */
3128 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3134 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3135 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3136 le32_to_cpu(ac
->it_nexus
);
3140 case 0: /* The command is in the middle of being initialized. */
3145 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3153 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3154 u8 reset_type
, int reply_queue
)
3158 /* We can really only handle one reset at a time */
3159 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3160 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3164 rc
= hpsa_send_reset(h
, dev
, reset_type
, reply_queue
);
3166 /* incremented by sending the reset request */
3167 atomic_dec(&dev
->commands_outstanding
);
3168 wait_event(h
->event_sync_wait_queue
,
3169 atomic_read(&dev
->commands_outstanding
) <= 0 ||
3170 lockup_detected(h
));
3173 if (unlikely(lockup_detected(h
))) {
3174 dev_warn(&h
->pdev
->dev
,
3175 "Controller lockup detected during reset wait\n");
3180 rc
= wait_for_device_to_become_ready(h
, dev
->scsi3addr
, 0);
3182 mutex_unlock(&h
->reset_mutex
);
3186 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3187 unsigned char *scsi3addr
, unsigned char *raid_level
)
3192 *raid_level
= RAID_UNKNOWN
;
3193 buf
= kzalloc(64, GFP_KERNEL
);
3197 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3198 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3201 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3202 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3205 *raid_level
= buf
[8];
3206 if (*raid_level
> RAID_UNKNOWN
)
3207 *raid_level
= RAID_UNKNOWN
;
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3216 struct raid_map_data
*map_buff
)
3218 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3220 u16 map_cnt
, row_cnt
, disks_per_row
;
3225 /* Show details only if debugging has been activated. */
3226 if (h
->raid_offload_debug
< 2)
3229 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3230 le32_to_cpu(map_buff
->structure_size
));
3231 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3232 le32_to_cpu(map_buff
->volume_blk_size
));
3233 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3234 le64_to_cpu(map_buff
->volume_blk_cnt
));
3235 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3236 map_buff
->phys_blk_shift
);
3237 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3238 map_buff
->parity_rotation_shift
);
3239 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3240 le16_to_cpu(map_buff
->strip_size
));
3241 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3242 le64_to_cpu(map_buff
->disk_starting_blk
));
3243 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3244 le64_to_cpu(map_buff
->disk_blk_cnt
));
3245 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3246 le16_to_cpu(map_buff
->data_disks_per_row
));
3247 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3248 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3249 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3250 le16_to_cpu(map_buff
->row_cnt
));
3251 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3252 le16_to_cpu(map_buff
->layout_map_count
));
3253 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3254 le16_to_cpu(map_buff
->flags
));
3255 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3256 le16_to_cpu(map_buff
->flags
) &
3257 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3258 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3259 le16_to_cpu(map_buff
->dekindex
));
3260 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3261 for (map
= 0; map
< map_cnt
; map
++) {
3262 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3263 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3264 for (row
= 0; row
< row_cnt
; row
++) {
3265 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3267 le16_to_cpu(map_buff
->data_disks_per_row
);
3268 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3269 dev_info(&h
->pdev
->dev
,
3270 " D%02u: h=0x%04x xor=%u,%u\n",
3271 col
, dd
->ioaccel_handle
,
3272 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3274 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3275 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3276 dev_info(&h
->pdev
->dev
,
3277 " M%02u: h=0x%04x xor=%u,%u\n",
3278 col
, dd
->ioaccel_handle
,
3279 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3284 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3285 __attribute__((unused
)) int rc
,
3286 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3291 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3292 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3295 struct CommandList
*c
;
3296 struct ErrorInfo
*ei
;
3300 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3301 sizeof(this_device
->raid_map
), 0,
3302 scsi3addr
, TYPE_CMD
)) {
3303 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3307 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3312 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3313 hpsa_scsi_interpret_error(h
, c
);
3319 /* @todo in the future, dynamically allocate RAID map memory */
3320 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3321 sizeof(this_device
->raid_map
)) {
3322 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3325 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3333 unsigned char scsi3addr
[], u16 bmic_device_index
,
3334 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3337 struct CommandList
*c
;
3338 struct ErrorInfo
*ei
;
3342 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3343 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3347 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3348 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3350 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3355 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3356 hpsa_scsi_interpret_error(h
, c
);
3364 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3365 struct bmic_identify_controller
*buf
, size_t bufsize
)
3368 struct CommandList
*c
;
3369 struct ErrorInfo
*ei
;
3373 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3374 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3378 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3383 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3384 hpsa_scsi_interpret_error(h
, c
);
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3393 unsigned char scsi3addr
[], u16 bmic_device_index
,
3394 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3397 struct CommandList
*c
;
3398 struct ErrorInfo
*ei
;
3401 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3402 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3406 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3407 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3409 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3412 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3413 hpsa_scsi_interpret_error(h
, c
);
3423 * get enclosure information
3424 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426 * Uses id_physical_device to determine the box_index.
3428 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3429 unsigned char *scsi3addr
,
3430 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3431 struct hpsa_scsi_dev_t
*encl_dev
)
3434 struct CommandList
*c
= NULL
;
3435 struct ErrorInfo
*ei
= NULL
;
3436 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3437 struct bmic_identify_physical_device
*id_phys
= NULL
;
3438 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3439 u16 bmic_device_index
= 0;
3442 hpsa_get_enclosure_logical_identifier(h
, scsi3addr
);
3444 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3446 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3451 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3456 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3460 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3464 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3465 id_phys
, sizeof(*id_phys
));
3467 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3468 __func__
, encl_dev
->external
, bmic_device_index
);
3474 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3475 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3480 if (id_phys
->phys_connector
[1] == 'E')
3481 c
->Request
.CDB
[5] = id_phys
->box_index
;
3483 c
->Request
.CDB
[5] = 0;
3485 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3491 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3496 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3497 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3498 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3509 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3510 "Error, could not get enclosure information");
3513 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3514 unsigned char *scsi3addr
)
3516 struct ReportExtendedLUNdata
*physdev
;
3521 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3525 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3526 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3530 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3532 for (i
= 0; i
< nphysicals
; i
++)
3533 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3534 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3543 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3544 struct hpsa_scsi_dev_t
*dev
)
3549 if (is_hba_lunid(scsi3addr
)) {
3550 struct bmic_sense_subsystem_info
*ssi
;
3552 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3556 rc
= hpsa_bmic_sense_subsystem_information(h
,
3557 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3559 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3560 h
->sas_address
= sa
;
3565 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3567 dev
->sas_address
= sa
;
3570 static void hpsa_ext_ctrl_present(struct ctlr_info
*h
,
3571 struct ReportExtendedLUNdata
*physdev
)
3576 if (h
->discovery_polling
)
3579 nphysicals
= (get_unaligned_be32(physdev
->LUNListLength
) / 24) + 1;
3581 for (i
= 0; i
< nphysicals
; i
++) {
3582 if (physdev
->LUN
[i
].device_type
==
3583 BMIC_DEVICE_TYPE_CONTROLLER
3584 && !is_hba_lunid(physdev
->LUN
[i
].lunid
)) {
3585 dev_info(&h
->pdev
->dev
,
3586 "External controller present, activate discovery polling and disable rld caching\n");
3587 hpsa_disable_rld_caching(h
);
3588 h
->discovery_polling
= 1;
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3596 unsigned char scsi3addr
[], u8 page
)
3601 unsigned char *buf
, bufsize
;
3603 buf
= kzalloc(256, GFP_KERNEL
);
3607 /* Get the size of the page list first */
3608 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3609 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3610 buf
, HPSA_VPD_HEADER_SZ
);
3612 goto exit_unsupported
;
3614 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3615 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3619 /* Get the whole VPD page list */
3620 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3621 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3624 goto exit_unsupported
;
3627 for (i
= 1; i
<= pages
; i
++)
3628 if (buf
[3 + i
] == page
)
3629 goto exit_supported
;
3639 * Called during a scan operation.
3640 * Sets ioaccel status on the new device list, not the existing device list
3642 * The device list used during I/O will be updated later in
3643 * adjust_hpsa_scsi_table.
3645 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3646 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3652 this_device
->offload_config
= 0;
3653 this_device
->offload_enabled
= 0;
3654 this_device
->offload_to_be_enabled
= 0;
3656 buf
= kzalloc(64, GFP_KERNEL
);
3659 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3661 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3662 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3670 this_device
->offload_config
=
3671 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3672 if (this_device
->offload_config
) {
3673 this_device
->offload_to_be_enabled
=
3674 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3675 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3676 this_device
->offload_to_be_enabled
= 0;
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3686 unsigned char *device_id
, int index
, int buflen
)
3691 /* Does controller have VPD for device id? */
3692 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3693 return 1; /* not supported */
3695 buf
= kzalloc(64, GFP_KERNEL
);
3699 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3700 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3704 memcpy(device_id
, &buf
[8], buflen
);
3709 return rc
; /*0 - got id, otherwise, didn't */
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3713 void *buf
, int bufsize
,
3714 int extended_response
)
3717 struct CommandList
*c
;
3718 unsigned char scsi3addr
[8];
3719 struct ErrorInfo
*ei
;
3723 /* address the controller */
3724 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3725 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3726 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3730 if (extended_response
)
3731 c
->Request
.CDB
[1] = extended_response
;
3732 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3737 if (ei
->CommandStatus
!= 0 &&
3738 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3739 hpsa_scsi_interpret_error(h
, c
);
3742 struct ReportLUNdata
*rld
= buf
;
3744 if (rld
->extended_response_flag
!= extended_response
) {
3745 if (!h
->legacy_board
) {
3746 dev_err(&h
->pdev
->dev
,
3747 "report luns requested format %u, got %u\n",
3749 rld
->extended_response_flag
);
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3761 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3764 struct ReportLUNdata
*lbuf
;
3766 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3767 HPSA_REPORT_PHYS_EXTENDED
);
3768 if (!rc
|| rc
!= -EOPNOTSUPP
)
3771 /* REPORT PHYS EXTENDED is not supported */
3772 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3776 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3781 /* Copy ReportLUNdata header */
3782 memcpy(buf
, lbuf
, 8);
3783 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3784 for (i
= 0; i
< nphys
; i
++)
3785 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3792 struct ReportLUNdata
*buf
, int bufsize
)
3794 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3798 int bus
, int target
, int lun
)
3801 device
->target
= target
;
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3807 unsigned char scsi3addr
[])
3814 buf
= kzalloc(64, GFP_KERNEL
);
3816 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3818 /* Does controller have VPD for logical volume status? */
3819 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3822 /* Get the size of the VPD return buffer */
3823 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3824 buf
, HPSA_VPD_HEADER_SZ
);
3829 /* Now get the whole VPD buffer */
3830 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3831 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3834 status
= buf
[4]; /* status byte */
3840 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3843 /* Determine offline status of a volume.
3846 * 0xff (offline for unknown reasons)
3847 * # (integer code indicating one of several NOT READY states
3848 * describing why a volume is to be kept offline)
3850 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3851 unsigned char scsi3addr
[])
3853 struct CommandList
*c
;
3854 unsigned char *sense
;
3855 u8 sense_key
, asc
, ascq
;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3866 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3867 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3871 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3873 sense
= c
->err_info
->SenseInfo
;
3874 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3875 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3877 sense_len
= c
->err_info
->SenseLen
;
3878 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3879 cmd_status
= c
->err_info
->CommandStatus
;
3880 scsi_status
= c
->err_info
->ScsiStatus
;
3883 /* Determine the reason for not ready state */
3884 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3886 /* Keep volume offline in certain cases: */
3888 case HPSA_LV_FAILED
:
3889 case HPSA_LV_UNDERGOING_ERASE
:
3890 case HPSA_LV_NOT_AVAILABLE
:
3891 case HPSA_LV_UNDERGOING_RPI
:
3892 case HPSA_LV_PENDING_RPI
:
3893 case HPSA_LV_ENCRYPTED_NO_KEY
:
3894 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3895 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3896 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3897 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3899 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3900 /* If VPD status page isn't available,
3901 * use ASC/ASCQ to determine state
3903 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3904 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3913 static int hpsa_update_device_info(struct ctlr_info
*h
,
3914 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3915 unsigned char *is_OBDR_device
)
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3923 unsigned char *inq_buff
;
3924 unsigned char *obdr_sig
;
3927 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3933 /* Do an inquiry to the device to see what it is. */
3934 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3935 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3936 dev_err(&h
->pdev
->dev
,
3937 "%s: inquiry failed, device will be skipped.\n",
3939 rc
= HPSA_INQUIRY_FAILED
;
3943 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3944 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3946 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3947 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3948 memcpy(this_device
->vendor
, &inq_buff
[8],
3949 sizeof(this_device
->vendor
));
3950 memcpy(this_device
->model
, &inq_buff
[16],
3951 sizeof(this_device
->model
));
3952 this_device
->rev
= inq_buff
[2];
3953 memset(this_device
->device_id
, 0,
3954 sizeof(this_device
->device_id
));
3955 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3956 sizeof(this_device
->device_id
)) < 0) {
3957 dev_err(&h
->pdev
->dev
,
3958 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3960 h
->scsi_host
->host_no
,
3961 this_device
->bus
, this_device
->target
,
3963 scsi_device_type(this_device
->devtype
),
3964 this_device
->model
);
3965 rc
= HPSA_LV_FAILED
;
3969 if ((this_device
->devtype
== TYPE_DISK
||
3970 this_device
->devtype
== TYPE_ZBC
) &&
3971 is_logical_dev_addr_mode(scsi3addr
)) {
3972 unsigned char volume_offline
;
3974 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3975 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3976 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3977 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3978 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
3981 * Legacy boards might not support volume status
3983 dev_info(&h
->pdev
->dev
,
3984 "C0:T%d:L%d Volume status not available, assuming online.\n",
3985 this_device
->target
, this_device
->lun
);
3988 this_device
->volume_offline
= volume_offline
;
3989 if (volume_offline
== HPSA_LV_FAILED
) {
3990 rc
= HPSA_LV_FAILED
;
3991 dev_err(&h
->pdev
->dev
,
3992 "%s: LV failed, device will be skipped.\n",
3997 this_device
->raid_level
= RAID_UNKNOWN
;
3998 this_device
->offload_config
= 0;
3999 this_device
->offload_enabled
= 0;
4000 this_device
->offload_to_be_enabled
= 0;
4001 this_device
->hba_ioaccel_enabled
= 0;
4002 this_device
->volume_offline
= 0;
4003 this_device
->queue_depth
= h
->nr_cmds
;
4006 if (this_device
->external
)
4007 this_device
->queue_depth
= EXTERNAL_QD
;
4009 if (is_OBDR_device
) {
4010 /* See if this is a One-Button-Disaster-Recovery device
4011 * by looking for "$DR-10" at offset 43 in inquiry data.
4013 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
4014 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
4015 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
4016 OBDR_SIG_LEN
) == 0);
4027 * Helper function to assign bus, target, lun mapping of devices.
4028 * Logical drive target and lun are assigned at this time, but
4029 * physical device lun and target assignment are deferred (assigned
4030 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4032 static void figure_bus_target_lun(struct ctlr_info
*h
,
4033 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
4035 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
4037 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
4038 /* physical device, target and lun filled in later */
4039 if (is_hba_lunid(lunaddrbytes
)) {
4040 int bus
= HPSA_HBA_BUS
;
4043 bus
= HPSA_LEGACY_HBA_BUS
;
4044 hpsa_set_bus_target_lun(device
,
4045 bus
, 0, lunid
& 0x3fff);
4047 /* defer target, lun assignment for physical devices */
4048 hpsa_set_bus_target_lun(device
,
4049 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
4052 /* It's a logical device */
4053 if (device
->external
) {
4054 hpsa_set_bus_target_lun(device
,
4055 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
4059 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
4063 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4064 int i
, int nphysicals
, int nlocal_logicals
)
4066 /* In report logicals, local logicals are listed first,
4067 * then any externals.
4069 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4071 if (i
== raid_ctlr_position
)
4074 if (i
< logicals_start
)
4077 /* i is in logicals range, but still within local logicals */
4078 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4081 return 1; /* it's an external lun */
4085 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4086 * logdev. The number of luns in physdev and logdev are returned in
4087 * *nphysicals and *nlogicals, respectively.
4088 * Returns 0 on success, -1 otherwise.
4090 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4091 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4092 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4094 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4095 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4098 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4099 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4100 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4101 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4102 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4104 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4105 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4108 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4109 /* Reject Logicals in excess of our max capability. */
4110 if (*nlogicals
> HPSA_MAX_LUN
) {
4111 dev_warn(&h
->pdev
->dev
,
4112 "maximum logical LUNs (%d) exceeded. "
4113 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4114 *nlogicals
- HPSA_MAX_LUN
);
4115 *nlogicals
= HPSA_MAX_LUN
;
4117 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4118 dev_warn(&h
->pdev
->dev
,
4119 "maximum logical + physical LUNs (%d) exceeded. "
4120 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4121 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4122 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4127 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4128 int i
, int nphysicals
, int nlogicals
,
4129 struct ReportExtendedLUNdata
*physdev_list
,
4130 struct ReportLUNdata
*logdev_list
)
4132 /* Helper function, figure out where the LUN ID info is coming from
4133 * given index i, lists of physical and logical devices, where in
4134 * the list the raid controller is supposed to appear (first or last)
4137 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4138 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4140 if (i
== raid_ctlr_position
)
4141 return RAID_CTLR_LUNID
;
4143 if (i
< logicals_start
)
4144 return &physdev_list
->LUN
[i
-
4145 (raid_ctlr_position
== 0)].lunid
[0];
4147 if (i
< last_device
)
4148 return &logdev_list
->LUN
[i
- nphysicals
-
4149 (raid_ctlr_position
== 0)][0];
4154 /* get physical drive ioaccel handle and queue depth */
4155 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4156 struct hpsa_scsi_dev_t
*dev
,
4157 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4158 struct bmic_identify_physical_device
*id_phys
)
4161 struct ext_report_lun_entry
*rle
;
4163 rle
= &rlep
->LUN
[rle_index
];
4165 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4166 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4167 dev
->hba_ioaccel_enabled
= 1;
4168 memset(id_phys
, 0, sizeof(*id_phys
));
4169 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4170 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4173 /* Reserve space for FW operations */
4174 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4175 #define DRIVE_QUEUE_DEPTH 7
4177 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4178 DRIVE_CMDS_RESERVED_FOR_FW
;
4180 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4183 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4184 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4185 struct bmic_identify_physical_device
*id_phys
)
4187 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4189 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4190 this_device
->hba_ioaccel_enabled
= 1;
4192 memcpy(&this_device
->active_path_index
,
4193 &id_phys
->active_path_number
,
4194 sizeof(this_device
->active_path_index
));
4195 memcpy(&this_device
->path_map
,
4196 &id_phys
->redundant_path_present_map
,
4197 sizeof(this_device
->path_map
));
4198 memcpy(&this_device
->box
,
4199 &id_phys
->alternate_paths_phys_box_on_port
,
4200 sizeof(this_device
->box
));
4201 memcpy(&this_device
->phys_connector
,
4202 &id_phys
->alternate_paths_phys_connector
,
4203 sizeof(this_device
->phys_connector
));
4204 memcpy(&this_device
->bay
,
4205 &id_phys
->phys_bay_in_box
,
4206 sizeof(this_device
->bay
));
4209 /* get number of local logical disks. */
4210 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4211 struct bmic_identify_controller
*id_ctlr
,
4217 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4221 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4222 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4224 if (id_ctlr
->configured_logical_drive_count
< 255)
4225 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4227 *nlocals
= le16_to_cpu(
4228 id_ctlr
->extended_logical_unit_count
);
4234 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4236 struct bmic_identify_physical_device
*id_phys
;
4237 bool is_spare
= false;
4240 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4244 rc
= hpsa_bmic_id_physical_device(h
,
4246 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4247 id_phys
, sizeof(*id_phys
));
4249 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4255 #define RPL_DEV_FLAG_NON_DISK 0x1
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4259 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4261 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4262 struct ext_report_lun_entry
*rle
)
4267 if (!MASKED_DEVICE(lunaddrbytes
))
4270 device_flags
= rle
->device_flags
;
4271 device_type
= rle
->device_type
;
4273 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4274 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4279 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4282 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4286 * Spares may be spun down, we do not want to
4287 * do an Inquiry to a RAID set spare drive as
4288 * that would have them spun up, that is a
4289 * performance hit because I/O to the RAID device
4290 * stops while the spin up occurs which can take
4293 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4299 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4301 /* the idea here is we could get notified
4302 * that some devices have changed, so we do a report
4303 * physical luns and report logical luns cmd, and adjust
4304 * our list of devices accordingly.
4306 * The scsi3addr's of devices won't change so long as the
4307 * adapter is not reset. That means we can rescan and
4308 * tell which devices we already know about, vs. new
4309 * devices, vs. disappearing devices.
4311 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4312 struct ReportLUNdata
*logdev_list
= NULL
;
4313 struct bmic_identify_physical_device
*id_phys
= NULL
;
4314 struct bmic_identify_controller
*id_ctlr
= NULL
;
4317 u32 nlocal_logicals
= 0;
4318 u32 ndev_allocated
= 0;
4319 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4321 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4322 int raid_ctlr_position
;
4323 bool physical_device
;
4324 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4326 currentsd
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*currentsd
), GFP_KERNEL
);
4327 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4328 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4329 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4330 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4331 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4333 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4334 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4335 dev_err(&h
->pdev
->dev
, "out of memory\n");
4338 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4340 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4342 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4343 logdev_list
, &nlogicals
)) {
4344 h
->drv_req_rescan
= 1;
4348 /* Set number of local logicals (non PTRAID) */
4349 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4350 dev_warn(&h
->pdev
->dev
,
4351 "%s: Can't determine number of local logical devices.\n",
4355 /* We might see up to the maximum number of logical and physical disks
4356 * plus external target devices, and a device for the local RAID
4359 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4361 hpsa_ext_ctrl_present(h
, physdev_list
);
4363 /* Allocate the per device structures */
4364 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4365 if (i
>= HPSA_MAX_DEVICES
) {
4366 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4367 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4368 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4372 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4373 if (!currentsd
[i
]) {
4374 h
->drv_req_rescan
= 1;
4380 if (is_scsi_rev_5(h
))
4381 raid_ctlr_position
= 0;
4383 raid_ctlr_position
= nphysicals
+ nlogicals
;
4385 /* adjust our table of devices */
4386 n_ext_target_devs
= 0;
4387 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4388 u8
*lunaddrbytes
, is_OBDR
= 0;
4390 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4391 bool skip_device
= false;
4393 memset(tmpdevice
, 0, sizeof(*tmpdevice
));
4395 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4397 /* Figure out where the LUN ID info is coming from */
4398 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4399 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4401 /* Determine if this is a lun from an external target array */
4402 tmpdevice
->external
=
4403 figure_external_status(h
, raid_ctlr_position
, i
,
4404 nphysicals
, nlocal_logicals
);
4407 * Skip over some devices such as a spare.
4409 if (!tmpdevice
->external
&& physical_device
) {
4410 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4411 &physdev_list
->LUN
[phys_dev_index
]);
4416 /* Get device type, vendor, model, device id, raid_map */
4417 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4419 if (rc
== -ENOMEM
) {
4420 dev_warn(&h
->pdev
->dev
,
4421 "Out of memory, rescan deferred.\n");
4422 h
->drv_req_rescan
= 1;
4426 h
->drv_req_rescan
= 1;
4430 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4431 this_device
= currentsd
[ncurrent
];
4433 *this_device
= *tmpdevice
;
4434 this_device
->physical_device
= physical_device
;
4437 * Expose all devices except for physical devices that
4440 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4441 this_device
->expose_device
= 0;
4443 this_device
->expose_device
= 1;
4447 * Get the SAS address for physical devices that are exposed.
4449 if (this_device
->physical_device
&& this_device
->expose_device
)
4450 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4452 switch (this_device
->devtype
) {
4454 /* We don't *really* support actual CD-ROM devices,
4455 * just "One Button Disaster Recovery" tape drive
4456 * which temporarily pretends to be a CD-ROM drive.
4457 * So we check that the device is really an OBDR tape
4458 * device by checking for "$DR-10" in bytes 43-48 of
4466 if (this_device
->physical_device
) {
4467 /* The disk is in HBA mode. */
4468 /* Never use RAID mapper in HBA mode. */
4469 this_device
->offload_enabled
= 0;
4470 hpsa_get_ioaccel_drive_info(h
, this_device
,
4471 physdev_list
, phys_dev_index
, id_phys
);
4472 hpsa_get_path_info(this_device
,
4473 physdev_list
, phys_dev_index
, id_phys
);
4478 case TYPE_MEDIUM_CHANGER
:
4481 case TYPE_ENCLOSURE
:
4482 if (!this_device
->external
)
4483 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4484 physdev_list
, phys_dev_index
,
4489 /* Only present the Smartarray HBA as a RAID controller.
4490 * If it's a RAID controller other than the HBA itself
4491 * (an external RAID controller, MSA500 or similar)
4494 if (!is_hba_lunid(lunaddrbytes
))
4501 if (ncurrent
>= HPSA_MAX_DEVICES
)
4505 if (h
->sas_host
== NULL
) {
4508 rc
= hpsa_add_sas_host(h
);
4510 dev_warn(&h
->pdev
->dev
,
4511 "Could not add sas host %d\n", rc
);
4516 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4519 for (i
= 0; i
< ndev_allocated
; i
++)
4520 kfree(currentsd
[i
]);
4522 kfree(physdev_list
);
4528 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4529 struct scatterlist
*sg
)
4531 u64 addr64
= (u64
) sg_dma_address(sg
);
4532 unsigned int len
= sg_dma_len(sg
);
4534 desc
->Addr
= cpu_to_le64(addr64
);
4535 desc
->Len
= cpu_to_le32(len
);
4540 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4541 * dma mapping and fills in the scatter gather entries of the
4544 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4545 struct CommandList
*cp
,
4546 struct scsi_cmnd
*cmd
)
4548 struct scatterlist
*sg
;
4549 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4550 struct SGDescriptor
*curr_sg
;
4552 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4554 use_sg
= scsi_dma_map(cmd
);
4559 goto sglist_finished
;
4562 * If the number of entries is greater than the max for a single list,
4563 * then we have a chained list; we will set up all but one entry in the
4564 * first list (the last entry is saved for link information);
4565 * otherwise, we don't have a chained list and we'll set up at each of
4566 * the entries in the one list.
4569 chained
= use_sg
> h
->max_cmd_sg_entries
;
4570 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4571 last_sg
= scsi_sg_count(cmd
) - 1;
4572 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4573 hpsa_set_sg_descriptor(curr_sg
, sg
);
4579 * Continue with the chained list. Set curr_sg to the chained
4580 * list. Modify the limit to the total count less the entries
4581 * we've already set up. Resume the scan at the list entry
4582 * where the previous loop left off.
4584 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4585 sg_limit
= use_sg
- sg_limit
;
4586 for_each_sg(sg
, sg
, sg_limit
, i
) {
4587 hpsa_set_sg_descriptor(curr_sg
, sg
);
4592 /* Back the pointer up to the last entry and mark it as "last". */
4593 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4595 if (use_sg
+ chained
> h
->maxSG
)
4596 h
->maxSG
= use_sg
+ chained
;
4599 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4600 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4601 if (hpsa_map_sg_chain_block(h
, cp
)) {
4602 scsi_dma_unmap(cmd
);
4610 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4611 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4615 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4616 u8
*cdb
, int cdb_len
,
4619 dev_warn(&h
->pdev
->dev
,
4620 "%s: Blocking zero-length request: CDB:%*phN\n",
4621 func
, cdb_len
, cdb
);
4624 #define IO_ACCEL_INELIGIBLE 1
4625 /* zero-length transfers trigger hardware errors. */
4626 static bool is_zero_length_transfer(u8
*cdb
)
4630 /* Block zero-length transfer sizes on certain commands. */
4634 case VERIFY
: /* 0x2F */
4635 case WRITE_VERIFY
: /* 0x2E */
4636 block_cnt
= get_unaligned_be16(&cdb
[7]);
4640 case VERIFY_12
: /* 0xAF */
4641 case WRITE_VERIFY_12
: /* 0xAE */
4642 block_cnt
= get_unaligned_be32(&cdb
[6]);
4646 case VERIFY_16
: /* 0x8F */
4647 block_cnt
= get_unaligned_be32(&cdb
[10]);
4653 return block_cnt
== 0;
4656 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4662 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4670 if (*cdb_len
== 6) {
4671 block
= (((cdb
[1] & 0x1F) << 16) |
4678 BUG_ON(*cdb_len
!= 12);
4679 block
= get_unaligned_be32(&cdb
[2]);
4680 block_cnt
= get_unaligned_be32(&cdb
[6]);
4682 if (block_cnt
> 0xffff)
4683 return IO_ACCEL_INELIGIBLE
;
4685 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4687 cdb
[2] = (u8
) (block
>> 24);
4688 cdb
[3] = (u8
) (block
>> 16);
4689 cdb
[4] = (u8
) (block
>> 8);
4690 cdb
[5] = (u8
) (block
);
4692 cdb
[7] = (u8
) (block_cnt
>> 8);
4693 cdb
[8] = (u8
) (block_cnt
);
4701 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4702 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4703 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4705 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4706 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4708 unsigned int total_len
= 0;
4709 struct scatterlist
*sg
;
4712 struct SGDescriptor
*curr_sg
;
4713 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4715 /* TODO: implement chaining support */
4716 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4717 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4718 return IO_ACCEL_INELIGIBLE
;
4721 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4723 if (is_zero_length_transfer(cdb
)) {
4724 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4725 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4726 return IO_ACCEL_INELIGIBLE
;
4729 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4730 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4731 return IO_ACCEL_INELIGIBLE
;
4734 c
->cmd_type
= CMD_IOACCEL1
;
4736 /* Adjust the DMA address to point to the accelerated command buffer */
4737 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4738 (c
->cmdindex
* sizeof(*cp
));
4739 BUG_ON(c
->busaddr
& 0x0000007F);
4741 use_sg
= scsi_dma_map(cmd
);
4743 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4749 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4750 addr64
= (u64
) sg_dma_address(sg
);
4751 len
= sg_dma_len(sg
);
4753 curr_sg
->Addr
= cpu_to_le64(addr64
);
4754 curr_sg
->Len
= cpu_to_le32(len
);
4755 curr_sg
->Ext
= cpu_to_le32(0);
4758 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4760 switch (cmd
->sc_data_direction
) {
4762 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4764 case DMA_FROM_DEVICE
:
4765 control
|= IOACCEL1_CONTROL_DATA_IN
;
4768 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4771 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4772 cmd
->sc_data_direction
);
4777 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4780 c
->Header
.SGList
= use_sg
;
4781 /* Fill out the command structure to submit */
4782 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4783 cp
->transfer_len
= cpu_to_le32(total_len
);
4784 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4785 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4786 cp
->control
= cpu_to_le32(control
);
4787 memcpy(cp
->CDB
, cdb
, cdb_len
);
4788 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4789 /* Tag was already set at init time. */
4790 enqueue_cmd_and_start_io(h
, c
);
4795 * Queue a command directly to a device behind the controller using the
4796 * I/O accelerator path.
4798 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4799 struct CommandList
*c
)
4801 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4802 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4812 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4813 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4817 * Set encryption parameters for the ioaccel2 request
4819 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4820 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4822 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4823 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4824 struct raid_map_data
*map
= &dev
->raid_map
;
4827 /* Are we doing encryption on this device */
4828 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4830 /* Set the data encryption key index. */
4831 cp
->dekindex
= map
->dekindex
;
4833 /* Set the encryption enable flag, encoded into direction field. */
4834 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4836 /* Set encryption tweak values based on logical block address
4837 * If block size is 512, tweak value is LBA.
4838 * For other block sizes, tweak is (LBA * block size)/ 512)
4840 switch (cmd
->cmnd
[0]) {
4841 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4844 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4845 (cmd
->cmnd
[2] << 8) |
4850 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4853 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4857 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4860 dev_err(&h
->pdev
->dev
,
4861 "ERROR: %s: size (0x%x) not supported for encryption\n",
4862 __func__
, cmd
->cmnd
[0]);
4867 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4868 first_block
= first_block
*
4869 le32_to_cpu(map
->volume_blk_size
)/512;
4871 cp
->tweak_lower
= cpu_to_le32(first_block
);
4872 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4875 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4876 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4877 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4879 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4880 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4881 struct ioaccel2_sg_element
*curr_sg
;
4883 struct scatterlist
*sg
;
4891 if (!cmd
->device
->hostdata
)
4894 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4896 if (is_zero_length_transfer(cdb
)) {
4897 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4898 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4899 return IO_ACCEL_INELIGIBLE
;
4902 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4903 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4904 return IO_ACCEL_INELIGIBLE
;
4907 c
->cmd_type
= CMD_IOACCEL2
;
4908 /* Adjust the DMA address to point to the accelerated command buffer */
4909 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4910 (c
->cmdindex
* sizeof(*cp
));
4911 BUG_ON(c
->busaddr
& 0x0000007F);
4913 memset(cp
, 0, sizeof(*cp
));
4914 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4916 use_sg
= scsi_dma_map(cmd
);
4918 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4924 if (use_sg
> h
->ioaccel_maxsg
) {
4925 addr64
= le64_to_cpu(
4926 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4927 curr_sg
->address
= cpu_to_le64(addr64
);
4928 curr_sg
->length
= 0;
4929 curr_sg
->reserved
[0] = 0;
4930 curr_sg
->reserved
[1] = 0;
4931 curr_sg
->reserved
[2] = 0;
4932 curr_sg
->chain_indicator
= IOACCEL2_CHAIN
;
4934 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4936 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4937 addr64
= (u64
) sg_dma_address(sg
);
4938 len
= sg_dma_len(sg
);
4940 curr_sg
->address
= cpu_to_le64(addr64
);
4941 curr_sg
->length
= cpu_to_le32(len
);
4942 curr_sg
->reserved
[0] = 0;
4943 curr_sg
->reserved
[1] = 0;
4944 curr_sg
->reserved
[2] = 0;
4945 curr_sg
->chain_indicator
= 0;
4950 * Set the last s/g element bit
4952 (curr_sg
- 1)->chain_indicator
= IOACCEL2_LAST_SG
;
4954 switch (cmd
->sc_data_direction
) {
4956 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4957 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4959 case DMA_FROM_DEVICE
:
4960 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4961 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4964 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4965 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4968 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4969 cmd
->sc_data_direction
);
4974 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4975 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4978 /* Set encryption parameters, if necessary */
4979 set_encrypt_ioaccel2(h
, c
, cp
);
4981 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4982 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4983 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4985 cp
->data_len
= cpu_to_le32(total_len
);
4986 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4987 offsetof(struct io_accel2_cmd
, error_data
));
4988 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4990 /* fill in sg elements */
4991 if (use_sg
> h
->ioaccel_maxsg
) {
4993 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4994 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4995 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4996 scsi_dma_unmap(cmd
);
5000 cp
->sg_count
= (u8
) use_sg
;
5002 if (phys_disk
->in_reset
) {
5003 cmd
->result
= DID_RESET
<< 16;
5007 enqueue_cmd_and_start_io(h
, c
);
5012 * Queue a command to the correct I/O accelerator path.
5014 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
5015 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
5016 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
5018 if (!c
->scsi_cmd
->device
)
5021 if (!c
->scsi_cmd
->device
->hostdata
)
5024 if (phys_disk
->in_reset
)
5027 /* Try to honor the device's queue depth */
5028 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
5029 phys_disk
->queue_depth
) {
5030 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5031 return IO_ACCEL_INELIGIBLE
;
5033 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
5034 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
5035 cdb
, cdb_len
, scsi3addr
,
5038 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
5039 cdb
, cdb_len
, scsi3addr
,
5043 static void raid_map_helper(struct raid_map_data
*map
,
5044 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
5046 if (offload_to_mirror
== 0) {
5047 /* use physical disk in the first mirrored group. */
5048 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5052 /* determine mirror group that *map_index indicates */
5053 *current_group
= *map_index
/
5054 le16_to_cpu(map
->data_disks_per_row
);
5055 if (offload_to_mirror
== *current_group
)
5057 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
5058 /* select map index from next group */
5059 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5062 /* select map index from first group */
5063 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5066 } while (offload_to_mirror
!= *current_group
);
5070 * Attempt to perform offload RAID mapping for a logical volume I/O.
5072 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
5073 struct CommandList
*c
)
5075 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
5076 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5077 struct raid_map_data
*map
= &dev
->raid_map
;
5078 struct raid_map_disk_data
*dd
= &map
->data
[0];
5081 u64 first_block
, last_block
;
5084 u64 first_row
, last_row
;
5085 u32 first_row_offset
, last_row_offset
;
5086 u32 first_column
, last_column
;
5087 u64 r0_first_row
, r0_last_row
;
5088 u32 r5or6_blocks_per_row
;
5089 u64 r5or6_first_row
, r5or6_last_row
;
5090 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
5091 u32 r5or6_first_column
, r5or6_last_column
;
5092 u32 total_disks_per_row
;
5094 u32 first_group
, last_group
, current_group
;
5102 #if BITS_PER_LONG == 32
5105 int offload_to_mirror
;
5113 /* check for valid opcode, get LBA and block count */
5114 switch (cmd
->cmnd
[0]) {
5119 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5120 (cmd
->cmnd
[2] << 8) |
5122 block_cnt
= cmd
->cmnd
[4];
5131 (((u64
) cmd
->cmnd
[2]) << 24) |
5132 (((u64
) cmd
->cmnd
[3]) << 16) |
5133 (((u64
) cmd
->cmnd
[4]) << 8) |
5136 (((u32
) cmd
->cmnd
[7]) << 8) |
5144 (((u64
) cmd
->cmnd
[2]) << 24) |
5145 (((u64
) cmd
->cmnd
[3]) << 16) |
5146 (((u64
) cmd
->cmnd
[4]) << 8) |
5149 (((u32
) cmd
->cmnd
[6]) << 24) |
5150 (((u32
) cmd
->cmnd
[7]) << 16) |
5151 (((u32
) cmd
->cmnd
[8]) << 8) |
5159 (((u64
) cmd
->cmnd
[2]) << 56) |
5160 (((u64
) cmd
->cmnd
[3]) << 48) |
5161 (((u64
) cmd
->cmnd
[4]) << 40) |
5162 (((u64
) cmd
->cmnd
[5]) << 32) |
5163 (((u64
) cmd
->cmnd
[6]) << 24) |
5164 (((u64
) cmd
->cmnd
[7]) << 16) |
5165 (((u64
) cmd
->cmnd
[8]) << 8) |
5168 (((u32
) cmd
->cmnd
[10]) << 24) |
5169 (((u32
) cmd
->cmnd
[11]) << 16) |
5170 (((u32
) cmd
->cmnd
[12]) << 8) |
5174 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5176 last_block
= first_block
+ block_cnt
- 1;
5178 /* check for write to non-RAID-0 */
5179 if (is_write
&& dev
->raid_level
!= 0)
5180 return IO_ACCEL_INELIGIBLE
;
5182 /* check for invalid block or wraparound */
5183 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5184 last_block
< first_block
)
5185 return IO_ACCEL_INELIGIBLE
;
5187 /* calculate stripe information for the request */
5188 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5189 le16_to_cpu(map
->strip_size
);
5190 strip_size
= le16_to_cpu(map
->strip_size
);
5191 #if BITS_PER_LONG == 32
5192 tmpdiv
= first_block
;
5193 (void) do_div(tmpdiv
, blocks_per_row
);
5195 tmpdiv
= last_block
;
5196 (void) do_div(tmpdiv
, blocks_per_row
);
5198 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5199 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5200 tmpdiv
= first_row_offset
;
5201 (void) do_div(tmpdiv
, strip_size
);
5202 first_column
= tmpdiv
;
5203 tmpdiv
= last_row_offset
;
5204 (void) do_div(tmpdiv
, strip_size
);
5205 last_column
= tmpdiv
;
5207 first_row
= first_block
/ blocks_per_row
;
5208 last_row
= last_block
/ blocks_per_row
;
5209 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5210 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5211 first_column
= first_row_offset
/ strip_size
;
5212 last_column
= last_row_offset
/ strip_size
;
5215 /* if this isn't a single row/column then give to the controller */
5216 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5217 return IO_ACCEL_INELIGIBLE
;
5219 /* proceeding with driver mapping */
5220 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5221 le16_to_cpu(map
->metadata_disks_per_row
);
5222 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5223 le16_to_cpu(map
->row_cnt
);
5224 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5226 switch (dev
->raid_level
) {
5228 break; /* nothing special to do */
5230 /* Handles load balance across RAID 1 members.
5231 * (2-drive R1 and R10 with even # of drives.)
5232 * Appropriate for SSDs, not optimal for HDDs
5234 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5235 if (dev
->offload_to_mirror
)
5236 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5237 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5240 /* Handles N-way mirrors (R1-ADM)
5241 * and R10 with # of drives divisible by 3.)
5243 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5245 offload_to_mirror
= dev
->offload_to_mirror
;
5246 raid_map_helper(map
, offload_to_mirror
,
5247 &map_index
, ¤t_group
);
5248 /* set mirror group to use next time */
5250 (offload_to_mirror
>=
5251 le16_to_cpu(map
->layout_map_count
) - 1)
5252 ? 0 : offload_to_mirror
+ 1;
5253 dev
->offload_to_mirror
= offload_to_mirror
;
5254 /* Avoid direct use of dev->offload_to_mirror within this
5255 * function since multiple threads might simultaneously
5256 * increment it beyond the range of dev->layout_map_count -1.
5261 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5264 /* Verify first and last block are in same RAID group */
5265 r5or6_blocks_per_row
=
5266 le16_to_cpu(map
->strip_size
) *
5267 le16_to_cpu(map
->data_disks_per_row
);
5268 BUG_ON(r5or6_blocks_per_row
== 0);
5269 stripesize
= r5or6_blocks_per_row
*
5270 le16_to_cpu(map
->layout_map_count
);
5271 #if BITS_PER_LONG == 32
5272 tmpdiv
= first_block
;
5273 first_group
= do_div(tmpdiv
, stripesize
);
5274 tmpdiv
= first_group
;
5275 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5276 first_group
= tmpdiv
;
5277 tmpdiv
= last_block
;
5278 last_group
= do_div(tmpdiv
, stripesize
);
5279 tmpdiv
= last_group
;
5280 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5281 last_group
= tmpdiv
;
5283 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5284 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5286 if (first_group
!= last_group
)
5287 return IO_ACCEL_INELIGIBLE
;
5289 /* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291 tmpdiv
= first_block
;
5292 (void) do_div(tmpdiv
, stripesize
);
5293 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5294 tmpdiv
= last_block
;
5295 (void) do_div(tmpdiv
, stripesize
);
5296 r5or6_last_row
= r0_last_row
= tmpdiv
;
5298 first_row
= r5or6_first_row
= r0_first_row
=
5299 first_block
/ stripesize
;
5300 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5302 if (r5or6_first_row
!= r5or6_last_row
)
5303 return IO_ACCEL_INELIGIBLE
;
5306 /* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308 tmpdiv
= first_block
;
5309 first_row_offset
= do_div(tmpdiv
, stripesize
);
5310 tmpdiv
= first_row_offset
;
5311 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5312 r5or6_first_row_offset
= first_row_offset
;
5313 tmpdiv
= last_block
;
5314 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5315 tmpdiv
= r5or6_last_row_offset
;
5316 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5317 tmpdiv
= r5or6_first_row_offset
;
5318 (void) do_div(tmpdiv
, map
->strip_size
);
5319 first_column
= r5or6_first_column
= tmpdiv
;
5320 tmpdiv
= r5or6_last_row_offset
;
5321 (void) do_div(tmpdiv
, map
->strip_size
);
5322 r5or6_last_column
= tmpdiv
;
5324 first_row_offset
= r5or6_first_row_offset
=
5325 (u32
)((first_block
% stripesize
) %
5326 r5or6_blocks_per_row
);
5328 r5or6_last_row_offset
=
5329 (u32
)((last_block
% stripesize
) %
5330 r5or6_blocks_per_row
);
5332 first_column
= r5or6_first_column
=
5333 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5335 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5337 if (r5or6_first_column
!= r5or6_last_column
)
5338 return IO_ACCEL_INELIGIBLE
;
5340 /* Request is eligible */
5341 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5342 le16_to_cpu(map
->row_cnt
);
5344 map_index
= (first_group
*
5345 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5346 (map_row
* total_disks_per_row
) + first_column
;
5349 return IO_ACCEL_INELIGIBLE
;
5352 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5353 return IO_ACCEL_INELIGIBLE
;
5355 c
->phys_disk
= dev
->phys_disk
[map_index
];
5357 return IO_ACCEL_INELIGIBLE
;
5359 disk_handle
= dd
[map_index
].ioaccel_handle
;
5360 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5361 first_row
* le16_to_cpu(map
->strip_size
) +
5362 (first_row_offset
- first_column
*
5363 le16_to_cpu(map
->strip_size
));
5364 disk_block_cnt
= block_cnt
;
5366 /* handle differing logical/physical block sizes */
5367 if (map
->phys_blk_shift
) {
5368 disk_block
<<= map
->phys_blk_shift
;
5369 disk_block_cnt
<<= map
->phys_blk_shift
;
5371 BUG_ON(disk_block_cnt
> 0xffff);
5373 /* build the new CDB for the physical disk I/O */
5374 if (disk_block
> 0xffffffff) {
5375 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5377 cdb
[2] = (u8
) (disk_block
>> 56);
5378 cdb
[3] = (u8
) (disk_block
>> 48);
5379 cdb
[4] = (u8
) (disk_block
>> 40);
5380 cdb
[5] = (u8
) (disk_block
>> 32);
5381 cdb
[6] = (u8
) (disk_block
>> 24);
5382 cdb
[7] = (u8
) (disk_block
>> 16);
5383 cdb
[8] = (u8
) (disk_block
>> 8);
5384 cdb
[9] = (u8
) (disk_block
);
5385 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5386 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5387 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5388 cdb
[13] = (u8
) (disk_block_cnt
);
5393 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5395 cdb
[2] = (u8
) (disk_block
>> 24);
5396 cdb
[3] = (u8
) (disk_block
>> 16);
5397 cdb
[4] = (u8
) (disk_block
>> 8);
5398 cdb
[5] = (u8
) (disk_block
);
5400 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5401 cdb
[8] = (u8
) (disk_block_cnt
);
5405 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5407 dev
->phys_disk
[map_index
]);
5411 * Submit commands down the "normal" RAID stack path
5412 * All callers to hpsa_ciss_submit must check lockup_detected
5413 * beforehand, before (opt.) and after calling cmd_alloc
5415 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5416 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5417 struct hpsa_scsi_dev_t
*dev
)
5419 cmd
->host_scribble
= (unsigned char *) c
;
5420 c
->cmd_type
= CMD_SCSI
;
5422 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5423 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &dev
->scsi3addr
[0], 8);
5424 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5426 /* Fill in the request block... */
5428 c
->Request
.Timeout
= 0;
5429 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5430 c
->Request
.CDBLen
= cmd
->cmd_len
;
5431 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5432 switch (cmd
->sc_data_direction
) {
5434 c
->Request
.type_attr_dir
=
5435 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5437 case DMA_FROM_DEVICE
:
5438 c
->Request
.type_attr_dir
=
5439 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5442 c
->Request
.type_attr_dir
=
5443 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5445 case DMA_BIDIRECTIONAL
:
5446 /* This can happen if a buggy application does a scsi passthru
5447 * and sets both inlen and outlen to non-zero. ( see
5448 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5451 c
->Request
.type_attr_dir
=
5452 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5453 /* This is technically wrong, and hpsa controllers should
5454 * reject it with CMD_INVALID, which is the most correct
5455 * response, but non-fibre backends appear to let it
5456 * slide by, and give the same results as if this field
5457 * were set correctly. Either way is acceptable for
5458 * our purposes here.
5464 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5465 cmd
->sc_data_direction
);
5470 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5471 hpsa_cmd_resolve_and_free(h
, c
);
5472 return SCSI_MLQUEUE_HOST_BUSY
;
5475 if (dev
->in_reset
) {
5476 hpsa_cmd_resolve_and_free(h
, c
);
5477 return SCSI_MLQUEUE_HOST_BUSY
;
5482 enqueue_cmd_and_start_io(h
, c
);
5483 /* the cmd'll come back via intr handler in complete_scsi_command() */
5487 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5488 struct CommandList
*c
)
5490 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5492 /* Zero out all of commandlist except the last field, refcount */
5493 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5494 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5495 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5496 c
->err_info
= h
->errinfo_pool
+ index
;
5497 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5498 err_dma_handle
= h
->errinfo_pool_dhandle
5499 + index
* sizeof(*c
->err_info
);
5500 c
->cmdindex
= index
;
5501 c
->busaddr
= (u32
) cmd_dma_handle
;
5502 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5503 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5505 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5508 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5512 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5513 struct CommandList
*c
= h
->cmd_pool
+ i
;
5515 hpsa_cmd_init(h
, i
, c
);
5516 atomic_set(&c
->refcount
, 0);
5520 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5521 struct CommandList
*c
)
5523 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5525 BUG_ON(c
->cmdindex
!= index
);
5527 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5528 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5529 c
->busaddr
= (u32
) cmd_dma_handle
;
5532 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5533 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
5535 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5536 int rc
= IO_ACCEL_INELIGIBLE
;
5539 return SCSI_MLQUEUE_HOST_BUSY
;
5542 return SCSI_MLQUEUE_HOST_BUSY
;
5544 if (hpsa_simple_mode
)
5545 return IO_ACCEL_INELIGIBLE
;
5547 cmd
->host_scribble
= (unsigned char *) c
;
5549 if (dev
->offload_enabled
) {
5550 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5551 c
->cmd_type
= CMD_SCSI
;
5554 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5555 if (rc
< 0) /* scsi_dma_map failed. */
5556 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5557 } else if (dev
->hba_ioaccel_enabled
) {
5558 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5559 c
->cmd_type
= CMD_SCSI
;
5562 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5563 if (rc
< 0) /* scsi_dma_map failed. */
5564 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5569 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5571 struct scsi_cmnd
*cmd
;
5572 struct hpsa_scsi_dev_t
*dev
;
5573 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5576 dev
= cmd
->device
->hostdata
;
5578 cmd
->result
= DID_NO_CONNECT
<< 16;
5579 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5582 if (dev
->in_reset
) {
5583 cmd
->result
= DID_RESET
<< 16;
5584 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5587 if (c
->cmd_type
== CMD_IOACCEL2
) {
5588 struct ctlr_info
*h
= c
->h
;
5589 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5592 if (c2
->error_data
.serv_response
==
5593 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5594 rc
= hpsa_ioaccel_submit(h
, c
, cmd
);
5597 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5599 * If we get here, it means dma mapping failed.
5600 * Try again via scsi mid layer, which will
5601 * then get SCSI_MLQUEUE_HOST_BUSY.
5603 cmd
->result
= DID_IMM_RETRY
<< 16;
5604 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5606 /* else, fall thru and resubmit down CISS path */
5609 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5610 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
)) {
5612 * If we get here, it means dma mapping failed. Try
5613 * again via scsi mid layer, which will then get
5614 * SCSI_MLQUEUE_HOST_BUSY.
5616 * hpsa_ciss_submit will have already freed c
5617 * if it encountered a dma mapping failure.
5619 cmd
->result
= DID_IMM_RETRY
<< 16;
5620 cmd
->scsi_done(cmd
);
5624 /* Running in struct Scsi_Host->host_lock less mode */
5625 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5627 struct ctlr_info
*h
;
5628 struct hpsa_scsi_dev_t
*dev
;
5629 struct CommandList
*c
;
5632 /* Get the ptr to our adapter structure out of cmd->host. */
5633 h
= sdev_to_hba(cmd
->device
);
5635 BUG_ON(cmd
->request
->tag
< 0);
5637 dev
= cmd
->device
->hostdata
;
5639 cmd
->result
= DID_NO_CONNECT
<< 16;
5640 cmd
->scsi_done(cmd
);
5645 cmd
->result
= DID_NO_CONNECT
<< 16;
5646 cmd
->scsi_done(cmd
);
5650 if (unlikely(lockup_detected(h
))) {
5651 cmd
->result
= DID_NO_CONNECT
<< 16;
5652 cmd
->scsi_done(cmd
);
5657 return SCSI_MLQUEUE_DEVICE_BUSY
;
5659 c
= cmd_tagged_alloc(h
, cmd
);
5661 return SCSI_MLQUEUE_DEVICE_BUSY
;
5664 * This is necessary because the SML doesn't zero out this field during
5670 * Call alternate submit routine for I/O accelerated commands.
5671 * Retries always go down the normal I/O path.
5673 if (likely(cmd
->retries
== 0 &&
5674 !blk_rq_is_passthrough(cmd
->request
) &&
5675 h
->acciopath_status
)) {
5676 rc
= hpsa_ioaccel_submit(h
, c
, cmd
);
5679 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5680 hpsa_cmd_resolve_and_free(h
, c
);
5681 return SCSI_MLQUEUE_HOST_BUSY
;
5684 return hpsa_ciss_submit(h
, c
, cmd
, dev
);
5687 static void hpsa_scan_complete(struct ctlr_info
*h
)
5689 unsigned long flags
;
5691 spin_lock_irqsave(&h
->scan_lock
, flags
);
5692 h
->scan_finished
= 1;
5693 wake_up(&h
->scan_wait_queue
);
5694 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5697 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5699 struct ctlr_info
*h
= shost_to_hba(sh
);
5700 unsigned long flags
;
5703 * Don't let rescans be initiated on a controller known to be locked
5704 * up. If the controller locks up *during* a rescan, that thread is
5705 * probably hosed, but at least we can prevent new rescan threads from
5706 * piling up on a locked up controller.
5708 if (unlikely(lockup_detected(h
)))
5709 return hpsa_scan_complete(h
);
5712 * If a scan is already waiting to run, no need to add another
5714 spin_lock_irqsave(&h
->scan_lock
, flags
);
5715 if (h
->scan_waiting
) {
5716 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5720 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5722 /* wait until any scan already in progress is finished. */
5724 spin_lock_irqsave(&h
->scan_lock
, flags
);
5725 if (h
->scan_finished
)
5727 h
->scan_waiting
= 1;
5728 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5729 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5730 /* Note: We don't need to worry about a race between this
5731 * thread and driver unload because the midlayer will
5732 * have incremented the reference count, so unload won't
5733 * happen if we're in here.
5736 h
->scan_finished
= 0; /* mark scan as in progress */
5737 h
->scan_waiting
= 0;
5738 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5740 if (unlikely(lockup_detected(h
)))
5741 return hpsa_scan_complete(h
);
5744 * Do the scan after a reset completion
5746 spin_lock_irqsave(&h
->reset_lock
, flags
);
5747 if (h
->reset_in_progress
) {
5748 h
->drv_req_rescan
= 1;
5749 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5750 hpsa_scan_complete(h
);
5753 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5755 hpsa_update_scsi_devices(h
);
5757 hpsa_scan_complete(h
);
5760 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5762 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5769 else if (qdepth
> logical_drive
->queue_depth
)
5770 qdepth
= logical_drive
->queue_depth
;
5772 return scsi_change_queue_depth(sdev
, qdepth
);
5775 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5776 unsigned long elapsed_time
)
5778 struct ctlr_info
*h
= shost_to_hba(sh
);
5779 unsigned long flags
;
5782 spin_lock_irqsave(&h
->scan_lock
, flags
);
5783 finished
= h
->scan_finished
;
5784 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5788 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5790 struct Scsi_Host
*sh
;
5792 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5794 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5801 sh
->max_channel
= 3;
5802 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5803 sh
->max_lun
= HPSA_MAX_LUN
;
5804 sh
->max_id
= HPSA_MAX_LUN
;
5805 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5806 sh
->cmd_per_lun
= sh
->can_queue
;
5807 sh
->sg_tablesize
= h
->maxsgentries
;
5808 sh
->transportt
= hpsa_sas_transport_template
;
5809 sh
->hostdata
[0] = (unsigned long) h
;
5810 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5811 sh
->unique_id
= sh
->irq
;
5817 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5821 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5823 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5826 scsi_scan_host(h
->scsi_host
);
5831 * The block layer has already gone to the trouble of picking out a unique,
5832 * small-integer tag for this request. We use an offset from that value as
5833 * an index to select our command block. (The offset allows us to reserve the
5834 * low-numbered entries for our own uses.)
5836 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5838 int idx
= scmd
->request
->tag
;
5843 /* Offset to leave space for internal cmds. */
5844 return idx
+= HPSA_NRESERVED_CMDS
;
5848 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5849 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5851 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5852 struct CommandList
*c
, unsigned char lunaddr
[],
5857 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5858 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5859 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5860 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5863 /* no unmap needed here because no data xfer. */
5865 /* Check if the unit is already ready. */
5866 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5870 * The first command sent after reset will receive "unit attention" to
5871 * indicate that the LUN has been reset...this is actually what we're
5872 * looking for (but, success is good too).
5874 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5875 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5876 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5877 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5884 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5885 * returns zero when the unit is ready, and non-zero when giving up.
5887 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5888 struct CommandList
*c
,
5889 unsigned char lunaddr
[], int reply_queue
)
5893 int waittime
= 1; /* seconds */
5895 /* Send test unit ready until device ready, or give up. */
5896 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5899 * Wait for a bit. do this first, because if we send
5900 * the TUR right away, the reset will just abort it.
5902 msleep(1000 * waittime
);
5904 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5908 /* Increase wait time with each try, up to a point. */
5909 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5912 dev_warn(&h
->pdev
->dev
,
5913 "waiting %d secs for device to become ready.\n",
5920 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5921 unsigned char lunaddr
[],
5928 struct CommandList
*c
;
5933 * If no specific reply queue was requested, then send the TUR
5934 * repeatedly, requesting a reply on each reply queue; otherwise execute
5935 * the loop exactly once using only the specified queue.
5937 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5939 last_queue
= h
->nreply_queues
- 1;
5941 first_queue
= reply_queue
;
5942 last_queue
= reply_queue
;
5945 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5946 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5952 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5954 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5960 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5961 * complaining. Doing a host- or bus-reset can't do anything good here.
5963 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5967 struct ctlr_info
*h
;
5968 struct hpsa_scsi_dev_t
*dev
= NULL
;
5971 unsigned long flags
;
5973 /* find the controller to which the command to be aborted was sent */
5974 h
= sdev_to_hba(scsicmd
->device
);
5975 if (h
== NULL
) /* paranoia */
5978 spin_lock_irqsave(&h
->reset_lock
, flags
);
5979 h
->reset_in_progress
= 1;
5980 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5982 if (lockup_detected(h
)) {
5984 goto return_reset_status
;
5987 dev
= scsicmd
->device
->hostdata
;
5989 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5991 goto return_reset_status
;
5994 if (dev
->devtype
== TYPE_ENCLOSURE
) {
5996 goto return_reset_status
;
5999 /* if controller locked up, we can guarantee command won't complete */
6000 if (lockup_detected(h
)) {
6001 snprintf(msg
, sizeof(msg
),
6002 "cmd %d RESET FAILED, lockup detected",
6003 hpsa_get_cmd_index(scsicmd
));
6004 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6006 goto return_reset_status
;
6009 /* this reset request might be the result of a lockup; check */
6010 if (detect_controller_lockup(h
)) {
6011 snprintf(msg
, sizeof(msg
),
6012 "cmd %d RESET FAILED, new lockup detected",
6013 hpsa_get_cmd_index(scsicmd
));
6014 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6016 goto return_reset_status
;
6019 /* Do not attempt on controller */
6020 if (is_hba_lunid(dev
->scsi3addr
)) {
6022 goto return_reset_status
;
6025 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
6026 reset_type
= HPSA_DEVICE_RESET_MSG
;
6028 reset_type
= HPSA_PHYS_TARGET_RESET
;
6030 sprintf(msg
, "resetting %s",
6031 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
6032 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6035 * wait to see if any commands will complete before sending reset
6037 dev
->in_reset
= true; /* block any new cmds from OS for this device */
6038 for (i
= 0; i
< 10; i
++) {
6039 if (atomic_read(&dev
->commands_outstanding
) > 0)
6045 /* send a reset to the SCSI LUN which the command was sent to */
6046 rc
= hpsa_do_reset(h
, dev
, reset_type
, DEFAULT_REPLY_QUEUE
);
6052 sprintf(msg
, "reset %s %s",
6053 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
6054 rc
== SUCCESS
? "completed successfully" : "failed");
6055 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6057 return_reset_status
:
6058 spin_lock_irqsave(&h
->reset_lock
, flags
);
6059 h
->reset_in_progress
= 0;
6061 dev
->in_reset
= false;
6062 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6067 * For operations with an associated SCSI command, a command block is allocated
6068 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6069 * block request tag as an index into a table of entries. cmd_tagged_free() is
6070 * the complement, although cmd_free() may be called instead.
6072 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6073 struct scsi_cmnd
*scmd
)
6075 int idx
= hpsa_get_cmd_index(scmd
);
6076 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6078 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6079 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6080 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6081 /* The index value comes from the block layer, so if it's out of
6082 * bounds, it's probably not our bug.
6087 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6089 * We expect that the SCSI layer will hand us a unique tag
6090 * value. Thus, there should never be a collision here between
6091 * two requests...because if the selected command isn't idle
6092 * then someone is going to be very disappointed.
6094 if (idx
!= h
->last_collision_tag
) { /* Print once per tag */
6095 dev_warn(&h
->pdev
->dev
,
6096 "%s: tag collision (tag=%d)\n", __func__
, idx
);
6098 scsi_print_command(scmd
);
6099 h
->last_collision_tag
= idx
;
6104 atomic_inc(&c
->refcount
);
6106 hpsa_cmd_partial_init(h
, idx
, c
);
6110 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6113 * Release our reference to the block. We don't need to do anything
6114 * else to free it, because it is accessed by index.
6116 (void)atomic_dec(&c
->refcount
);
6120 * For operations that cannot sleep, a command block is allocated at init,
6121 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6122 * which ones are free or in use. Lock must be held when calling this.
6123 * cmd_free() is the complement.
6124 * This function never gives up and returns NULL. If it hangs,
6125 * another thread must call cmd_free() to free some tags.
6128 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6130 struct CommandList
*c
;
6135 * There is some *extremely* small but non-zero chance that that
6136 * multiple threads could get in here, and one thread could
6137 * be scanning through the list of bits looking for a free
6138 * one, but the free ones are always behind him, and other
6139 * threads sneak in behind him and eat them before he can
6140 * get to them, so that while there is always a free one, a
6141 * very unlucky thread might be starved anyway, never able to
6142 * beat the other threads. In reality, this happens so
6143 * infrequently as to be indistinguishable from never.
6145 * Note that we start allocating commands before the SCSI host structure
6146 * is initialized. Since the search starts at bit zero, this
6147 * all works, since we have at least one command structure available;
6148 * however, it means that the structures with the low indexes have to be
6149 * reserved for driver-initiated requests, while requests from the block
6150 * layer will use the higher indexes.
6154 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6155 HPSA_NRESERVED_CMDS
,
6157 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6161 c
= h
->cmd_pool
+ i
;
6162 refcount
= atomic_inc_return(&c
->refcount
);
6163 if (unlikely(refcount
> 1)) {
6164 cmd_free(h
, c
); /* already in use */
6165 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6168 set_bit(i
& (BITS_PER_LONG
- 1),
6169 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6170 break; /* it's ours now. */
6172 hpsa_cmd_partial_init(h
, i
, c
);
6178 * This is the complementary operation to cmd_alloc(). Note, however, in some
6179 * corner cases it may also be used to free blocks allocated by
6180 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6181 * the clear-bit is harmless.
6183 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6185 if (atomic_dec_and_test(&c
->refcount
)) {
6188 i
= c
- h
->cmd_pool
;
6189 clear_bit(i
& (BITS_PER_LONG
- 1),
6190 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6194 #ifdef CONFIG_COMPAT
6196 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, unsigned int cmd
,
6199 IOCTL32_Command_struct __user
*arg32
=
6200 (IOCTL32_Command_struct __user
*) arg
;
6201 IOCTL_Command_struct arg64
;
6202 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6206 memset(&arg64
, 0, sizeof(arg64
));
6208 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6209 sizeof(arg64
.LUN_info
));
6210 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6211 sizeof(arg64
.Request
));
6212 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6213 sizeof(arg64
.error_info
));
6214 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6215 err
|= get_user(cp
, &arg32
->buf
);
6216 arg64
.buf
= compat_ptr(cp
);
6217 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6222 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6225 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6226 sizeof(arg32
->error_info
));
6232 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6233 unsigned int cmd
, void __user
*arg
)
6235 BIG_IOCTL32_Command_struct __user
*arg32
=
6236 (BIG_IOCTL32_Command_struct __user
*) arg
;
6237 BIG_IOCTL_Command_struct arg64
;
6238 BIG_IOCTL_Command_struct __user
*p
=
6239 compat_alloc_user_space(sizeof(arg64
));
6243 memset(&arg64
, 0, sizeof(arg64
));
6245 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6246 sizeof(arg64
.LUN_info
));
6247 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6248 sizeof(arg64
.Request
));
6249 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6250 sizeof(arg64
.error_info
));
6251 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6252 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6253 err
|= get_user(cp
, &arg32
->buf
);
6254 arg64
.buf
= compat_ptr(cp
);
6255 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6260 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6263 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6264 sizeof(arg32
->error_info
));
6270 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6274 case CCISS_GETPCIINFO
:
6275 case CCISS_GETINTINFO
:
6276 case CCISS_SETINTINFO
:
6277 case CCISS_GETNODENAME
:
6278 case CCISS_SETNODENAME
:
6279 case CCISS_GETHEARTBEAT
:
6280 case CCISS_GETBUSTYPES
:
6281 case CCISS_GETFIRMVER
:
6282 case CCISS_GETDRIVVER
:
6283 case CCISS_REVALIDVOLS
:
6284 case CCISS_DEREGDISK
:
6285 case CCISS_REGNEWDISK
:
6287 case CCISS_RESCANDISK
:
6288 case CCISS_GETLUNINFO
:
6289 return hpsa_ioctl(dev
, cmd
, arg
);
6291 case CCISS_PASSTHRU32
:
6292 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6293 case CCISS_BIG_PASSTHRU32
:
6294 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6297 return -ENOIOCTLCMD
;
6302 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6304 struct hpsa_pci_info pciinfo
;
6308 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6309 pciinfo
.bus
= h
->pdev
->bus
->number
;
6310 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6311 pciinfo
.board_id
= h
->board_id
;
6312 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6317 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6319 DriverVer_type DriverVer
;
6320 unsigned char vmaj
, vmin
, vsubmin
;
6323 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6324 &vmaj
, &vmin
, &vsubmin
);
6326 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6327 "unrecognized.", HPSA_DRIVER_VERSION
);
6332 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6335 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6340 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6342 IOCTL_Command_struct iocommand
;
6343 struct CommandList
*c
;
6350 if (!capable(CAP_SYS_RAWIO
))
6352 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6354 if ((iocommand
.buf_size
< 1) &&
6355 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6358 if (iocommand
.buf_size
> 0) {
6359 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6362 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6363 /* Copy the data into the buffer we created */
6364 if (copy_from_user(buff
, iocommand
.buf
,
6365 iocommand
.buf_size
)) {
6370 memset(buff
, 0, iocommand
.buf_size
);
6375 /* Fill in the command type */
6376 c
->cmd_type
= CMD_IOCTL_PEND
;
6377 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6378 /* Fill in Command Header */
6379 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6380 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6381 c
->Header
.SGList
= 1;
6382 c
->Header
.SGTotal
= cpu_to_le16(1);
6383 } else { /* no buffers to fill */
6384 c
->Header
.SGList
= 0;
6385 c
->Header
.SGTotal
= cpu_to_le16(0);
6387 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6389 /* Fill in Request block */
6390 memcpy(&c
->Request
, &iocommand
.Request
,
6391 sizeof(c
->Request
));
6393 /* Fill in the scatter gather information */
6394 if (iocommand
.buf_size
> 0) {
6395 temp64
= dma_map_single(&h
->pdev
->dev
, buff
,
6396 iocommand
.buf_size
, DMA_BIDIRECTIONAL
);
6397 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6398 c
->SG
[0].Addr
= cpu_to_le64(0);
6399 c
->SG
[0].Len
= cpu_to_le32(0);
6403 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6404 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6405 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6407 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6409 if (iocommand
.buf_size
> 0)
6410 hpsa_pci_unmap(h
->pdev
, c
, 1, DMA_BIDIRECTIONAL
);
6411 check_ioctl_unit_attention(h
, c
);
6417 /* Copy the error information out */
6418 memcpy(&iocommand
.error_info
, c
->err_info
,
6419 sizeof(iocommand
.error_info
));
6420 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6424 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6425 iocommand
.buf_size
> 0) {
6426 /* Copy the data out of the buffer we created */
6427 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6439 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6441 BIG_IOCTL_Command_struct
*ioc
;
6442 struct CommandList
*c
;
6443 unsigned char **buff
= NULL
;
6444 int *buff_size
= NULL
;
6450 BYTE __user
*data_ptr
;
6454 if (!capable(CAP_SYS_RAWIO
))
6456 ioc
= vmemdup_user(argp
, sizeof(*ioc
));
6458 status
= PTR_ERR(ioc
);
6461 if ((ioc
->buf_size
< 1) &&
6462 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6466 /* Check kmalloc limits using all SGs */
6467 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6471 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6475 buff
= kcalloc(SG_ENTRIES_IN_CMD
, sizeof(char *), GFP_KERNEL
);
6480 buff_size
= kmalloc_array(SG_ENTRIES_IN_CMD
, sizeof(int), GFP_KERNEL
);
6485 left
= ioc
->buf_size
;
6486 data_ptr
= ioc
->buf
;
6488 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6489 buff_size
[sg_used
] = sz
;
6490 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6491 if (buff
[sg_used
] == NULL
) {
6495 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6496 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6501 memset(buff
[sg_used
], 0, sz
);
6508 c
->cmd_type
= CMD_IOCTL_PEND
;
6509 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6510 c
->Header
.ReplyQueue
= 0;
6511 c
->Header
.SGList
= (u8
) sg_used
;
6512 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6513 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6514 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6515 if (ioc
->buf_size
> 0) {
6517 for (i
= 0; i
< sg_used
; i
++) {
6518 temp64
= dma_map_single(&h
->pdev
->dev
, buff
[i
],
6519 buff_size
[i
], DMA_BIDIRECTIONAL
);
6520 if (dma_mapping_error(&h
->pdev
->dev
,
6521 (dma_addr_t
) temp64
)) {
6522 c
->SG
[i
].Addr
= cpu_to_le64(0);
6523 c
->SG
[i
].Len
= cpu_to_le32(0);
6524 hpsa_pci_unmap(h
->pdev
, c
, i
,
6529 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6530 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6531 c
->SG
[i
].Ext
= cpu_to_le32(0);
6533 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6535 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6538 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, DMA_BIDIRECTIONAL
);
6539 check_ioctl_unit_attention(h
, c
);
6545 /* Copy the error information out */
6546 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6547 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6551 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6554 /* Copy the data out of the buffer we created */
6555 BYTE __user
*ptr
= ioc
->buf
;
6556 for (i
= 0; i
< sg_used
; i
++) {
6557 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6561 ptr
+= buff_size
[i
];
6571 for (i
= 0; i
< sg_used
; i
++)
6580 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6581 struct CommandList
*c
)
6583 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6584 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6585 (void) check_for_unit_attention(h
, c
);
6591 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6594 struct ctlr_info
*h
;
6595 void __user
*argp
= (void __user
*)arg
;
6598 h
= sdev_to_hba(dev
);
6601 case CCISS_DEREGDISK
:
6602 case CCISS_REGNEWDISK
:
6604 hpsa_scan_start(h
->scsi_host
);
6606 case CCISS_GETPCIINFO
:
6607 return hpsa_getpciinfo_ioctl(h
, argp
);
6608 case CCISS_GETDRIVVER
:
6609 return hpsa_getdrivver_ioctl(h
, argp
);
6610 case CCISS_PASSTHRU
:
6611 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6613 rc
= hpsa_passthru_ioctl(h
, argp
);
6614 atomic_inc(&h
->passthru_cmds_avail
);
6616 case CCISS_BIG_PASSTHRU
:
6617 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6619 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6620 atomic_inc(&h
->passthru_cmds_avail
);
6627 static void hpsa_send_host_reset(struct ctlr_info
*h
, u8 reset_type
)
6629 struct CommandList
*c
;
6633 /* fill_cmd can't fail here, no data buffer to map */
6634 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6635 RAID_CTLR_LUNID
, TYPE_MSG
);
6636 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6638 enqueue_cmd_and_start_io(h
, c
);
6639 /* Don't wait for completion, the reset won't complete. Don't free
6640 * the command either. This is the last command we will send before
6641 * re-initializing everything, so it doesn't matter and won't leak.
6646 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6647 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6650 enum dma_data_direction dir
= DMA_NONE
;
6652 c
->cmd_type
= CMD_IOCTL_PEND
;
6653 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6654 c
->Header
.ReplyQueue
= 0;
6655 if (buff
!= NULL
&& size
> 0) {
6656 c
->Header
.SGList
= 1;
6657 c
->Header
.SGTotal
= cpu_to_le16(1);
6659 c
->Header
.SGList
= 0;
6660 c
->Header
.SGTotal
= cpu_to_le16(0);
6662 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6664 if (cmd_type
== TYPE_CMD
) {
6667 /* are we trying to read a vital product page */
6668 if (page_code
& VPD_PAGE
) {
6669 c
->Request
.CDB
[1] = 0x01;
6670 c
->Request
.CDB
[2] = (page_code
& 0xff);
6672 c
->Request
.CDBLen
= 6;
6673 c
->Request
.type_attr_dir
=
6674 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6675 c
->Request
.Timeout
= 0;
6676 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6677 c
->Request
.CDB
[4] = size
& 0xFF;
6679 case RECEIVE_DIAGNOSTIC
:
6680 c
->Request
.CDBLen
= 6;
6681 c
->Request
.type_attr_dir
=
6682 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6683 c
->Request
.Timeout
= 0;
6684 c
->Request
.CDB
[0] = cmd
;
6685 c
->Request
.CDB
[1] = 1;
6686 c
->Request
.CDB
[2] = 1;
6687 c
->Request
.CDB
[3] = (size
>> 8) & 0xFF;
6688 c
->Request
.CDB
[4] = size
& 0xFF;
6690 case HPSA_REPORT_LOG
:
6691 case HPSA_REPORT_PHYS
:
6692 /* Talking to controller so It's a physical command
6693 mode = 00 target = 0. Nothing to write.
6695 c
->Request
.CDBLen
= 12;
6696 c
->Request
.type_attr_dir
=
6697 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6698 c
->Request
.Timeout
= 0;
6699 c
->Request
.CDB
[0] = cmd
;
6700 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6701 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6702 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6703 c
->Request
.CDB
[9] = size
& 0xFF;
6705 case BMIC_SENSE_DIAG_OPTIONS
:
6706 c
->Request
.CDBLen
= 16;
6707 c
->Request
.type_attr_dir
=
6708 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6709 c
->Request
.Timeout
= 0;
6710 /* Spec says this should be BMIC_WRITE */
6711 c
->Request
.CDB
[0] = BMIC_READ
;
6712 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6714 case BMIC_SET_DIAG_OPTIONS
:
6715 c
->Request
.CDBLen
= 16;
6716 c
->Request
.type_attr_dir
=
6717 TYPE_ATTR_DIR(cmd_type
,
6718 ATTR_SIMPLE
, XFER_WRITE
);
6719 c
->Request
.Timeout
= 0;
6720 c
->Request
.CDB
[0] = BMIC_WRITE
;
6721 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6723 case HPSA_CACHE_FLUSH
:
6724 c
->Request
.CDBLen
= 12;
6725 c
->Request
.type_attr_dir
=
6726 TYPE_ATTR_DIR(cmd_type
,
6727 ATTR_SIMPLE
, XFER_WRITE
);
6728 c
->Request
.Timeout
= 0;
6729 c
->Request
.CDB
[0] = BMIC_WRITE
;
6730 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6731 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6732 c
->Request
.CDB
[8] = size
& 0xFF;
6734 case TEST_UNIT_READY
:
6735 c
->Request
.CDBLen
= 6;
6736 c
->Request
.type_attr_dir
=
6737 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6738 c
->Request
.Timeout
= 0;
6740 case HPSA_GET_RAID_MAP
:
6741 c
->Request
.CDBLen
= 12;
6742 c
->Request
.type_attr_dir
=
6743 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6744 c
->Request
.Timeout
= 0;
6745 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6746 c
->Request
.CDB
[1] = cmd
;
6747 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6748 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6749 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6750 c
->Request
.CDB
[9] = size
& 0xFF;
6752 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6753 c
->Request
.CDBLen
= 10;
6754 c
->Request
.type_attr_dir
=
6755 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6756 c
->Request
.Timeout
= 0;
6757 c
->Request
.CDB
[0] = BMIC_READ
;
6758 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6759 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6760 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6762 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6763 c
->Request
.CDBLen
= 10;
6764 c
->Request
.type_attr_dir
=
6765 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6766 c
->Request
.Timeout
= 0;
6767 c
->Request
.CDB
[0] = BMIC_READ
;
6768 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6769 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6770 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6772 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6773 c
->Request
.CDBLen
= 10;
6774 c
->Request
.type_attr_dir
=
6775 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6776 c
->Request
.Timeout
= 0;
6777 c
->Request
.CDB
[0] = BMIC_READ
;
6778 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6779 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6780 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6782 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6783 c
->Request
.CDBLen
= 10;
6784 c
->Request
.type_attr_dir
=
6785 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6786 c
->Request
.Timeout
= 0;
6787 c
->Request
.CDB
[0] = BMIC_READ
;
6788 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6789 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6790 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6792 case BMIC_IDENTIFY_CONTROLLER
:
6793 c
->Request
.CDBLen
= 10;
6794 c
->Request
.type_attr_dir
=
6795 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6796 c
->Request
.Timeout
= 0;
6797 c
->Request
.CDB
[0] = BMIC_READ
;
6798 c
->Request
.CDB
[1] = 0;
6799 c
->Request
.CDB
[2] = 0;
6800 c
->Request
.CDB
[3] = 0;
6801 c
->Request
.CDB
[4] = 0;
6802 c
->Request
.CDB
[5] = 0;
6803 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6804 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6805 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6806 c
->Request
.CDB
[9] = 0;
6809 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6812 } else if (cmd_type
== TYPE_MSG
) {
6815 case HPSA_PHYS_TARGET_RESET
:
6816 c
->Request
.CDBLen
= 16;
6817 c
->Request
.type_attr_dir
=
6818 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6819 c
->Request
.Timeout
= 0; /* Don't time out */
6820 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6821 c
->Request
.CDB
[0] = HPSA_RESET
;
6822 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6823 /* Physical target reset needs no control bytes 4-7*/
6824 c
->Request
.CDB
[4] = 0x00;
6825 c
->Request
.CDB
[5] = 0x00;
6826 c
->Request
.CDB
[6] = 0x00;
6827 c
->Request
.CDB
[7] = 0x00;
6829 case HPSA_DEVICE_RESET_MSG
:
6830 c
->Request
.CDBLen
= 16;
6831 c
->Request
.type_attr_dir
=
6832 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6833 c
->Request
.Timeout
= 0; /* Don't time out */
6834 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6835 c
->Request
.CDB
[0] = cmd
;
6836 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6837 /* If bytes 4-7 are zero, it means reset the */
6839 c
->Request
.CDB
[4] = 0x00;
6840 c
->Request
.CDB
[5] = 0x00;
6841 c
->Request
.CDB
[6] = 0x00;
6842 c
->Request
.CDB
[7] = 0x00;
6845 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6850 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6854 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6856 dir
= DMA_FROM_DEVICE
;
6859 dir
= DMA_TO_DEVICE
;
6865 dir
= DMA_BIDIRECTIONAL
;
6867 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, dir
))
6873 * Map (physical) PCI mem into (virtual) kernel space
6875 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6877 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6878 ulong page_offs
= ((ulong
) base
) - page_base
;
6879 void __iomem
*page_remapped
= ioremap(page_base
,
6882 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6885 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6887 return h
->access
.command_completed(h
, q
);
6890 static inline bool interrupt_pending(struct ctlr_info
*h
)
6892 return h
->access
.intr_pending(h
);
6895 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6897 return (h
->access
.intr_pending(h
) == 0) ||
6898 (h
->interrupts_enabled
== 0);
6901 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6904 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6905 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6911 static inline void finish_cmd(struct CommandList
*c
)
6913 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6914 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6915 || c
->cmd_type
== CMD_IOACCEL2
))
6916 complete_scsi_command(c
);
6917 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6918 complete(c
->waiting
);
6921 /* process completion of an indexed ("direct lookup") command */
6922 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6926 struct CommandList
*c
;
6928 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6929 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6930 c
= h
->cmd_pool
+ tag_index
;
6935 /* Some controllers, like p400, will give us one interrupt
6936 * after a soft reset, even if we turned interrupts off.
6937 * Only need to check for this in the hpsa_xxx_discard_completions
6940 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6942 if (likely(!reset_devices
))
6945 if (likely(h
->interrupts_enabled
))
6948 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6949 "(known firmware bug.) Ignoring.\n");
6955 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6956 * Relies on (h-q[x] == x) being true for x such that
6957 * 0 <= x < MAX_REPLY_QUEUES.
6959 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6961 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6964 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6966 struct ctlr_info
*h
= queue_to_hba(queue
);
6967 u8 q
= *(u8
*) queue
;
6970 if (ignore_bogus_interrupt(h
))
6973 if (interrupt_not_for_us(h
))
6975 h
->last_intr_timestamp
= get_jiffies_64();
6976 while (interrupt_pending(h
)) {
6977 raw_tag
= get_next_completion(h
, q
);
6978 while (raw_tag
!= FIFO_EMPTY
)
6979 raw_tag
= next_command(h
, q
);
6984 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6986 struct ctlr_info
*h
= queue_to_hba(queue
);
6988 u8 q
= *(u8
*) queue
;
6990 if (ignore_bogus_interrupt(h
))
6993 h
->last_intr_timestamp
= get_jiffies_64();
6994 raw_tag
= get_next_completion(h
, q
);
6995 while (raw_tag
!= FIFO_EMPTY
)
6996 raw_tag
= next_command(h
, q
);
7000 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7002 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7004 u8 q
= *(u8
*) queue
;
7006 if (interrupt_not_for_us(h
))
7008 h
->last_intr_timestamp
= get_jiffies_64();
7009 while (interrupt_pending(h
)) {
7010 raw_tag
= get_next_completion(h
, q
);
7011 while (raw_tag
!= FIFO_EMPTY
) {
7012 process_indexed_cmd(h
, raw_tag
);
7013 raw_tag
= next_command(h
, q
);
7019 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7021 struct ctlr_info
*h
= queue_to_hba(queue
);
7023 u8 q
= *(u8
*) queue
;
7025 h
->last_intr_timestamp
= get_jiffies_64();
7026 raw_tag
= get_next_completion(h
, q
);
7027 while (raw_tag
!= FIFO_EMPTY
) {
7028 process_indexed_cmd(h
, raw_tag
);
7029 raw_tag
= next_command(h
, q
);
7034 /* Send a message CDB to the firmware. Careful, this only works
7035 * in simple mode, not performant mode due to the tag lookup.
7036 * We only ever use this immediately after a controller reset.
7038 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7042 struct CommandListHeader CommandHeader
;
7043 struct RequestBlock Request
;
7044 struct ErrDescriptor ErrorDescriptor
;
7046 struct Command
*cmd
;
7047 static const size_t cmd_sz
= sizeof(*cmd
) +
7048 sizeof(cmd
->ErrorDescriptor
);
7052 void __iomem
*vaddr
;
7055 vaddr
= pci_ioremap_bar(pdev
, 0);
7059 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7060 * CCISS commands, so they must be allocated from the lower 4GiB of
7063 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
7069 cmd
= dma_alloc_coherent(&pdev
->dev
, cmd_sz
, &paddr64
, GFP_KERNEL
);
7075 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7076 * although there's no guarantee, we assume that the address is at
7077 * least 4-byte aligned (most likely, it's page-aligned).
7079 paddr32
= cpu_to_le32(paddr64
);
7081 cmd
->CommandHeader
.ReplyQueue
= 0;
7082 cmd
->CommandHeader
.SGList
= 0;
7083 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7084 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7085 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7087 cmd
->Request
.CDBLen
= 16;
7088 cmd
->Request
.type_attr_dir
=
7089 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7090 cmd
->Request
.Timeout
= 0; /* Don't time out */
7091 cmd
->Request
.CDB
[0] = opcode
;
7092 cmd
->Request
.CDB
[1] = type
;
7093 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7094 cmd
->ErrorDescriptor
.Addr
=
7095 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7096 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7098 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7100 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7101 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7102 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7104 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7109 /* we leak the DMA buffer here ... no choice since the controller could
7110 * still complete the command.
7112 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7113 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7118 dma_free_coherent(&pdev
->dev
, cmd_sz
, cmd
, paddr64
);
7120 if (tag
& HPSA_ERROR_BIT
) {
7121 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7126 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7131 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7133 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7134 void __iomem
*vaddr
, u32 use_doorbell
)
7138 /* For everything after the P600, the PCI power state method
7139 * of resetting the controller doesn't work, so we have this
7140 * other way using the doorbell register.
7142 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7143 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7145 /* PMC hardware guys tell us we need a 10 second delay after
7146 * doorbell reset and before any attempt to talk to the board
7147 * at all to ensure that this actually works and doesn't fall
7148 * over in some weird corner cases.
7151 } else { /* Try to do it the PCI power state way */
7153 /* Quoting from the Open CISS Specification: "The Power
7154 * Management Control/Status Register (CSR) controls the power
7155 * state of the device. The normal operating state is D0,
7156 * CSR=00h. The software off state is D3, CSR=03h. To reset
7157 * the controller, place the interface device in D3 then to D0,
7158 * this causes a secondary PCI reset which will reset the
7163 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7165 /* enter the D3hot power management state */
7166 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7172 /* enter the D0 power management state */
7173 rc
= pci_set_power_state(pdev
, PCI_D0
);
7178 * The P600 requires a small delay when changing states.
7179 * Otherwise we may think the board did not reset and we bail.
7180 * This for kdump only and is particular to the P600.
7187 static void init_driver_version(char *driver_version
, int len
)
7189 memset(driver_version
, 0, len
);
7190 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7193 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7195 char *driver_version
;
7196 int i
, size
= sizeof(cfgtable
->driver_version
);
7198 driver_version
= kmalloc(size
, GFP_KERNEL
);
7199 if (!driver_version
)
7202 init_driver_version(driver_version
, size
);
7203 for (i
= 0; i
< size
; i
++)
7204 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7205 kfree(driver_version
);
7209 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7210 unsigned char *driver_ver
)
7214 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7215 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7218 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7221 char *driver_ver
, *old_driver_ver
;
7222 int rc
, size
= sizeof(cfgtable
->driver_version
);
7224 old_driver_ver
= kmalloc_array(2, size
, GFP_KERNEL
);
7225 if (!old_driver_ver
)
7227 driver_ver
= old_driver_ver
+ size
;
7229 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7230 * should have been changed, otherwise we know the reset failed.
7232 init_driver_version(old_driver_ver
, size
);
7233 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7234 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7235 kfree(old_driver_ver
);
7238 /* This does a hard reset of the controller using PCI power management
7239 * states or the using the doorbell register.
7241 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7245 u64 cfg_base_addr_index
;
7246 void __iomem
*vaddr
;
7247 unsigned long paddr
;
7248 u32 misc_fw_support
;
7250 struct CfgTable __iomem
*cfgtable
;
7252 u16 command_register
;
7254 /* For controllers as old as the P600, this is very nearly
7257 * pci_save_state(pci_dev);
7258 * pci_set_power_state(pci_dev, PCI_D3hot);
7259 * pci_set_power_state(pci_dev, PCI_D0);
7260 * pci_restore_state(pci_dev);
7262 * For controllers newer than the P600, the pci power state
7263 * method of resetting doesn't work so we have another way
7264 * using the doorbell register.
7267 if (!ctlr_is_resettable(board_id
)) {
7268 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7272 /* if controller is soft- but not hard resettable... */
7273 if (!ctlr_is_hard_resettable(board_id
))
7274 return -ENOTSUPP
; /* try soft reset later. */
7276 /* Save the PCI command register */
7277 pci_read_config_word(pdev
, 4, &command_register
);
7278 pci_save_state(pdev
);
7280 /* find the first memory BAR, so we can find the cfg table */
7281 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7284 vaddr
= remap_pci_mem(paddr
, 0x250);
7288 /* find cfgtable in order to check if reset via doorbell is supported */
7289 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7290 &cfg_base_addr_index
, &cfg_offset
);
7293 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7294 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7299 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7301 goto unmap_cfgtable
;
7303 /* If reset via doorbell register is supported, use that.
7304 * There are two such methods. Favor the newest method.
7306 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7307 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7309 use_doorbell
= DOORBELL_CTLR_RESET2
;
7311 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7313 dev_warn(&pdev
->dev
,
7314 "Soft reset not supported. Firmware update is required.\n");
7315 rc
= -ENOTSUPP
; /* try soft reset */
7316 goto unmap_cfgtable
;
7320 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7322 goto unmap_cfgtable
;
7324 pci_restore_state(pdev
);
7325 pci_write_config_word(pdev
, 4, command_register
);
7327 /* Some devices (notably the HP Smart Array 5i Controller)
7328 need a little pause here */
7329 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7331 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7333 dev_warn(&pdev
->dev
,
7334 "Failed waiting for board to become ready after hard reset\n");
7335 goto unmap_cfgtable
;
7338 rc
= controller_reset_failed(vaddr
);
7340 goto unmap_cfgtable
;
7342 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7343 "controller. Will try soft reset.\n");
7346 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7358 * We cannot read the structure directly, for portability we must use
7360 * This is for debug only.
7362 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7368 dev_info(dev
, "Controller Configuration information\n");
7369 dev_info(dev
, "------------------------------------\n");
7370 for (i
= 0; i
< 4; i
++)
7371 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7372 temp_name
[4] = '\0';
7373 dev_info(dev
, " Signature = %s\n", temp_name
);
7374 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7375 dev_info(dev
, " Transport methods supported = 0x%x\n",
7376 readl(&(tb
->TransportSupport
)));
7377 dev_info(dev
, " Transport methods active = 0x%x\n",
7378 readl(&(tb
->TransportActive
)));
7379 dev_info(dev
, " Requested transport Method = 0x%x\n",
7380 readl(&(tb
->HostWrite
.TransportRequest
)));
7381 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7382 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7383 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7384 readl(&(tb
->HostWrite
.CoalIntCount
)));
7385 dev_info(dev
, " Max outstanding commands = %d\n",
7386 readl(&(tb
->CmdsOutMax
)));
7387 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7388 for (i
= 0; i
< 16; i
++)
7389 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7390 temp_name
[16] = '\0';
7391 dev_info(dev
, " Server Name = %s\n", temp_name
);
7392 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7393 readl(&(tb
->HeartBeat
)));
7394 #endif /* HPSA_DEBUG */
7397 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7399 int i
, offset
, mem_type
, bar_type
;
7401 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7404 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7405 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7406 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7409 mem_type
= pci_resource_flags(pdev
, i
) &
7410 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7412 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7413 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7414 offset
+= 4; /* 32 bit */
7416 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7419 default: /* reserved in PCI 2.2 */
7420 dev_warn(&pdev
->dev
,
7421 "base address is invalid\n");
7426 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7432 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7434 pci_free_irq_vectors(h
->pdev
);
7435 h
->msix_vectors
= 0;
7438 static void hpsa_setup_reply_map(struct ctlr_info
*h
)
7440 const struct cpumask
*mask
;
7441 unsigned int queue
, cpu
;
7443 for (queue
= 0; queue
< h
->msix_vectors
; queue
++) {
7444 mask
= pci_irq_get_affinity(h
->pdev
, queue
);
7448 for_each_cpu(cpu
, mask
)
7449 h
->reply_map
[cpu
] = queue
;
7454 for_each_possible_cpu(cpu
)
7455 h
->reply_map
[cpu
] = 0;
7458 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7459 * controllers that are capable. If not, we use legacy INTx mode.
7461 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7463 unsigned int flags
= PCI_IRQ_LEGACY
;
7466 /* Some boards advertise MSI but don't really support it */
7467 switch (h
->board_id
) {
7474 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7475 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7477 h
->msix_vectors
= ret
;
7481 flags
|= PCI_IRQ_MSI
;
7485 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7491 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7495 u32 subsystem_vendor_id
, subsystem_device_id
;
7497 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7498 subsystem_device_id
= pdev
->subsystem_device
;
7499 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7500 subsystem_vendor_id
;
7503 *legacy_board
= false;
7504 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7505 if (*board_id
== products
[i
].board_id
) {
7506 if (products
[i
].access
!= &SA5A_access
&&
7507 products
[i
].access
!= &SA5B_access
)
7509 dev_warn(&pdev
->dev
,
7510 "legacy board ID: 0x%08x\n",
7513 *legacy_board
= true;
7517 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7519 *legacy_board
= true;
7520 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7523 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7524 unsigned long *memory_bar
)
7528 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7529 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7530 /* addressing mode bits already removed */
7531 *memory_bar
= pci_resource_start(pdev
, i
);
7532 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7536 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7540 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7546 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7548 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7550 for (i
= 0; i
< iterations
; i
++) {
7551 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7552 if (wait_for_ready
) {
7553 if (scratchpad
== HPSA_FIRMWARE_READY
)
7556 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7559 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7561 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7565 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7566 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7569 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7570 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7571 *cfg_base_addr
&= (u32
) 0x0000ffff;
7572 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7573 if (*cfg_base_addr_index
== -1) {
7574 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7580 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7582 if (h
->transtable
) {
7583 iounmap(h
->transtable
);
7584 h
->transtable
= NULL
;
7587 iounmap(h
->cfgtable
);
7592 /* Find and map CISS config table and transfer table
7593 + * several items must be unmapped (freed) later
7595 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7599 u64 cfg_base_addr_index
;
7603 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7604 &cfg_base_addr_index
, &cfg_offset
);
7607 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7608 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7610 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7613 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7616 /* Find performant mode table. */
7617 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7618 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7619 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7620 sizeof(*h
->transtable
));
7621 if (!h
->transtable
) {
7622 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7623 hpsa_free_cfgtables(h
);
7629 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7631 #define MIN_MAX_COMMANDS 16
7632 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7634 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7636 /* Limit commands in memory limited kdump scenario. */
7637 if (reset_devices
&& h
->max_commands
> 32)
7638 h
->max_commands
= 32;
7640 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7641 dev_warn(&h
->pdev
->dev
,
7642 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7645 h
->max_commands
= MIN_MAX_COMMANDS
;
7649 /* If the controller reports that the total max sg entries is greater than 512,
7650 * then we know that chained SG blocks work. (Original smart arrays did not
7651 * support chained SG blocks and would return zero for max sg entries.)
7653 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7655 return h
->maxsgentries
> 512;
7658 /* Interrogate the hardware for some limits:
7659 * max commands, max SG elements without chaining, and with chaining,
7660 * SG chain block size, etc.
7662 static void hpsa_find_board_params(struct ctlr_info
*h
)
7664 hpsa_get_max_perf_mode_cmds(h
);
7665 h
->nr_cmds
= h
->max_commands
;
7666 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7667 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7668 if (hpsa_supports_chained_sg_blocks(h
)) {
7669 /* Limit in-command s/g elements to 32 save dma'able memory. */
7670 h
->max_cmd_sg_entries
= 32;
7671 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7672 h
->maxsgentries
--; /* save one for chain pointer */
7675 * Original smart arrays supported at most 31 s/g entries
7676 * embedded inline in the command (trying to use more
7677 * would lock up the controller)
7679 h
->max_cmd_sg_entries
= 31;
7680 h
->maxsgentries
= 31; /* default to traditional values */
7684 /* Find out what task management functions are supported and cache */
7685 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7686 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7687 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7688 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7689 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7690 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7691 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7694 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7696 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7697 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7703 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7707 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7708 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7710 driver_support
|= ENABLE_SCSI_PREFETCH
;
7712 driver_support
|= ENABLE_UNIT_ATTN
;
7713 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7716 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7717 * in a prefetch beyond physical memory.
7719 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7723 if (h
->board_id
!= 0x3225103C)
7725 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7726 dma_prefetch
|= 0x8000;
7727 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7730 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7734 unsigned long flags
;
7735 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7736 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7737 spin_lock_irqsave(&h
->lock
, flags
);
7738 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7739 spin_unlock_irqrestore(&h
->lock
, flags
);
7740 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7742 /* delay and try again */
7743 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7750 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7754 unsigned long flags
;
7756 /* under certain very rare conditions, this can take awhile.
7757 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7758 * as we enter this code.)
7760 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7761 if (h
->remove_in_progress
)
7763 spin_lock_irqsave(&h
->lock
, flags
);
7764 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7765 spin_unlock_irqrestore(&h
->lock
, flags
);
7766 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7768 /* delay and try again */
7769 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7776 /* return -ENODEV or other reason on error, 0 on success */
7777 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7781 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7782 if (!(trans_support
& SIMPLE_MODE
))
7785 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7787 /* Update the field, and then ring the doorbell */
7788 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7789 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7790 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7791 if (hpsa_wait_for_mode_change_ack(h
))
7793 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7794 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7796 h
->transMethod
= CFGTBL_Trans_Simple
;
7799 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7803 /* free items allocated or mapped by hpsa_pci_init */
7804 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7806 hpsa_free_cfgtables(h
); /* pci_init 4 */
7807 iounmap(h
->vaddr
); /* pci_init 3 */
7809 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7811 * call pci_disable_device before pci_release_regions per
7812 * Documentation/driver-api/pci/pci.rst
7814 pci_disable_device(h
->pdev
); /* pci_init 1 */
7815 pci_release_regions(h
->pdev
); /* pci_init 2 */
7818 /* several items must be freed later */
7819 static int hpsa_pci_init(struct ctlr_info
*h
)
7821 int prod_index
, err
;
7824 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7827 h
->product_name
= products
[prod_index
].product_name
;
7828 h
->access
= *(products
[prod_index
].access
);
7829 h
->legacy_board
= legacy_board
;
7830 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7831 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7833 err
= pci_enable_device(h
->pdev
);
7835 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7836 pci_disable_device(h
->pdev
);
7840 err
= pci_request_regions(h
->pdev
, HPSA
);
7842 dev_err(&h
->pdev
->dev
,
7843 "failed to obtain PCI resources\n");
7844 pci_disable_device(h
->pdev
);
7848 pci_set_master(h
->pdev
);
7850 err
= hpsa_interrupt_mode(h
);
7854 /* setup mapping between CPU and reply queue */
7855 hpsa_setup_reply_map(h
);
7857 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7859 goto clean2
; /* intmode+region, pci */
7860 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7862 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7864 goto clean2
; /* intmode+region, pci */
7866 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7868 goto clean3
; /* vaddr, intmode+region, pci */
7869 err
= hpsa_find_cfgtables(h
);
7871 goto clean3
; /* vaddr, intmode+region, pci */
7872 hpsa_find_board_params(h
);
7874 if (!hpsa_CISS_signature_present(h
)) {
7876 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7878 hpsa_set_driver_support_bits(h
);
7879 hpsa_p600_dma_prefetch_quirk(h
);
7880 err
= hpsa_enter_simple_mode(h
);
7882 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7885 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7886 hpsa_free_cfgtables(h
);
7887 clean3
: /* vaddr, intmode+region, pci */
7890 clean2
: /* intmode+region, pci */
7891 hpsa_disable_interrupt_mode(h
);
7894 * call pci_disable_device before pci_release_regions per
7895 * Documentation/driver-api/pci/pci.rst
7897 pci_disable_device(h
->pdev
);
7898 pci_release_regions(h
->pdev
);
7902 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7906 #define HBA_INQUIRY_BYTE_COUNT 64
7907 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7908 if (!h
->hba_inquiry_data
)
7910 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7911 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7913 kfree(h
->hba_inquiry_data
);
7914 h
->hba_inquiry_data
= NULL
;
7918 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7921 void __iomem
*vaddr
;
7926 /* kdump kernel is loading, we don't know in which state is
7927 * the pci interface. The dev->enable_cnt is equal zero
7928 * so we call enable+disable, wait a while and switch it on.
7930 rc
= pci_enable_device(pdev
);
7932 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7935 pci_disable_device(pdev
);
7936 msleep(260); /* a randomly chosen number */
7937 rc
= pci_enable_device(pdev
);
7939 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7943 pci_set_master(pdev
);
7945 vaddr
= pci_ioremap_bar(pdev
, 0);
7946 if (vaddr
== NULL
) {
7950 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7953 /* Reset the controller with a PCI power-cycle or via doorbell */
7954 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7956 /* -ENOTSUPP here means we cannot reset the controller
7957 * but it's already (and still) up and running in
7958 * "performant mode". Or, it might be 640x, which can't reset
7959 * due to concerns about shared bbwc between 6402/6404 pair.
7964 /* Now try to get the controller to respond to a no-op */
7965 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7966 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7967 if (hpsa_noop(pdev
) == 0)
7970 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7971 (i
< 11 ? "; re-trying" : ""));
7976 pci_disable_device(pdev
);
7980 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7982 kfree(h
->cmd_pool_bits
);
7983 h
->cmd_pool_bits
= NULL
;
7985 dma_free_coherent(&h
->pdev
->dev
,
7986 h
->nr_cmds
* sizeof(struct CommandList
),
7988 h
->cmd_pool_dhandle
);
7990 h
->cmd_pool_dhandle
= 0;
7992 if (h
->errinfo_pool
) {
7993 dma_free_coherent(&h
->pdev
->dev
,
7994 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7996 h
->errinfo_pool_dhandle
);
7997 h
->errinfo_pool
= NULL
;
7998 h
->errinfo_pool_dhandle
= 0;
8002 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8004 h
->cmd_pool_bits
= kcalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
),
8005 sizeof(unsigned long),
8007 h
->cmd_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
8008 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8009 &h
->cmd_pool_dhandle
, GFP_KERNEL
);
8010 h
->errinfo_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
8011 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8012 &h
->errinfo_pool_dhandle
, GFP_KERNEL
);
8013 if ((h
->cmd_pool_bits
== NULL
)
8014 || (h
->cmd_pool
== NULL
)
8015 || (h
->errinfo_pool
== NULL
)) {
8016 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8019 hpsa_preinitialize_commands(h
);
8022 hpsa_free_cmd_pool(h
);
8026 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8027 static void hpsa_free_irqs(struct ctlr_info
*h
)
8032 if (hpsa_simple_mode
)
8033 irq_vector
= h
->intr_mode
;
8035 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
8036 /* Single reply queue, only one irq to free */
8037 free_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8038 &h
->q
[h
->intr_mode
]);
8039 h
->q
[h
->intr_mode
] = 0;
8043 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8044 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
8047 for (; i
< MAX_REPLY_QUEUES
; i
++)
8051 /* returns 0 on success; cleans up and returns -Enn on error */
8052 static int hpsa_request_irqs(struct ctlr_info
*h
,
8053 irqreturn_t (*msixhandler
)(int, void *),
8054 irqreturn_t (*intxhandler
)(int, void *))
8059 if (hpsa_simple_mode
)
8060 irq_vector
= h
->intr_mode
;
8063 * initialize h->q[x] = x so that interrupt handlers know which
8066 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8069 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
8070 /* If performant mode and MSI-X, use multiple reply queues */
8071 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8072 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8073 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
8079 dev_err(&h
->pdev
->dev
,
8080 "failed to get irq %d for %s\n",
8081 pci_irq_vector(h
->pdev
, i
), h
->devname
);
8082 for (j
= 0; j
< i
; j
++) {
8083 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8086 for (; j
< MAX_REPLY_QUEUES
; j
++)
8092 /* Use single reply pool */
8093 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8094 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8095 h
->msix_vectors
? "x" : "");
8096 rc
= request_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8099 &h
->q
[h
->intr_mode
]);
8101 sprintf(h
->intrname
[h
->intr_mode
],
8102 "%s-intx", h
->devname
);
8103 rc
= request_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8104 intxhandler
, IRQF_SHARED
,
8106 &h
->q
[h
->intr_mode
]);
8110 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8111 pci_irq_vector(h
->pdev
, irq_vector
), h
->devname
);
8118 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8121 hpsa_send_host_reset(h
, HPSA_RESET_TYPE_CONTROLLER
);
8123 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8124 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8126 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8130 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8131 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8133 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8134 "after soft reset.\n");
8141 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8145 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8146 if (!h
->reply_queue
[i
].head
)
8148 dma_free_coherent(&h
->pdev
->dev
,
8149 h
->reply_queue_size
,
8150 h
->reply_queue
[i
].head
,
8151 h
->reply_queue
[i
].busaddr
);
8152 h
->reply_queue
[i
].head
= NULL
;
8153 h
->reply_queue
[i
].busaddr
= 0;
8155 h
->reply_queue_size
= 0;
8158 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8160 hpsa_free_performant_mode(h
); /* init_one 7 */
8161 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8162 hpsa_free_cmd_pool(h
); /* init_one 5 */
8163 hpsa_free_irqs(h
); /* init_one 4 */
8164 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8165 h
->scsi_host
= NULL
; /* init_one 3 */
8166 hpsa_free_pci_init(h
); /* init_one 2_5 */
8167 free_percpu(h
->lockup_detected
); /* init_one 2 */
8168 h
->lockup_detected
= NULL
; /* init_one 2 */
8169 if (h
->resubmit_wq
) {
8170 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8171 h
->resubmit_wq
= NULL
;
8173 if (h
->rescan_ctlr_wq
) {
8174 destroy_workqueue(h
->rescan_ctlr_wq
);
8175 h
->rescan_ctlr_wq
= NULL
;
8177 if (h
->monitor_ctlr_wq
) {
8178 destroy_workqueue(h
->monitor_ctlr_wq
);
8179 h
->monitor_ctlr_wq
= NULL
;
8182 kfree(h
); /* init_one 1 */
8185 /* Called when controller lockup detected. */
8186 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8189 struct CommandList
*c
;
8192 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8193 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8194 c
= h
->cmd_pool
+ i
;
8195 refcount
= atomic_inc_return(&c
->refcount
);
8197 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8199 atomic_dec(&h
->commands_outstanding
);
8204 dev_warn(&h
->pdev
->dev
,
8205 "failed %d commands in fail_all\n", failcount
);
8208 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8212 for_each_online_cpu(cpu
) {
8213 u32
*lockup_detected
;
8214 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8215 *lockup_detected
= value
;
8217 wmb(); /* be sure the per-cpu variables are out to memory */
8220 static void controller_lockup_detected(struct ctlr_info
*h
)
8222 unsigned long flags
;
8223 u32 lockup_detected
;
8225 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8226 spin_lock_irqsave(&h
->lock
, flags
);
8227 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8228 if (!lockup_detected
) {
8229 /* no heartbeat, but controller gave us a zero. */
8230 dev_warn(&h
->pdev
->dev
,
8231 "lockup detected after %d but scratchpad register is zero\n",
8232 h
->heartbeat_sample_interval
/ HZ
);
8233 lockup_detected
= 0xffffffff;
8235 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8236 spin_unlock_irqrestore(&h
->lock
, flags
);
8237 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8238 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8239 if (lockup_detected
== 0xffff0000) {
8240 dev_warn(&h
->pdev
->dev
, "Telling controller to do a CHKPT\n");
8241 writel(DOORBELL_GENERATE_CHKPT
, h
->vaddr
+ SA5_DOORBELL
);
8243 pci_disable_device(h
->pdev
);
8244 fail_all_outstanding_cmds(h
);
8247 static int detect_controller_lockup(struct ctlr_info
*h
)
8251 unsigned long flags
;
8253 now
= get_jiffies_64();
8254 /* If we've received an interrupt recently, we're ok. */
8255 if (time_after64(h
->last_intr_timestamp
+
8256 (h
->heartbeat_sample_interval
), now
))
8260 * If we've already checked the heartbeat recently, we're ok.
8261 * This could happen if someone sends us a signal. We
8262 * otherwise don't care about signals in this thread.
8264 if (time_after64(h
->last_heartbeat_timestamp
+
8265 (h
->heartbeat_sample_interval
), now
))
8268 /* If heartbeat has not changed since we last looked, we're not ok. */
8269 spin_lock_irqsave(&h
->lock
, flags
);
8270 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8271 spin_unlock_irqrestore(&h
->lock
, flags
);
8272 if (h
->last_heartbeat
== heartbeat
) {
8273 controller_lockup_detected(h
);
8278 h
->last_heartbeat
= heartbeat
;
8279 h
->last_heartbeat_timestamp
= now
;
8284 * Set ioaccel status for all ioaccel volumes.
8286 * Called from monitor controller worker (hpsa_event_monitor_worker)
8288 * A Volume (or Volumes that comprise an Array set may be undergoing a
8289 * transformation, so we will be turning off ioaccel for all volumes that
8290 * make up the Array.
8292 static void hpsa_set_ioaccel_status(struct ctlr_info
*h
)
8298 struct hpsa_scsi_dev_t
*device
;
8303 buf
= kmalloc(64, GFP_KERNEL
);
8308 * Run through current device list used during I/O requests.
8310 for (i
= 0; i
< h
->ndevices
; i
++) {
8315 if (!hpsa_vpd_page_supported(h
, device
->scsi3addr
,
8316 HPSA_VPD_LV_IOACCEL_STATUS
))
8321 rc
= hpsa_scsi_do_inquiry(h
, device
->scsi3addr
,
8322 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
,
8327 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
8328 device
->offload_config
=
8329 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
8330 if (device
->offload_config
)
8331 device
->offload_to_be_enabled
=
8332 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
8335 * Immediately turn off ioaccel for any volume the
8336 * controller tells us to. Some of the reasons could be:
8337 * transformation - change to the LVs of an Array.
8338 * degraded volume - component failure
8340 * If ioaccel is to be re-enabled, re-enable later during the
8341 * scan operation so the driver can get a fresh raidmap
8342 * before turning ioaccel back on.
8345 if (!device
->offload_to_be_enabled
)
8346 device
->offload_enabled
= 0;
8352 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8356 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8359 /* Ask the controller to clear the events we're handling. */
8360 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8361 | CFGTBL_Trans_io_accel2
)) &&
8362 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8363 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8365 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8366 event_type
= "state change";
8367 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8368 event_type
= "configuration change";
8369 /* Stop sending new RAID offload reqs via the IO accelerator */
8370 scsi_block_requests(h
->scsi_host
);
8371 hpsa_set_ioaccel_status(h
);
8372 hpsa_drain_accel_commands(h
);
8373 /* Set 'accelerator path config change' bit */
8374 dev_warn(&h
->pdev
->dev
,
8375 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8376 h
->events
, event_type
);
8377 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8378 /* Set the "clear event notify field update" bit 6 */
8379 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8380 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8381 hpsa_wait_for_clear_event_notify_ack(h
);
8382 scsi_unblock_requests(h
->scsi_host
);
8384 /* Acknowledge controller notification events. */
8385 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8386 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8387 hpsa_wait_for_clear_event_notify_ack(h
);
8392 /* Check a register on the controller to see if there are configuration
8393 * changes (added/changed/removed logical drives, etc.) which mean that
8394 * we should rescan the controller for devices.
8395 * Also check flag for driver-initiated rescan.
8397 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8399 if (h
->drv_req_rescan
) {
8400 h
->drv_req_rescan
= 0;
8404 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8407 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8408 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8412 * Check if any of the offline devices have become ready
8414 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8416 unsigned long flags
;
8417 struct offline_device_entry
*d
;
8418 struct list_head
*this, *tmp
;
8420 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8421 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8422 d
= list_entry(this, struct offline_device_entry
,
8424 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8425 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8426 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8427 list_del(&d
->offline_list
);
8428 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8431 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8433 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8437 static int hpsa_luns_changed(struct ctlr_info
*h
)
8439 int rc
= 1; /* assume there are changes */
8440 struct ReportLUNdata
*logdev
= NULL
;
8442 /* if we can't find out if lun data has changed,
8443 * assume that it has.
8446 if (!h
->lastlogicals
)
8449 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8453 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8454 dev_warn(&h
->pdev
->dev
,
8455 "report luns failed, can't track lun changes.\n");
8458 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8459 dev_info(&h
->pdev
->dev
,
8460 "Lun changes detected.\n");
8461 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8464 rc
= 0; /* no changes detected. */
8470 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8472 struct Scsi_Host
*sh
= NULL
;
8473 unsigned long flags
;
8476 * Do the scan after the reset
8478 spin_lock_irqsave(&h
->reset_lock
, flags
);
8479 if (h
->reset_in_progress
) {
8480 h
->drv_req_rescan
= 1;
8481 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8484 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8486 sh
= scsi_host_get(h
->scsi_host
);
8488 hpsa_scan_start(sh
);
8490 h
->drv_req_rescan
= 0;
8495 * watch for controller events
8497 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8499 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8500 struct ctlr_info
, event_monitor_work
);
8501 unsigned long flags
;
8503 spin_lock_irqsave(&h
->lock
, flags
);
8504 if (h
->remove_in_progress
) {
8505 spin_unlock_irqrestore(&h
->lock
, flags
);
8508 spin_unlock_irqrestore(&h
->lock
, flags
);
8510 if (hpsa_ctlr_needs_rescan(h
)) {
8511 hpsa_ack_ctlr_events(h
);
8512 hpsa_perform_rescan(h
);
8515 spin_lock_irqsave(&h
->lock
, flags
);
8516 if (!h
->remove_in_progress
)
8517 queue_delayed_work(h
->monitor_ctlr_wq
, &h
->event_monitor_work
,
8518 HPSA_EVENT_MONITOR_INTERVAL
);
8519 spin_unlock_irqrestore(&h
->lock
, flags
);
8522 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8524 unsigned long flags
;
8525 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8526 struct ctlr_info
, rescan_ctlr_work
);
8528 spin_lock_irqsave(&h
->lock
, flags
);
8529 if (h
->remove_in_progress
) {
8530 spin_unlock_irqrestore(&h
->lock
, flags
);
8533 spin_unlock_irqrestore(&h
->lock
, flags
);
8535 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8536 hpsa_perform_rescan(h
);
8537 } else if (h
->discovery_polling
) {
8538 if (hpsa_luns_changed(h
)) {
8539 dev_info(&h
->pdev
->dev
,
8540 "driver discovery polling rescan.\n");
8541 hpsa_perform_rescan(h
);
8544 spin_lock_irqsave(&h
->lock
, flags
);
8545 if (!h
->remove_in_progress
)
8546 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8547 h
->heartbeat_sample_interval
);
8548 spin_unlock_irqrestore(&h
->lock
, flags
);
8551 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8553 unsigned long flags
;
8554 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8555 struct ctlr_info
, monitor_ctlr_work
);
8557 detect_controller_lockup(h
);
8558 if (lockup_detected(h
))
8561 spin_lock_irqsave(&h
->lock
, flags
);
8562 if (!h
->remove_in_progress
)
8563 queue_delayed_work(h
->monitor_ctlr_wq
, &h
->monitor_ctlr_work
,
8564 h
->heartbeat_sample_interval
);
8565 spin_unlock_irqrestore(&h
->lock
, flags
);
8568 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8571 struct workqueue_struct
*wq
= NULL
;
8573 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8575 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8580 static void hpda_free_ctlr_info(struct ctlr_info
*h
)
8582 kfree(h
->reply_map
);
8586 static struct ctlr_info
*hpda_alloc_ctlr_info(void)
8588 struct ctlr_info
*h
;
8590 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8594 h
->reply_map
= kcalloc(nr_cpu_ids
, sizeof(*h
->reply_map
), GFP_KERNEL
);
8595 if (!h
->reply_map
) {
8602 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8605 struct ctlr_info
*h
;
8606 int try_soft_reset
= 0;
8607 unsigned long flags
;
8610 if (number_of_controllers
== 0)
8611 printk(KERN_INFO DRIVER_NAME
"\n");
8613 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8615 dev_warn(&pdev
->dev
, "Board ID not found\n");
8619 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8621 if (rc
!= -ENOTSUPP
)
8623 /* If the reset fails in a particular way (it has no way to do
8624 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8625 * a soft reset once we get the controller configured up to the
8626 * point that it can accept a command.
8632 reinit_after_soft_reset
:
8634 /* Command structures must be aligned on a 32-byte boundary because
8635 * the 5 lower bits of the address are used by the hardware. and by
8636 * the driver. See comments in hpsa.h for more info.
8638 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8639 h
= hpda_alloc_ctlr_info();
8641 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8647 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8648 INIT_LIST_HEAD(&h
->offline_device_list
);
8649 spin_lock_init(&h
->lock
);
8650 spin_lock_init(&h
->offline_device_lock
);
8651 spin_lock_init(&h
->scan_lock
);
8652 spin_lock_init(&h
->reset_lock
);
8653 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8655 /* Allocate and clear per-cpu variable lockup_detected */
8656 h
->lockup_detected
= alloc_percpu(u32
);
8657 if (!h
->lockup_detected
) {
8658 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8660 goto clean1
; /* aer/h */
8662 set_lockup_detected_for_all_cpus(h
, 0);
8664 rc
= hpsa_pci_init(h
);
8666 goto clean2
; /* lu, aer/h */
8668 /* relies on h-> settings made by hpsa_pci_init, including
8669 * interrupt_mode h->intr */
8670 rc
= hpsa_scsi_host_alloc(h
);
8672 goto clean2_5
; /* pci, lu, aer/h */
8674 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8675 h
->ctlr
= number_of_controllers
;
8676 number_of_controllers
++;
8678 /* configure PCI DMA stuff */
8679 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
8683 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
8687 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8688 goto clean3
; /* shost, pci, lu, aer/h */
8692 /* make sure the board interrupts are off */
8693 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8695 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8697 goto clean3
; /* shost, pci, lu, aer/h */
8698 rc
= hpsa_alloc_cmd_pool(h
);
8700 goto clean4
; /* irq, shost, pci, lu, aer/h */
8701 rc
= hpsa_alloc_sg_chain_blocks(h
);
8703 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8704 init_waitqueue_head(&h
->scan_wait_queue
);
8705 init_waitqueue_head(&h
->event_sync_wait_queue
);
8706 mutex_init(&h
->reset_mutex
);
8707 h
->scan_finished
= 1; /* no scan currently in progress */
8708 h
->scan_waiting
= 0;
8710 pci_set_drvdata(pdev
, h
);
8713 spin_lock_init(&h
->devlock
);
8714 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8716 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8718 /* create the resubmit workqueue */
8719 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8720 if (!h
->rescan_ctlr_wq
) {
8725 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8726 if (!h
->resubmit_wq
) {
8728 goto clean7
; /* aer/h */
8731 h
->monitor_ctlr_wq
= hpsa_create_controller_wq(h
, "monitor");
8732 if (!h
->monitor_ctlr_wq
) {
8738 * At this point, the controller is ready to take commands.
8739 * Now, if reset_devices and the hard reset didn't work, try
8740 * the soft reset and see if that works.
8742 if (try_soft_reset
) {
8744 /* This is kind of gross. We may or may not get a completion
8745 * from the soft reset command, and if we do, then the value
8746 * from the fifo may or may not be valid. So, we wait 10 secs
8747 * after the reset throwing away any completions we get during
8748 * that time. Unregister the interrupt handler and register
8749 * fake ones to scoop up any residual completions.
8751 spin_lock_irqsave(&h
->lock
, flags
);
8752 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8753 spin_unlock_irqrestore(&h
->lock
, flags
);
8755 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8756 hpsa_intx_discard_completions
);
8758 dev_warn(&h
->pdev
->dev
,
8759 "Failed to request_irq after soft reset.\n");
8761 * cannot goto clean7 or free_irqs will be called
8762 * again. Instead, do its work
8764 hpsa_free_performant_mode(h
); /* clean7 */
8765 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8766 hpsa_free_cmd_pool(h
); /* clean5 */
8768 * skip hpsa_free_irqs(h) clean4 since that
8769 * was just called before request_irqs failed
8774 rc
= hpsa_kdump_soft_reset(h
);
8776 /* Neither hard nor soft reset worked, we're hosed. */
8779 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8780 dev_info(&h
->pdev
->dev
,
8781 "Waiting for stale completions to drain.\n");
8782 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8784 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8786 rc
= controller_reset_failed(h
->cfgtable
);
8788 dev_info(&h
->pdev
->dev
,
8789 "Soft reset appears to have failed.\n");
8791 /* since the controller's reset, we have to go back and re-init
8792 * everything. Easiest to just forget what we've done and do it
8795 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8798 /* don't goto clean, we already unallocated */
8801 goto reinit_after_soft_reset
;
8804 /* Enable Accelerated IO path at driver layer */
8805 h
->acciopath_status
= 1;
8806 /* Disable discovery polling.*/
8807 h
->discovery_polling
= 0;
8810 /* Turn the interrupts on so we can service requests */
8811 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8813 hpsa_hba_inquiry(h
);
8815 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8816 if (!h
->lastlogicals
)
8817 dev_info(&h
->pdev
->dev
,
8818 "Can't track change to report lun data\n");
8820 /* hook into SCSI subsystem */
8821 rc
= hpsa_scsi_add_host(h
);
8823 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8825 /* Monitor the controller for firmware lockups */
8826 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8827 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8828 schedule_delayed_work(&h
->monitor_ctlr_work
,
8829 h
->heartbeat_sample_interval
);
8830 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8831 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8832 h
->heartbeat_sample_interval
);
8833 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8834 schedule_delayed_work(&h
->event_monitor_work
,
8835 HPSA_EVENT_MONITOR_INTERVAL
);
8838 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8839 hpsa_free_performant_mode(h
);
8840 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8841 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8842 hpsa_free_sg_chain_blocks(h
);
8843 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8844 hpsa_free_cmd_pool(h
);
8845 clean4
: /* irq, shost, pci, lu, aer/h */
8847 clean3
: /* shost, pci, lu, aer/h */
8848 scsi_host_put(h
->scsi_host
);
8849 h
->scsi_host
= NULL
;
8850 clean2_5
: /* pci, lu, aer/h */
8851 hpsa_free_pci_init(h
);
8852 clean2
: /* lu, aer/h */
8853 if (h
->lockup_detected
) {
8854 free_percpu(h
->lockup_detected
);
8855 h
->lockup_detected
= NULL
;
8857 clean1
: /* wq/aer/h */
8858 if (h
->resubmit_wq
) {
8859 destroy_workqueue(h
->resubmit_wq
);
8860 h
->resubmit_wq
= NULL
;
8862 if (h
->rescan_ctlr_wq
) {
8863 destroy_workqueue(h
->rescan_ctlr_wq
);
8864 h
->rescan_ctlr_wq
= NULL
;
8866 if (h
->monitor_ctlr_wq
) {
8867 destroy_workqueue(h
->monitor_ctlr_wq
);
8868 h
->monitor_ctlr_wq
= NULL
;
8874 static void hpsa_flush_cache(struct ctlr_info
*h
)
8877 struct CommandList
*c
;
8880 if (unlikely(lockup_detected(h
)))
8882 flush_buf
= kzalloc(4, GFP_KERNEL
);
8888 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8889 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8892 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8896 if (c
->err_info
->CommandStatus
!= 0)
8898 dev_warn(&h
->pdev
->dev
,
8899 "error flushing cache on controller\n");
8904 /* Make controller gather fresh report lun data each time we
8905 * send down a report luns request
8907 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8910 struct CommandList
*c
;
8913 /* Don't bother trying to set diag options if locked up */
8914 if (unlikely(h
->lockup_detected
))
8917 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8923 /* first, get the current diag options settings */
8924 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8925 RAID_CTLR_LUNID
, TYPE_CMD
))
8928 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8930 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8933 /* Now, set the bit for disabling the RLD caching */
8934 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8936 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8937 RAID_CTLR_LUNID
, TYPE_CMD
))
8940 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8942 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8945 /* Now verify that it got set: */
8946 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8947 RAID_CTLR_LUNID
, TYPE_CMD
))
8950 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8952 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8955 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8959 dev_err(&h
->pdev
->dev
,
8960 "Error: failed to disable report lun data caching.\n");
8966 static void __hpsa_shutdown(struct pci_dev
*pdev
)
8968 struct ctlr_info
*h
;
8970 h
= pci_get_drvdata(pdev
);
8971 /* Turn board interrupts off and send the flush cache command
8972 * sendcmd will turn off interrupt, and send the flush...
8973 * To write all data in the battery backed cache to disks
8975 hpsa_flush_cache(h
);
8976 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8977 hpsa_free_irqs(h
); /* init_one 4 */
8978 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8981 static void hpsa_shutdown(struct pci_dev
*pdev
)
8983 __hpsa_shutdown(pdev
);
8984 pci_disable_device(pdev
);
8987 static void hpsa_free_device_info(struct ctlr_info
*h
)
8991 for (i
= 0; i
< h
->ndevices
; i
++) {
8997 static void hpsa_remove_one(struct pci_dev
*pdev
)
8999 struct ctlr_info
*h
;
9000 unsigned long flags
;
9002 if (pci_get_drvdata(pdev
) == NULL
) {
9003 dev_err(&pdev
->dev
, "unable to remove device\n");
9006 h
= pci_get_drvdata(pdev
);
9008 /* Get rid of any controller monitoring work items */
9009 spin_lock_irqsave(&h
->lock
, flags
);
9010 h
->remove_in_progress
= 1;
9011 spin_unlock_irqrestore(&h
->lock
, flags
);
9012 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
9013 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
9014 cancel_delayed_work_sync(&h
->event_monitor_work
);
9015 destroy_workqueue(h
->rescan_ctlr_wq
);
9016 destroy_workqueue(h
->resubmit_wq
);
9017 destroy_workqueue(h
->monitor_ctlr_wq
);
9019 hpsa_delete_sas_host(h
);
9022 * Call before disabling interrupts.
9023 * scsi_remove_host can trigger I/O operations especially
9024 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9025 * operations which cannot complete and will hang the system.
9028 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
9029 /* includes hpsa_free_irqs - init_one 4 */
9030 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9031 __hpsa_shutdown(pdev
);
9033 hpsa_free_device_info(h
); /* scan */
9035 kfree(h
->hba_inquiry_data
); /* init_one 10 */
9036 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
9037 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9038 hpsa_free_performant_mode(h
); /* init_one 7 */
9039 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
9040 hpsa_free_cmd_pool(h
); /* init_one 5 */
9041 kfree(h
->lastlogicals
);
9043 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9045 scsi_host_put(h
->scsi_host
); /* init_one 3 */
9046 h
->scsi_host
= NULL
; /* init_one 3 */
9048 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9049 hpsa_free_pci_init(h
); /* init_one 2.5 */
9051 free_percpu(h
->lockup_detected
); /* init_one 2 */
9052 h
->lockup_detected
= NULL
; /* init_one 2 */
9053 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9055 hpda_free_ctlr_info(h
); /* init_one 1 */
9058 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
9059 __attribute__((unused
)) pm_message_t state
)
9064 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
9069 static struct pci_driver hpsa_pci_driver
= {
9071 .probe
= hpsa_init_one
,
9072 .remove
= hpsa_remove_one
,
9073 .id_table
= hpsa_pci_device_id
, /* id_table */
9074 .shutdown
= hpsa_shutdown
,
9075 .suspend
= hpsa_suspend
,
9076 .resume
= hpsa_resume
,
9079 /* Fill in bucket_map[], given nsgs (the max number of
9080 * scatter gather elements supported) and bucket[],
9081 * which is an array of 8 integers. The bucket[] array
9082 * contains 8 different DMA transfer sizes (in 16
9083 * byte increments) which the controller uses to fetch
9084 * commands. This function fills in bucket_map[], which
9085 * maps a given number of scatter gather elements to one of
9086 * the 8 DMA transfer sizes. The point of it is to allow the
9087 * controller to only do as much DMA as needed to fetch the
9088 * command, with the DMA transfer size encoded in the lower
9089 * bits of the command address.
9091 static void calc_bucket_map(int bucket
[], int num_buckets
,
9092 int nsgs
, int min_blocks
, u32
*bucket_map
)
9096 /* Note, bucket_map must have nsgs+1 entries. */
9097 for (i
= 0; i
<= nsgs
; i
++) {
9098 /* Compute size of a command with i SG entries */
9099 size
= i
+ min_blocks
;
9100 b
= num_buckets
; /* Assume the biggest bucket */
9101 /* Find the bucket that is just big enough */
9102 for (j
= 0; j
< num_buckets
; j
++) {
9103 if (bucket
[j
] >= size
) {
9108 /* for a command with i SG entries, use bucket b. */
9114 * return -ENODEV on err, 0 on success (or no action)
9115 * allocates numerous items that must be freed later
9117 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9120 unsigned long register_value
;
9121 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9122 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9123 CFGTBL_Trans_enable_directed_msix
|
9124 (trans_support
& (CFGTBL_Trans_io_accel1
|
9125 CFGTBL_Trans_io_accel2
));
9126 struct access_method access
= SA5_performant_access
;
9128 /* This is a bit complicated. There are 8 registers on
9129 * the controller which we write to to tell it 8 different
9130 * sizes of commands which there may be. It's a way of
9131 * reducing the DMA done to fetch each command. Encoded into
9132 * each command's tag are 3 bits which communicate to the controller
9133 * which of the eight sizes that command fits within. The size of
9134 * each command depends on how many scatter gather entries there are.
9135 * Each SG entry requires 16 bytes. The eight registers are programmed
9136 * with the number of 16-byte blocks a command of that size requires.
9137 * The smallest command possible requires 5 such 16 byte blocks.
9138 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9139 * blocks. Note, this only extends to the SG entries contained
9140 * within the command block, and does not extend to chained blocks
9141 * of SG elements. bft[] contains the eight values we write to
9142 * the registers. They are not evenly distributed, but have more
9143 * sizes for small commands, and fewer sizes for larger commands.
9145 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9146 #define MIN_IOACCEL2_BFT_ENTRY 5
9147 #define HPSA_IOACCEL2_HEADER_SZ 4
9148 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9149 13, 14, 15, 16, 17, 18, 19,
9150 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9151 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9152 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9153 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9154 16 * MIN_IOACCEL2_BFT_ENTRY
);
9155 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9156 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9157 /* 5 = 1 s/g entry or 4k
9158 * 6 = 2 s/g entry or 8k
9159 * 8 = 4 s/g entry or 16k
9160 * 10 = 6 s/g entry or 24k
9163 /* If the controller supports either ioaccel method then
9164 * we can also use the RAID stack submit path that does not
9165 * perform the superfluous readl() after each command submission.
9167 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9168 access
= SA5_performant_access_no_read
;
9170 /* Controller spec: zero out this buffer. */
9171 for (i
= 0; i
< h
->nreply_queues
; i
++)
9172 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9174 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9175 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9176 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9177 for (i
= 0; i
< 8; i
++)
9178 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9180 /* size of controller ring buffer */
9181 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9182 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9183 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9184 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9186 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9187 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9188 writel(h
->reply_queue
[i
].busaddr
,
9189 &h
->transtable
->RepQAddr
[i
].lower
);
9192 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9193 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9195 * enable outbound interrupt coalescing in accelerator mode;
9197 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9198 access
= SA5_ioaccel_mode1_access
;
9199 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9200 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9202 if (trans_support
& CFGTBL_Trans_io_accel2
)
9203 access
= SA5_ioaccel_mode2_access
;
9204 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9205 if (hpsa_wait_for_mode_change_ack(h
)) {
9206 dev_err(&h
->pdev
->dev
,
9207 "performant mode problem - doorbell timeout\n");
9210 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9211 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9212 dev_err(&h
->pdev
->dev
,
9213 "performant mode problem - transport not active\n");
9216 /* Change the access methods to the performant access methods */
9218 h
->transMethod
= transMethod
;
9220 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9221 (trans_support
& CFGTBL_Trans_io_accel2
)))
9224 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9225 /* Set up I/O accelerator mode */
9226 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9227 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9228 h
->reply_queue
[i
].current_entry
=
9229 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9231 bft
[7] = h
->ioaccel_maxsg
+ 8;
9232 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9233 h
->ioaccel1_blockFetchTable
);
9235 /* initialize all reply queue entries to unused */
9236 for (i
= 0; i
< h
->nreply_queues
; i
++)
9237 memset(h
->reply_queue
[i
].head
,
9238 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9239 h
->reply_queue_size
);
9241 /* set all the constant fields in the accelerator command
9242 * frames once at init time to save CPU cycles later.
9244 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9245 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9247 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9248 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9249 (i
* sizeof(struct ErrorInfo
)));
9250 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9251 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9252 cp
->host_context_flags
=
9253 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9254 cp
->timeout_sec
= 0;
9257 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9259 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9260 (i
* sizeof(struct io_accel1_cmd
)));
9262 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9263 u64 cfg_offset
, cfg_base_addr_index
;
9264 u32 bft2_offset
, cfg_base_addr
;
9267 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9268 &cfg_base_addr_index
, &cfg_offset
);
9269 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9270 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9271 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9272 4, h
->ioaccel2_blockFetchTable
);
9273 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9274 BUILD_BUG_ON(offsetof(struct CfgTable
,
9275 io_accel_request_size_offset
) != 0xb8);
9276 h
->ioaccel2_bft2_regs
=
9277 remap_pci_mem(pci_resource_start(h
->pdev
,
9278 cfg_base_addr_index
) +
9279 cfg_offset
+ bft2_offset
,
9281 sizeof(*h
->ioaccel2_bft2_regs
));
9282 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9283 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9285 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9286 if (hpsa_wait_for_mode_change_ack(h
)) {
9287 dev_err(&h
->pdev
->dev
,
9288 "performant mode problem - enabling ioaccel mode\n");
9294 /* Free ioaccel1 mode command blocks and block fetch table */
9295 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9297 if (h
->ioaccel_cmd_pool
) {
9298 pci_free_consistent(h
->pdev
,
9299 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9300 h
->ioaccel_cmd_pool
,
9301 h
->ioaccel_cmd_pool_dhandle
);
9302 h
->ioaccel_cmd_pool
= NULL
;
9303 h
->ioaccel_cmd_pool_dhandle
= 0;
9305 kfree(h
->ioaccel1_blockFetchTable
);
9306 h
->ioaccel1_blockFetchTable
= NULL
;
9309 /* Allocate ioaccel1 mode command blocks and block fetch table */
9310 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9313 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9314 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9315 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9317 /* Command structures must be aligned on a 128-byte boundary
9318 * because the 7 lower bits of the address are used by the
9321 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9322 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9323 h
->ioaccel_cmd_pool
=
9324 dma_alloc_coherent(&h
->pdev
->dev
,
9325 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9326 &h
->ioaccel_cmd_pool_dhandle
, GFP_KERNEL
);
9328 h
->ioaccel1_blockFetchTable
=
9329 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9330 sizeof(u32
)), GFP_KERNEL
);
9332 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9333 (h
->ioaccel1_blockFetchTable
== NULL
))
9336 memset(h
->ioaccel_cmd_pool
, 0,
9337 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9341 hpsa_free_ioaccel1_cmd_and_bft(h
);
9345 /* Free ioaccel2 mode command blocks and block fetch table */
9346 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9348 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9350 if (h
->ioaccel2_cmd_pool
) {
9351 pci_free_consistent(h
->pdev
,
9352 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9353 h
->ioaccel2_cmd_pool
,
9354 h
->ioaccel2_cmd_pool_dhandle
);
9355 h
->ioaccel2_cmd_pool
= NULL
;
9356 h
->ioaccel2_cmd_pool_dhandle
= 0;
9358 kfree(h
->ioaccel2_blockFetchTable
);
9359 h
->ioaccel2_blockFetchTable
= NULL
;
9362 /* Allocate ioaccel2 mode command blocks and block fetch table */
9363 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9367 /* Allocate ioaccel2 mode command blocks and block fetch table */
9370 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9371 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9372 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9374 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9375 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9376 h
->ioaccel2_cmd_pool
=
9377 dma_alloc_coherent(&h
->pdev
->dev
,
9378 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9379 &h
->ioaccel2_cmd_pool_dhandle
, GFP_KERNEL
);
9381 h
->ioaccel2_blockFetchTable
=
9382 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9383 sizeof(u32
)), GFP_KERNEL
);
9385 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9386 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9391 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9395 memset(h
->ioaccel2_cmd_pool
, 0,
9396 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9400 hpsa_free_ioaccel2_cmd_and_bft(h
);
9404 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9405 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9407 kfree(h
->blockFetchTable
);
9408 h
->blockFetchTable
= NULL
;
9409 hpsa_free_reply_queues(h
);
9410 hpsa_free_ioaccel1_cmd_and_bft(h
);
9411 hpsa_free_ioaccel2_cmd_and_bft(h
);
9414 /* return -ENODEV on error, 0 on success (or no action)
9415 * allocates numerous items that must be freed later
9417 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9420 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9421 CFGTBL_Trans_use_short_tags
;
9424 if (hpsa_simple_mode
)
9427 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9428 if (!(trans_support
& PERFORMANT_MODE
))
9431 /* Check for I/O accelerator mode support */
9432 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9433 transMethod
|= CFGTBL_Trans_io_accel1
|
9434 CFGTBL_Trans_enable_directed_msix
;
9435 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9438 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9439 transMethod
|= CFGTBL_Trans_io_accel2
|
9440 CFGTBL_Trans_enable_directed_msix
;
9441 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9446 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9447 hpsa_get_max_perf_mode_cmds(h
);
9448 /* Performant mode ring buffer and supporting data structures */
9449 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9451 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9452 h
->reply_queue
[i
].head
= dma_alloc_coherent(&h
->pdev
->dev
,
9453 h
->reply_queue_size
,
9454 &h
->reply_queue
[i
].busaddr
,
9456 if (!h
->reply_queue
[i
].head
) {
9458 goto clean1
; /* rq, ioaccel */
9460 h
->reply_queue
[i
].size
= h
->max_commands
;
9461 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9462 h
->reply_queue
[i
].current_entry
= 0;
9465 /* Need a block fetch table for performant mode */
9466 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9467 sizeof(u32
)), GFP_KERNEL
);
9468 if (!h
->blockFetchTable
) {
9470 goto clean1
; /* rq, ioaccel */
9473 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9475 goto clean2
; /* bft, rq, ioaccel */
9478 clean2
: /* bft, rq, ioaccel */
9479 kfree(h
->blockFetchTable
);
9480 h
->blockFetchTable
= NULL
;
9481 clean1
: /* rq, ioaccel */
9482 hpsa_free_reply_queues(h
);
9483 hpsa_free_ioaccel1_cmd_and_bft(h
);
9484 hpsa_free_ioaccel2_cmd_and_bft(h
);
9488 static int is_accelerated_cmd(struct CommandList
*c
)
9490 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9493 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9495 struct CommandList
*c
= NULL
;
9496 int i
, accel_cmds_out
;
9499 do { /* wait for all outstanding ioaccel commands to drain out */
9501 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9502 c
= h
->cmd_pool
+ i
;
9503 refcount
= atomic_inc_return(&c
->refcount
);
9504 if (refcount
> 1) /* Command is allocated */
9505 accel_cmds_out
+= is_accelerated_cmd(c
);
9508 if (accel_cmds_out
<= 0)
9514 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9515 struct hpsa_sas_port
*hpsa_sas_port
)
9517 struct hpsa_sas_phy
*hpsa_sas_phy
;
9518 struct sas_phy
*phy
;
9520 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9524 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9525 hpsa_sas_port
->next_phy_index
);
9527 kfree(hpsa_sas_phy
);
9531 hpsa_sas_port
->next_phy_index
++;
9532 hpsa_sas_phy
->phy
= phy
;
9533 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9535 return hpsa_sas_phy
;
9538 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9540 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9542 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9543 if (hpsa_sas_phy
->added_to_port
)
9544 list_del(&hpsa_sas_phy
->phy_list_entry
);
9545 sas_phy_delete(phy
);
9546 kfree(hpsa_sas_phy
);
9549 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9552 struct hpsa_sas_port
*hpsa_sas_port
;
9553 struct sas_phy
*phy
;
9554 struct sas_identify
*identify
;
9556 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9557 phy
= hpsa_sas_phy
->phy
;
9559 identify
= &phy
->identify
;
9560 memset(identify
, 0, sizeof(*identify
));
9561 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9562 identify
->device_type
= SAS_END_DEVICE
;
9563 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9564 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9565 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9566 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9567 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9568 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9569 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9571 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9575 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9576 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9577 &hpsa_sas_port
->phy_list_head
);
9578 hpsa_sas_phy
->added_to_port
= true;
9584 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9585 struct sas_rphy
*rphy
)
9587 struct sas_identify
*identify
;
9589 identify
= &rphy
->identify
;
9590 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9591 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9592 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9594 return sas_rphy_add(rphy
);
9597 static struct hpsa_sas_port
9598 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9602 struct hpsa_sas_port
*hpsa_sas_port
;
9603 struct sas_port
*port
;
9605 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9609 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9610 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9612 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9614 goto free_hpsa_port
;
9616 rc
= sas_port_add(port
);
9620 hpsa_sas_port
->port
= port
;
9621 hpsa_sas_port
->sas_address
= sas_address
;
9622 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9623 &hpsa_sas_node
->port_list_head
);
9625 return hpsa_sas_port
;
9628 sas_port_free(port
);
9630 kfree(hpsa_sas_port
);
9635 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9637 struct hpsa_sas_phy
*hpsa_sas_phy
;
9638 struct hpsa_sas_phy
*next
;
9640 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9641 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9642 hpsa_free_sas_phy(hpsa_sas_phy
);
9644 sas_port_delete(hpsa_sas_port
->port
);
9645 list_del(&hpsa_sas_port
->port_list_entry
);
9646 kfree(hpsa_sas_port
);
9649 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9651 struct hpsa_sas_node
*hpsa_sas_node
;
9653 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9654 if (hpsa_sas_node
) {
9655 hpsa_sas_node
->parent_dev
= parent_dev
;
9656 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9659 return hpsa_sas_node
;
9662 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9664 struct hpsa_sas_port
*hpsa_sas_port
;
9665 struct hpsa_sas_port
*next
;
9670 list_for_each_entry_safe(hpsa_sas_port
, next
,
9671 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9672 hpsa_free_sas_port(hpsa_sas_port
);
9674 kfree(hpsa_sas_node
);
9677 static struct hpsa_scsi_dev_t
9678 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9679 struct sas_rphy
*rphy
)
9682 struct hpsa_scsi_dev_t
*device
;
9684 for (i
= 0; i
< h
->ndevices
; i
++) {
9686 if (!device
->sas_port
)
9688 if (device
->sas_port
->rphy
== rphy
)
9695 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9698 struct device
*parent_dev
;
9699 struct hpsa_sas_node
*hpsa_sas_node
;
9700 struct hpsa_sas_port
*hpsa_sas_port
;
9701 struct hpsa_sas_phy
*hpsa_sas_phy
;
9703 parent_dev
= &h
->scsi_host
->shost_dev
;
9705 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9709 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9710 if (!hpsa_sas_port
) {
9715 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9716 if (!hpsa_sas_phy
) {
9721 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9725 h
->sas_host
= hpsa_sas_node
;
9730 hpsa_free_sas_phy(hpsa_sas_phy
);
9732 hpsa_free_sas_port(hpsa_sas_port
);
9734 hpsa_free_sas_node(hpsa_sas_node
);
9739 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9741 hpsa_free_sas_node(h
->sas_host
);
9744 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9745 struct hpsa_scsi_dev_t
*device
)
9748 struct hpsa_sas_port
*hpsa_sas_port
;
9749 struct sas_rphy
*rphy
;
9751 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9755 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9761 hpsa_sas_port
->rphy
= rphy
;
9762 device
->sas_port
= hpsa_sas_port
;
9764 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9771 hpsa_free_sas_port(hpsa_sas_port
);
9772 device
->sas_port
= NULL
;
9777 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9779 if (device
->sas_port
) {
9780 hpsa_free_sas_port(device
->sas_port
);
9781 device
->sas_port
= NULL
;
9786 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9792 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9794 struct Scsi_Host
*shost
= phy_to_shost(rphy
);
9795 struct ctlr_info
*h
;
9796 struct hpsa_scsi_dev_t
*sd
;
9801 h
= shost_to_hba(shost
);
9806 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
9810 *identifier
= sd
->eli
;
9816 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9822 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9828 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9834 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9840 hpsa_sas_phy_release(struct sas_phy
*phy
)
9845 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9850 static struct sas_function_template hpsa_sas_transport_functions
= {
9851 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9852 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9853 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9854 .phy_reset
= hpsa_sas_phy_reset
,
9855 .phy_enable
= hpsa_sas_phy_enable
,
9856 .phy_setup
= hpsa_sas_phy_setup
,
9857 .phy_release
= hpsa_sas_phy_release
,
9858 .set_phy_speed
= hpsa_sas_phy_speed
,
9862 * This is it. Register the PCI driver information for the cards we control
9863 * the OS will call our registered routines when it finds one of our cards.
9865 static int __init
hpsa_init(void)
9869 hpsa_sas_transport_template
=
9870 sas_attach_transport(&hpsa_sas_transport_functions
);
9871 if (!hpsa_sas_transport_template
)
9874 rc
= pci_register_driver(&hpsa_pci_driver
);
9877 sas_release_transport(hpsa_sas_transport_template
);
9882 static void __exit
hpsa_cleanup(void)
9884 pci_unregister_driver(&hpsa_pci_driver
);
9885 sas_release_transport(hpsa_sas_transport_template
);
9888 static void __attribute__((unused
)) verify_offsets(void)
9890 #define VERIFY_OFFSET(member, offset) \
9891 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9893 VERIFY_OFFSET(structure_size
, 0);
9894 VERIFY_OFFSET(volume_blk_size
, 4);
9895 VERIFY_OFFSET(volume_blk_cnt
, 8);
9896 VERIFY_OFFSET(phys_blk_shift
, 16);
9897 VERIFY_OFFSET(parity_rotation_shift
, 17);
9898 VERIFY_OFFSET(strip_size
, 18);
9899 VERIFY_OFFSET(disk_starting_blk
, 20);
9900 VERIFY_OFFSET(disk_blk_cnt
, 28);
9901 VERIFY_OFFSET(data_disks_per_row
, 36);
9902 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9903 VERIFY_OFFSET(row_cnt
, 40);
9904 VERIFY_OFFSET(layout_map_count
, 42);
9905 VERIFY_OFFSET(flags
, 44);
9906 VERIFY_OFFSET(dekindex
, 46);
9907 /* VERIFY_OFFSET(reserved, 48 */
9908 VERIFY_OFFSET(data
, 64);
9910 #undef VERIFY_OFFSET
9912 #define VERIFY_OFFSET(member, offset) \
9913 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9915 VERIFY_OFFSET(IU_type
, 0);
9916 VERIFY_OFFSET(direction
, 1);
9917 VERIFY_OFFSET(reply_queue
, 2);
9918 /* VERIFY_OFFSET(reserved1, 3); */
9919 VERIFY_OFFSET(scsi_nexus
, 4);
9920 VERIFY_OFFSET(Tag
, 8);
9921 VERIFY_OFFSET(cdb
, 16);
9922 VERIFY_OFFSET(cciss_lun
, 32);
9923 VERIFY_OFFSET(data_len
, 40);
9924 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9925 VERIFY_OFFSET(sg_count
, 45);
9926 /* VERIFY_OFFSET(reserved3 */
9927 VERIFY_OFFSET(err_ptr
, 48);
9928 VERIFY_OFFSET(err_len
, 56);
9929 /* VERIFY_OFFSET(reserved4 */
9930 VERIFY_OFFSET(sg
, 64);
9932 #undef VERIFY_OFFSET
9934 #define VERIFY_OFFSET(member, offset) \
9935 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9937 VERIFY_OFFSET(dev_handle
, 0x00);
9938 VERIFY_OFFSET(reserved1
, 0x02);
9939 VERIFY_OFFSET(function
, 0x03);
9940 VERIFY_OFFSET(reserved2
, 0x04);
9941 VERIFY_OFFSET(err_info
, 0x0C);
9942 VERIFY_OFFSET(reserved3
, 0x10);
9943 VERIFY_OFFSET(err_info_len
, 0x12);
9944 VERIFY_OFFSET(reserved4
, 0x13);
9945 VERIFY_OFFSET(sgl_offset
, 0x14);
9946 VERIFY_OFFSET(reserved5
, 0x15);
9947 VERIFY_OFFSET(transfer_len
, 0x1C);
9948 VERIFY_OFFSET(reserved6
, 0x20);
9949 VERIFY_OFFSET(io_flags
, 0x24);
9950 VERIFY_OFFSET(reserved7
, 0x26);
9951 VERIFY_OFFSET(LUN
, 0x34);
9952 VERIFY_OFFSET(control
, 0x3C);
9953 VERIFY_OFFSET(CDB
, 0x40);
9954 VERIFY_OFFSET(reserved8
, 0x50);
9955 VERIFY_OFFSET(host_context_flags
, 0x60);
9956 VERIFY_OFFSET(timeout_sec
, 0x62);
9957 VERIFY_OFFSET(ReplyQueue
, 0x64);
9958 VERIFY_OFFSET(reserved9
, 0x65);
9959 VERIFY_OFFSET(tag
, 0x68);
9960 VERIFY_OFFSET(host_addr
, 0x70);
9961 VERIFY_OFFSET(CISS_LUN
, 0x78);
9962 VERIFY_OFFSET(SG
, 0x78 + 8);
9963 #undef VERIFY_OFFSET
9966 module_init(hpsa_init
);
9967 module_exit(hpsa_cleanup
);