1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 int migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
86 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
88 struct address_space
*mapping
;
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
99 if (unlikely(!get_page_unless_zero(page
)))
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
107 if (unlikely(!__PageMovable(page
)))
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
120 if (unlikely(!trylock_page(page
)))
123 if (!PageMovable(page
) || PageIsolated(page
))
124 goto out_no_isolated
;
126 mapping
= page_mapping(page
);
127 VM_BUG_ON_PAGE(!mapping
, page
);
129 if (!mapping
->a_ops
->isolate_page(page
, mode
))
130 goto out_no_isolated
;
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page
));
134 __SetPageIsolated(page
);
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page
*page
)
150 struct address_space
*mapping
;
152 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
153 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
154 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
156 mapping
= page_mapping(page
);
157 mapping
->a_ops
->putback_page(page
);
158 __ClearPageIsolated(page
);
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
169 void putback_movable_pages(struct list_head
*l
)
174 list_for_each_entry_safe(page
, page2
, l
, lru
) {
175 if (unlikely(PageHuge(page
))) {
176 putback_active_hugepage(page
);
179 list_del(&page
->lru
);
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
185 if (unlikely(__PageMovable(page
))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
188 if (PageMovable(page
))
189 putback_movable_page(page
);
191 __ClearPageIsolated(page
);
195 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
196 page_is_file_cache(page
), -hpage_nr_pages(page
));
197 putback_lru_page(page
);
203 * Restore a potential migration pte to a working pte entry
205 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
206 unsigned long addr
, void *old
)
208 struct page_vma_mapped_walk pvmw
= {
212 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
218 VM_BUG_ON_PAGE(PageTail(page
), page
);
219 while (page_vma_mapped_walk(&pvmw
)) {
223 new = page
- pvmw
.page
->index
+
224 linear_page_index(vma
, pvmw
.address
);
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
229 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
230 remove_migration_pmd(&pvmw
, new);
236 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
237 if (pte_swp_soft_dirty(*pvmw
.pte
))
238 pte
= pte_mksoft_dirty(pte
);
241 * Recheck VMA as permissions can change since migration started
243 entry
= pte_to_swp_entry(*pvmw
.pte
);
244 if (is_write_migration_entry(entry
))
245 pte
= maybe_mkwrite(pte
, vma
);
247 if (unlikely(is_zone_device_page(new))) {
248 if (is_device_private_page(new)) {
249 entry
= make_device_private_entry(new, pte_write(pte
));
250 pte
= swp_entry_to_pte(entry
);
254 #ifdef CONFIG_HUGETLB_PAGE
256 pte
= pte_mkhuge(pte
);
257 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
258 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
260 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
262 page_dup_rmap(new, true);
266 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
269 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
271 page_add_file_rmap(new, false);
273 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
276 if (PageTransHuge(page
) && PageMlocked(page
))
277 clear_page_mlock(page
);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
292 struct rmap_walk_control rwc
= {
293 .rmap_one
= remove_migration_pte
,
298 rmap_walk_locked(new, &rwc
);
300 rmap_walk(new, &rwc
);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
317 if (!is_swap_pte(pte
))
320 entry
= pte_to_swp_entry(pte
);
321 if (!is_migration_entry(entry
))
324 page
= migration_entry_to_page(entry
);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page
))
333 pte_unmap_unlock(ptep
, ptl
);
334 put_and_wait_on_page_locked(page
);
337 pte_unmap_unlock(ptep
, ptl
);
340 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
341 unsigned long address
)
343 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
344 pte_t
*ptep
= pte_offset_map(pmd
, address
);
345 __migration_entry_wait(mm
, ptep
, ptl
);
348 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
349 struct mm_struct
*mm
, pte_t
*pte
)
351 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
352 __migration_entry_wait(mm
, pte
, ptl
);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
361 ptl
= pmd_lock(mm
, pmd
);
362 if (!is_pmd_migration_entry(*pmd
))
364 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
365 if (!get_page_unless_zero(page
))
368 put_and_wait_on_page_locked(page
);
375 static int expected_page_refs(struct address_space
*mapping
, struct page
*page
)
377 int expected_count
= 1;
380 * Device public or private pages have an extra refcount as they are
383 expected_count
+= is_device_private_page(page
);
385 expected_count
+= hpage_nr_pages(page
) + page_has_private(page
);
387 return expected_count
;
391 * Replace the page in the mapping.
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 int migrate_page_move_mapping(struct address_space
*mapping
,
399 struct page
*newpage
, struct page
*page
, int extra_count
)
401 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
402 struct zone
*oldzone
, *newzone
;
404 int expected_count
= expected_page_refs(mapping
, page
) + extra_count
;
407 /* Anonymous page without mapping */
408 if (page_count(page
) != expected_count
)
411 /* No turning back from here */
412 newpage
->index
= page
->index
;
413 newpage
->mapping
= page
->mapping
;
414 if (PageSwapBacked(page
))
415 __SetPageSwapBacked(newpage
);
417 return MIGRATEPAGE_SUCCESS
;
420 oldzone
= page_zone(page
);
421 newzone
= page_zone(newpage
);
424 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
425 xas_unlock_irq(&xas
);
429 if (!page_ref_freeze(page
, expected_count
)) {
430 xas_unlock_irq(&xas
);
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
438 newpage
->index
= page
->index
;
439 newpage
->mapping
= page
->mapping
;
440 page_ref_add(newpage
, hpage_nr_pages(page
)); /* add cache reference */
441 if (PageSwapBacked(page
)) {
442 __SetPageSwapBacked(newpage
);
443 if (PageSwapCache(page
)) {
444 SetPageSwapCache(newpage
);
445 set_page_private(newpage
, page_private(page
));
448 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty
= PageDirty(page
);
454 ClearPageDirty(page
);
455 SetPageDirty(newpage
);
458 xas_store(&xas
, newpage
);
459 if (PageTransHuge(page
)) {
462 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
464 xas_store(&xas
, newpage
);
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
473 page_ref_unfreeze(page
, expected_count
- hpage_nr_pages(page
));
476 /* Leave irq disabled to prevent preemption while updating stats */
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
488 if (newzone
!= oldzone
) {
489 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
490 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
491 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
492 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
493 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
495 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
496 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
497 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
498 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
499 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
504 return MIGRATEPAGE_SUCCESS
;
506 EXPORT_SYMBOL(migrate_page_move_mapping
);
509 * The expected number of remaining references is the same as that
510 * of migrate_page_move_mapping().
512 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
513 struct page
*newpage
, struct page
*page
)
515 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
519 expected_count
= 2 + page_has_private(page
);
520 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
521 xas_unlock_irq(&xas
);
525 if (!page_ref_freeze(page
, expected_count
)) {
526 xas_unlock_irq(&xas
);
530 newpage
->index
= page
->index
;
531 newpage
->mapping
= page
->mapping
;
535 xas_store(&xas
, newpage
);
537 page_ref_unfreeze(page
, expected_count
- 1);
539 xas_unlock_irq(&xas
);
541 return MIGRATEPAGE_SUCCESS
;
545 * Gigantic pages are so large that we do not guarantee that page++ pointer
546 * arithmetic will work across the entire page. We need something more
549 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
553 struct page
*dst_base
= dst
;
554 struct page
*src_base
= src
;
556 for (i
= 0; i
< nr_pages
; ) {
558 copy_highpage(dst
, src
);
561 dst
= mem_map_next(dst
, dst_base
, i
);
562 src
= mem_map_next(src
, src_base
, i
);
566 static void copy_huge_page(struct page
*dst
, struct page
*src
)
573 struct hstate
*h
= page_hstate(src
);
574 nr_pages
= pages_per_huge_page(h
);
576 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
577 __copy_gigantic_page(dst
, src
, nr_pages
);
582 BUG_ON(!PageTransHuge(src
));
583 nr_pages
= hpage_nr_pages(src
);
586 for (i
= 0; i
< nr_pages
; i
++) {
588 copy_highpage(dst
+ i
, src
+ i
);
593 * Copy the page to its new location
595 void migrate_page_states(struct page
*newpage
, struct page
*page
)
600 SetPageError(newpage
);
601 if (PageReferenced(page
))
602 SetPageReferenced(newpage
);
603 if (PageUptodate(page
))
604 SetPageUptodate(newpage
);
605 if (TestClearPageActive(page
)) {
606 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
607 SetPageActive(newpage
);
608 } else if (TestClearPageUnevictable(page
))
609 SetPageUnevictable(newpage
);
610 if (PageWorkingset(page
))
611 SetPageWorkingset(newpage
);
612 if (PageChecked(page
))
613 SetPageChecked(newpage
);
614 if (PageMappedToDisk(page
))
615 SetPageMappedToDisk(newpage
);
617 /* Move dirty on pages not done by migrate_page_move_mapping() */
619 SetPageDirty(newpage
);
621 if (page_is_young(page
))
622 set_page_young(newpage
);
623 if (page_is_idle(page
))
624 set_page_idle(newpage
);
627 * Copy NUMA information to the new page, to prevent over-eager
628 * future migrations of this same page.
630 cpupid
= page_cpupid_xchg_last(page
, -1);
631 page_cpupid_xchg_last(newpage
, cpupid
);
633 ksm_migrate_page(newpage
, page
);
635 * Please do not reorder this without considering how mm/ksm.c's
636 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
638 if (PageSwapCache(page
))
639 ClearPageSwapCache(page
);
640 ClearPagePrivate(page
);
641 set_page_private(page
, 0);
644 * If any waiters have accumulated on the new page then
647 if (PageWriteback(newpage
))
648 end_page_writeback(newpage
);
650 copy_page_owner(page
, newpage
);
652 mem_cgroup_migrate(page
, newpage
);
654 EXPORT_SYMBOL(migrate_page_states
);
656 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
658 if (PageHuge(page
) || PageTransHuge(page
))
659 copy_huge_page(newpage
, page
);
661 copy_highpage(newpage
, page
);
663 migrate_page_states(newpage
, page
);
665 EXPORT_SYMBOL(migrate_page_copy
);
667 /************************************************************
668 * Migration functions
669 ***********************************************************/
672 * Common logic to directly migrate a single LRU page suitable for
673 * pages that do not use PagePrivate/PagePrivate2.
675 * Pages are locked upon entry and exit.
677 int migrate_page(struct address_space
*mapping
,
678 struct page
*newpage
, struct page
*page
,
679 enum migrate_mode mode
)
683 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
685 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
687 if (rc
!= MIGRATEPAGE_SUCCESS
)
690 if (mode
!= MIGRATE_SYNC_NO_COPY
)
691 migrate_page_copy(newpage
, page
);
693 migrate_page_states(newpage
, page
);
694 return MIGRATEPAGE_SUCCESS
;
696 EXPORT_SYMBOL(migrate_page
);
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
701 enum migrate_mode mode
)
703 struct buffer_head
*bh
= head
;
705 /* Simple case, sync compaction */
706 if (mode
!= MIGRATE_ASYNC
) {
709 bh
= bh
->b_this_page
;
711 } while (bh
!= head
);
716 /* async case, we cannot block on lock_buffer so use trylock_buffer */
718 if (!trylock_buffer(bh
)) {
720 * We failed to lock the buffer and cannot stall in
721 * async migration. Release the taken locks
723 struct buffer_head
*failed_bh
= bh
;
725 while (bh
!= failed_bh
) {
727 bh
= bh
->b_this_page
;
732 bh
= bh
->b_this_page
;
733 } while (bh
!= head
);
737 static int __buffer_migrate_page(struct address_space
*mapping
,
738 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
,
741 struct buffer_head
*bh
, *head
;
745 if (!page_has_buffers(page
))
746 return migrate_page(mapping
, newpage
, page
, mode
);
748 /* Check whether page does not have extra refs before we do more work */
749 expected_count
= expected_page_refs(mapping
, page
);
750 if (page_count(page
) != expected_count
)
753 head
= page_buffers(page
);
754 if (!buffer_migrate_lock_buffers(head
, mode
))
759 bool invalidated
= false;
763 spin_lock(&mapping
->private_lock
);
766 if (atomic_read(&bh
->b_count
)) {
770 bh
= bh
->b_this_page
;
771 } while (bh
!= head
);
777 spin_unlock(&mapping
->private_lock
);
778 invalidate_bh_lrus();
780 goto recheck_buffers
;
784 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
785 if (rc
!= MIGRATEPAGE_SUCCESS
)
788 ClearPagePrivate(page
);
789 set_page_private(newpage
, page_private(page
));
790 set_page_private(page
, 0);
796 set_bh_page(bh
, newpage
, bh_offset(bh
));
797 bh
= bh
->b_this_page
;
799 } while (bh
!= head
);
801 SetPagePrivate(newpage
);
803 if (mode
!= MIGRATE_SYNC_NO_COPY
)
804 migrate_page_copy(newpage
, page
);
806 migrate_page_states(newpage
, page
);
808 rc
= MIGRATEPAGE_SUCCESS
;
811 spin_unlock(&mapping
->private_lock
);
815 bh
= bh
->b_this_page
;
817 } while (bh
!= head
);
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
827 int buffer_migrate_page(struct address_space
*mapping
,
828 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
830 return __buffer_migrate_page(mapping
, newpage
, page
, mode
, false);
832 EXPORT_SYMBOL(buffer_migrate_page
);
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
840 int buffer_migrate_page_norefs(struct address_space
*mapping
,
841 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
843 return __buffer_migrate_page(mapping
, newpage
, page
, mode
, true);
848 * Writeback a page to clean the dirty state
850 static int writeout(struct address_space
*mapping
, struct page
*page
)
852 struct writeback_control wbc
= {
853 .sync_mode
= WB_SYNC_NONE
,
856 .range_end
= LLONG_MAX
,
861 if (!mapping
->a_ops
->writepage
)
862 /* No write method for the address space */
865 if (!clear_page_dirty_for_io(page
))
866 /* Someone else already triggered a write */
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
877 remove_migration_ptes(page
, page
, false);
879 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
881 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
882 /* unlocked. Relock */
885 return (rc
< 0) ? -EIO
: -EAGAIN
;
889 * Default handling if a filesystem does not provide a migration function.
891 static int fallback_migrate_page(struct address_space
*mapping
,
892 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
894 if (PageDirty(page
)) {
895 /* Only writeback pages in full synchronous migration */
898 case MIGRATE_SYNC_NO_COPY
:
903 return writeout(mapping
, page
);
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
910 if (page_has_private(page
) &&
911 !try_to_release_page(page
, GFP_KERNEL
))
912 return mode
== MIGRATE_SYNC
? -EAGAIN
: -EBUSY
;
914 return migrate_page(mapping
, newpage
, page
, mode
);
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
921 * The new page will have replaced the old page if this function
926 * MIGRATEPAGE_SUCCESS - success
928 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
929 enum migrate_mode mode
)
931 struct address_space
*mapping
;
933 bool is_lru
= !__PageMovable(page
);
935 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
936 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
938 mapping
= page_mapping(page
);
940 if (likely(is_lru
)) {
942 rc
= migrate_page(mapping
, newpage
, page
, mode
);
943 else if (mapping
->a_ops
->migratepage
)
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
951 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
954 rc
= fallback_migrate_page(mapping
, newpage
,
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
961 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
962 if (!PageMovable(page
)) {
963 rc
= MIGRATEPAGE_SUCCESS
;
964 __ClearPageIsolated(page
);
968 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
970 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
971 !PageIsolated(page
));
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
978 if (rc
== MIGRATEPAGE_SUCCESS
) {
979 if (__PageMovable(page
)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
986 __ClearPageIsolated(page
);
990 * Anonymous and movable page->mapping will be cleared by
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
994 if (!PageMappingFlags(page
))
995 page
->mapping
= NULL
;
997 if (likely(!is_zone_device_page(newpage
)))
998 flush_dcache_page(newpage
);
1005 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
1006 int force
, enum migrate_mode mode
)
1009 int page_was_mapped
= 0;
1010 struct anon_vma
*anon_vma
= NULL
;
1011 bool is_lru
= !__PageMovable(page
);
1013 if (!trylock_page(page
)) {
1014 if (!force
|| mode
== MIGRATE_ASYNC
)
1018 * It's not safe for direct compaction to call lock_page.
1019 * For example, during page readahead pages are added locked
1020 * to the LRU. Later, when the IO completes the pages are
1021 * marked uptodate and unlocked. However, the queueing
1022 * could be merging multiple pages for one bio (e.g.
1023 * mpage_readpages). If an allocation happens for the
1024 * second or third page, the process can end up locking
1025 * the same page twice and deadlocking. Rather than
1026 * trying to be clever about what pages can be locked,
1027 * avoid the use of lock_page for direct compaction
1030 if (current
->flags
& PF_MEMALLOC
)
1036 if (PageWriteback(page
)) {
1038 * Only in the case of a full synchronous migration is it
1039 * necessary to wait for PageWriteback. In the async case,
1040 * the retry loop is too short and in the sync-light case,
1041 * the overhead of stalling is too much
1045 case MIGRATE_SYNC_NO_COPY
:
1053 wait_on_page_writeback(page
);
1057 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058 * we cannot notice that anon_vma is freed while we migrates a page.
1059 * This get_anon_vma() delays freeing anon_vma pointer until the end
1060 * of migration. File cache pages are no problem because of page_lock()
1061 * File Caches may use write_page() or lock_page() in migration, then,
1062 * just care Anon page here.
1064 * Only page_get_anon_vma() understands the subtleties of
1065 * getting a hold on an anon_vma from outside one of its mms.
1066 * But if we cannot get anon_vma, then we won't need it anyway,
1067 * because that implies that the anon page is no longer mapped
1068 * (and cannot be remapped so long as we hold the page lock).
1070 if (PageAnon(page
) && !PageKsm(page
))
1071 anon_vma
= page_get_anon_vma(page
);
1074 * Block others from accessing the new page when we get around to
1075 * establishing additional references. We are usually the only one
1076 * holding a reference to newpage at this point. We used to have a BUG
1077 * here if trylock_page(newpage) fails, but would like to allow for
1078 * cases where there might be a race with the previous use of newpage.
1079 * This is much like races on refcount of oldpage: just don't BUG().
1081 if (unlikely(!trylock_page(newpage
)))
1084 if (unlikely(!is_lru
)) {
1085 rc
= move_to_new_page(newpage
, page
, mode
);
1086 goto out_unlock_both
;
1090 * Corner case handling:
1091 * 1. When a new swap-cache page is read into, it is added to the LRU
1092 * and treated as swapcache but it has no rmap yet.
1093 * Calling try_to_unmap() against a page->mapping==NULL page will
1094 * trigger a BUG. So handle it here.
1095 * 2. An orphaned page (see truncate_complete_page) might have
1096 * fs-private metadata. The page can be picked up due to memory
1097 * offlining. Everywhere else except page reclaim, the page is
1098 * invisible to the vm, so the page can not be migrated. So try to
1099 * free the metadata, so the page can be freed.
1101 if (!page
->mapping
) {
1102 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1103 if (page_has_private(page
)) {
1104 try_to_free_buffers(page
);
1105 goto out_unlock_both
;
1107 } else if (page_mapped(page
)) {
1108 /* Establish migration ptes */
1109 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1112 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1113 page_was_mapped
= 1;
1116 if (!page_mapped(page
))
1117 rc
= move_to_new_page(newpage
, page
, mode
);
1119 if (page_was_mapped
)
1120 remove_migration_ptes(page
,
1121 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1124 unlock_page(newpage
);
1126 /* Drop an anon_vma reference if we took one */
1128 put_anon_vma(anon_vma
);
1132 * If migration is successful, decrease refcount of the newpage
1133 * which will not free the page because new page owner increased
1134 * refcounter. As well, if it is LRU page, add the page to LRU
1135 * list in here. Use the old state of the isolated source page to
1136 * determine if we migrated a LRU page. newpage was already unlocked
1137 * and possibly modified by its owner - don't rely on the page
1140 if (rc
== MIGRATEPAGE_SUCCESS
) {
1141 if (unlikely(!is_lru
))
1144 putback_lru_page(newpage
);
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1154 #if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1158 #define ICE_noinline
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1165 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1166 free_page_t put_new_page
,
1167 unsigned long private, struct page
*page
,
1168 int force
, enum migrate_mode mode
,
1169 enum migrate_reason reason
)
1171 int rc
= MIGRATEPAGE_SUCCESS
;
1172 struct page
*newpage
= NULL
;
1174 if (!thp_migration_supported() && PageTransHuge(page
))
1177 if (page_count(page
) == 1) {
1178 /* page was freed from under us. So we are done. */
1179 ClearPageActive(page
);
1180 ClearPageUnevictable(page
);
1181 if (unlikely(__PageMovable(page
))) {
1183 if (!PageMovable(page
))
1184 __ClearPageIsolated(page
);
1190 newpage
= get_new_page(page
, private);
1194 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1195 if (rc
== MIGRATEPAGE_SUCCESS
)
1196 set_page_owner_migrate_reason(newpage
, reason
);
1199 if (rc
!= -EAGAIN
) {
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kept its references and be restored.
1205 list_del(&page
->lru
);
1208 * Compaction can migrate also non-LRU pages which are
1209 * not accounted to NR_ISOLATED_*. They can be recognized
1212 if (likely(!__PageMovable(page
)))
1213 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1214 page_is_file_cache(page
), -hpage_nr_pages(page
));
1218 * If migration is successful, releases reference grabbed during
1219 * isolation. Otherwise, restore the page to right list unless
1222 if (rc
== MIGRATEPAGE_SUCCESS
) {
1224 if (reason
== MR_MEMORY_FAILURE
) {
1226 * Set PG_HWPoison on just freed page
1227 * intentionally. Although it's rather weird,
1228 * it's how HWPoison flag works at the moment.
1230 if (set_hwpoison_free_buddy_page(page
))
1231 num_poisoned_pages_inc();
1234 if (rc
!= -EAGAIN
) {
1235 if (likely(!__PageMovable(page
))) {
1236 putback_lru_page(page
);
1241 if (PageMovable(page
))
1242 putback_movable_page(page
);
1244 __ClearPageIsolated(page
);
1250 put_new_page(newpage
, private);
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1276 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1277 free_page_t put_new_page
, unsigned long private,
1278 struct page
*hpage
, int force
,
1279 enum migrate_mode mode
, int reason
)
1282 int page_was_mapped
= 0;
1283 struct page
*new_hpage
;
1284 struct anon_vma
*anon_vma
= NULL
;
1287 * Migratability of hugepages depends on architectures and their size.
1288 * This check is necessary because some callers of hugepage migration
1289 * like soft offline and memory hotremove don't walk through page
1290 * tables or check whether the hugepage is pmd-based or not before
1291 * kicking migration.
1293 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1294 putback_active_hugepage(hpage
);
1298 new_hpage
= get_new_page(hpage
, private);
1302 if (!trylock_page(hpage
)) {
1307 case MIGRATE_SYNC_NO_COPY
:
1316 * Check for pages which are in the process of being freed. Without
1317 * page_mapping() set, hugetlbfs specific move page routine will not
1318 * be called and we could leak usage counts for subpools.
1320 if (page_private(hpage
) && !page_mapping(hpage
)) {
1325 if (PageAnon(hpage
))
1326 anon_vma
= page_get_anon_vma(hpage
);
1328 if (unlikely(!trylock_page(new_hpage
)))
1331 if (page_mapped(hpage
)) {
1333 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1334 page_was_mapped
= 1;
1337 if (!page_mapped(hpage
))
1338 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1340 if (page_was_mapped
)
1341 remove_migration_ptes(hpage
,
1342 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1344 unlock_page(new_hpage
);
1348 put_anon_vma(anon_vma
);
1350 if (rc
== MIGRATEPAGE_SUCCESS
) {
1351 move_hugetlb_state(hpage
, new_hpage
, reason
);
1352 put_new_page
= NULL
;
1359 putback_active_hugepage(hpage
);
1362 * If migration was not successful and there's a freeing callback, use
1363 * it. Otherwise, put_page() will drop the reference grabbed during
1367 put_new_page(new_hpage
, private);
1369 putback_active_hugepage(new_hpage
);
1375 * migrate_pages - migrate the pages specified in a list, to the free pages
1376 * supplied as the target for the page migration
1378 * @from: The list of pages to be migrated.
1379 * @get_new_page: The function used to allocate free pages to be used
1380 * as the target of the page migration.
1381 * @put_new_page: The function used to free target pages if migration
1382 * fails, or NULL if no special handling is necessary.
1383 * @private: Private data to be passed on to get_new_page()
1384 * @mode: The migration mode that specifies the constraints for
1385 * page migration, if any.
1386 * @reason: The reason for page migration.
1388 * The function returns after 10 attempts or if no pages are movable any more
1389 * because the list has become empty or no retryable pages exist any more.
1390 * The caller should call putback_movable_pages() to return pages to the LRU
1391 * or free list only if ret != 0.
1393 * Returns the number of pages that were not migrated, or an error code.
1395 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1396 free_page_t put_new_page
, unsigned long private,
1397 enum migrate_mode mode
, int reason
)
1401 int nr_succeeded
= 0;
1405 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1409 current
->flags
|= PF_SWAPWRITE
;
1411 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1414 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1419 rc
= unmap_and_move_huge_page(get_new_page
,
1420 put_new_page
, private, page
,
1421 pass
> 2, mode
, reason
);
1423 rc
= unmap_and_move(get_new_page
, put_new_page
,
1424 private, page
, pass
> 2, mode
,
1430 * THP migration might be unsupported or the
1431 * allocation could've failed so we should
1432 * retry on the same page with the THP split
1435 * Head page is retried immediately and tail
1436 * pages are added to the tail of the list so
1437 * we encounter them after the rest of the list
1440 if (PageTransHuge(page
) && !PageHuge(page
)) {
1442 rc
= split_huge_page_to_list(page
, from
);
1445 list_safe_reset_next(page
, page2
, lru
);
1454 case MIGRATEPAGE_SUCCESS
:
1459 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460 * unlike -EAGAIN case, the failed page is
1461 * removed from migration page list and not
1462 * retried in the next outer loop.
1473 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1475 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1476 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1479 current
->flags
&= ~PF_SWAPWRITE
;
1486 static int store_status(int __user
*status
, int start
, int value
, int nr
)
1489 if (put_user(value
, status
+ start
))
1497 static int do_move_pages_to_node(struct mm_struct
*mm
,
1498 struct list_head
*pagelist
, int node
)
1502 if (list_empty(pagelist
))
1505 err
= migrate_pages(pagelist
, alloc_new_node_page
, NULL
, node
,
1506 MIGRATE_SYNC
, MR_SYSCALL
);
1508 putback_movable_pages(pagelist
);
1513 * Resolves the given address to a struct page, isolates it from the LRU and
1514 * puts it to the given pagelist.
1516 * errno - if the page cannot be found/isolated
1517 * 0 - when it doesn't have to be migrated because it is already on the
1519 * 1 - when it has been queued
1521 static int add_page_for_migration(struct mm_struct
*mm
, unsigned long addr
,
1522 int node
, struct list_head
*pagelist
, bool migrate_all
)
1524 struct vm_area_struct
*vma
;
1526 unsigned int follflags
;
1529 down_read(&mm
->mmap_sem
);
1531 vma
= find_vma(mm
, addr
);
1532 if (!vma
|| addr
< vma
->vm_start
|| !vma_migratable(vma
))
1535 /* FOLL_DUMP to ignore special (like zero) pages */
1536 follflags
= FOLL_GET
| FOLL_DUMP
;
1537 page
= follow_page(vma
, addr
, follflags
);
1539 err
= PTR_ERR(page
);
1548 if (page_to_nid(page
) == node
)
1552 if (page_mapcount(page
) > 1 && !migrate_all
)
1555 if (PageHuge(page
)) {
1556 if (PageHead(page
)) {
1557 isolate_huge_page(page
, pagelist
);
1563 head
= compound_head(page
);
1564 err
= isolate_lru_page(head
);
1569 list_add_tail(&head
->lru
, pagelist
);
1570 mod_node_page_state(page_pgdat(head
),
1571 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1572 hpage_nr_pages(head
));
1576 * Either remove the duplicate refcount from
1577 * isolate_lru_page() or drop the page ref if it was
1582 up_read(&mm
->mmap_sem
);
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1590 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1591 unsigned long nr_pages
,
1592 const void __user
* __user
*pages
,
1593 const int __user
*nodes
,
1594 int __user
*status
, int flags
)
1596 int current_node
= NUMA_NO_NODE
;
1597 LIST_HEAD(pagelist
);
1603 for (i
= start
= 0; i
< nr_pages
; i
++) {
1604 const void __user
*p
;
1609 if (get_user(p
, pages
+ i
))
1611 if (get_user(node
, nodes
+ i
))
1613 addr
= (unsigned long)untagged_addr(p
);
1616 if (node
< 0 || node
>= MAX_NUMNODES
)
1618 if (!node_state(node
, N_MEMORY
))
1622 if (!node_isset(node
, task_nodes
))
1625 if (current_node
== NUMA_NO_NODE
) {
1626 current_node
= node
;
1628 } else if (node
!= current_node
) {
1629 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1632 * Positive err means the number of failed
1633 * pages to migrate. Since we are going to
1634 * abort and return the number of non-migrated
1635 * pages, so need to incude the rest of the
1636 * nr_pages that have not been attempted as
1640 err
+= nr_pages
- i
- 1;
1643 err
= store_status(status
, start
, current_node
, i
- start
);
1647 current_node
= node
;
1651 * Errors in the page lookup or isolation are not fatal and we simply
1652 * report them via status
1654 err
= add_page_for_migration(mm
, addr
, current_node
,
1655 &pagelist
, flags
& MPOL_MF_MOVE_ALL
);
1658 /* The page is already on the target node */
1659 err
= store_status(status
, i
, current_node
, 1);
1663 } else if (err
> 0) {
1664 /* The page is successfully queued for migration */
1668 err
= store_status(status
, i
, err
, 1);
1672 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1675 err
+= nr_pages
- i
- 1;
1679 err
= store_status(status
, start
, current_node
, i
- start
);
1683 current_node
= NUMA_NO_NODE
;
1686 if (list_empty(&pagelist
))
1689 /* Make sure we do not overwrite the existing error */
1690 err1
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1692 * Don't have to report non-attempted pages here since:
1693 * - If the above loop is done gracefully all pages have been
1695 * - If the above loop is aborted it means a fatal error
1696 * happened, should return ret.
1699 err1
= store_status(status
, start
, current_node
, i
- start
);
1707 * Determine the nodes of an array of pages and store it in an array of status.
1709 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1710 const void __user
**pages
, int *status
)
1714 down_read(&mm
->mmap_sem
);
1716 for (i
= 0; i
< nr_pages
; i
++) {
1717 unsigned long addr
= (unsigned long)(*pages
);
1718 struct vm_area_struct
*vma
;
1722 vma
= find_vma(mm
, addr
);
1723 if (!vma
|| addr
< vma
->vm_start
)
1726 /* FOLL_DUMP to ignore special (like zero) pages */
1727 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1729 err
= PTR_ERR(page
);
1733 err
= page
? page_to_nid(page
) : -ENOENT
;
1741 up_read(&mm
->mmap_sem
);
1745 * Determine the nodes of a user array of pages and store it in
1746 * a user array of status.
1748 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1749 const void __user
* __user
*pages
,
1752 #define DO_PAGES_STAT_CHUNK_NR 16
1753 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1754 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1757 unsigned long chunk_nr
;
1759 chunk_nr
= nr_pages
;
1760 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1761 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1763 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1766 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1768 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1773 nr_pages
-= chunk_nr
;
1775 return nr_pages
? -EFAULT
: 0;
1779 * Move a list of pages in the address space of the currently executing
1782 static int kernel_move_pages(pid_t pid
, unsigned long nr_pages
,
1783 const void __user
* __user
*pages
,
1784 const int __user
*nodes
,
1785 int __user
*status
, int flags
)
1787 struct task_struct
*task
;
1788 struct mm_struct
*mm
;
1790 nodemask_t task_nodes
;
1793 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1796 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1799 /* Find the mm_struct */
1801 task
= pid
? find_task_by_vpid(pid
) : current
;
1806 get_task_struct(task
);
1809 * Check if this process has the right to modify the specified
1810 * process. Use the regular "ptrace_may_access()" checks.
1812 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1819 err
= security_task_movememory(task
);
1823 task_nodes
= cpuset_mems_allowed(task
);
1824 mm
= get_task_mm(task
);
1825 put_task_struct(task
);
1831 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1832 nodes
, status
, flags
);
1834 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1840 put_task_struct(task
);
1844 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1845 const void __user
* __user
*, pages
,
1846 const int __user
*, nodes
,
1847 int __user
*, status
, int, flags
)
1849 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1852 #ifdef CONFIG_COMPAT
1853 COMPAT_SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, compat_ulong_t
, nr_pages
,
1854 compat_uptr_t __user
*, pages32
,
1855 const int __user
*, nodes
,
1856 int __user
*, status
,
1859 const void __user
* __user
*pages
;
1862 pages
= compat_alloc_user_space(nr_pages
* sizeof(void *));
1863 for (i
= 0; i
< nr_pages
; i
++) {
1866 if (get_user(p
, pages32
+ i
) ||
1867 put_user(compat_ptr(p
), pages
+ i
))
1870 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1872 #endif /* CONFIG_COMPAT */
1874 #ifdef CONFIG_NUMA_BALANCING
1876 * Returns true if this is a safe migration target node for misplaced NUMA
1877 * pages. Currently it only checks the watermarks which crude
1879 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1880 unsigned long nr_migrate_pages
)
1884 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1885 struct zone
*zone
= pgdat
->node_zones
+ z
;
1887 if (!populated_zone(zone
))
1890 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1891 if (!zone_watermark_ok(zone
, 0,
1892 high_wmark_pages(zone
) +
1901 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1904 int nid
= (int) data
;
1905 struct page
*newpage
;
1907 newpage
= __alloc_pages_node(nid
,
1908 (GFP_HIGHUSER_MOVABLE
|
1909 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1910 __GFP_NORETRY
| __GFP_NOWARN
) &
1916 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1920 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1922 /* Avoid migrating to a node that is nearly full */
1923 if (!migrate_balanced_pgdat(pgdat
, compound_nr(page
)))
1926 if (isolate_lru_page(page
))
1930 * migrate_misplaced_transhuge_page() skips page migration's usual
1931 * check on page_count(), so we must do it here, now that the page
1932 * has been isolated: a GUP pin, or any other pin, prevents migration.
1933 * The expected page count is 3: 1 for page's mapcount and 1 for the
1934 * caller's pin and 1 for the reference taken by isolate_lru_page().
1936 if (PageTransHuge(page
) && page_count(page
) != 3) {
1937 putback_lru_page(page
);
1941 page_lru
= page_is_file_cache(page
);
1942 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1943 hpage_nr_pages(page
));
1946 * Isolating the page has taken another reference, so the
1947 * caller's reference can be safely dropped without the page
1948 * disappearing underneath us during migration.
1954 bool pmd_trans_migrating(pmd_t pmd
)
1956 struct page
*page
= pmd_page(pmd
);
1957 return PageLocked(page
);
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1965 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1968 pg_data_t
*pgdat
= NODE_DATA(node
);
1971 LIST_HEAD(migratepages
);
1974 * Don't migrate file pages that are mapped in multiple processes
1975 * with execute permissions as they are probably shared libraries.
1977 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1978 (vma
->vm_flags
& VM_EXEC
))
1982 * Also do not migrate dirty pages as not all filesystems can move
1983 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1985 if (page_is_file_cache(page
) && PageDirty(page
))
1988 isolated
= numamigrate_isolate_page(pgdat
, page
);
1992 list_add(&page
->lru
, &migratepages
);
1993 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1994 NULL
, node
, MIGRATE_ASYNC
,
1997 if (!list_empty(&migratepages
)) {
1998 list_del(&page
->lru
);
1999 dec_node_page_state(page
, NR_ISOLATED_ANON
+
2000 page_is_file_cache(page
));
2001 putback_lru_page(page
);
2005 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
2006 BUG_ON(!list_empty(&migratepages
));
2013 #endif /* CONFIG_NUMA_BALANCING */
2015 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2017 * Migrates a THP to a given target node. page must be locked and is unlocked
2020 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
2021 struct vm_area_struct
*vma
,
2022 pmd_t
*pmd
, pmd_t entry
,
2023 unsigned long address
,
2024 struct page
*page
, int node
)
2027 pg_data_t
*pgdat
= NODE_DATA(node
);
2029 struct page
*new_page
= NULL
;
2030 int page_lru
= page_is_file_cache(page
);
2031 unsigned long start
= address
& HPAGE_PMD_MASK
;
2033 new_page
= alloc_pages_node(node
,
2034 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2038 prep_transhuge_page(new_page
);
2040 isolated
= numamigrate_isolate_page(pgdat
, page
);
2046 /* Prepare a page as a migration target */
2047 __SetPageLocked(new_page
);
2048 if (PageSwapBacked(page
))
2049 __SetPageSwapBacked(new_page
);
2051 /* anon mapping, we can simply copy page->mapping to the new page: */
2052 new_page
->mapping
= page
->mapping
;
2053 new_page
->index
= page
->index
;
2054 /* flush the cache before copying using the kernel virtual address */
2055 flush_cache_range(vma
, start
, start
+ HPAGE_PMD_SIZE
);
2056 migrate_page_copy(new_page
, page
);
2057 WARN_ON(PageLRU(new_page
));
2059 /* Recheck the target PMD */
2060 ptl
= pmd_lock(mm
, pmd
);
2061 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2064 /* Reverse changes made by migrate_page_copy() */
2065 if (TestClearPageActive(new_page
))
2066 SetPageActive(page
);
2067 if (TestClearPageUnevictable(new_page
))
2068 SetPageUnevictable(page
);
2070 unlock_page(new_page
);
2071 put_page(new_page
); /* Free it */
2073 /* Retake the callers reference and putback on LRU */
2075 putback_lru_page(page
);
2076 mod_node_page_state(page_pgdat(page
),
2077 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2082 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2083 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2086 * Overwrite the old entry under pagetable lock and establish
2087 * the new PTE. Any parallel GUP will either observe the old
2088 * page blocking on the page lock, block on the page table
2089 * lock or observe the new page. The SetPageUptodate on the
2090 * new page and page_add_new_anon_rmap guarantee the copy is
2091 * visible before the pagetable update.
2093 page_add_anon_rmap(new_page
, vma
, start
, true);
2095 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2096 * has already been flushed globally. So no TLB can be currently
2097 * caching this non present pmd mapping. There's no need to clear the
2098 * pmd before doing set_pmd_at(), nor to flush the TLB after
2099 * set_pmd_at(). Clearing the pmd here would introduce a race
2100 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2101 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2102 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2105 set_pmd_at(mm
, start
, pmd
, entry
);
2106 update_mmu_cache_pmd(vma
, address
, &entry
);
2108 page_ref_unfreeze(page
, 2);
2109 mlock_migrate_page(new_page
, page
);
2110 page_remove_rmap(page
, true);
2111 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2115 /* Take an "isolate" reference and put new page on the LRU. */
2117 putback_lru_page(new_page
);
2119 unlock_page(new_page
);
2121 put_page(page
); /* Drop the rmap reference */
2122 put_page(page
); /* Drop the LRU isolation reference */
2124 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2125 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2127 mod_node_page_state(page_pgdat(page
),
2128 NR_ISOLATED_ANON
+ page_lru
,
2133 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2134 ptl
= pmd_lock(mm
, pmd
);
2135 if (pmd_same(*pmd
, entry
)) {
2136 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2137 set_pmd_at(mm
, start
, pmd
, entry
);
2138 update_mmu_cache_pmd(vma
, address
, &entry
);
2147 #endif /* CONFIG_NUMA_BALANCING */
2149 #endif /* CONFIG_NUMA */
2151 #ifdef CONFIG_DEVICE_PRIVATE
2152 static int migrate_vma_collect_hole(unsigned long start
,
2154 __always_unused
int depth
,
2155 struct mm_walk
*walk
)
2157 struct migrate_vma
*migrate
= walk
->private;
2160 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
2161 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2162 migrate
->dst
[migrate
->npages
] = 0;
2170 static int migrate_vma_collect_skip(unsigned long start
,
2172 struct mm_walk
*walk
)
2174 struct migrate_vma
*migrate
= walk
->private;
2177 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
2178 migrate
->dst
[migrate
->npages
] = 0;
2179 migrate
->src
[migrate
->npages
++] = 0;
2185 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2186 unsigned long start
,
2188 struct mm_walk
*walk
)
2190 struct migrate_vma
*migrate
= walk
->private;
2191 struct vm_area_struct
*vma
= walk
->vma
;
2192 struct mm_struct
*mm
= vma
->vm_mm
;
2193 unsigned long addr
= start
, unmapped
= 0;
2198 if (pmd_none(*pmdp
))
2199 return migrate_vma_collect_hole(start
, end
, -1, walk
);
2201 if (pmd_trans_huge(*pmdp
)) {
2204 ptl
= pmd_lock(mm
, pmdp
);
2205 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2210 page
= pmd_page(*pmdp
);
2211 if (is_huge_zero_page(page
)) {
2213 split_huge_pmd(vma
, pmdp
, addr
);
2214 if (pmd_trans_unstable(pmdp
))
2215 return migrate_vma_collect_skip(start
, end
,
2222 if (unlikely(!trylock_page(page
)))
2223 return migrate_vma_collect_skip(start
, end
,
2225 ret
= split_huge_page(page
);
2229 return migrate_vma_collect_skip(start
, end
,
2231 if (pmd_none(*pmdp
))
2232 return migrate_vma_collect_hole(start
, end
, -1,
2237 if (unlikely(pmd_bad(*pmdp
)))
2238 return migrate_vma_collect_skip(start
, end
, walk
);
2240 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2241 arch_enter_lazy_mmu_mode();
2243 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2244 unsigned long mpfn
, pfn
;
2251 if (pte_none(pte
)) {
2252 mpfn
= MIGRATE_PFN_MIGRATE
;
2257 if (!pte_present(pte
)) {
2261 * Only care about unaddressable device page special
2262 * page table entry. Other special swap entries are not
2263 * migratable, and we ignore regular swapped page.
2265 entry
= pte_to_swp_entry(pte
);
2266 if (!is_device_private_entry(entry
))
2269 page
= device_private_entry_to_page(entry
);
2270 mpfn
= migrate_pfn(page_to_pfn(page
)) |
2271 MIGRATE_PFN_MIGRATE
;
2272 if (is_write_device_private_entry(entry
))
2273 mpfn
|= MIGRATE_PFN_WRITE
;
2276 if (is_zero_pfn(pfn
)) {
2277 mpfn
= MIGRATE_PFN_MIGRATE
;
2281 page
= vm_normal_page(migrate
->vma
, addr
, pte
);
2282 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2283 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2286 /* FIXME support THP */
2287 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2293 * By getting a reference on the page we pin it and that blocks
2294 * any kind of migration. Side effect is that it "freezes" the
2297 * We drop this reference after isolating the page from the lru
2298 * for non device page (device page are not on the lru and thus
2299 * can't be dropped from it).
2305 * Optimize for the common case where page is only mapped once
2306 * in one process. If we can lock the page, then we can safely
2307 * set up a special migration page table entry now.
2309 if (trylock_page(page
)) {
2312 mpfn
|= MIGRATE_PFN_LOCKED
;
2313 ptep_get_and_clear(mm
, addr
, ptep
);
2315 /* Setup special migration page table entry */
2316 entry
= make_migration_entry(page
, mpfn
&
2318 swp_pte
= swp_entry_to_pte(entry
);
2319 if (pte_soft_dirty(pte
))
2320 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2321 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2324 * This is like regular unmap: we remove the rmap and
2325 * drop page refcount. Page won't be freed, as we took
2326 * a reference just above.
2328 page_remove_rmap(page
, false);
2331 if (pte_present(pte
))
2336 migrate
->dst
[migrate
->npages
] = 0;
2337 migrate
->src
[migrate
->npages
++] = mpfn
;
2339 arch_leave_lazy_mmu_mode();
2340 pte_unmap_unlock(ptep
- 1, ptl
);
2342 /* Only flush the TLB if we actually modified any entries */
2344 flush_tlb_range(walk
->vma
, start
, end
);
2349 static const struct mm_walk_ops migrate_vma_walk_ops
= {
2350 .pmd_entry
= migrate_vma_collect_pmd
,
2351 .pte_hole
= migrate_vma_collect_hole
,
2355 * migrate_vma_collect() - collect pages over a range of virtual addresses
2356 * @migrate: migrate struct containing all migration information
2358 * This will walk the CPU page table. For each virtual address backed by a
2359 * valid page, it updates the src array and takes a reference on the page, in
2360 * order to pin the page until we lock it and unmap it.
2362 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2364 struct mmu_notifier_range range
;
2366 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, NULL
,
2367 migrate
->vma
->vm_mm
, migrate
->start
, migrate
->end
);
2368 mmu_notifier_invalidate_range_start(&range
);
2370 walk_page_range(migrate
->vma
->vm_mm
, migrate
->start
, migrate
->end
,
2371 &migrate_vma_walk_ops
, migrate
);
2373 mmu_notifier_invalidate_range_end(&range
);
2374 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2378 * migrate_vma_check_page() - check if page is pinned or not
2379 * @page: struct page to check
2381 * Pinned pages cannot be migrated. This is the same test as in
2382 * migrate_page_move_mapping(), except that here we allow migration of a
2385 static bool migrate_vma_check_page(struct page
*page
)
2388 * One extra ref because caller holds an extra reference, either from
2389 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2395 * FIXME support THP (transparent huge page), it is bit more complex to
2396 * check them than regular pages, because they can be mapped with a pmd
2397 * or with a pte (split pte mapping).
2399 if (PageCompound(page
))
2402 /* Page from ZONE_DEVICE have one extra reference */
2403 if (is_zone_device_page(page
)) {
2405 * Private page can never be pin as they have no valid pte and
2406 * GUP will fail for those. Yet if there is a pending migration
2407 * a thread might try to wait on the pte migration entry and
2408 * will bump the page reference count. Sadly there is no way to
2409 * differentiate a regular pin from migration wait. Hence to
2410 * avoid 2 racing thread trying to migrate back to CPU to enter
2411 * infinite loop (one stoping migration because the other is
2412 * waiting on pte migration entry). We always return true here.
2414 * FIXME proper solution is to rework migration_entry_wait() so
2415 * it does not need to take a reference on page.
2417 return is_device_private_page(page
);
2420 /* For file back page */
2421 if (page_mapping(page
))
2422 extra
+= 1 + page_has_private(page
);
2424 if ((page_count(page
) - extra
) > page_mapcount(page
))
2431 * migrate_vma_prepare() - lock pages and isolate them from the lru
2432 * @migrate: migrate struct containing all migration information
2434 * This locks pages that have been collected by migrate_vma_collect(). Once each
2435 * page is locked it is isolated from the lru (for non-device pages). Finally,
2436 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2437 * migrated by concurrent kernel threads.
2439 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2441 const unsigned long npages
= migrate
->npages
;
2442 const unsigned long start
= migrate
->start
;
2443 unsigned long addr
, i
, restore
= 0;
2444 bool allow_drain
= true;
2448 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2449 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2455 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2457 * Because we are migrating several pages there can be
2458 * a deadlock between 2 concurrent migration where each
2459 * are waiting on each other page lock.
2461 * Make migrate_vma() a best effort thing and backoff
2462 * for any page we can not lock right away.
2464 if (!trylock_page(page
)) {
2465 migrate
->src
[i
] = 0;
2471 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2474 /* ZONE_DEVICE pages are not on LRU */
2475 if (!is_zone_device_page(page
)) {
2476 if (!PageLRU(page
) && allow_drain
) {
2477 /* Drain CPU's pagevec */
2478 lru_add_drain_all();
2479 allow_drain
= false;
2482 if (isolate_lru_page(page
)) {
2484 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2488 migrate
->src
[i
] = 0;
2496 /* Drop the reference we took in collect */
2500 if (!migrate_vma_check_page(page
)) {
2502 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2506 if (!is_zone_device_page(page
)) {
2508 putback_lru_page(page
);
2511 migrate
->src
[i
] = 0;
2515 if (!is_zone_device_page(page
))
2516 putback_lru_page(page
);
2523 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2524 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2526 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2529 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2531 migrate
->src
[i
] = 0;
2539 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2540 * @migrate: migrate struct containing all migration information
2542 * Replace page mapping (CPU page table pte) with a special migration pte entry
2543 * and check again if it has been pinned. Pinned pages are restored because we
2544 * cannot migrate them.
2546 * This is the last step before we call the device driver callback to allocate
2547 * destination memory and copy contents of original page over to new page.
2549 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2551 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2552 const unsigned long npages
= migrate
->npages
;
2553 const unsigned long start
= migrate
->start
;
2554 unsigned long addr
, i
, restore
= 0;
2556 for (i
= 0; i
< npages
; i
++) {
2557 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2559 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2562 if (page_mapped(page
)) {
2563 try_to_unmap(page
, flags
);
2564 if (page_mapped(page
))
2568 if (migrate_vma_check_page(page
))
2572 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2577 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2578 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2580 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2583 remove_migration_ptes(page
, page
, false);
2585 migrate
->src
[i
] = 0;
2589 if (is_zone_device_page(page
))
2592 putback_lru_page(page
);
2597 * migrate_vma_setup() - prepare to migrate a range of memory
2598 * @args: contains the vma, start, and and pfns arrays for the migration
2600 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2603 * Prepare to migrate a range of memory virtual address range by collecting all
2604 * the pages backing each virtual address in the range, saving them inside the
2605 * src array. Then lock those pages and unmap them. Once the pages are locked
2606 * and unmapped, check whether each page is pinned or not. Pages that aren't
2607 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2608 * corresponding src array entry. Then restores any pages that are pinned, by
2609 * remapping and unlocking those pages.
2611 * The caller should then allocate destination memory and copy source memory to
2612 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2613 * flag set). Once these are allocated and copied, the caller must update each
2614 * corresponding entry in the dst array with the pfn value of the destination
2615 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2616 * (destination pages must have their struct pages locked, via lock_page()).
2618 * Note that the caller does not have to migrate all the pages that are marked
2619 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2620 * device memory to system memory. If the caller cannot migrate a device page
2621 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2622 * consequences for the userspace process, so it must be avoided if at all
2625 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2626 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2627 * allowing the caller to allocate device memory for those unback virtual
2628 * address. For this the caller simply has to allocate device memory and
2629 * properly set the destination entry like for regular migration. Note that
2630 * this can still fails and thus inside the device driver must check if the
2631 * migration was successful for those entries after calling migrate_vma_pages()
2632 * just like for regular migration.
2634 * After that, the callers must call migrate_vma_pages() to go over each entry
2635 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2636 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2637 * then migrate_vma_pages() to migrate struct page information from the source
2638 * struct page to the destination struct page. If it fails to migrate the
2639 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2642 * At this point all successfully migrated pages have an entry in the src
2643 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2644 * array entry with MIGRATE_PFN_VALID flag set.
2646 * Once migrate_vma_pages() returns the caller may inspect which pages were
2647 * successfully migrated, and which were not. Successfully migrated pages will
2648 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2650 * It is safe to update device page table after migrate_vma_pages() because
2651 * both destination and source page are still locked, and the mmap_sem is held
2652 * in read mode (hence no one can unmap the range being migrated).
2654 * Once the caller is done cleaning up things and updating its page table (if it
2655 * chose to do so, this is not an obligation) it finally calls
2656 * migrate_vma_finalize() to update the CPU page table to point to new pages
2657 * for successfully migrated pages or otherwise restore the CPU page table to
2658 * point to the original source pages.
2660 int migrate_vma_setup(struct migrate_vma
*args
)
2662 long nr_pages
= (args
->end
- args
->start
) >> PAGE_SHIFT
;
2664 args
->start
&= PAGE_MASK
;
2665 args
->end
&= PAGE_MASK
;
2666 if (!args
->vma
|| is_vm_hugetlb_page(args
->vma
) ||
2667 (args
->vma
->vm_flags
& VM_SPECIAL
) || vma_is_dax(args
->vma
))
2671 if (args
->start
< args
->vma
->vm_start
||
2672 args
->start
>= args
->vma
->vm_end
)
2674 if (args
->end
<= args
->vma
->vm_start
|| args
->end
> args
->vma
->vm_end
)
2676 if (!args
->src
|| !args
->dst
)
2679 memset(args
->src
, 0, sizeof(*args
->src
) * nr_pages
);
2683 migrate_vma_collect(args
);
2686 migrate_vma_prepare(args
);
2688 migrate_vma_unmap(args
);
2691 * At this point pages are locked and unmapped, and thus they have
2692 * stable content and can safely be copied to destination memory that
2693 * is allocated by the drivers.
2698 EXPORT_SYMBOL(migrate_vma_setup
);
2701 * This code closely matches the code in:
2702 * __handle_mm_fault()
2703 * handle_pte_fault()
2704 * do_anonymous_page()
2705 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2708 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2714 struct vm_area_struct
*vma
= migrate
->vma
;
2715 struct mm_struct
*mm
= vma
->vm_mm
;
2716 struct mem_cgroup
*memcg
;
2726 /* Only allow populating anonymous memory */
2727 if (!vma_is_anonymous(vma
))
2730 pgdp
= pgd_offset(mm
, addr
);
2731 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2734 pudp
= pud_alloc(mm
, p4dp
, addr
);
2737 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2741 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2745 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2746 * pte_offset_map() on pmds where a huge pmd might be created
2747 * from a different thread.
2749 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2750 * parallel threads are excluded by other means.
2752 * Here we only have down_read(mmap_sem).
2754 if (pte_alloc(mm
, pmdp
))
2757 /* See the comment in pte_alloc_one_map() */
2758 if (unlikely(pmd_trans_unstable(pmdp
)))
2761 if (unlikely(anon_vma_prepare(vma
)))
2763 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2767 * The memory barrier inside __SetPageUptodate makes sure that
2768 * preceding stores to the page contents become visible before
2769 * the set_pte_at() write.
2771 __SetPageUptodate(page
);
2773 if (is_zone_device_page(page
)) {
2774 if (is_device_private_page(page
)) {
2775 swp_entry_t swp_entry
;
2777 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2778 entry
= swp_entry_to_pte(swp_entry
);
2781 entry
= mk_pte(page
, vma
->vm_page_prot
);
2782 if (vma
->vm_flags
& VM_WRITE
)
2783 entry
= pte_mkwrite(pte_mkdirty(entry
));
2786 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2788 if (check_stable_address_space(mm
))
2791 if (pte_present(*ptep
)) {
2792 unsigned long pfn
= pte_pfn(*ptep
);
2794 if (!is_zero_pfn(pfn
))
2797 } else if (!pte_none(*ptep
))
2801 * Check for userfaultfd but do not deliver the fault. Instead,
2804 if (userfaultfd_missing(vma
))
2807 inc_mm_counter(mm
, MM_ANONPAGES
);
2808 page_add_new_anon_rmap(page
, vma
, addr
, false);
2809 mem_cgroup_commit_charge(page
, memcg
, false, false);
2810 if (!is_zone_device_page(page
))
2811 lru_cache_add_active_or_unevictable(page
, vma
);
2815 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2816 ptep_clear_flush_notify(vma
, addr
, ptep
);
2817 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2818 update_mmu_cache(vma
, addr
, ptep
);
2820 /* No need to invalidate - it was non-present before */
2821 set_pte_at(mm
, addr
, ptep
, entry
);
2822 update_mmu_cache(vma
, addr
, ptep
);
2825 pte_unmap_unlock(ptep
, ptl
);
2826 *src
= MIGRATE_PFN_MIGRATE
;
2830 pte_unmap_unlock(ptep
, ptl
);
2831 mem_cgroup_cancel_charge(page
, memcg
, false);
2833 *src
&= ~MIGRATE_PFN_MIGRATE
;
2837 * migrate_vma_pages() - migrate meta-data from src page to dst page
2838 * @migrate: migrate struct containing all migration information
2840 * This migrates struct page meta-data from source struct page to destination
2841 * struct page. This effectively finishes the migration from source page to the
2844 void migrate_vma_pages(struct migrate_vma
*migrate
)
2846 const unsigned long npages
= migrate
->npages
;
2847 const unsigned long start
= migrate
->start
;
2848 struct mmu_notifier_range range
;
2849 unsigned long addr
, i
;
2850 bool notified
= false;
2852 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2853 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2854 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2855 struct address_space
*mapping
;
2859 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2864 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2869 mmu_notifier_range_init(&range
,
2870 MMU_NOTIFY_CLEAR
, 0,
2872 migrate
->vma
->vm_mm
,
2873 addr
, migrate
->end
);
2874 mmu_notifier_invalidate_range_start(&range
);
2876 migrate_vma_insert_page(migrate
, addr
, newpage
,
2882 mapping
= page_mapping(page
);
2884 if (is_zone_device_page(newpage
)) {
2885 if (is_device_private_page(newpage
)) {
2887 * For now only support private anonymous when
2888 * migrating to un-addressable device memory.
2891 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2896 * Other types of ZONE_DEVICE page are not
2899 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2904 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2905 if (r
!= MIGRATEPAGE_SUCCESS
)
2906 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2910 * No need to double call mmu_notifier->invalidate_range() callback as
2911 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2912 * did already call it.
2915 mmu_notifier_invalidate_range_only_end(&range
);
2917 EXPORT_SYMBOL(migrate_vma_pages
);
2920 * migrate_vma_finalize() - restore CPU page table entry
2921 * @migrate: migrate struct containing all migration information
2923 * This replaces the special migration pte entry with either a mapping to the
2924 * new page if migration was successful for that page, or to the original page
2927 * This also unlocks the pages and puts them back on the lru, or drops the extra
2928 * refcount, for device pages.
2930 void migrate_vma_finalize(struct migrate_vma
*migrate
)
2932 const unsigned long npages
= migrate
->npages
;
2935 for (i
= 0; i
< npages
; i
++) {
2936 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2937 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2941 unlock_page(newpage
);
2947 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2949 unlock_page(newpage
);
2955 remove_migration_ptes(page
, newpage
, false);
2959 if (is_zone_device_page(page
))
2962 putback_lru_page(page
);
2964 if (newpage
!= page
) {
2965 unlock_page(newpage
);
2966 if (is_zone_device_page(newpage
))
2969 putback_lru_page(newpage
);
2973 EXPORT_SYMBOL(migrate_vma_finalize
);
2974 #endif /* CONFIG_DEVICE_PRIVATE */