treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / spi / spi-pl022.c
blob66028ebbc336d6b75542b7b07a590ce0bb5c68bf
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/gpio.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pinctrl/consumer.h>
39 * This macro is used to define some register default values.
40 * reg is masked with mask, the OR:ed with an (again masked)
41 * val shifted sb steps to the left.
43 #define SSP_WRITE_BITS(reg, val, mask, sb) \
44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
47 * This macro is also used to define some default values.
48 * It will just shift val by sb steps to the left and mask
49 * the result with mask.
51 #define GEN_MASK_BITS(val, mask, sb) \
52 (((val)<<(sb)) & (mask))
54 #define DRIVE_TX 0
55 #define DO_NOT_DRIVE_TX 1
57 #define DO_NOT_QUEUE_DMA 0
58 #define QUEUE_DMA 1
60 #define RX_TRANSFER 1
61 #define TX_TRANSFER 2
64 * Macros to access SSP Registers with their offsets
66 #define SSP_CR0(r) (r + 0x000)
67 #define SSP_CR1(r) (r + 0x004)
68 #define SSP_DR(r) (r + 0x008)
69 #define SSP_SR(r) (r + 0x00C)
70 #define SSP_CPSR(r) (r + 0x010)
71 #define SSP_IMSC(r) (r + 0x014)
72 #define SSP_RIS(r) (r + 0x018)
73 #define SSP_MIS(r) (r + 0x01C)
74 #define SSP_ICR(r) (r + 0x020)
75 #define SSP_DMACR(r) (r + 0x024)
76 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
77 #define SSP_ITCR(r) (r + 0x080)
78 #define SSP_ITIP(r) (r + 0x084)
79 #define SSP_ITOP(r) (r + 0x088)
80 #define SSP_TDR(r) (r + 0x08C)
82 #define SSP_PID0(r) (r + 0xFE0)
83 #define SSP_PID1(r) (r + 0xFE4)
84 #define SSP_PID2(r) (r + 0xFE8)
85 #define SSP_PID3(r) (r + 0xFEC)
87 #define SSP_CID0(r) (r + 0xFF0)
88 #define SSP_CID1(r) (r + 0xFF4)
89 #define SSP_CID2(r) (r + 0xFF8)
90 #define SSP_CID3(r) (r + 0xFFC)
93 * SSP Control Register 0 - SSP_CR0
95 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
96 #define SSP_CR0_MASK_FRF (0x3UL << 4)
97 #define SSP_CR0_MASK_SPO (0x1UL << 6)
98 #define SSP_CR0_MASK_SPH (0x1UL << 7)
99 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
102 * The ST version of this block moves som bits
103 * in SSP_CR0 and extends it to 32 bits
105 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
106 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
107 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
108 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
111 * SSP Control Register 0 - SSP_CR1
113 #define SSP_CR1_MASK_LBM (0x1UL << 0)
114 #define SSP_CR1_MASK_SSE (0x1UL << 1)
115 #define SSP_CR1_MASK_MS (0x1UL << 2)
116 #define SSP_CR1_MASK_SOD (0x1UL << 3)
119 * The ST version of this block adds some bits
120 * in SSP_CR1
122 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
123 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
124 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
125 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127 /* This one is only in the PL023 variant */
128 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
131 * SSP Status Register - SSP_SR
133 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
140 * SSP Clock Prescale Register - SSP_CPSR
142 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
153 * SSP Raw Interrupt Status Register - SSP_RIS
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
165 * SSP Masked Interrupt Status Register - SSP_MIS
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
177 * SSP Interrupt Clear Register - SSP_ICR
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
185 * SSP DMA Control Register - SSP_DMACR
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
193 * SSP Chip Select Control Register - SSP_CSR
194 * (vendor extension)
196 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
199 * SSP Integration Test control Register - SSP_ITCR
201 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205 * SSP Integration Test Input Register - SSP_ITIP
207 #define ITIP_MASK_SSPRXD (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215 * SSP Integration Test output Register - SSP_ITOP
217 #define ITOP_MASK_SSPTXD (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222 #define ITOP_MASK_RORINTR (0x1UL << 5)
223 #define ITOP_MASK_RTINTR (0x1UL << 6)
224 #define ITOP_MASK_RXINTR (0x1UL << 7)
225 #define ITOP_MASK_TXINTR (0x1UL << 8)
226 #define ITOP_MASK_INTR (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233 * SSP Test Data Register - SSP_TDR
235 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
243 #define STATE_START ((void *) 0)
244 #define STATE_RUNNING ((void *) 1)
245 #define STATE_DONE ((void *) 2)
246 #define STATE_ERROR ((void *) -1)
247 #define STATE_TIMEOUT ((void *) -2)
250 * SSP State - Whether Enabled or Disabled
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
256 * SSP DMA State - Whether DMA Enabled or Disabled
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
262 * SSP Clock Defaults
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
268 * SSP Clock Parameter ranges
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
276 * SSP Interrupt related Macros
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS ( \
281 SSP_IMSC_MASK_RORIM | \
282 SSP_IMSC_MASK_RTIM | \
283 SSP_IMSC_MASK_RXIM | \
284 SSP_IMSC_MASK_TXIM \
287 #define CLEAR_ALL_INTERRUPTS 0x3
289 #define SPI_POLLING_TIMEOUT 1000
292 * The type of reading going on on this chip
294 enum ssp_reading {
295 READING_NULL,
296 READING_U8,
297 READING_U16,
298 READING_U32
302 * The type of writing going on on this chip
304 enum ssp_writing {
305 WRITING_NULL,
306 WRITING_U8,
307 WRITING_U16,
308 WRITING_U32
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
320 * @internal_cs_ctrl: supports chip select control register
322 struct vendor_data {
323 int fifodepth;
324 int max_bpw;
325 bool unidir;
326 bool extended_cr;
327 bool pl023;
328 bool loopback;
329 bool internal_cs_ctrl;
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @master: SPI framework hookup
340 * @master_info: controller-specific data from machine setup
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @next_msg_cs_active: the next message in the queue has been examined
346 * and it was found that it uses the same chip select as the previous
347 * message, so we left it active after the previous transfer, and it's
348 * active already.
349 * @tx: current position in TX buffer to be read
350 * @tx_end: end position in TX buffer to be read
351 * @rx: current position in RX buffer to be written
352 * @rx_end: end position in RX buffer to be written
353 * @read: the type of read currently going on
354 * @write: the type of write currently going on
355 * @exp_fifo_level: expected FIFO level
356 * @dma_rx_channel: optional channel for RX DMA
357 * @dma_tx_channel: optional channel for TX DMA
358 * @sgt_rx: scattertable for the RX transfer
359 * @sgt_tx: scattertable for the TX transfer
360 * @dummypage: a dummy page used for driving data on the bus with DMA
361 * @cur_cs: current chip select (gpio)
362 * @chipselects: list of chipselects (gpios)
364 struct pl022 {
365 struct amba_device *adev;
366 struct vendor_data *vendor;
367 resource_size_t phybase;
368 void __iomem *virtbase;
369 struct clk *clk;
370 struct spi_master *master;
371 struct pl022_ssp_controller *master_info;
372 /* Message per-transfer pump */
373 struct tasklet_struct pump_transfers;
374 struct spi_message *cur_msg;
375 struct spi_transfer *cur_transfer;
376 struct chip_data *cur_chip;
377 bool next_msg_cs_active;
378 void *tx;
379 void *tx_end;
380 void *rx;
381 void *rx_end;
382 enum ssp_reading read;
383 enum ssp_writing write;
384 u32 exp_fifo_level;
385 enum ssp_rx_level_trig rx_lev_trig;
386 enum ssp_tx_level_trig tx_lev_trig;
387 /* DMA settings */
388 #ifdef CONFIG_DMA_ENGINE
389 struct dma_chan *dma_rx_channel;
390 struct dma_chan *dma_tx_channel;
391 struct sg_table sgt_rx;
392 struct sg_table sgt_tx;
393 char *dummypage;
394 bool dma_running;
395 #endif
396 int cur_cs;
397 int *chipselects;
401 * struct chip_data - To maintain runtime state of SSP for each client chip
402 * @cr0: Value of control register CR0 of SSP - on later ST variants this
403 * register is 32 bits wide rather than just 16
404 * @cr1: Value of control register CR1 of SSP
405 * @dmacr: Value of DMA control Register of SSP
406 * @cpsr: Value of Clock prescale register
407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
408 * @enable_dma: Whether to enable DMA or not
409 * @read: function ptr to be used to read when doing xfer for this chip
410 * @write: function ptr to be used to write when doing xfer for this chip
411 * @cs_control: chip select callback provided by chip
412 * @xfer_type: polling/interrupt/DMA
414 * Runtime state of the SSP controller, maintained per chip,
415 * This would be set according to the current message that would be served
417 struct chip_data {
418 u32 cr0;
419 u16 cr1;
420 u16 dmacr;
421 u16 cpsr;
422 u8 n_bytes;
423 bool enable_dma;
424 enum ssp_reading read;
425 enum ssp_writing write;
426 void (*cs_control) (u32 command);
427 int xfer_type;
431 * null_cs_control - Dummy chip select function
432 * @command: select/delect the chip
434 * If no chip select function is provided by client this is used as dummy
435 * chip select
437 static void null_cs_control(u32 command)
439 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
443 * internal_cs_control - Control chip select signals via SSP_CSR.
444 * @pl022: SSP driver private data structure
445 * @command: select/delect the chip
447 * Used on controller with internal chip select control via SSP_CSR register
448 * (vendor extension). Each of the 5 LSB in the register controls one chip
449 * select signal.
451 static void internal_cs_control(struct pl022 *pl022, u32 command)
453 u32 tmp;
455 tmp = readw(SSP_CSR(pl022->virtbase));
456 if (command == SSP_CHIP_SELECT)
457 tmp &= ~BIT(pl022->cur_cs);
458 else
459 tmp |= BIT(pl022->cur_cs);
460 writew(tmp, SSP_CSR(pl022->virtbase));
463 static void pl022_cs_control(struct pl022 *pl022, u32 command)
465 if (pl022->vendor->internal_cs_ctrl)
466 internal_cs_control(pl022, command);
467 else if (gpio_is_valid(pl022->cur_cs))
468 gpio_set_value(pl022->cur_cs, command);
469 else
470 pl022->cur_chip->cs_control(command);
474 * giveback - current spi_message is over, schedule next message and call
475 * callback of this message. Assumes that caller already
476 * set message->status; dma and pio irqs are blocked
477 * @pl022: SSP driver private data structure
479 static void giveback(struct pl022 *pl022)
481 struct spi_transfer *last_transfer;
482 pl022->next_msg_cs_active = false;
484 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
485 struct spi_transfer, transfer_list);
487 /* Delay if requested before any change in chip select */
489 * FIXME: This runs in interrupt context.
490 * Is this really smart?
492 spi_transfer_delay_exec(last_transfer);
494 if (!last_transfer->cs_change) {
495 struct spi_message *next_msg;
498 * cs_change was not set. We can keep the chip select
499 * enabled if there is message in the queue and it is
500 * for the same spi device.
502 * We cannot postpone this until pump_messages, because
503 * after calling msg->complete (below) the driver that
504 * sent the current message could be unloaded, which
505 * could invalidate the cs_control() callback...
507 /* get a pointer to the next message, if any */
508 next_msg = spi_get_next_queued_message(pl022->master);
511 * see if the next and current messages point
512 * to the same spi device.
514 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
515 next_msg = NULL;
516 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
517 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
518 else
519 pl022->next_msg_cs_active = true;
523 pl022->cur_msg = NULL;
524 pl022->cur_transfer = NULL;
525 pl022->cur_chip = NULL;
527 /* disable the SPI/SSP operation */
528 writew((readw(SSP_CR1(pl022->virtbase)) &
529 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
531 spi_finalize_current_message(pl022->master);
535 * flush - flush the FIFO to reach a clean state
536 * @pl022: SSP driver private data structure
538 static int flush(struct pl022 *pl022)
540 unsigned long limit = loops_per_jiffy << 1;
542 dev_dbg(&pl022->adev->dev, "flush\n");
543 do {
544 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
545 readw(SSP_DR(pl022->virtbase));
546 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
548 pl022->exp_fifo_level = 0;
550 return limit;
554 * restore_state - Load configuration of current chip
555 * @pl022: SSP driver private data structure
557 static void restore_state(struct pl022 *pl022)
559 struct chip_data *chip = pl022->cur_chip;
561 if (pl022->vendor->extended_cr)
562 writel(chip->cr0, SSP_CR0(pl022->virtbase));
563 else
564 writew(chip->cr0, SSP_CR0(pl022->virtbase));
565 writew(chip->cr1, SSP_CR1(pl022->virtbase));
566 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
567 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
568 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
569 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
573 * Default SSP Register Values
575 #define DEFAULT_SSP_REG_CR0 ( \
576 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
577 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
578 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
579 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
580 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
583 /* ST versions have slightly different bit layout */
584 #define DEFAULT_SSP_REG_CR0_ST ( \
585 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
586 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
590 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
591 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
594 /* The PL023 version is slightly different again */
595 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
596 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
597 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
598 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
599 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
602 #define DEFAULT_SSP_REG_CR1 ( \
603 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
604 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
605 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
606 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
609 /* ST versions extend this register to use all 16 bits */
610 #define DEFAULT_SSP_REG_CR1_ST ( \
611 DEFAULT_SSP_REG_CR1 | \
612 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
613 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
614 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
615 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
616 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
620 * The PL023 variant has further differences: no loopback mode, no microwire
621 * support, and a new clock feedback delay setting.
623 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
624 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
625 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
626 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
627 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
628 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
629 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
630 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
631 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
634 #define DEFAULT_SSP_REG_CPSR ( \
635 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
638 #define DEFAULT_SSP_REG_DMACR (\
639 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
640 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
644 * load_ssp_default_config - Load default configuration for SSP
645 * @pl022: SSP driver private data structure
647 static void load_ssp_default_config(struct pl022 *pl022)
649 if (pl022->vendor->pl023) {
650 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
651 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
652 } else if (pl022->vendor->extended_cr) {
653 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
654 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
655 } else {
656 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
657 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
659 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
660 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
661 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
662 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
666 * This will write to TX and read from RX according to the parameters
667 * set in pl022.
669 static void readwriter(struct pl022 *pl022)
673 * The FIFO depth is different between primecell variants.
674 * I believe filling in too much in the FIFO might cause
675 * errons in 8bit wide transfers on ARM variants (just 8 words
676 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
678 * To prevent this issue, the TX FIFO is only filled to the
679 * unused RX FIFO fill length, regardless of what the TX
680 * FIFO status flag indicates.
682 dev_dbg(&pl022->adev->dev,
683 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
684 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
686 /* Read as much as you can */
687 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
688 && (pl022->rx < pl022->rx_end)) {
689 switch (pl022->read) {
690 case READING_NULL:
691 readw(SSP_DR(pl022->virtbase));
692 break;
693 case READING_U8:
694 *(u8 *) (pl022->rx) =
695 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
696 break;
697 case READING_U16:
698 *(u16 *) (pl022->rx) =
699 (u16) readw(SSP_DR(pl022->virtbase));
700 break;
701 case READING_U32:
702 *(u32 *) (pl022->rx) =
703 readl(SSP_DR(pl022->virtbase));
704 break;
706 pl022->rx += (pl022->cur_chip->n_bytes);
707 pl022->exp_fifo_level--;
710 * Write as much as possible up to the RX FIFO size
712 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
713 && (pl022->tx < pl022->tx_end)) {
714 switch (pl022->write) {
715 case WRITING_NULL:
716 writew(0x0, SSP_DR(pl022->virtbase));
717 break;
718 case WRITING_U8:
719 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
720 break;
721 case WRITING_U16:
722 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
723 break;
724 case WRITING_U32:
725 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
726 break;
728 pl022->tx += (pl022->cur_chip->n_bytes);
729 pl022->exp_fifo_level++;
731 * This inner reader takes care of things appearing in the RX
732 * FIFO as we're transmitting. This will happen a lot since the
733 * clock starts running when you put things into the TX FIFO,
734 * and then things are continuously clocked into the RX FIFO.
736 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
737 && (pl022->rx < pl022->rx_end)) {
738 switch (pl022->read) {
739 case READING_NULL:
740 readw(SSP_DR(pl022->virtbase));
741 break;
742 case READING_U8:
743 *(u8 *) (pl022->rx) =
744 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
745 break;
746 case READING_U16:
747 *(u16 *) (pl022->rx) =
748 (u16) readw(SSP_DR(pl022->virtbase));
749 break;
750 case READING_U32:
751 *(u32 *) (pl022->rx) =
752 readl(SSP_DR(pl022->virtbase));
753 break;
755 pl022->rx += (pl022->cur_chip->n_bytes);
756 pl022->exp_fifo_level--;
760 * When we exit here the TX FIFO should be full and the RX FIFO
761 * should be empty
766 * next_transfer - Move to the Next transfer in the current spi message
767 * @pl022: SSP driver private data structure
769 * This function moves though the linked list of spi transfers in the
770 * current spi message and returns with the state of current spi
771 * message i.e whether its last transfer is done(STATE_DONE) or
772 * Next transfer is ready(STATE_RUNNING)
774 static void *next_transfer(struct pl022 *pl022)
776 struct spi_message *msg = pl022->cur_msg;
777 struct spi_transfer *trans = pl022->cur_transfer;
779 /* Move to next transfer */
780 if (trans->transfer_list.next != &msg->transfers) {
781 pl022->cur_transfer =
782 list_entry(trans->transfer_list.next,
783 struct spi_transfer, transfer_list);
784 return STATE_RUNNING;
786 return STATE_DONE;
790 * This DMA functionality is only compiled in if we have
791 * access to the generic DMA devices/DMA engine.
793 #ifdef CONFIG_DMA_ENGINE
794 static void unmap_free_dma_scatter(struct pl022 *pl022)
796 /* Unmap and free the SG tables */
797 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
798 pl022->sgt_tx.nents, DMA_TO_DEVICE);
799 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
800 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
801 sg_free_table(&pl022->sgt_rx);
802 sg_free_table(&pl022->sgt_tx);
805 static void dma_callback(void *data)
807 struct pl022 *pl022 = data;
808 struct spi_message *msg = pl022->cur_msg;
810 BUG_ON(!pl022->sgt_rx.sgl);
812 #ifdef VERBOSE_DEBUG
814 * Optionally dump out buffers to inspect contents, this is
815 * good if you want to convince yourself that the loopback
816 * read/write contents are the same, when adopting to a new
817 * DMA engine.
820 struct scatterlist *sg;
821 unsigned int i;
823 dma_sync_sg_for_cpu(&pl022->adev->dev,
824 pl022->sgt_rx.sgl,
825 pl022->sgt_rx.nents,
826 DMA_FROM_DEVICE);
828 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
829 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
830 print_hex_dump(KERN_ERR, "SPI RX: ",
831 DUMP_PREFIX_OFFSET,
834 sg_virt(sg),
835 sg_dma_len(sg),
838 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
839 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
840 print_hex_dump(KERN_ERR, "SPI TX: ",
841 DUMP_PREFIX_OFFSET,
844 sg_virt(sg),
845 sg_dma_len(sg),
849 #endif
851 unmap_free_dma_scatter(pl022);
853 /* Update total bytes transferred */
854 msg->actual_length += pl022->cur_transfer->len;
855 /* Move to next transfer */
856 msg->state = next_transfer(pl022);
857 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
858 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
859 tasklet_schedule(&pl022->pump_transfers);
862 static void setup_dma_scatter(struct pl022 *pl022,
863 void *buffer,
864 unsigned int length,
865 struct sg_table *sgtab)
867 struct scatterlist *sg;
868 int bytesleft = length;
869 void *bufp = buffer;
870 int mapbytes;
871 int i;
873 if (buffer) {
874 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
876 * If there are less bytes left than what fits
877 * in the current page (plus page alignment offset)
878 * we just feed in this, else we stuff in as much
879 * as we can.
881 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
882 mapbytes = bytesleft;
883 else
884 mapbytes = PAGE_SIZE - offset_in_page(bufp);
885 sg_set_page(sg, virt_to_page(bufp),
886 mapbytes, offset_in_page(bufp));
887 bufp += mapbytes;
888 bytesleft -= mapbytes;
889 dev_dbg(&pl022->adev->dev,
890 "set RX/TX target page @ %p, %d bytes, %d left\n",
891 bufp, mapbytes, bytesleft);
893 } else {
894 /* Map the dummy buffer on every page */
895 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
896 if (bytesleft < PAGE_SIZE)
897 mapbytes = bytesleft;
898 else
899 mapbytes = PAGE_SIZE;
900 sg_set_page(sg, virt_to_page(pl022->dummypage),
901 mapbytes, 0);
902 bytesleft -= mapbytes;
903 dev_dbg(&pl022->adev->dev,
904 "set RX/TX to dummy page %d bytes, %d left\n",
905 mapbytes, bytesleft);
909 BUG_ON(bytesleft);
913 * configure_dma - configures the channels for the next transfer
914 * @pl022: SSP driver's private data structure
916 static int configure_dma(struct pl022 *pl022)
918 struct dma_slave_config rx_conf = {
919 .src_addr = SSP_DR(pl022->phybase),
920 .direction = DMA_DEV_TO_MEM,
921 .device_fc = false,
923 struct dma_slave_config tx_conf = {
924 .dst_addr = SSP_DR(pl022->phybase),
925 .direction = DMA_MEM_TO_DEV,
926 .device_fc = false,
928 unsigned int pages;
929 int ret;
930 int rx_sglen, tx_sglen;
931 struct dma_chan *rxchan = pl022->dma_rx_channel;
932 struct dma_chan *txchan = pl022->dma_tx_channel;
933 struct dma_async_tx_descriptor *rxdesc;
934 struct dma_async_tx_descriptor *txdesc;
936 /* Check that the channels are available */
937 if (!rxchan || !txchan)
938 return -ENODEV;
941 * If supplied, the DMA burstsize should equal the FIFO trigger level.
942 * Notice that the DMA engine uses one-to-one mapping. Since we can
943 * not trigger on 2 elements this needs explicit mapping rather than
944 * calculation.
946 switch (pl022->rx_lev_trig) {
947 case SSP_RX_1_OR_MORE_ELEM:
948 rx_conf.src_maxburst = 1;
949 break;
950 case SSP_RX_4_OR_MORE_ELEM:
951 rx_conf.src_maxburst = 4;
952 break;
953 case SSP_RX_8_OR_MORE_ELEM:
954 rx_conf.src_maxburst = 8;
955 break;
956 case SSP_RX_16_OR_MORE_ELEM:
957 rx_conf.src_maxburst = 16;
958 break;
959 case SSP_RX_32_OR_MORE_ELEM:
960 rx_conf.src_maxburst = 32;
961 break;
962 default:
963 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
964 break;
967 switch (pl022->tx_lev_trig) {
968 case SSP_TX_1_OR_MORE_EMPTY_LOC:
969 tx_conf.dst_maxburst = 1;
970 break;
971 case SSP_TX_4_OR_MORE_EMPTY_LOC:
972 tx_conf.dst_maxburst = 4;
973 break;
974 case SSP_TX_8_OR_MORE_EMPTY_LOC:
975 tx_conf.dst_maxburst = 8;
976 break;
977 case SSP_TX_16_OR_MORE_EMPTY_LOC:
978 tx_conf.dst_maxburst = 16;
979 break;
980 case SSP_TX_32_OR_MORE_EMPTY_LOC:
981 tx_conf.dst_maxburst = 32;
982 break;
983 default:
984 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
985 break;
988 switch (pl022->read) {
989 case READING_NULL:
990 /* Use the same as for writing */
991 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
992 break;
993 case READING_U8:
994 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
995 break;
996 case READING_U16:
997 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
998 break;
999 case READING_U32:
1000 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1001 break;
1004 switch (pl022->write) {
1005 case WRITING_NULL:
1006 /* Use the same as for reading */
1007 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1008 break;
1009 case WRITING_U8:
1010 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1011 break;
1012 case WRITING_U16:
1013 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1014 break;
1015 case WRITING_U32:
1016 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1017 break;
1020 /* SPI pecularity: we need to read and write the same width */
1021 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1022 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1023 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1024 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1025 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1027 dmaengine_slave_config(rxchan, &rx_conf);
1028 dmaengine_slave_config(txchan, &tx_conf);
1030 /* Create sglists for the transfers */
1031 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1032 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1034 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1035 if (ret)
1036 goto err_alloc_rx_sg;
1038 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1039 if (ret)
1040 goto err_alloc_tx_sg;
1042 /* Fill in the scatterlists for the RX+TX buffers */
1043 setup_dma_scatter(pl022, pl022->rx,
1044 pl022->cur_transfer->len, &pl022->sgt_rx);
1045 setup_dma_scatter(pl022, pl022->tx,
1046 pl022->cur_transfer->len, &pl022->sgt_tx);
1048 /* Map DMA buffers */
1049 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1050 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1051 if (!rx_sglen)
1052 goto err_rx_sgmap;
1054 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1055 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1056 if (!tx_sglen)
1057 goto err_tx_sgmap;
1059 /* Send both scatterlists */
1060 rxdesc = dmaengine_prep_slave_sg(rxchan,
1061 pl022->sgt_rx.sgl,
1062 rx_sglen,
1063 DMA_DEV_TO_MEM,
1064 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1065 if (!rxdesc)
1066 goto err_rxdesc;
1068 txdesc = dmaengine_prep_slave_sg(txchan,
1069 pl022->sgt_tx.sgl,
1070 tx_sglen,
1071 DMA_MEM_TO_DEV,
1072 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1073 if (!txdesc)
1074 goto err_txdesc;
1076 /* Put the callback on the RX transfer only, that should finish last */
1077 rxdesc->callback = dma_callback;
1078 rxdesc->callback_param = pl022;
1080 /* Submit and fire RX and TX with TX last so we're ready to read! */
1081 dmaengine_submit(rxdesc);
1082 dmaengine_submit(txdesc);
1083 dma_async_issue_pending(rxchan);
1084 dma_async_issue_pending(txchan);
1085 pl022->dma_running = true;
1087 return 0;
1089 err_txdesc:
1090 dmaengine_terminate_all(txchan);
1091 err_rxdesc:
1092 dmaengine_terminate_all(rxchan);
1093 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1094 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1095 err_tx_sgmap:
1096 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1097 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1098 err_rx_sgmap:
1099 sg_free_table(&pl022->sgt_tx);
1100 err_alloc_tx_sg:
1101 sg_free_table(&pl022->sgt_rx);
1102 err_alloc_rx_sg:
1103 return -ENOMEM;
1106 static int pl022_dma_probe(struct pl022 *pl022)
1108 dma_cap_mask_t mask;
1110 /* Try to acquire a generic DMA engine slave channel */
1111 dma_cap_zero(mask);
1112 dma_cap_set(DMA_SLAVE, mask);
1114 * We need both RX and TX channels to do DMA, else do none
1115 * of them.
1117 pl022->dma_rx_channel = dma_request_channel(mask,
1118 pl022->master_info->dma_filter,
1119 pl022->master_info->dma_rx_param);
1120 if (!pl022->dma_rx_channel) {
1121 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1122 goto err_no_rxchan;
1125 pl022->dma_tx_channel = dma_request_channel(mask,
1126 pl022->master_info->dma_filter,
1127 pl022->master_info->dma_tx_param);
1128 if (!pl022->dma_tx_channel) {
1129 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1130 goto err_no_txchan;
1133 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1134 if (!pl022->dummypage)
1135 goto err_no_dummypage;
1137 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1138 dma_chan_name(pl022->dma_rx_channel),
1139 dma_chan_name(pl022->dma_tx_channel));
1141 return 0;
1143 err_no_dummypage:
1144 dma_release_channel(pl022->dma_tx_channel);
1145 err_no_txchan:
1146 dma_release_channel(pl022->dma_rx_channel);
1147 pl022->dma_rx_channel = NULL;
1148 err_no_rxchan:
1149 dev_err(&pl022->adev->dev,
1150 "Failed to work in dma mode, work without dma!\n");
1151 return -ENODEV;
1154 static int pl022_dma_autoprobe(struct pl022 *pl022)
1156 struct device *dev = &pl022->adev->dev;
1157 struct dma_chan *chan;
1158 int err;
1160 /* automatically configure DMA channels from platform, normally using DT */
1161 chan = dma_request_chan(dev, "rx");
1162 if (IS_ERR(chan)) {
1163 err = PTR_ERR(chan);
1164 goto err_no_rxchan;
1167 pl022->dma_rx_channel = chan;
1169 chan = dma_request_chan(dev, "tx");
1170 if (IS_ERR(chan)) {
1171 err = PTR_ERR(chan);
1172 goto err_no_txchan;
1175 pl022->dma_tx_channel = chan;
1177 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1178 if (!pl022->dummypage) {
1179 err = -ENOMEM;
1180 goto err_no_dummypage;
1183 return 0;
1185 err_no_dummypage:
1186 dma_release_channel(pl022->dma_tx_channel);
1187 pl022->dma_tx_channel = NULL;
1188 err_no_txchan:
1189 dma_release_channel(pl022->dma_rx_channel);
1190 pl022->dma_rx_channel = NULL;
1191 err_no_rxchan:
1192 return err;
1195 static void terminate_dma(struct pl022 *pl022)
1197 struct dma_chan *rxchan = pl022->dma_rx_channel;
1198 struct dma_chan *txchan = pl022->dma_tx_channel;
1200 dmaengine_terminate_all(rxchan);
1201 dmaengine_terminate_all(txchan);
1202 unmap_free_dma_scatter(pl022);
1203 pl022->dma_running = false;
1206 static void pl022_dma_remove(struct pl022 *pl022)
1208 if (pl022->dma_running)
1209 terminate_dma(pl022);
1210 if (pl022->dma_tx_channel)
1211 dma_release_channel(pl022->dma_tx_channel);
1212 if (pl022->dma_rx_channel)
1213 dma_release_channel(pl022->dma_rx_channel);
1214 kfree(pl022->dummypage);
1217 #else
1218 static inline int configure_dma(struct pl022 *pl022)
1220 return -ENODEV;
1223 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1225 return 0;
1228 static inline int pl022_dma_probe(struct pl022 *pl022)
1230 return 0;
1233 static inline void pl022_dma_remove(struct pl022 *pl022)
1236 #endif
1239 * pl022_interrupt_handler - Interrupt handler for SSP controller
1241 * This function handles interrupts generated for an interrupt based transfer.
1242 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1243 * current message's state as STATE_ERROR and schedule the tasklet
1244 * pump_transfers which will do the postprocessing of the current message by
1245 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1246 * more data, and writes data in TX FIFO till it is not full. If we complete
1247 * the transfer we move to the next transfer and schedule the tasklet.
1249 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1251 struct pl022 *pl022 = dev_id;
1252 struct spi_message *msg = pl022->cur_msg;
1253 u16 irq_status = 0;
1255 if (unlikely(!msg)) {
1256 dev_err(&pl022->adev->dev,
1257 "bad message state in interrupt handler");
1258 /* Never fail */
1259 return IRQ_HANDLED;
1262 /* Read the Interrupt Status Register */
1263 irq_status = readw(SSP_MIS(pl022->virtbase));
1265 if (unlikely(!irq_status))
1266 return IRQ_NONE;
1269 * This handles the FIFO interrupts, the timeout
1270 * interrupts are flatly ignored, they cannot be
1271 * trusted.
1273 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1275 * Overrun interrupt - bail out since our Data has been
1276 * corrupted
1278 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1279 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1280 dev_err(&pl022->adev->dev,
1281 "RXFIFO is full\n");
1284 * Disable and clear interrupts, disable SSP,
1285 * mark message with bad status so it can be
1286 * retried.
1288 writew(DISABLE_ALL_INTERRUPTS,
1289 SSP_IMSC(pl022->virtbase));
1290 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1291 writew((readw(SSP_CR1(pl022->virtbase)) &
1292 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1293 msg->state = STATE_ERROR;
1295 /* Schedule message queue handler */
1296 tasklet_schedule(&pl022->pump_transfers);
1297 return IRQ_HANDLED;
1300 readwriter(pl022);
1302 if (pl022->tx == pl022->tx_end) {
1303 /* Disable Transmit interrupt, enable receive interrupt */
1304 writew((readw(SSP_IMSC(pl022->virtbase)) &
1305 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1306 SSP_IMSC(pl022->virtbase));
1310 * Since all transactions must write as much as shall be read,
1311 * we can conclude the entire transaction once RX is complete.
1312 * At this point, all TX will always be finished.
1314 if (pl022->rx >= pl022->rx_end) {
1315 writew(DISABLE_ALL_INTERRUPTS,
1316 SSP_IMSC(pl022->virtbase));
1317 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1318 if (unlikely(pl022->rx > pl022->rx_end)) {
1319 dev_warn(&pl022->adev->dev, "read %u surplus "
1320 "bytes (did you request an odd "
1321 "number of bytes on a 16bit bus?)\n",
1322 (u32) (pl022->rx - pl022->rx_end));
1324 /* Update total bytes transferred */
1325 msg->actual_length += pl022->cur_transfer->len;
1326 /* Move to next transfer */
1327 msg->state = next_transfer(pl022);
1328 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1329 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1330 tasklet_schedule(&pl022->pump_transfers);
1331 return IRQ_HANDLED;
1334 return IRQ_HANDLED;
1338 * This sets up the pointers to memory for the next message to
1339 * send out on the SPI bus.
1341 static int set_up_next_transfer(struct pl022 *pl022,
1342 struct spi_transfer *transfer)
1344 int residue;
1346 /* Sanity check the message for this bus width */
1347 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1348 if (unlikely(residue != 0)) {
1349 dev_err(&pl022->adev->dev,
1350 "message of %u bytes to transmit but the current "
1351 "chip bus has a data width of %u bytes!\n",
1352 pl022->cur_transfer->len,
1353 pl022->cur_chip->n_bytes);
1354 dev_err(&pl022->adev->dev, "skipping this message\n");
1355 return -EIO;
1357 pl022->tx = (void *)transfer->tx_buf;
1358 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1359 pl022->rx = (void *)transfer->rx_buf;
1360 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1361 pl022->write =
1362 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1363 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1364 return 0;
1368 * pump_transfers - Tasklet function which schedules next transfer
1369 * when running in interrupt or DMA transfer mode.
1370 * @data: SSP driver private data structure
1373 static void pump_transfers(unsigned long data)
1375 struct pl022 *pl022 = (struct pl022 *) data;
1376 struct spi_message *message = NULL;
1377 struct spi_transfer *transfer = NULL;
1378 struct spi_transfer *previous = NULL;
1380 /* Get current state information */
1381 message = pl022->cur_msg;
1382 transfer = pl022->cur_transfer;
1384 /* Handle for abort */
1385 if (message->state == STATE_ERROR) {
1386 message->status = -EIO;
1387 giveback(pl022);
1388 return;
1391 /* Handle end of message */
1392 if (message->state == STATE_DONE) {
1393 message->status = 0;
1394 giveback(pl022);
1395 return;
1398 /* Delay if requested at end of transfer before CS change */
1399 if (message->state == STATE_RUNNING) {
1400 previous = list_entry(transfer->transfer_list.prev,
1401 struct spi_transfer,
1402 transfer_list);
1404 * FIXME: This runs in interrupt context.
1405 * Is this really smart?
1407 spi_transfer_delay_exec(previous);
1409 /* Reselect chip select only if cs_change was requested */
1410 if (previous->cs_change)
1411 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1412 } else {
1413 /* STATE_START */
1414 message->state = STATE_RUNNING;
1417 if (set_up_next_transfer(pl022, transfer)) {
1418 message->state = STATE_ERROR;
1419 message->status = -EIO;
1420 giveback(pl022);
1421 return;
1423 /* Flush the FIFOs and let's go! */
1424 flush(pl022);
1426 if (pl022->cur_chip->enable_dma) {
1427 if (configure_dma(pl022)) {
1428 dev_dbg(&pl022->adev->dev,
1429 "configuration of DMA failed, fall back to interrupt mode\n");
1430 goto err_config_dma;
1432 return;
1435 err_config_dma:
1436 /* enable all interrupts except RX */
1437 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1440 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1443 * Default is to enable all interrupts except RX -
1444 * this will be enabled once TX is complete
1446 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1448 /* Enable target chip, if not already active */
1449 if (!pl022->next_msg_cs_active)
1450 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1452 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1453 /* Error path */
1454 pl022->cur_msg->state = STATE_ERROR;
1455 pl022->cur_msg->status = -EIO;
1456 giveback(pl022);
1457 return;
1459 /* If we're using DMA, set up DMA here */
1460 if (pl022->cur_chip->enable_dma) {
1461 /* Configure DMA transfer */
1462 if (configure_dma(pl022)) {
1463 dev_dbg(&pl022->adev->dev,
1464 "configuration of DMA failed, fall back to interrupt mode\n");
1465 goto err_config_dma;
1467 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1468 irqflags = DISABLE_ALL_INTERRUPTS;
1470 err_config_dma:
1471 /* Enable SSP, turn on interrupts */
1472 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1473 SSP_CR1(pl022->virtbase));
1474 writew(irqflags, SSP_IMSC(pl022->virtbase));
1477 static void print_current_status(struct pl022 *pl022)
1479 u32 read_cr0;
1480 u16 read_cr1, read_dmacr, read_sr;
1482 if (pl022->vendor->extended_cr)
1483 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1484 else
1485 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1486 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1487 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1488 read_sr = readw(SSP_SR(pl022->virtbase));
1490 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1491 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1492 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1493 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1494 dev_warn(&pl022->adev->dev,
1495 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1496 pl022->exp_fifo_level,
1497 pl022->vendor->fifodepth);
1501 static void do_polling_transfer(struct pl022 *pl022)
1503 struct spi_message *message = NULL;
1504 struct spi_transfer *transfer = NULL;
1505 struct spi_transfer *previous = NULL;
1506 unsigned long time, timeout;
1508 message = pl022->cur_msg;
1510 while (message->state != STATE_DONE) {
1511 /* Handle for abort */
1512 if (message->state == STATE_ERROR)
1513 break;
1514 transfer = pl022->cur_transfer;
1516 /* Delay if requested at end of transfer */
1517 if (message->state == STATE_RUNNING) {
1518 previous =
1519 list_entry(transfer->transfer_list.prev,
1520 struct spi_transfer, transfer_list);
1521 spi_transfer_delay_exec(previous);
1522 if (previous->cs_change)
1523 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1524 } else {
1525 /* STATE_START */
1526 message->state = STATE_RUNNING;
1527 if (!pl022->next_msg_cs_active)
1528 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1531 /* Configuration Changing Per Transfer */
1532 if (set_up_next_transfer(pl022, transfer)) {
1533 /* Error path */
1534 message->state = STATE_ERROR;
1535 break;
1537 /* Flush FIFOs and enable SSP */
1538 flush(pl022);
1539 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1540 SSP_CR1(pl022->virtbase));
1542 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1544 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1545 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1546 time = jiffies;
1547 readwriter(pl022);
1548 if (time_after(time, timeout)) {
1549 dev_warn(&pl022->adev->dev,
1550 "%s: timeout!\n", __func__);
1551 message->state = STATE_TIMEOUT;
1552 print_current_status(pl022);
1553 goto out;
1555 cpu_relax();
1558 /* Update total byte transferred */
1559 message->actual_length += pl022->cur_transfer->len;
1560 /* Move to next transfer */
1561 message->state = next_transfer(pl022);
1562 if (message->state != STATE_DONE
1563 && pl022->cur_transfer->cs_change)
1564 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1566 out:
1567 /* Handle end of message */
1568 if (message->state == STATE_DONE)
1569 message->status = 0;
1570 else if (message->state == STATE_TIMEOUT)
1571 message->status = -EAGAIN;
1572 else
1573 message->status = -EIO;
1575 giveback(pl022);
1576 return;
1579 static int pl022_transfer_one_message(struct spi_master *master,
1580 struct spi_message *msg)
1582 struct pl022 *pl022 = spi_master_get_devdata(master);
1584 /* Initial message state */
1585 pl022->cur_msg = msg;
1586 msg->state = STATE_START;
1588 pl022->cur_transfer = list_entry(msg->transfers.next,
1589 struct spi_transfer, transfer_list);
1591 /* Setup the SPI using the per chip configuration */
1592 pl022->cur_chip = spi_get_ctldata(msg->spi);
1593 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1595 restore_state(pl022);
1596 flush(pl022);
1598 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1599 do_polling_transfer(pl022);
1600 else
1601 do_interrupt_dma_transfer(pl022);
1603 return 0;
1606 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1608 struct pl022 *pl022 = spi_master_get_devdata(master);
1610 /* nothing more to do - disable spi/ssp and power off */
1611 writew((readw(SSP_CR1(pl022->virtbase)) &
1612 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1614 return 0;
1617 static int verify_controller_parameters(struct pl022 *pl022,
1618 struct pl022_config_chip const *chip_info)
1620 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1621 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1622 dev_err(&pl022->adev->dev,
1623 "interface is configured incorrectly\n");
1624 return -EINVAL;
1626 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1627 (!pl022->vendor->unidir)) {
1628 dev_err(&pl022->adev->dev,
1629 "unidirectional mode not supported in this "
1630 "hardware version\n");
1631 return -EINVAL;
1633 if ((chip_info->hierarchy != SSP_MASTER)
1634 && (chip_info->hierarchy != SSP_SLAVE)) {
1635 dev_err(&pl022->adev->dev,
1636 "hierarchy is configured incorrectly\n");
1637 return -EINVAL;
1639 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1640 && (chip_info->com_mode != DMA_TRANSFER)
1641 && (chip_info->com_mode != POLLING_TRANSFER)) {
1642 dev_err(&pl022->adev->dev,
1643 "Communication mode is configured incorrectly\n");
1644 return -EINVAL;
1646 switch (chip_info->rx_lev_trig) {
1647 case SSP_RX_1_OR_MORE_ELEM:
1648 case SSP_RX_4_OR_MORE_ELEM:
1649 case SSP_RX_8_OR_MORE_ELEM:
1650 /* These are always OK, all variants can handle this */
1651 break;
1652 case SSP_RX_16_OR_MORE_ELEM:
1653 if (pl022->vendor->fifodepth < 16) {
1654 dev_err(&pl022->adev->dev,
1655 "RX FIFO Trigger Level is configured incorrectly\n");
1656 return -EINVAL;
1658 break;
1659 case SSP_RX_32_OR_MORE_ELEM:
1660 if (pl022->vendor->fifodepth < 32) {
1661 dev_err(&pl022->adev->dev,
1662 "RX FIFO Trigger Level is configured incorrectly\n");
1663 return -EINVAL;
1665 break;
1666 default:
1667 dev_err(&pl022->adev->dev,
1668 "RX FIFO Trigger Level is configured incorrectly\n");
1669 return -EINVAL;
1671 switch (chip_info->tx_lev_trig) {
1672 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1673 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1674 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1675 /* These are always OK, all variants can handle this */
1676 break;
1677 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1678 if (pl022->vendor->fifodepth < 16) {
1679 dev_err(&pl022->adev->dev,
1680 "TX FIFO Trigger Level is configured incorrectly\n");
1681 return -EINVAL;
1683 break;
1684 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1685 if (pl022->vendor->fifodepth < 32) {
1686 dev_err(&pl022->adev->dev,
1687 "TX FIFO Trigger Level is configured incorrectly\n");
1688 return -EINVAL;
1690 break;
1691 default:
1692 dev_err(&pl022->adev->dev,
1693 "TX FIFO Trigger Level is configured incorrectly\n");
1694 return -EINVAL;
1696 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1697 if ((chip_info->ctrl_len < SSP_BITS_4)
1698 || (chip_info->ctrl_len > SSP_BITS_32)) {
1699 dev_err(&pl022->adev->dev,
1700 "CTRL LEN is configured incorrectly\n");
1701 return -EINVAL;
1703 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1704 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1705 dev_err(&pl022->adev->dev,
1706 "Wait State is configured incorrectly\n");
1707 return -EINVAL;
1709 /* Half duplex is only available in the ST Micro version */
1710 if (pl022->vendor->extended_cr) {
1711 if ((chip_info->duplex !=
1712 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1713 && (chip_info->duplex !=
1714 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1715 dev_err(&pl022->adev->dev,
1716 "Microwire duplex mode is configured incorrectly\n");
1717 return -EINVAL;
1719 } else {
1720 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1721 dev_err(&pl022->adev->dev,
1722 "Microwire half duplex mode requested,"
1723 " but this is only available in the"
1724 " ST version of PL022\n");
1725 return -EINVAL;
1728 return 0;
1731 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1733 return rate / (cpsdvsr * (1 + scr));
1736 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737 ssp_clock_params * clk_freq)
1739 /* Lets calculate the frequency parameters */
1740 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742 best_scr = 0, tmp, found = 0;
1744 rate = clk_get_rate(pl022->clk);
1745 /* cpsdvscr = 2 & scr 0 */
1746 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747 /* cpsdvsr = 254 & scr = 255 */
1748 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1750 if (freq > max_tclk)
1751 dev_warn(&pl022->adev->dev,
1752 "Max speed that can be programmed is %d Hz, you requested %d\n",
1753 max_tclk, freq);
1755 if (freq < min_tclk) {
1756 dev_err(&pl022->adev->dev,
1757 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758 freq, min_tclk);
1759 return -EINVAL;
1763 * best_freq will give closest possible available rate (<= requested
1764 * freq) for all values of scr & cpsdvsr.
1766 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767 while (scr <= SCR_MAX) {
1768 tmp = spi_rate(rate, cpsdvsr, scr);
1770 if (tmp > freq) {
1771 /* we need lower freq */
1772 scr++;
1773 continue;
1777 * If found exact value, mark found and break.
1778 * If found more closer value, update and break.
1780 if (tmp > best_freq) {
1781 best_freq = tmp;
1782 best_cpsdvsr = cpsdvsr;
1783 best_scr = scr;
1785 if (tmp == freq)
1786 found = 1;
1789 * increased scr will give lower rates, which are not
1790 * required
1792 break;
1794 cpsdvsr += 2;
1795 scr = SCR_MIN;
1798 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799 freq);
1801 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802 clk_freq->scr = (u8) (best_scr & 0xFF);
1803 dev_dbg(&pl022->adev->dev,
1804 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805 freq, best_freq);
1806 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807 clk_freq->cpsdvsr, clk_freq->scr);
1809 return 0;
1813 * A piece of default chip info unless the platform
1814 * supplies it.
1816 static const struct pl022_config_chip pl022_default_chip_info = {
1817 .com_mode = POLLING_TRANSFER,
1818 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1819 .hierarchy = SSP_SLAVE,
1820 .slave_tx_disable = DO_NOT_DRIVE_TX,
1821 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823 .ctrl_len = SSP_BITS_8,
1824 .wait_state = SSP_MWIRE_WAIT_ZERO,
1825 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826 .cs_control = null_cs_control,
1830 * pl022_setup - setup function registered to SPI master framework
1831 * @spi: spi device which is requesting setup
1833 * This function is registered to the SPI framework for this SPI master
1834 * controller. If it is the first time when setup is called by this device,
1835 * this function will initialize the runtime state for this chip and save
1836 * the same in the device structure. Else it will update the runtime info
1837 * with the updated chip info. Nothing is really being written to the
1838 * controller hardware here, that is not done until the actual transfer
1839 * commence.
1841 static int pl022_setup(struct spi_device *spi)
1843 struct pl022_config_chip const *chip_info;
1844 struct pl022_config_chip chip_info_dt;
1845 struct chip_data *chip;
1846 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1847 int status = 0;
1848 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1849 unsigned int bits = spi->bits_per_word;
1850 u32 tmp;
1851 struct device_node *np = spi->dev.of_node;
1853 if (!spi->max_speed_hz)
1854 return -EINVAL;
1856 /* Get controller_state if one is supplied */
1857 chip = spi_get_ctldata(spi);
1859 if (chip == NULL) {
1860 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1861 if (!chip)
1862 return -ENOMEM;
1863 dev_dbg(&spi->dev,
1864 "allocated memory for controller's runtime state\n");
1867 /* Get controller data if one is supplied */
1868 chip_info = spi->controller_data;
1870 if (chip_info == NULL) {
1871 if (np) {
1872 chip_info_dt = pl022_default_chip_info;
1874 chip_info_dt.hierarchy = SSP_MASTER;
1875 of_property_read_u32(np, "pl022,interface",
1876 &chip_info_dt.iface);
1877 of_property_read_u32(np, "pl022,com-mode",
1878 &chip_info_dt.com_mode);
1879 of_property_read_u32(np, "pl022,rx-level-trig",
1880 &chip_info_dt.rx_lev_trig);
1881 of_property_read_u32(np, "pl022,tx-level-trig",
1882 &chip_info_dt.tx_lev_trig);
1883 of_property_read_u32(np, "pl022,ctrl-len",
1884 &chip_info_dt.ctrl_len);
1885 of_property_read_u32(np, "pl022,wait-state",
1886 &chip_info_dt.wait_state);
1887 of_property_read_u32(np, "pl022,duplex",
1888 &chip_info_dt.duplex);
1890 chip_info = &chip_info_dt;
1891 } else {
1892 chip_info = &pl022_default_chip_info;
1893 /* spi_board_info.controller_data not is supplied */
1894 dev_dbg(&spi->dev,
1895 "using default controller_data settings\n");
1897 } else
1898 dev_dbg(&spi->dev,
1899 "using user supplied controller_data settings\n");
1902 * We can override with custom divisors, else we use the board
1903 * frequency setting
1905 if ((0 == chip_info->clk_freq.cpsdvsr)
1906 && (0 == chip_info->clk_freq.scr)) {
1907 status = calculate_effective_freq(pl022,
1908 spi->max_speed_hz,
1909 &clk_freq);
1910 if (status < 0)
1911 goto err_config_params;
1912 } else {
1913 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1914 if ((clk_freq.cpsdvsr % 2) != 0)
1915 clk_freq.cpsdvsr =
1916 clk_freq.cpsdvsr - 1;
1918 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1919 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1920 status = -EINVAL;
1921 dev_err(&spi->dev,
1922 "cpsdvsr is configured incorrectly\n");
1923 goto err_config_params;
1926 status = verify_controller_parameters(pl022, chip_info);
1927 if (status) {
1928 dev_err(&spi->dev, "controller data is incorrect");
1929 goto err_config_params;
1932 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1933 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1935 /* Now set controller state based on controller data */
1936 chip->xfer_type = chip_info->com_mode;
1937 if (!chip_info->cs_control) {
1938 chip->cs_control = null_cs_control;
1939 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1940 dev_warn(&spi->dev,
1941 "invalid chip select\n");
1942 } else
1943 chip->cs_control = chip_info->cs_control;
1945 /* Check bits per word with vendor specific range */
1946 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1947 status = -ENOTSUPP;
1948 dev_err(&spi->dev, "illegal data size for this controller!\n");
1949 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1950 pl022->vendor->max_bpw);
1951 goto err_config_params;
1952 } else if (bits <= 8) {
1953 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1954 chip->n_bytes = 1;
1955 chip->read = READING_U8;
1956 chip->write = WRITING_U8;
1957 } else if (bits <= 16) {
1958 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1959 chip->n_bytes = 2;
1960 chip->read = READING_U16;
1961 chip->write = WRITING_U16;
1962 } else {
1963 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1964 chip->n_bytes = 4;
1965 chip->read = READING_U32;
1966 chip->write = WRITING_U32;
1969 /* Now Initialize all register settings required for this chip */
1970 chip->cr0 = 0;
1971 chip->cr1 = 0;
1972 chip->dmacr = 0;
1973 chip->cpsr = 0;
1974 if ((chip_info->com_mode == DMA_TRANSFER)
1975 && ((pl022->master_info)->enable_dma)) {
1976 chip->enable_dma = true;
1977 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1978 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1979 SSP_DMACR_MASK_RXDMAE, 0);
1980 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1981 SSP_DMACR_MASK_TXDMAE, 1);
1982 } else {
1983 chip->enable_dma = false;
1984 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1985 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1986 SSP_DMACR_MASK_RXDMAE, 0);
1987 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1988 SSP_DMACR_MASK_TXDMAE, 1);
1991 chip->cpsr = clk_freq.cpsdvsr;
1993 /* Special setup for the ST micro extended control registers */
1994 if (pl022->vendor->extended_cr) {
1995 u32 etx;
1997 if (pl022->vendor->pl023) {
1998 /* These bits are only in the PL023 */
1999 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2000 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2001 } else {
2002 /* These bits are in the PL022 but not PL023 */
2003 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2004 SSP_CR0_MASK_HALFDUP_ST, 5);
2005 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2006 SSP_CR0_MASK_CSS_ST, 16);
2007 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2008 SSP_CR0_MASK_FRF_ST, 21);
2009 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2010 SSP_CR1_MASK_MWAIT_ST, 6);
2012 SSP_WRITE_BITS(chip->cr0, bits - 1,
2013 SSP_CR0_MASK_DSS_ST, 0);
2015 if (spi->mode & SPI_LSB_FIRST) {
2016 tmp = SSP_RX_LSB;
2017 etx = SSP_TX_LSB;
2018 } else {
2019 tmp = SSP_RX_MSB;
2020 etx = SSP_TX_MSB;
2022 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2023 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2024 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2025 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2026 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2027 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2028 } else {
2029 SSP_WRITE_BITS(chip->cr0, bits - 1,
2030 SSP_CR0_MASK_DSS, 0);
2031 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2032 SSP_CR0_MASK_FRF, 4);
2035 /* Stuff that is common for all versions */
2036 if (spi->mode & SPI_CPOL)
2037 tmp = SSP_CLK_POL_IDLE_HIGH;
2038 else
2039 tmp = SSP_CLK_POL_IDLE_LOW;
2040 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2042 if (spi->mode & SPI_CPHA)
2043 tmp = SSP_CLK_SECOND_EDGE;
2044 else
2045 tmp = SSP_CLK_FIRST_EDGE;
2046 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2048 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2049 /* Loopback is available on all versions except PL023 */
2050 if (pl022->vendor->loopback) {
2051 if (spi->mode & SPI_LOOP)
2052 tmp = LOOPBACK_ENABLED;
2053 else
2054 tmp = LOOPBACK_DISABLED;
2055 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2057 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2058 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2059 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2062 /* Save controller_state */
2063 spi_set_ctldata(spi, chip);
2064 return status;
2065 err_config_params:
2066 spi_set_ctldata(spi, NULL);
2067 kfree(chip);
2068 return status;
2072 * pl022_cleanup - cleanup function registered to SPI master framework
2073 * @spi: spi device which is requesting cleanup
2075 * This function is registered to the SPI framework for this SPI master
2076 * controller. It will free the runtime state of chip.
2078 static void pl022_cleanup(struct spi_device *spi)
2080 struct chip_data *chip = spi_get_ctldata(spi);
2082 spi_set_ctldata(spi, NULL);
2083 kfree(chip);
2086 static struct pl022_ssp_controller *
2087 pl022_platform_data_dt_get(struct device *dev)
2089 struct device_node *np = dev->of_node;
2090 struct pl022_ssp_controller *pd;
2091 u32 tmp = 0;
2093 if (!np) {
2094 dev_err(dev, "no dt node defined\n");
2095 return NULL;
2098 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2099 if (!pd)
2100 return NULL;
2102 pd->bus_id = -1;
2103 pd->enable_dma = 1;
2104 of_property_read_u32(np, "num-cs", &tmp);
2105 pd->num_chipselect = tmp;
2106 of_property_read_u32(np, "pl022,autosuspend-delay",
2107 &pd->autosuspend_delay);
2108 pd->rt = of_property_read_bool(np, "pl022,rt");
2110 return pd;
2113 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2115 struct device *dev = &adev->dev;
2116 struct pl022_ssp_controller *platform_info =
2117 dev_get_platdata(&adev->dev);
2118 struct spi_master *master;
2119 struct pl022 *pl022 = NULL; /*Data for this driver */
2120 struct device_node *np = adev->dev.of_node;
2121 int status = 0, i, num_cs;
2123 dev_info(&adev->dev,
2124 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2125 if (!platform_info && IS_ENABLED(CONFIG_OF))
2126 platform_info = pl022_platform_data_dt_get(dev);
2128 if (!platform_info) {
2129 dev_err(dev, "probe: no platform data defined\n");
2130 return -ENODEV;
2133 if (platform_info->num_chipselect) {
2134 num_cs = platform_info->num_chipselect;
2135 } else {
2136 dev_err(dev, "probe: no chip select defined\n");
2137 return -ENODEV;
2140 /* Allocate master with space for data */
2141 master = spi_alloc_master(dev, sizeof(struct pl022));
2142 if (master == NULL) {
2143 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2144 return -ENOMEM;
2147 pl022 = spi_master_get_devdata(master);
2148 pl022->master = master;
2149 pl022->master_info = platform_info;
2150 pl022->adev = adev;
2151 pl022->vendor = id->data;
2152 pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2153 GFP_KERNEL);
2154 if (!pl022->chipselects) {
2155 status = -ENOMEM;
2156 goto err_no_mem;
2160 * Bus Number Which has been Assigned to this SSP controller
2161 * on this board
2163 master->bus_num = platform_info->bus_id;
2164 master->num_chipselect = num_cs;
2165 master->cleanup = pl022_cleanup;
2166 master->setup = pl022_setup;
2167 master->auto_runtime_pm = true;
2168 master->transfer_one_message = pl022_transfer_one_message;
2169 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2170 master->rt = platform_info->rt;
2171 master->dev.of_node = dev->of_node;
2173 if (platform_info->num_chipselect && platform_info->chipselects) {
2174 for (i = 0; i < num_cs; i++)
2175 pl022->chipselects[i] = platform_info->chipselects[i];
2176 } else if (pl022->vendor->internal_cs_ctrl) {
2177 for (i = 0; i < num_cs; i++)
2178 pl022->chipselects[i] = i;
2179 } else if (IS_ENABLED(CONFIG_OF)) {
2180 for (i = 0; i < num_cs; i++) {
2181 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2183 if (cs_gpio == -EPROBE_DEFER) {
2184 status = -EPROBE_DEFER;
2185 goto err_no_gpio;
2188 pl022->chipselects[i] = cs_gpio;
2190 if (gpio_is_valid(cs_gpio)) {
2191 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2192 dev_err(&adev->dev,
2193 "could not request %d gpio\n",
2194 cs_gpio);
2195 else if (gpio_direction_output(cs_gpio, 1))
2196 dev_err(&adev->dev,
2197 "could not set gpio %d as output\n",
2198 cs_gpio);
2204 * Supports mode 0-3, loopback, and active low CS. Transfers are
2205 * always MS bit first on the original pl022.
2207 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2208 if (pl022->vendor->extended_cr)
2209 master->mode_bits |= SPI_LSB_FIRST;
2211 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2213 status = amba_request_regions(adev, NULL);
2214 if (status)
2215 goto err_no_ioregion;
2217 pl022->phybase = adev->res.start;
2218 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2219 resource_size(&adev->res));
2220 if (pl022->virtbase == NULL) {
2221 status = -ENOMEM;
2222 goto err_no_ioremap;
2224 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2225 &adev->res.start, pl022->virtbase);
2227 pl022->clk = devm_clk_get(&adev->dev, NULL);
2228 if (IS_ERR(pl022->clk)) {
2229 status = PTR_ERR(pl022->clk);
2230 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2231 goto err_no_clk;
2234 status = clk_prepare_enable(pl022->clk);
2235 if (status) {
2236 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2237 goto err_no_clk_en;
2240 /* Initialize transfer pump */
2241 tasklet_init(&pl022->pump_transfers, pump_transfers,
2242 (unsigned long)pl022);
2244 /* Disable SSP */
2245 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2246 SSP_CR1(pl022->virtbase));
2247 load_ssp_default_config(pl022);
2249 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2250 0, "pl022", pl022);
2251 if (status < 0) {
2252 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2253 goto err_no_irq;
2256 /* Get DMA channels, try autoconfiguration first */
2257 status = pl022_dma_autoprobe(pl022);
2258 if (status == -EPROBE_DEFER) {
2259 dev_dbg(dev, "deferring probe to get DMA channel\n");
2260 goto err_no_irq;
2263 /* If that failed, use channels from platform_info */
2264 if (status == 0)
2265 platform_info->enable_dma = 1;
2266 else if (platform_info->enable_dma) {
2267 status = pl022_dma_probe(pl022);
2268 if (status != 0)
2269 platform_info->enable_dma = 0;
2272 /* Register with the SPI framework */
2273 amba_set_drvdata(adev, pl022);
2274 status = devm_spi_register_master(&adev->dev, master);
2275 if (status != 0) {
2276 dev_err(&adev->dev,
2277 "probe - problem registering spi master\n");
2278 goto err_spi_register;
2280 dev_dbg(dev, "probe succeeded\n");
2282 /* let runtime pm put suspend */
2283 if (platform_info->autosuspend_delay > 0) {
2284 dev_info(&adev->dev,
2285 "will use autosuspend for runtime pm, delay %dms\n",
2286 platform_info->autosuspend_delay);
2287 pm_runtime_set_autosuspend_delay(dev,
2288 platform_info->autosuspend_delay);
2289 pm_runtime_use_autosuspend(dev);
2291 pm_runtime_put(dev);
2293 return 0;
2295 err_spi_register:
2296 if (platform_info->enable_dma)
2297 pl022_dma_remove(pl022);
2298 err_no_irq:
2299 clk_disable_unprepare(pl022->clk);
2300 err_no_clk_en:
2301 err_no_clk:
2302 err_no_ioremap:
2303 amba_release_regions(adev);
2304 err_no_ioregion:
2305 err_no_gpio:
2306 err_no_mem:
2307 spi_master_put(master);
2308 return status;
2311 static int
2312 pl022_remove(struct amba_device *adev)
2314 struct pl022 *pl022 = amba_get_drvdata(adev);
2316 if (!pl022)
2317 return 0;
2320 * undo pm_runtime_put() in probe. I assume that we're not
2321 * accessing the primecell here.
2323 pm_runtime_get_noresume(&adev->dev);
2325 load_ssp_default_config(pl022);
2326 if (pl022->master_info->enable_dma)
2327 pl022_dma_remove(pl022);
2329 clk_disable_unprepare(pl022->clk);
2330 amba_release_regions(adev);
2331 tasklet_disable(&pl022->pump_transfers);
2332 return 0;
2335 #ifdef CONFIG_PM_SLEEP
2336 static int pl022_suspend(struct device *dev)
2338 struct pl022 *pl022 = dev_get_drvdata(dev);
2339 int ret;
2341 ret = spi_master_suspend(pl022->master);
2342 if (ret)
2343 return ret;
2345 ret = pm_runtime_force_suspend(dev);
2346 if (ret) {
2347 spi_master_resume(pl022->master);
2348 return ret;
2351 pinctrl_pm_select_sleep_state(dev);
2353 dev_dbg(dev, "suspended\n");
2354 return 0;
2357 static int pl022_resume(struct device *dev)
2359 struct pl022 *pl022 = dev_get_drvdata(dev);
2360 int ret;
2362 ret = pm_runtime_force_resume(dev);
2363 if (ret)
2364 dev_err(dev, "problem resuming\n");
2366 /* Start the queue running */
2367 ret = spi_master_resume(pl022->master);
2368 if (!ret)
2369 dev_dbg(dev, "resumed\n");
2371 return ret;
2373 #endif
2375 #ifdef CONFIG_PM
2376 static int pl022_runtime_suspend(struct device *dev)
2378 struct pl022 *pl022 = dev_get_drvdata(dev);
2380 clk_disable_unprepare(pl022->clk);
2381 pinctrl_pm_select_idle_state(dev);
2383 return 0;
2386 static int pl022_runtime_resume(struct device *dev)
2388 struct pl022 *pl022 = dev_get_drvdata(dev);
2390 pinctrl_pm_select_default_state(dev);
2391 clk_prepare_enable(pl022->clk);
2393 return 0;
2395 #endif
2397 static const struct dev_pm_ops pl022_dev_pm_ops = {
2398 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2399 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2402 static struct vendor_data vendor_arm = {
2403 .fifodepth = 8,
2404 .max_bpw = 16,
2405 .unidir = false,
2406 .extended_cr = false,
2407 .pl023 = false,
2408 .loopback = true,
2409 .internal_cs_ctrl = false,
2412 static struct vendor_data vendor_st = {
2413 .fifodepth = 32,
2414 .max_bpw = 32,
2415 .unidir = false,
2416 .extended_cr = true,
2417 .pl023 = false,
2418 .loopback = true,
2419 .internal_cs_ctrl = false,
2422 static struct vendor_data vendor_st_pl023 = {
2423 .fifodepth = 32,
2424 .max_bpw = 32,
2425 .unidir = false,
2426 .extended_cr = true,
2427 .pl023 = true,
2428 .loopback = false,
2429 .internal_cs_ctrl = false,
2432 static struct vendor_data vendor_lsi = {
2433 .fifodepth = 8,
2434 .max_bpw = 16,
2435 .unidir = false,
2436 .extended_cr = false,
2437 .pl023 = false,
2438 .loopback = true,
2439 .internal_cs_ctrl = true,
2442 static const struct amba_id pl022_ids[] = {
2445 * ARM PL022 variant, this has a 16bit wide
2446 * and 8 locations deep TX/RX FIFO
2448 .id = 0x00041022,
2449 .mask = 0x000fffff,
2450 .data = &vendor_arm,
2454 * ST Micro derivative, this has 32bit wide
2455 * and 32 locations deep TX/RX FIFO
2457 .id = 0x01080022,
2458 .mask = 0xffffffff,
2459 .data = &vendor_st,
2463 * ST-Ericsson derivative "PL023" (this is not
2464 * an official ARM number), this is a PL022 SSP block
2465 * stripped to SPI mode only, it has 32bit wide
2466 * and 32 locations deep TX/RX FIFO but no extended
2467 * CR0/CR1 register
2469 .id = 0x00080023,
2470 .mask = 0xffffffff,
2471 .data = &vendor_st_pl023,
2475 * PL022 variant that has a chip select control register whih
2476 * allows control of 5 output signals nCS[0:4].
2478 .id = 0x000b6022,
2479 .mask = 0x000fffff,
2480 .data = &vendor_lsi,
2482 { 0, 0 },
2485 MODULE_DEVICE_TABLE(amba, pl022_ids);
2487 static struct amba_driver pl022_driver = {
2488 .drv = {
2489 .name = "ssp-pl022",
2490 .pm = &pl022_dev_pm_ops,
2492 .id_table = pl022_ids,
2493 .probe = pl022_probe,
2494 .remove = pl022_remove,
2497 static int __init pl022_init(void)
2499 return amba_driver_register(&pl022_driver);
2501 subsys_initcall(pl022_init);
2503 static void __exit pl022_exit(void)
2505 amba_driver_unregister(&pl022_driver);
2507 module_exit(pl022_exit);
2509 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2510 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2511 MODULE_LICENSE("GPL");