treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / mm / migrate.c
blobb1092876e537cdce83387ab2f6c0c002f4abc1bc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
58 #include "internal.h"
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 int migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
73 lru_add_drain_all();
75 return 0;
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
81 lru_add_drain();
83 return 0;
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
88 struct address_space *mapping;
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
137 return 0;
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
150 struct address_space *mapping;
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
169 void putback_movable_pages(struct list_head *l)
171 struct page *page;
172 struct page *page2;
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
179 list_del(&page->lru);
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_cache(page), -hpage_nr_pages(page));
197 putback_lru_page(page);
203 * Restore a potential migration pte to a working pte entry
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
233 #endif
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
241 * Recheck VMA as permissions can change since migration started
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
247 if (unlikely(is_zone_device_page(new))) {
248 if (is_device_private_page(new)) {
249 entry = make_device_private_entry(new, pte_write(pte));
250 pte = swp_entry_to_pte(entry);
254 #ifdef CONFIG_HUGETLB_PAGE
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
263 } else
264 #endif
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 return true;
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 spinlock_t *ptl)
311 pte_t pte;
312 swp_entry_t entry;
313 struct page *page;
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
324 page = migration_entry_to_page(entry);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page);
335 return;
336 out:
337 pte_unmap_unlock(ptep, ptl);
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
358 spinlock_t *ptl;
359 struct page *page;
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
368 put_and_wait_on_page_locked(page);
369 return;
370 unlock:
371 spin_unlock(ptl);
373 #endif
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
377 int expected_count = 1;
380 * Device public or private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
383 expected_count += is_device_private_page(page);
384 if (mapping)
385 expected_count += hpage_nr_pages(page) + page_has_private(page);
387 return expected_count;
391 * Replace the page in the mapping.
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
403 int dirty;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
406 if (!mapping) {
407 /* Anonymous page without mapping */
408 if (page_count(page) != expected_count)
409 return -EAGAIN;
411 /* No turning back from here */
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 if (PageSwapBacked(page))
415 __SetPageSwapBacked(newpage);
417 return MIGRATEPAGE_SUCCESS;
420 oldzone = page_zone(page);
421 newzone = page_zone(newpage);
423 xas_lock_irq(&xas);
424 if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 xas_unlock_irq(&xas);
426 return -EAGAIN;
429 if (!page_ref_freeze(page, expected_count)) {
430 xas_unlock_irq(&xas);
431 return -EAGAIN;
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
438 newpage->index = page->index;
439 newpage->mapping = page->mapping;
440 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441 if (PageSwapBacked(page)) {
442 __SetPageSwapBacked(newpage);
443 if (PageSwapCache(page)) {
444 SetPageSwapCache(newpage);
445 set_page_private(newpage, page_private(page));
447 } else {
448 VM_BUG_ON_PAGE(PageSwapCache(page), page);
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty = PageDirty(page);
453 if (dirty) {
454 ClearPageDirty(page);
455 SetPageDirty(newpage);
458 xas_store(&xas, newpage);
459 if (PageTransHuge(page)) {
460 int i;
462 for (i = 1; i < HPAGE_PMD_NR; i++) {
463 xas_next(&xas);
464 xas_store(&xas, newpage);
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
473 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
475 xas_unlock(&xas);
476 /* Leave irq disabled to prevent preemption while updating stats */
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
488 if (newzone != oldzone) {
489 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491 if (PageSwapBacked(page) && !PageSwapCache(page)) {
492 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
495 if (dirty && mapping_cap_account_dirty(mapping)) {
496 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
502 local_irq_enable();
504 return MIGRATEPAGE_SUCCESS;
506 EXPORT_SYMBOL(migrate_page_move_mapping);
509 * The expected number of remaining references is the same as that
510 * of migrate_page_move_mapping().
512 int migrate_huge_page_move_mapping(struct address_space *mapping,
513 struct page *newpage, struct page *page)
515 XA_STATE(xas, &mapping->i_pages, page_index(page));
516 int expected_count;
518 xas_lock_irq(&xas);
519 expected_count = 2 + page_has_private(page);
520 if (page_count(page) != expected_count || xas_load(&xas) != page) {
521 xas_unlock_irq(&xas);
522 return -EAGAIN;
525 if (!page_ref_freeze(page, expected_count)) {
526 xas_unlock_irq(&xas);
527 return -EAGAIN;
530 newpage->index = page->index;
531 newpage->mapping = page->mapping;
533 get_page(newpage);
535 xas_store(&xas, newpage);
537 page_ref_unfreeze(page, expected_count - 1);
539 xas_unlock_irq(&xas);
541 return MIGRATEPAGE_SUCCESS;
545 * Gigantic pages are so large that we do not guarantee that page++ pointer
546 * arithmetic will work across the entire page. We need something more
547 * specialized.
549 static void __copy_gigantic_page(struct page *dst, struct page *src,
550 int nr_pages)
552 int i;
553 struct page *dst_base = dst;
554 struct page *src_base = src;
556 for (i = 0; i < nr_pages; ) {
557 cond_resched();
558 copy_highpage(dst, src);
560 i++;
561 dst = mem_map_next(dst, dst_base, i);
562 src = mem_map_next(src, src_base, i);
566 static void copy_huge_page(struct page *dst, struct page *src)
568 int i;
569 int nr_pages;
571 if (PageHuge(src)) {
572 /* hugetlbfs page */
573 struct hstate *h = page_hstate(src);
574 nr_pages = pages_per_huge_page(h);
576 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577 __copy_gigantic_page(dst, src, nr_pages);
578 return;
580 } else {
581 /* thp page */
582 BUG_ON(!PageTransHuge(src));
583 nr_pages = hpage_nr_pages(src);
586 for (i = 0; i < nr_pages; i++) {
587 cond_resched();
588 copy_highpage(dst + i, src + i);
593 * Copy the page to its new location
595 void migrate_page_states(struct page *newpage, struct page *page)
597 int cpupid;
599 if (PageError(page))
600 SetPageError(newpage);
601 if (PageReferenced(page))
602 SetPageReferenced(newpage);
603 if (PageUptodate(page))
604 SetPageUptodate(newpage);
605 if (TestClearPageActive(page)) {
606 VM_BUG_ON_PAGE(PageUnevictable(page), page);
607 SetPageActive(newpage);
608 } else if (TestClearPageUnevictable(page))
609 SetPageUnevictable(newpage);
610 if (PageWorkingset(page))
611 SetPageWorkingset(newpage);
612 if (PageChecked(page))
613 SetPageChecked(newpage);
614 if (PageMappedToDisk(page))
615 SetPageMappedToDisk(newpage);
617 /* Move dirty on pages not done by migrate_page_move_mapping() */
618 if (PageDirty(page))
619 SetPageDirty(newpage);
621 if (page_is_young(page))
622 set_page_young(newpage);
623 if (page_is_idle(page))
624 set_page_idle(newpage);
627 * Copy NUMA information to the new page, to prevent over-eager
628 * future migrations of this same page.
630 cpupid = page_cpupid_xchg_last(page, -1);
631 page_cpupid_xchg_last(newpage, cpupid);
633 ksm_migrate_page(newpage, page);
635 * Please do not reorder this without considering how mm/ksm.c's
636 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
638 if (PageSwapCache(page))
639 ClearPageSwapCache(page);
640 ClearPagePrivate(page);
641 set_page_private(page, 0);
644 * If any waiters have accumulated on the new page then
645 * wake them up.
647 if (PageWriteback(newpage))
648 end_page_writeback(newpage);
650 copy_page_owner(page, newpage);
652 mem_cgroup_migrate(page, newpage);
654 EXPORT_SYMBOL(migrate_page_states);
656 void migrate_page_copy(struct page *newpage, struct page *page)
658 if (PageHuge(page) || PageTransHuge(page))
659 copy_huge_page(newpage, page);
660 else
661 copy_highpage(newpage, page);
663 migrate_page_states(newpage, page);
665 EXPORT_SYMBOL(migrate_page_copy);
667 /************************************************************
668 * Migration functions
669 ***********************************************************/
672 * Common logic to directly migrate a single LRU page suitable for
673 * pages that do not use PagePrivate/PagePrivate2.
675 * Pages are locked upon entry and exit.
677 int migrate_page(struct address_space *mapping,
678 struct page *newpage, struct page *page,
679 enum migrate_mode mode)
681 int rc;
683 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
685 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
687 if (rc != MIGRATEPAGE_SUCCESS)
688 return rc;
690 if (mode != MIGRATE_SYNC_NO_COPY)
691 migrate_page_copy(newpage, page);
692 else
693 migrate_page_states(newpage, page);
694 return MIGRATEPAGE_SUCCESS;
696 EXPORT_SYMBOL(migrate_page);
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701 enum migrate_mode mode)
703 struct buffer_head *bh = head;
705 /* Simple case, sync compaction */
706 if (mode != MIGRATE_ASYNC) {
707 do {
708 lock_buffer(bh);
709 bh = bh->b_this_page;
711 } while (bh != head);
713 return true;
716 /* async case, we cannot block on lock_buffer so use trylock_buffer */
717 do {
718 if (!trylock_buffer(bh)) {
720 * We failed to lock the buffer and cannot stall in
721 * async migration. Release the taken locks
723 struct buffer_head *failed_bh = bh;
724 bh = head;
725 while (bh != failed_bh) {
726 unlock_buffer(bh);
727 bh = bh->b_this_page;
729 return false;
732 bh = bh->b_this_page;
733 } while (bh != head);
734 return true;
737 static int __buffer_migrate_page(struct address_space *mapping,
738 struct page *newpage, struct page *page, enum migrate_mode mode,
739 bool check_refs)
741 struct buffer_head *bh, *head;
742 int rc;
743 int expected_count;
745 if (!page_has_buffers(page))
746 return migrate_page(mapping, newpage, page, mode);
748 /* Check whether page does not have extra refs before we do more work */
749 expected_count = expected_page_refs(mapping, page);
750 if (page_count(page) != expected_count)
751 return -EAGAIN;
753 head = page_buffers(page);
754 if (!buffer_migrate_lock_buffers(head, mode))
755 return -EAGAIN;
757 if (check_refs) {
758 bool busy;
759 bool invalidated = false;
761 recheck_buffers:
762 busy = false;
763 spin_lock(&mapping->private_lock);
764 bh = head;
765 do {
766 if (atomic_read(&bh->b_count)) {
767 busy = true;
768 break;
770 bh = bh->b_this_page;
771 } while (bh != head);
772 if (busy) {
773 if (invalidated) {
774 rc = -EAGAIN;
775 goto unlock_buffers;
777 spin_unlock(&mapping->private_lock);
778 invalidate_bh_lrus();
779 invalidated = true;
780 goto recheck_buffers;
784 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785 if (rc != MIGRATEPAGE_SUCCESS)
786 goto unlock_buffers;
788 ClearPagePrivate(page);
789 set_page_private(newpage, page_private(page));
790 set_page_private(page, 0);
791 put_page(page);
792 get_page(newpage);
794 bh = head;
795 do {
796 set_bh_page(bh, newpage, bh_offset(bh));
797 bh = bh->b_this_page;
799 } while (bh != head);
801 SetPagePrivate(newpage);
803 if (mode != MIGRATE_SYNC_NO_COPY)
804 migrate_page_copy(newpage, page);
805 else
806 migrate_page_states(newpage, page);
808 rc = MIGRATEPAGE_SUCCESS;
809 unlock_buffers:
810 if (check_refs)
811 spin_unlock(&mapping->private_lock);
812 bh = head;
813 do {
814 unlock_buffer(bh);
815 bh = bh->b_this_page;
817 } while (bh != head);
819 return rc;
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
827 int buffer_migrate_page(struct address_space *mapping,
828 struct page *newpage, struct page *page, enum migrate_mode mode)
830 return __buffer_migrate_page(mapping, newpage, page, mode, false);
832 EXPORT_SYMBOL(buffer_migrate_page);
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
843 return __buffer_migrate_page(mapping, newpage, page, mode, true);
845 #endif
848 * Writeback a page to clean the dirty state
850 static int writeout(struct address_space *mapping, struct page *page)
852 struct writeback_control wbc = {
853 .sync_mode = WB_SYNC_NONE,
854 .nr_to_write = 1,
855 .range_start = 0,
856 .range_end = LLONG_MAX,
857 .for_reclaim = 1
859 int rc;
861 if (!mapping->a_ops->writepage)
862 /* No write method for the address space */
863 return -EINVAL;
865 if (!clear_page_dirty_for_io(page))
866 /* Someone else already triggered a write */
867 return -EAGAIN;
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
875 * be successful.
877 remove_migration_ptes(page, page, false);
879 rc = mapping->a_ops->writepage(page, &wbc);
881 if (rc != AOP_WRITEPAGE_ACTIVATE)
882 /* unlocked. Relock */
883 lock_page(page);
885 return (rc < 0) ? -EIO : -EAGAIN;
889 * Default handling if a filesystem does not provide a migration function.
891 static int fallback_migrate_page(struct address_space *mapping,
892 struct page *newpage, struct page *page, enum migrate_mode mode)
894 if (PageDirty(page)) {
895 /* Only writeback pages in full synchronous migration */
896 switch (mode) {
897 case MIGRATE_SYNC:
898 case MIGRATE_SYNC_NO_COPY:
899 break;
900 default:
901 return -EBUSY;
903 return writeout(mapping, page);
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
910 if (page_has_private(page) &&
911 !try_to_release_page(page, GFP_KERNEL))
912 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
914 return migrate_page(mapping, newpage, page, mode);
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
921 * The new page will have replaced the old page if this function
922 * is successful.
924 * Return value:
925 * < 0 - error code
926 * MIGRATEPAGE_SUCCESS - success
928 static int move_to_new_page(struct page *newpage, struct page *page,
929 enum migrate_mode mode)
931 struct address_space *mapping;
932 int rc = -EAGAIN;
933 bool is_lru = !__PageMovable(page);
935 VM_BUG_ON_PAGE(!PageLocked(page), page);
936 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
938 mapping = page_mapping(page);
940 if (likely(is_lru)) {
941 if (!mapping)
942 rc = migrate_page(mapping, newpage, page, mode);
943 else if (mapping->a_ops->migratepage)
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
951 rc = mapping->a_ops->migratepage(mapping, newpage,
952 page, mode);
953 else
954 rc = fallback_migrate_page(mapping, newpage,
955 page, mode);
956 } else {
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
961 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 if (!PageMovable(page)) {
963 rc = MIGRATEPAGE_SUCCESS;
964 __ClearPageIsolated(page);
965 goto out;
968 rc = mapping->a_ops->migratepage(mapping, newpage,
969 page, mode);
970 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 !PageIsolated(page));
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
978 if (rc == MIGRATEPAGE_SUCCESS) {
979 if (__PageMovable(page)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
986 __ClearPageIsolated(page);
990 * Anonymous and movable page->mapping will be cleared by
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
994 if (!PageMappingFlags(page))
995 page->mapping = NULL;
997 if (likely(!is_zone_device_page(newpage)))
998 flush_dcache_page(newpage);
1001 out:
1002 return rc;
1005 static int __unmap_and_move(struct page *page, struct page *newpage,
1006 int force, enum migrate_mode mode)
1008 int rc = -EAGAIN;
1009 int page_was_mapped = 0;
1010 struct anon_vma *anon_vma = NULL;
1011 bool is_lru = !__PageMovable(page);
1013 if (!trylock_page(page)) {
1014 if (!force || mode == MIGRATE_ASYNC)
1015 goto out;
1018 * It's not safe for direct compaction to call lock_page.
1019 * For example, during page readahead pages are added locked
1020 * to the LRU. Later, when the IO completes the pages are
1021 * marked uptodate and unlocked. However, the queueing
1022 * could be merging multiple pages for one bio (e.g.
1023 * mpage_readpages). If an allocation happens for the
1024 * second or third page, the process can end up locking
1025 * the same page twice and deadlocking. Rather than
1026 * trying to be clever about what pages can be locked,
1027 * avoid the use of lock_page for direct compaction
1028 * altogether.
1030 if (current->flags & PF_MEMALLOC)
1031 goto out;
1033 lock_page(page);
1036 if (PageWriteback(page)) {
1038 * Only in the case of a full synchronous migration is it
1039 * necessary to wait for PageWriteback. In the async case,
1040 * the retry loop is too short and in the sync-light case,
1041 * the overhead of stalling is too much
1043 switch (mode) {
1044 case MIGRATE_SYNC:
1045 case MIGRATE_SYNC_NO_COPY:
1046 break;
1047 default:
1048 rc = -EBUSY;
1049 goto out_unlock;
1051 if (!force)
1052 goto out_unlock;
1053 wait_on_page_writeback(page);
1057 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058 * we cannot notice that anon_vma is freed while we migrates a page.
1059 * This get_anon_vma() delays freeing anon_vma pointer until the end
1060 * of migration. File cache pages are no problem because of page_lock()
1061 * File Caches may use write_page() or lock_page() in migration, then,
1062 * just care Anon page here.
1064 * Only page_get_anon_vma() understands the subtleties of
1065 * getting a hold on an anon_vma from outside one of its mms.
1066 * But if we cannot get anon_vma, then we won't need it anyway,
1067 * because that implies that the anon page is no longer mapped
1068 * (and cannot be remapped so long as we hold the page lock).
1070 if (PageAnon(page) && !PageKsm(page))
1071 anon_vma = page_get_anon_vma(page);
1074 * Block others from accessing the new page when we get around to
1075 * establishing additional references. We are usually the only one
1076 * holding a reference to newpage at this point. We used to have a BUG
1077 * here if trylock_page(newpage) fails, but would like to allow for
1078 * cases where there might be a race with the previous use of newpage.
1079 * This is much like races on refcount of oldpage: just don't BUG().
1081 if (unlikely(!trylock_page(newpage)))
1082 goto out_unlock;
1084 if (unlikely(!is_lru)) {
1085 rc = move_to_new_page(newpage, page, mode);
1086 goto out_unlock_both;
1090 * Corner case handling:
1091 * 1. When a new swap-cache page is read into, it is added to the LRU
1092 * and treated as swapcache but it has no rmap yet.
1093 * Calling try_to_unmap() against a page->mapping==NULL page will
1094 * trigger a BUG. So handle it here.
1095 * 2. An orphaned page (see truncate_complete_page) might have
1096 * fs-private metadata. The page can be picked up due to memory
1097 * offlining. Everywhere else except page reclaim, the page is
1098 * invisible to the vm, so the page can not be migrated. So try to
1099 * free the metadata, so the page can be freed.
1101 if (!page->mapping) {
1102 VM_BUG_ON_PAGE(PageAnon(page), page);
1103 if (page_has_private(page)) {
1104 try_to_free_buffers(page);
1105 goto out_unlock_both;
1107 } else if (page_mapped(page)) {
1108 /* Establish migration ptes */
1109 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110 page);
1111 try_to_unmap(page,
1112 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113 page_was_mapped = 1;
1116 if (!page_mapped(page))
1117 rc = move_to_new_page(newpage, page, mode);
1119 if (page_was_mapped)
1120 remove_migration_ptes(page,
1121 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1123 out_unlock_both:
1124 unlock_page(newpage);
1125 out_unlock:
1126 /* Drop an anon_vma reference if we took one */
1127 if (anon_vma)
1128 put_anon_vma(anon_vma);
1129 unlock_page(page);
1130 out:
1132 * If migration is successful, decrease refcount of the newpage
1133 * which will not free the page because new page owner increased
1134 * refcounter. As well, if it is LRU page, add the page to LRU
1135 * list in here. Use the old state of the isolated source page to
1136 * determine if we migrated a LRU page. newpage was already unlocked
1137 * and possibly modified by its owner - don't rely on the page
1138 * state.
1140 if (rc == MIGRATEPAGE_SUCCESS) {
1141 if (unlikely(!is_lru))
1142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1147 return rc;
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 * around it.
1154 #if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
1171 int rc = MIGRATEPAGE_SUCCESS;
1172 struct page *newpage = NULL;
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOMEM;
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
1181 if (unlikely(__PageMovable(page))) {
1182 lock_page(page);
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1185 unlock_page(page);
1187 goto out;
1190 newpage = get_new_page(page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1194 rc = __unmap_and_move(page, newpage, force, mode);
1195 if (rc == MIGRATEPAGE_SUCCESS)
1196 set_page_owner_migrate_reason(newpage, reason);
1198 out:
1199 if (rc != -EAGAIN) {
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kept its references and be restored.
1205 list_del(&page->lru);
1208 * Compaction can migrate also non-LRU pages which are
1209 * not accounted to NR_ISOLATED_*. They can be recognized
1210 * as __PageMovable
1212 if (likely(!__PageMovable(page)))
1213 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214 page_is_file_cache(page), -hpage_nr_pages(page));
1218 * If migration is successful, releases reference grabbed during
1219 * isolation. Otherwise, restore the page to right list unless
1220 * we want to retry.
1222 if (rc == MIGRATEPAGE_SUCCESS) {
1223 put_page(page);
1224 if (reason == MR_MEMORY_FAILURE) {
1226 * Set PG_HWPoison on just freed page
1227 * intentionally. Although it's rather weird,
1228 * it's how HWPoison flag works at the moment.
1230 if (set_hwpoison_free_buddy_page(page))
1231 num_poisoned_pages_inc();
1233 } else {
1234 if (rc != -EAGAIN) {
1235 if (likely(!__PageMovable(page))) {
1236 putback_lru_page(page);
1237 goto put_new;
1240 lock_page(page);
1241 if (PageMovable(page))
1242 putback_movable_page(page);
1243 else
1244 __ClearPageIsolated(page);
1245 unlock_page(page);
1246 put_page(page);
1248 put_new:
1249 if (put_new_page)
1250 put_new_page(newpage, private);
1251 else
1252 put_page(newpage);
1255 return rc;
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 free_page_t put_new_page, unsigned long private,
1278 struct page *hpage, int force,
1279 enum migrate_mode mode, int reason)
1281 int rc = -EAGAIN;
1282 int page_was_mapped = 0;
1283 struct page *new_hpage;
1284 struct anon_vma *anon_vma = NULL;
1287 * Migratability of hugepages depends on architectures and their size.
1288 * This check is necessary because some callers of hugepage migration
1289 * like soft offline and memory hotremove don't walk through page
1290 * tables or check whether the hugepage is pmd-based or not before
1291 * kicking migration.
1293 if (!hugepage_migration_supported(page_hstate(hpage))) {
1294 putback_active_hugepage(hpage);
1295 return -ENOSYS;
1298 new_hpage = get_new_page(hpage, private);
1299 if (!new_hpage)
1300 return -ENOMEM;
1302 if (!trylock_page(hpage)) {
1303 if (!force)
1304 goto out;
1305 switch (mode) {
1306 case MIGRATE_SYNC:
1307 case MIGRATE_SYNC_NO_COPY:
1308 break;
1309 default:
1310 goto out;
1312 lock_page(hpage);
1316 * Check for pages which are in the process of being freed. Without
1317 * page_mapping() set, hugetlbfs specific move page routine will not
1318 * be called and we could leak usage counts for subpools.
1320 if (page_private(hpage) && !page_mapping(hpage)) {
1321 rc = -EBUSY;
1322 goto out_unlock;
1325 if (PageAnon(hpage))
1326 anon_vma = page_get_anon_vma(hpage);
1328 if (unlikely(!trylock_page(new_hpage)))
1329 goto put_anon;
1331 if (page_mapped(hpage)) {
1332 try_to_unmap(hpage,
1333 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334 page_was_mapped = 1;
1337 if (!page_mapped(hpage))
1338 rc = move_to_new_page(new_hpage, hpage, mode);
1340 if (page_was_mapped)
1341 remove_migration_ptes(hpage,
1342 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1344 unlock_page(new_hpage);
1346 put_anon:
1347 if (anon_vma)
1348 put_anon_vma(anon_vma);
1350 if (rc == MIGRATEPAGE_SUCCESS) {
1351 move_hugetlb_state(hpage, new_hpage, reason);
1352 put_new_page = NULL;
1355 out_unlock:
1356 unlock_page(hpage);
1357 out:
1358 if (rc != -EAGAIN)
1359 putback_active_hugepage(hpage);
1362 * If migration was not successful and there's a freeing callback, use
1363 * it. Otherwise, put_page() will drop the reference grabbed during
1364 * isolation.
1366 if (put_new_page)
1367 put_new_page(new_hpage, private);
1368 else
1369 putback_active_hugepage(new_hpage);
1371 return rc;
1375 * migrate_pages - migrate the pages specified in a list, to the free pages
1376 * supplied as the target for the page migration
1378 * @from: The list of pages to be migrated.
1379 * @get_new_page: The function used to allocate free pages to be used
1380 * as the target of the page migration.
1381 * @put_new_page: The function used to free target pages if migration
1382 * fails, or NULL if no special handling is necessary.
1383 * @private: Private data to be passed on to get_new_page()
1384 * @mode: The migration mode that specifies the constraints for
1385 * page migration, if any.
1386 * @reason: The reason for page migration.
1388 * The function returns after 10 attempts or if no pages are movable any more
1389 * because the list has become empty or no retryable pages exist any more.
1390 * The caller should call putback_movable_pages() to return pages to the LRU
1391 * or free list only if ret != 0.
1393 * Returns the number of pages that were not migrated, or an error code.
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396 free_page_t put_new_page, unsigned long private,
1397 enum migrate_mode mode, int reason)
1399 int retry = 1;
1400 int nr_failed = 0;
1401 int nr_succeeded = 0;
1402 int pass = 0;
1403 struct page *page;
1404 struct page *page2;
1405 int swapwrite = current->flags & PF_SWAPWRITE;
1406 int rc;
1408 if (!swapwrite)
1409 current->flags |= PF_SWAPWRITE;
1411 for(pass = 0; pass < 10 && retry; pass++) {
1412 retry = 0;
1414 list_for_each_entry_safe(page, page2, from, lru) {
1415 retry:
1416 cond_resched();
1418 if (PageHuge(page))
1419 rc = unmap_and_move_huge_page(get_new_page,
1420 put_new_page, private, page,
1421 pass > 2, mode, reason);
1422 else
1423 rc = unmap_and_move(get_new_page, put_new_page,
1424 private, page, pass > 2, mode,
1425 reason);
1427 switch(rc) {
1428 case -ENOMEM:
1430 * THP migration might be unsupported or the
1431 * allocation could've failed so we should
1432 * retry on the same page with the THP split
1433 * to base pages.
1435 * Head page is retried immediately and tail
1436 * pages are added to the tail of the list so
1437 * we encounter them after the rest of the list
1438 * is processed.
1440 if (PageTransHuge(page) && !PageHuge(page)) {
1441 lock_page(page);
1442 rc = split_huge_page_to_list(page, from);
1443 unlock_page(page);
1444 if (!rc) {
1445 list_safe_reset_next(page, page2, lru);
1446 goto retry;
1449 nr_failed++;
1450 goto out;
1451 case -EAGAIN:
1452 retry++;
1453 break;
1454 case MIGRATEPAGE_SUCCESS:
1455 nr_succeeded++;
1456 break;
1457 default:
1459 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460 * unlike -EAGAIN case, the failed page is
1461 * removed from migration page list and not
1462 * retried in the next outer loop.
1464 nr_failed++;
1465 break;
1469 nr_failed += retry;
1470 rc = nr_failed;
1471 out:
1472 if (nr_succeeded)
1473 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474 if (nr_failed)
1475 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1478 if (!swapwrite)
1479 current->flags &= ~PF_SWAPWRITE;
1481 return rc;
1484 #ifdef CONFIG_NUMA
1486 static int store_status(int __user *status, int start, int value, int nr)
1488 while (nr-- > 0) {
1489 if (put_user(value, status + start))
1490 return -EFAULT;
1491 start++;
1494 return 0;
1497 static int do_move_pages_to_node(struct mm_struct *mm,
1498 struct list_head *pagelist, int node)
1500 int err;
1502 if (list_empty(pagelist))
1503 return 0;
1505 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506 MIGRATE_SYNC, MR_SYSCALL);
1507 if (err)
1508 putback_movable_pages(pagelist);
1509 return err;
1513 * Resolves the given address to a struct page, isolates it from the LRU and
1514 * puts it to the given pagelist.
1515 * Returns:
1516 * errno - if the page cannot be found/isolated
1517 * 0 - when it doesn't have to be migrated because it is already on the
1518 * target node
1519 * 1 - when it has been queued
1521 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522 int node, struct list_head *pagelist, bool migrate_all)
1524 struct vm_area_struct *vma;
1525 struct page *page;
1526 unsigned int follflags;
1527 int err;
1529 down_read(&mm->mmap_sem);
1530 err = -EFAULT;
1531 vma = find_vma(mm, addr);
1532 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533 goto out;
1535 /* FOLL_DUMP to ignore special (like zero) pages */
1536 follflags = FOLL_GET | FOLL_DUMP;
1537 page = follow_page(vma, addr, follflags);
1539 err = PTR_ERR(page);
1540 if (IS_ERR(page))
1541 goto out;
1543 err = -ENOENT;
1544 if (!page)
1545 goto out;
1547 err = 0;
1548 if (page_to_nid(page) == node)
1549 goto out_putpage;
1551 err = -EACCES;
1552 if (page_mapcount(page) > 1 && !migrate_all)
1553 goto out_putpage;
1555 if (PageHuge(page)) {
1556 if (PageHead(page)) {
1557 isolate_huge_page(page, pagelist);
1558 err = 1;
1560 } else {
1561 struct page *head;
1563 head = compound_head(page);
1564 err = isolate_lru_page(head);
1565 if (err)
1566 goto out_putpage;
1568 err = 1;
1569 list_add_tail(&head->lru, pagelist);
1570 mod_node_page_state(page_pgdat(head),
1571 NR_ISOLATED_ANON + page_is_file_cache(head),
1572 hpage_nr_pages(head));
1574 out_putpage:
1576 * Either remove the duplicate refcount from
1577 * isolate_lru_page() or drop the page ref if it was
1578 * not isolated.
1580 put_page(page);
1581 out:
1582 up_read(&mm->mmap_sem);
1583 return err;
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 unsigned long nr_pages,
1592 const void __user * __user *pages,
1593 const int __user *nodes,
1594 int __user *status, int flags)
1596 int current_node = NUMA_NO_NODE;
1597 LIST_HEAD(pagelist);
1598 int start, i;
1599 int err = 0, err1;
1601 migrate_prep();
1603 for (i = start = 0; i < nr_pages; i++) {
1604 const void __user *p;
1605 unsigned long addr;
1606 int node;
1608 err = -EFAULT;
1609 if (get_user(p, pages + i))
1610 goto out_flush;
1611 if (get_user(node, nodes + i))
1612 goto out_flush;
1613 addr = (unsigned long)untagged_addr(p);
1615 err = -ENODEV;
1616 if (node < 0 || node >= MAX_NUMNODES)
1617 goto out_flush;
1618 if (!node_state(node, N_MEMORY))
1619 goto out_flush;
1621 err = -EACCES;
1622 if (!node_isset(node, task_nodes))
1623 goto out_flush;
1625 if (current_node == NUMA_NO_NODE) {
1626 current_node = node;
1627 start = i;
1628 } else if (node != current_node) {
1629 err = do_move_pages_to_node(mm, &pagelist, current_node);
1630 if (err) {
1632 * Positive err means the number of failed
1633 * pages to migrate. Since we are going to
1634 * abort and return the number of non-migrated
1635 * pages, so need to incude the rest of the
1636 * nr_pages that have not been attempted as
1637 * well.
1639 if (err > 0)
1640 err += nr_pages - i - 1;
1641 goto out;
1643 err = store_status(status, start, current_node, i - start);
1644 if (err)
1645 goto out;
1646 start = i;
1647 current_node = node;
1651 * Errors in the page lookup or isolation are not fatal and we simply
1652 * report them via status
1654 err = add_page_for_migration(mm, addr, current_node,
1655 &pagelist, flags & MPOL_MF_MOVE_ALL);
1657 if (!err) {
1658 /* The page is already on the target node */
1659 err = store_status(status, i, current_node, 1);
1660 if (err)
1661 goto out_flush;
1662 continue;
1663 } else if (err > 0) {
1664 /* The page is successfully queued for migration */
1665 continue;
1668 err = store_status(status, i, err, 1);
1669 if (err)
1670 goto out_flush;
1672 err = do_move_pages_to_node(mm, &pagelist, current_node);
1673 if (err) {
1674 if (err > 0)
1675 err += nr_pages - i - 1;
1676 goto out;
1678 if (i > start) {
1679 err = store_status(status, start, current_node, i - start);
1680 if (err)
1681 goto out;
1683 current_node = NUMA_NO_NODE;
1685 out_flush:
1686 if (list_empty(&pagelist))
1687 return err;
1689 /* Make sure we do not overwrite the existing error */
1690 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1692 * Don't have to report non-attempted pages here since:
1693 * - If the above loop is done gracefully all pages have been
1694 * attempted.
1695 * - If the above loop is aborted it means a fatal error
1696 * happened, should return ret.
1698 if (!err1)
1699 err1 = store_status(status, start, current_node, i - start);
1700 if (err >= 0)
1701 err = err1;
1702 out:
1703 return err;
1707 * Determine the nodes of an array of pages and store it in an array of status.
1709 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1710 const void __user **pages, int *status)
1712 unsigned long i;
1714 down_read(&mm->mmap_sem);
1716 for (i = 0; i < nr_pages; i++) {
1717 unsigned long addr = (unsigned long)(*pages);
1718 struct vm_area_struct *vma;
1719 struct page *page;
1720 int err = -EFAULT;
1722 vma = find_vma(mm, addr);
1723 if (!vma || addr < vma->vm_start)
1724 goto set_status;
1726 /* FOLL_DUMP to ignore special (like zero) pages */
1727 page = follow_page(vma, addr, FOLL_DUMP);
1729 err = PTR_ERR(page);
1730 if (IS_ERR(page))
1731 goto set_status;
1733 err = page ? page_to_nid(page) : -ENOENT;
1734 set_status:
1735 *status = err;
1737 pages++;
1738 status++;
1741 up_read(&mm->mmap_sem);
1745 * Determine the nodes of a user array of pages and store it in
1746 * a user array of status.
1748 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1749 const void __user * __user *pages,
1750 int __user *status)
1752 #define DO_PAGES_STAT_CHUNK_NR 16
1753 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1754 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1756 while (nr_pages) {
1757 unsigned long chunk_nr;
1759 chunk_nr = nr_pages;
1760 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1761 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1763 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1764 break;
1766 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1768 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1769 break;
1771 pages += chunk_nr;
1772 status += chunk_nr;
1773 nr_pages -= chunk_nr;
1775 return nr_pages ? -EFAULT : 0;
1779 * Move a list of pages in the address space of the currently executing
1780 * process.
1782 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1783 const void __user * __user *pages,
1784 const int __user *nodes,
1785 int __user *status, int flags)
1787 struct task_struct *task;
1788 struct mm_struct *mm;
1789 int err;
1790 nodemask_t task_nodes;
1792 /* Check flags */
1793 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1794 return -EINVAL;
1796 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1797 return -EPERM;
1799 /* Find the mm_struct */
1800 rcu_read_lock();
1801 task = pid ? find_task_by_vpid(pid) : current;
1802 if (!task) {
1803 rcu_read_unlock();
1804 return -ESRCH;
1806 get_task_struct(task);
1809 * Check if this process has the right to modify the specified
1810 * process. Use the regular "ptrace_may_access()" checks.
1812 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1813 rcu_read_unlock();
1814 err = -EPERM;
1815 goto out;
1817 rcu_read_unlock();
1819 err = security_task_movememory(task);
1820 if (err)
1821 goto out;
1823 task_nodes = cpuset_mems_allowed(task);
1824 mm = get_task_mm(task);
1825 put_task_struct(task);
1827 if (!mm)
1828 return -EINVAL;
1830 if (nodes)
1831 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1832 nodes, status, flags);
1833 else
1834 err = do_pages_stat(mm, nr_pages, pages, status);
1836 mmput(mm);
1837 return err;
1839 out:
1840 put_task_struct(task);
1841 return err;
1844 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1845 const void __user * __user *, pages,
1846 const int __user *, nodes,
1847 int __user *, status, int, flags)
1849 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1852 #ifdef CONFIG_COMPAT
1853 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1854 compat_uptr_t __user *, pages32,
1855 const int __user *, nodes,
1856 int __user *, status,
1857 int, flags)
1859 const void __user * __user *pages;
1860 int i;
1862 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1863 for (i = 0; i < nr_pages; i++) {
1864 compat_uptr_t p;
1866 if (get_user(p, pages32 + i) ||
1867 put_user(compat_ptr(p), pages + i))
1868 return -EFAULT;
1870 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1872 #endif /* CONFIG_COMPAT */
1874 #ifdef CONFIG_NUMA_BALANCING
1876 * Returns true if this is a safe migration target node for misplaced NUMA
1877 * pages. Currently it only checks the watermarks which crude
1879 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1880 unsigned long nr_migrate_pages)
1882 int z;
1884 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1885 struct zone *zone = pgdat->node_zones + z;
1887 if (!populated_zone(zone))
1888 continue;
1890 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1891 if (!zone_watermark_ok(zone, 0,
1892 high_wmark_pages(zone) +
1893 nr_migrate_pages,
1894 ZONE_MOVABLE, 0))
1895 continue;
1896 return true;
1898 return false;
1901 static struct page *alloc_misplaced_dst_page(struct page *page,
1902 unsigned long data)
1904 int nid = (int) data;
1905 struct page *newpage;
1907 newpage = __alloc_pages_node(nid,
1908 (GFP_HIGHUSER_MOVABLE |
1909 __GFP_THISNODE | __GFP_NOMEMALLOC |
1910 __GFP_NORETRY | __GFP_NOWARN) &
1911 ~__GFP_RECLAIM, 0);
1913 return newpage;
1916 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1918 int page_lru;
1920 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1922 /* Avoid migrating to a node that is nearly full */
1923 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1924 return 0;
1926 if (isolate_lru_page(page))
1927 return 0;
1930 * migrate_misplaced_transhuge_page() skips page migration's usual
1931 * check on page_count(), so we must do it here, now that the page
1932 * has been isolated: a GUP pin, or any other pin, prevents migration.
1933 * The expected page count is 3: 1 for page's mapcount and 1 for the
1934 * caller's pin and 1 for the reference taken by isolate_lru_page().
1936 if (PageTransHuge(page) && page_count(page) != 3) {
1937 putback_lru_page(page);
1938 return 0;
1941 page_lru = page_is_file_cache(page);
1942 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1943 hpage_nr_pages(page));
1946 * Isolating the page has taken another reference, so the
1947 * caller's reference can be safely dropped without the page
1948 * disappearing underneath us during migration.
1950 put_page(page);
1951 return 1;
1954 bool pmd_trans_migrating(pmd_t pmd)
1956 struct page *page = pmd_page(pmd);
1957 return PageLocked(page);
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1965 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966 int node)
1968 pg_data_t *pgdat = NODE_DATA(node);
1969 int isolated;
1970 int nr_remaining;
1971 LIST_HEAD(migratepages);
1974 * Don't migrate file pages that are mapped in multiple processes
1975 * with execute permissions as they are probably shared libraries.
1977 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978 (vma->vm_flags & VM_EXEC))
1979 goto out;
1982 * Also do not migrate dirty pages as not all filesystems can move
1983 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1985 if (page_is_file_cache(page) && PageDirty(page))
1986 goto out;
1988 isolated = numamigrate_isolate_page(pgdat, page);
1989 if (!isolated)
1990 goto out;
1992 list_add(&page->lru, &migratepages);
1993 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1994 NULL, node, MIGRATE_ASYNC,
1995 MR_NUMA_MISPLACED);
1996 if (nr_remaining) {
1997 if (!list_empty(&migratepages)) {
1998 list_del(&page->lru);
1999 dec_node_page_state(page, NR_ISOLATED_ANON +
2000 page_is_file_cache(page));
2001 putback_lru_page(page);
2003 isolated = 0;
2004 } else
2005 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2006 BUG_ON(!list_empty(&migratepages));
2007 return isolated;
2009 out:
2010 put_page(page);
2011 return 0;
2013 #endif /* CONFIG_NUMA_BALANCING */
2015 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2017 * Migrates a THP to a given target node. page must be locked and is unlocked
2018 * before returning.
2020 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2021 struct vm_area_struct *vma,
2022 pmd_t *pmd, pmd_t entry,
2023 unsigned long address,
2024 struct page *page, int node)
2026 spinlock_t *ptl;
2027 pg_data_t *pgdat = NODE_DATA(node);
2028 int isolated = 0;
2029 struct page *new_page = NULL;
2030 int page_lru = page_is_file_cache(page);
2031 unsigned long start = address & HPAGE_PMD_MASK;
2033 new_page = alloc_pages_node(node,
2034 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035 HPAGE_PMD_ORDER);
2036 if (!new_page)
2037 goto out_fail;
2038 prep_transhuge_page(new_page);
2040 isolated = numamigrate_isolate_page(pgdat, page);
2041 if (!isolated) {
2042 put_page(new_page);
2043 goto out_fail;
2046 /* Prepare a page as a migration target */
2047 __SetPageLocked(new_page);
2048 if (PageSwapBacked(page))
2049 __SetPageSwapBacked(new_page);
2051 /* anon mapping, we can simply copy page->mapping to the new page: */
2052 new_page->mapping = page->mapping;
2053 new_page->index = page->index;
2054 /* flush the cache before copying using the kernel virtual address */
2055 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2056 migrate_page_copy(new_page, page);
2057 WARN_ON(PageLRU(new_page));
2059 /* Recheck the target PMD */
2060 ptl = pmd_lock(mm, pmd);
2061 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2062 spin_unlock(ptl);
2064 /* Reverse changes made by migrate_page_copy() */
2065 if (TestClearPageActive(new_page))
2066 SetPageActive(page);
2067 if (TestClearPageUnevictable(new_page))
2068 SetPageUnevictable(page);
2070 unlock_page(new_page);
2071 put_page(new_page); /* Free it */
2073 /* Retake the callers reference and putback on LRU */
2074 get_page(page);
2075 putback_lru_page(page);
2076 mod_node_page_state(page_pgdat(page),
2077 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2079 goto out_unlock;
2082 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2086 * Overwrite the old entry under pagetable lock and establish
2087 * the new PTE. Any parallel GUP will either observe the old
2088 * page blocking on the page lock, block on the page table
2089 * lock or observe the new page. The SetPageUptodate on the
2090 * new page and page_add_new_anon_rmap guarantee the copy is
2091 * visible before the pagetable update.
2093 page_add_anon_rmap(new_page, vma, start, true);
2095 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2096 * has already been flushed globally. So no TLB can be currently
2097 * caching this non present pmd mapping. There's no need to clear the
2098 * pmd before doing set_pmd_at(), nor to flush the TLB after
2099 * set_pmd_at(). Clearing the pmd here would introduce a race
2100 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2101 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2102 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2103 * pmd.
2105 set_pmd_at(mm, start, pmd, entry);
2106 update_mmu_cache_pmd(vma, address, &entry);
2108 page_ref_unfreeze(page, 2);
2109 mlock_migrate_page(new_page, page);
2110 page_remove_rmap(page, true);
2111 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2113 spin_unlock(ptl);
2115 /* Take an "isolate" reference and put new page on the LRU. */
2116 get_page(new_page);
2117 putback_lru_page(new_page);
2119 unlock_page(new_page);
2120 unlock_page(page);
2121 put_page(page); /* Drop the rmap reference */
2122 put_page(page); /* Drop the LRU isolation reference */
2124 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2125 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2127 mod_node_page_state(page_pgdat(page),
2128 NR_ISOLATED_ANON + page_lru,
2129 -HPAGE_PMD_NR);
2130 return isolated;
2132 out_fail:
2133 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2134 ptl = pmd_lock(mm, pmd);
2135 if (pmd_same(*pmd, entry)) {
2136 entry = pmd_modify(entry, vma->vm_page_prot);
2137 set_pmd_at(mm, start, pmd, entry);
2138 update_mmu_cache_pmd(vma, address, &entry);
2140 spin_unlock(ptl);
2142 out_unlock:
2143 unlock_page(page);
2144 put_page(page);
2145 return 0;
2147 #endif /* CONFIG_NUMA_BALANCING */
2149 #endif /* CONFIG_NUMA */
2151 #ifdef CONFIG_DEVICE_PRIVATE
2152 static int migrate_vma_collect_hole(unsigned long start,
2153 unsigned long end,
2154 __always_unused int depth,
2155 struct mm_walk *walk)
2157 struct migrate_vma *migrate = walk->private;
2158 unsigned long addr;
2160 for (addr = start; addr < end; addr += PAGE_SIZE) {
2161 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2162 migrate->dst[migrate->npages] = 0;
2163 migrate->npages++;
2164 migrate->cpages++;
2167 return 0;
2170 static int migrate_vma_collect_skip(unsigned long start,
2171 unsigned long end,
2172 struct mm_walk *walk)
2174 struct migrate_vma *migrate = walk->private;
2175 unsigned long addr;
2177 for (addr = start; addr < end; addr += PAGE_SIZE) {
2178 migrate->dst[migrate->npages] = 0;
2179 migrate->src[migrate->npages++] = 0;
2182 return 0;
2185 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2186 unsigned long start,
2187 unsigned long end,
2188 struct mm_walk *walk)
2190 struct migrate_vma *migrate = walk->private;
2191 struct vm_area_struct *vma = walk->vma;
2192 struct mm_struct *mm = vma->vm_mm;
2193 unsigned long addr = start, unmapped = 0;
2194 spinlock_t *ptl;
2195 pte_t *ptep;
2197 again:
2198 if (pmd_none(*pmdp))
2199 return migrate_vma_collect_hole(start, end, -1, walk);
2201 if (pmd_trans_huge(*pmdp)) {
2202 struct page *page;
2204 ptl = pmd_lock(mm, pmdp);
2205 if (unlikely(!pmd_trans_huge(*pmdp))) {
2206 spin_unlock(ptl);
2207 goto again;
2210 page = pmd_page(*pmdp);
2211 if (is_huge_zero_page(page)) {
2212 spin_unlock(ptl);
2213 split_huge_pmd(vma, pmdp, addr);
2214 if (pmd_trans_unstable(pmdp))
2215 return migrate_vma_collect_skip(start, end,
2216 walk);
2217 } else {
2218 int ret;
2220 get_page(page);
2221 spin_unlock(ptl);
2222 if (unlikely(!trylock_page(page)))
2223 return migrate_vma_collect_skip(start, end,
2224 walk);
2225 ret = split_huge_page(page);
2226 unlock_page(page);
2227 put_page(page);
2228 if (ret)
2229 return migrate_vma_collect_skip(start, end,
2230 walk);
2231 if (pmd_none(*pmdp))
2232 return migrate_vma_collect_hole(start, end, -1,
2233 walk);
2237 if (unlikely(pmd_bad(*pmdp)))
2238 return migrate_vma_collect_skip(start, end, walk);
2240 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2241 arch_enter_lazy_mmu_mode();
2243 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2244 unsigned long mpfn, pfn;
2245 struct page *page;
2246 swp_entry_t entry;
2247 pte_t pte;
2249 pte = *ptep;
2251 if (pte_none(pte)) {
2252 mpfn = MIGRATE_PFN_MIGRATE;
2253 migrate->cpages++;
2254 goto next;
2257 if (!pte_present(pte)) {
2258 mpfn = 0;
2261 * Only care about unaddressable device page special
2262 * page table entry. Other special swap entries are not
2263 * migratable, and we ignore regular swapped page.
2265 entry = pte_to_swp_entry(pte);
2266 if (!is_device_private_entry(entry))
2267 goto next;
2269 page = device_private_entry_to_page(entry);
2270 mpfn = migrate_pfn(page_to_pfn(page)) |
2271 MIGRATE_PFN_MIGRATE;
2272 if (is_write_device_private_entry(entry))
2273 mpfn |= MIGRATE_PFN_WRITE;
2274 } else {
2275 pfn = pte_pfn(pte);
2276 if (is_zero_pfn(pfn)) {
2277 mpfn = MIGRATE_PFN_MIGRATE;
2278 migrate->cpages++;
2279 goto next;
2281 page = vm_normal_page(migrate->vma, addr, pte);
2282 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2283 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2286 /* FIXME support THP */
2287 if (!page || !page->mapping || PageTransCompound(page)) {
2288 mpfn = 0;
2289 goto next;
2293 * By getting a reference on the page we pin it and that blocks
2294 * any kind of migration. Side effect is that it "freezes" the
2295 * pte.
2297 * We drop this reference after isolating the page from the lru
2298 * for non device page (device page are not on the lru and thus
2299 * can't be dropped from it).
2301 get_page(page);
2302 migrate->cpages++;
2305 * Optimize for the common case where page is only mapped once
2306 * in one process. If we can lock the page, then we can safely
2307 * set up a special migration page table entry now.
2309 if (trylock_page(page)) {
2310 pte_t swp_pte;
2312 mpfn |= MIGRATE_PFN_LOCKED;
2313 ptep_get_and_clear(mm, addr, ptep);
2315 /* Setup special migration page table entry */
2316 entry = make_migration_entry(page, mpfn &
2317 MIGRATE_PFN_WRITE);
2318 swp_pte = swp_entry_to_pte(entry);
2319 if (pte_soft_dirty(pte))
2320 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2321 set_pte_at(mm, addr, ptep, swp_pte);
2324 * This is like regular unmap: we remove the rmap and
2325 * drop page refcount. Page won't be freed, as we took
2326 * a reference just above.
2328 page_remove_rmap(page, false);
2329 put_page(page);
2331 if (pte_present(pte))
2332 unmapped++;
2335 next:
2336 migrate->dst[migrate->npages] = 0;
2337 migrate->src[migrate->npages++] = mpfn;
2339 arch_leave_lazy_mmu_mode();
2340 pte_unmap_unlock(ptep - 1, ptl);
2342 /* Only flush the TLB if we actually modified any entries */
2343 if (unmapped)
2344 flush_tlb_range(walk->vma, start, end);
2346 return 0;
2349 static const struct mm_walk_ops migrate_vma_walk_ops = {
2350 .pmd_entry = migrate_vma_collect_pmd,
2351 .pte_hole = migrate_vma_collect_hole,
2355 * migrate_vma_collect() - collect pages over a range of virtual addresses
2356 * @migrate: migrate struct containing all migration information
2358 * This will walk the CPU page table. For each virtual address backed by a
2359 * valid page, it updates the src array and takes a reference on the page, in
2360 * order to pin the page until we lock it and unmap it.
2362 static void migrate_vma_collect(struct migrate_vma *migrate)
2364 struct mmu_notifier_range range;
2366 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2367 migrate->vma->vm_mm, migrate->start, migrate->end);
2368 mmu_notifier_invalidate_range_start(&range);
2370 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2371 &migrate_vma_walk_ops, migrate);
2373 mmu_notifier_invalidate_range_end(&range);
2374 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2378 * migrate_vma_check_page() - check if page is pinned or not
2379 * @page: struct page to check
2381 * Pinned pages cannot be migrated. This is the same test as in
2382 * migrate_page_move_mapping(), except that here we allow migration of a
2383 * ZONE_DEVICE page.
2385 static bool migrate_vma_check_page(struct page *page)
2388 * One extra ref because caller holds an extra reference, either from
2389 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2390 * a device page.
2392 int extra = 1;
2395 * FIXME support THP (transparent huge page), it is bit more complex to
2396 * check them than regular pages, because they can be mapped with a pmd
2397 * or with a pte (split pte mapping).
2399 if (PageCompound(page))
2400 return false;
2402 /* Page from ZONE_DEVICE have one extra reference */
2403 if (is_zone_device_page(page)) {
2405 * Private page can never be pin as they have no valid pte and
2406 * GUP will fail for those. Yet if there is a pending migration
2407 * a thread might try to wait on the pte migration entry and
2408 * will bump the page reference count. Sadly there is no way to
2409 * differentiate a regular pin from migration wait. Hence to
2410 * avoid 2 racing thread trying to migrate back to CPU to enter
2411 * infinite loop (one stoping migration because the other is
2412 * waiting on pte migration entry). We always return true here.
2414 * FIXME proper solution is to rework migration_entry_wait() so
2415 * it does not need to take a reference on page.
2417 return is_device_private_page(page);
2420 /* For file back page */
2421 if (page_mapping(page))
2422 extra += 1 + page_has_private(page);
2424 if ((page_count(page) - extra) > page_mapcount(page))
2425 return false;
2427 return true;
2431 * migrate_vma_prepare() - lock pages and isolate them from the lru
2432 * @migrate: migrate struct containing all migration information
2434 * This locks pages that have been collected by migrate_vma_collect(). Once each
2435 * page is locked it is isolated from the lru (for non-device pages). Finally,
2436 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2437 * migrated by concurrent kernel threads.
2439 static void migrate_vma_prepare(struct migrate_vma *migrate)
2441 const unsigned long npages = migrate->npages;
2442 const unsigned long start = migrate->start;
2443 unsigned long addr, i, restore = 0;
2444 bool allow_drain = true;
2446 lru_add_drain();
2448 for (i = 0; (i < npages) && migrate->cpages; i++) {
2449 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2450 bool remap = true;
2452 if (!page)
2453 continue;
2455 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2457 * Because we are migrating several pages there can be
2458 * a deadlock between 2 concurrent migration where each
2459 * are waiting on each other page lock.
2461 * Make migrate_vma() a best effort thing and backoff
2462 * for any page we can not lock right away.
2464 if (!trylock_page(page)) {
2465 migrate->src[i] = 0;
2466 migrate->cpages--;
2467 put_page(page);
2468 continue;
2470 remap = false;
2471 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2474 /* ZONE_DEVICE pages are not on LRU */
2475 if (!is_zone_device_page(page)) {
2476 if (!PageLRU(page) && allow_drain) {
2477 /* Drain CPU's pagevec */
2478 lru_add_drain_all();
2479 allow_drain = false;
2482 if (isolate_lru_page(page)) {
2483 if (remap) {
2484 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2485 migrate->cpages--;
2486 restore++;
2487 } else {
2488 migrate->src[i] = 0;
2489 unlock_page(page);
2490 migrate->cpages--;
2491 put_page(page);
2493 continue;
2496 /* Drop the reference we took in collect */
2497 put_page(page);
2500 if (!migrate_vma_check_page(page)) {
2501 if (remap) {
2502 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2503 migrate->cpages--;
2504 restore++;
2506 if (!is_zone_device_page(page)) {
2507 get_page(page);
2508 putback_lru_page(page);
2510 } else {
2511 migrate->src[i] = 0;
2512 unlock_page(page);
2513 migrate->cpages--;
2515 if (!is_zone_device_page(page))
2516 putback_lru_page(page);
2517 else
2518 put_page(page);
2523 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2524 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2526 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2527 continue;
2529 remove_migration_pte(page, migrate->vma, addr, page);
2531 migrate->src[i] = 0;
2532 unlock_page(page);
2533 put_page(page);
2534 restore--;
2539 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2540 * @migrate: migrate struct containing all migration information
2542 * Replace page mapping (CPU page table pte) with a special migration pte entry
2543 * and check again if it has been pinned. Pinned pages are restored because we
2544 * cannot migrate them.
2546 * This is the last step before we call the device driver callback to allocate
2547 * destination memory and copy contents of original page over to new page.
2549 static void migrate_vma_unmap(struct migrate_vma *migrate)
2551 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2552 const unsigned long npages = migrate->npages;
2553 const unsigned long start = migrate->start;
2554 unsigned long addr, i, restore = 0;
2556 for (i = 0; i < npages; i++) {
2557 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2559 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2560 continue;
2562 if (page_mapped(page)) {
2563 try_to_unmap(page, flags);
2564 if (page_mapped(page))
2565 goto restore;
2568 if (migrate_vma_check_page(page))
2569 continue;
2571 restore:
2572 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2573 migrate->cpages--;
2574 restore++;
2577 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2578 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2580 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581 continue;
2583 remove_migration_ptes(page, page, false);
2585 migrate->src[i] = 0;
2586 unlock_page(page);
2587 restore--;
2589 if (is_zone_device_page(page))
2590 put_page(page);
2591 else
2592 putback_lru_page(page);
2597 * migrate_vma_setup() - prepare to migrate a range of memory
2598 * @args: contains the vma, start, and and pfns arrays for the migration
2600 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2601 * without an error.
2603 * Prepare to migrate a range of memory virtual address range by collecting all
2604 * the pages backing each virtual address in the range, saving them inside the
2605 * src array. Then lock those pages and unmap them. Once the pages are locked
2606 * and unmapped, check whether each page is pinned or not. Pages that aren't
2607 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2608 * corresponding src array entry. Then restores any pages that are pinned, by
2609 * remapping and unlocking those pages.
2611 * The caller should then allocate destination memory and copy source memory to
2612 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2613 * flag set). Once these are allocated and copied, the caller must update each
2614 * corresponding entry in the dst array with the pfn value of the destination
2615 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2616 * (destination pages must have their struct pages locked, via lock_page()).
2618 * Note that the caller does not have to migrate all the pages that are marked
2619 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2620 * device memory to system memory. If the caller cannot migrate a device page
2621 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2622 * consequences for the userspace process, so it must be avoided if at all
2623 * possible.
2625 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2626 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2627 * allowing the caller to allocate device memory for those unback virtual
2628 * address. For this the caller simply has to allocate device memory and
2629 * properly set the destination entry like for regular migration. Note that
2630 * this can still fails and thus inside the device driver must check if the
2631 * migration was successful for those entries after calling migrate_vma_pages()
2632 * just like for regular migration.
2634 * After that, the callers must call migrate_vma_pages() to go over each entry
2635 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2636 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2637 * then migrate_vma_pages() to migrate struct page information from the source
2638 * struct page to the destination struct page. If it fails to migrate the
2639 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2640 * src array.
2642 * At this point all successfully migrated pages have an entry in the src
2643 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2644 * array entry with MIGRATE_PFN_VALID flag set.
2646 * Once migrate_vma_pages() returns the caller may inspect which pages were
2647 * successfully migrated, and which were not. Successfully migrated pages will
2648 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2650 * It is safe to update device page table after migrate_vma_pages() because
2651 * both destination and source page are still locked, and the mmap_sem is held
2652 * in read mode (hence no one can unmap the range being migrated).
2654 * Once the caller is done cleaning up things and updating its page table (if it
2655 * chose to do so, this is not an obligation) it finally calls
2656 * migrate_vma_finalize() to update the CPU page table to point to new pages
2657 * for successfully migrated pages or otherwise restore the CPU page table to
2658 * point to the original source pages.
2660 int migrate_vma_setup(struct migrate_vma *args)
2662 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2664 args->start &= PAGE_MASK;
2665 args->end &= PAGE_MASK;
2666 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2667 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2668 return -EINVAL;
2669 if (nr_pages <= 0)
2670 return -EINVAL;
2671 if (args->start < args->vma->vm_start ||
2672 args->start >= args->vma->vm_end)
2673 return -EINVAL;
2674 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2675 return -EINVAL;
2676 if (!args->src || !args->dst)
2677 return -EINVAL;
2679 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2680 args->cpages = 0;
2681 args->npages = 0;
2683 migrate_vma_collect(args);
2685 if (args->cpages)
2686 migrate_vma_prepare(args);
2687 if (args->cpages)
2688 migrate_vma_unmap(args);
2691 * At this point pages are locked and unmapped, and thus they have
2692 * stable content and can safely be copied to destination memory that
2693 * is allocated by the drivers.
2695 return 0;
2698 EXPORT_SYMBOL(migrate_vma_setup);
2701 * This code closely matches the code in:
2702 * __handle_mm_fault()
2703 * handle_pte_fault()
2704 * do_anonymous_page()
2705 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2706 * private page.
2708 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2709 unsigned long addr,
2710 struct page *page,
2711 unsigned long *src,
2712 unsigned long *dst)
2714 struct vm_area_struct *vma = migrate->vma;
2715 struct mm_struct *mm = vma->vm_mm;
2716 struct mem_cgroup *memcg;
2717 bool flush = false;
2718 spinlock_t *ptl;
2719 pte_t entry;
2720 pgd_t *pgdp;
2721 p4d_t *p4dp;
2722 pud_t *pudp;
2723 pmd_t *pmdp;
2724 pte_t *ptep;
2726 /* Only allow populating anonymous memory */
2727 if (!vma_is_anonymous(vma))
2728 goto abort;
2730 pgdp = pgd_offset(mm, addr);
2731 p4dp = p4d_alloc(mm, pgdp, addr);
2732 if (!p4dp)
2733 goto abort;
2734 pudp = pud_alloc(mm, p4dp, addr);
2735 if (!pudp)
2736 goto abort;
2737 pmdp = pmd_alloc(mm, pudp, addr);
2738 if (!pmdp)
2739 goto abort;
2741 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2742 goto abort;
2745 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2746 * pte_offset_map() on pmds where a huge pmd might be created
2747 * from a different thread.
2749 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2750 * parallel threads are excluded by other means.
2752 * Here we only have down_read(mmap_sem).
2754 if (pte_alloc(mm, pmdp))
2755 goto abort;
2757 /* See the comment in pte_alloc_one_map() */
2758 if (unlikely(pmd_trans_unstable(pmdp)))
2759 goto abort;
2761 if (unlikely(anon_vma_prepare(vma)))
2762 goto abort;
2763 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2764 goto abort;
2767 * The memory barrier inside __SetPageUptodate makes sure that
2768 * preceding stores to the page contents become visible before
2769 * the set_pte_at() write.
2771 __SetPageUptodate(page);
2773 if (is_zone_device_page(page)) {
2774 if (is_device_private_page(page)) {
2775 swp_entry_t swp_entry;
2777 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2778 entry = swp_entry_to_pte(swp_entry);
2780 } else {
2781 entry = mk_pte(page, vma->vm_page_prot);
2782 if (vma->vm_flags & VM_WRITE)
2783 entry = pte_mkwrite(pte_mkdirty(entry));
2786 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2788 if (check_stable_address_space(mm))
2789 goto unlock_abort;
2791 if (pte_present(*ptep)) {
2792 unsigned long pfn = pte_pfn(*ptep);
2794 if (!is_zero_pfn(pfn))
2795 goto unlock_abort;
2796 flush = true;
2797 } else if (!pte_none(*ptep))
2798 goto unlock_abort;
2801 * Check for userfaultfd but do not deliver the fault. Instead,
2802 * just back off.
2804 if (userfaultfd_missing(vma))
2805 goto unlock_abort;
2807 inc_mm_counter(mm, MM_ANONPAGES);
2808 page_add_new_anon_rmap(page, vma, addr, false);
2809 mem_cgroup_commit_charge(page, memcg, false, false);
2810 if (!is_zone_device_page(page))
2811 lru_cache_add_active_or_unevictable(page, vma);
2812 get_page(page);
2814 if (flush) {
2815 flush_cache_page(vma, addr, pte_pfn(*ptep));
2816 ptep_clear_flush_notify(vma, addr, ptep);
2817 set_pte_at_notify(mm, addr, ptep, entry);
2818 update_mmu_cache(vma, addr, ptep);
2819 } else {
2820 /* No need to invalidate - it was non-present before */
2821 set_pte_at(mm, addr, ptep, entry);
2822 update_mmu_cache(vma, addr, ptep);
2825 pte_unmap_unlock(ptep, ptl);
2826 *src = MIGRATE_PFN_MIGRATE;
2827 return;
2829 unlock_abort:
2830 pte_unmap_unlock(ptep, ptl);
2831 mem_cgroup_cancel_charge(page, memcg, false);
2832 abort:
2833 *src &= ~MIGRATE_PFN_MIGRATE;
2837 * migrate_vma_pages() - migrate meta-data from src page to dst page
2838 * @migrate: migrate struct containing all migration information
2840 * This migrates struct page meta-data from source struct page to destination
2841 * struct page. This effectively finishes the migration from source page to the
2842 * destination page.
2844 void migrate_vma_pages(struct migrate_vma *migrate)
2846 const unsigned long npages = migrate->npages;
2847 const unsigned long start = migrate->start;
2848 struct mmu_notifier_range range;
2849 unsigned long addr, i;
2850 bool notified = false;
2852 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2853 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2854 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2855 struct address_space *mapping;
2856 int r;
2858 if (!newpage) {
2859 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2860 continue;
2863 if (!page) {
2864 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2865 continue;
2866 if (!notified) {
2867 notified = true;
2869 mmu_notifier_range_init(&range,
2870 MMU_NOTIFY_CLEAR, 0,
2871 NULL,
2872 migrate->vma->vm_mm,
2873 addr, migrate->end);
2874 mmu_notifier_invalidate_range_start(&range);
2876 migrate_vma_insert_page(migrate, addr, newpage,
2877 &migrate->src[i],
2878 &migrate->dst[i]);
2879 continue;
2882 mapping = page_mapping(page);
2884 if (is_zone_device_page(newpage)) {
2885 if (is_device_private_page(newpage)) {
2887 * For now only support private anonymous when
2888 * migrating to un-addressable device memory.
2890 if (mapping) {
2891 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2892 continue;
2894 } else {
2896 * Other types of ZONE_DEVICE page are not
2897 * supported.
2899 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2900 continue;
2904 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2905 if (r != MIGRATEPAGE_SUCCESS)
2906 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2910 * No need to double call mmu_notifier->invalidate_range() callback as
2911 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2912 * did already call it.
2914 if (notified)
2915 mmu_notifier_invalidate_range_only_end(&range);
2917 EXPORT_SYMBOL(migrate_vma_pages);
2920 * migrate_vma_finalize() - restore CPU page table entry
2921 * @migrate: migrate struct containing all migration information
2923 * This replaces the special migration pte entry with either a mapping to the
2924 * new page if migration was successful for that page, or to the original page
2925 * otherwise.
2927 * This also unlocks the pages and puts them back on the lru, or drops the extra
2928 * refcount, for device pages.
2930 void migrate_vma_finalize(struct migrate_vma *migrate)
2932 const unsigned long npages = migrate->npages;
2933 unsigned long i;
2935 for (i = 0; i < npages; i++) {
2936 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2937 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2939 if (!page) {
2940 if (newpage) {
2941 unlock_page(newpage);
2942 put_page(newpage);
2944 continue;
2947 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2948 if (newpage) {
2949 unlock_page(newpage);
2950 put_page(newpage);
2952 newpage = page;
2955 remove_migration_ptes(page, newpage, false);
2956 unlock_page(page);
2957 migrate->cpages--;
2959 if (is_zone_device_page(page))
2960 put_page(page);
2961 else
2962 putback_lru_page(page);
2964 if (newpage != page) {
2965 unlock_page(newpage);
2966 if (is_zone_device_page(newpage))
2967 put_page(newpage);
2968 else
2969 putback_lru_page(newpage);
2973 EXPORT_SYMBOL(migrate_vma_finalize);
2974 #endif /* CONFIG_DEVICE_PRIVATE */