1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
4 * BTF-to-C type converter.
6 * Copyright (c) 2019 Facebook
14 #include <linux/err.h>
15 #include <linux/btf.h>
19 #include "libbpf_internal.h"
21 /* make sure libbpf doesn't use kernel-only integer typedefs */
22 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
24 static const char PREFIXES
[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT
= sizeof(PREFIXES
) - 1;
27 static const char *pfx(int lvl
)
29 return lvl
>= PREFIX_CNT
? PREFIXES
: &PREFIXES
[PREFIX_CNT
- lvl
];
32 enum btf_dump_type_order_state
{
38 enum btf_dump_type_emit_state
{
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state
{
46 /* topological sorting state */
47 enum btf_dump_type_order_state order_state
: 2;
48 /* emitting state used to determine the need for forward declaration */
49 enum btf_dump_type_emit_state emit_state
: 2;
50 /* whether forward declaration was already emitted */
52 /* whether unique non-duplicate name was already assigned */
53 __u8 name_resolved
: 1;
54 /* whether type is referenced from any other type */
59 const struct btf
*btf
;
60 const struct btf_ext
*btf_ext
;
61 btf_dump_printf_fn_t printf_fn
;
62 struct btf_dump_opts opts
;
64 /* per-type auxiliary state */
65 struct btf_dump_type_aux_state
*type_states
;
66 /* per-type optional cached unique name, must be freed, if present */
67 const char **cached_names
;
69 /* topo-sorted list of dependent type definitions */
75 * stack of type declarations (e.g., chain of modifiers, arrays,
82 /* maps struct/union/enum name to a number of name occurrences */
83 struct hashmap
*type_names
;
85 * maps typedef identifiers and enum value names to a number of such
88 struct hashmap
*ident_names
;
91 static size_t str_hash_fn(const void *key
, void *ctx
)
103 static bool str_equal_fn(const void *a
, const void *b
, void *ctx
)
105 return strcmp(a
, b
) == 0;
108 static const char *btf_name_of(const struct btf_dump
*d
, __u32 name_off
)
110 return btf__name_by_offset(d
->btf
, name_off
);
113 static void btf_dump_printf(const struct btf_dump
*d
, const char *fmt
, ...)
118 d
->printf_fn(d
->opts
.ctx
, fmt
, args
);
122 static int btf_dump_mark_referenced(struct btf_dump
*d
);
124 struct btf_dump
*btf_dump__new(const struct btf
*btf
,
125 const struct btf_ext
*btf_ext
,
126 const struct btf_dump_opts
*opts
,
127 btf_dump_printf_fn_t printf_fn
)
132 d
= calloc(1, sizeof(struct btf_dump
));
134 return ERR_PTR(-ENOMEM
);
137 d
->btf_ext
= btf_ext
;
138 d
->printf_fn
= printf_fn
;
139 d
->opts
.ctx
= opts
? opts
->ctx
: NULL
;
141 d
->type_names
= hashmap__new(str_hash_fn
, str_equal_fn
, NULL
);
142 if (IS_ERR(d
->type_names
)) {
143 err
= PTR_ERR(d
->type_names
);
144 d
->type_names
= NULL
;
147 d
->ident_names
= hashmap__new(str_hash_fn
, str_equal_fn
, NULL
);
148 if (IS_ERR(d
->ident_names
)) {
149 err
= PTR_ERR(d
->ident_names
);
150 d
->ident_names
= NULL
;
153 d
->type_states
= calloc(1 + btf__get_nr_types(d
->btf
),
154 sizeof(d
->type_states
[0]));
155 if (!d
->type_states
) {
159 d
->cached_names
= calloc(1 + btf__get_nr_types(d
->btf
),
160 sizeof(d
->cached_names
[0]));
161 if (!d
->cached_names
) {
166 /* VOID is special */
167 d
->type_states
[0].order_state
= ORDERED
;
168 d
->type_states
[0].emit_state
= EMITTED
;
170 /* eagerly determine referenced types for anon enums */
171 err
= btf_dump_mark_referenced(d
);
181 void btf_dump__free(struct btf_dump
*d
)
188 free(d
->type_states
);
189 if (d
->cached_names
) {
190 /* any set cached name is owned by us and should be freed */
191 for (i
= 0, cnt
= btf__get_nr_types(d
->btf
); i
<= cnt
; i
++) {
192 if (d
->cached_names
[i
])
193 free((void *)d
->cached_names
[i
]);
196 free(d
->cached_names
);
199 hashmap__free(d
->type_names
);
200 hashmap__free(d
->ident_names
);
205 static int btf_dump_order_type(struct btf_dump
*d
, __u32 id
, bool through_ptr
);
206 static void btf_dump_emit_type(struct btf_dump
*d
, __u32 id
, __u32 cont_id
);
209 * Dump BTF type in a compilable C syntax, including all the necessary
210 * dependent types, necessary for compilation. If some of the dependent types
211 * were already emitted as part of previous btf_dump__dump_type() invocation
212 * for another type, they won't be emitted again. This API allows callers to
213 * filter out BTF types according to user-defined criterias and emitted only
214 * minimal subset of types, necessary to compile everything. Full struct/union
215 * definitions will still be emitted, even if the only usage is through
216 * pointer and could be satisfied with just a forward declaration.
218 * Dumping is done in two high-level passes:
219 * 1. Topologically sort type definitions to satisfy C rules of compilation.
220 * 2. Emit type definitions in C syntax.
222 * Returns 0 on success; <0, otherwise.
224 int btf_dump__dump_type(struct btf_dump
*d
, __u32 id
)
228 if (id
> btf__get_nr_types(d
->btf
))
231 d
->emit_queue_cnt
= 0;
232 err
= btf_dump_order_type(d
, id
, false);
236 for (i
= 0; i
< d
->emit_queue_cnt
; i
++)
237 btf_dump_emit_type(d
, d
->emit_queue
[i
], 0 /*top-level*/);
243 * Mark all types that are referenced from any other type. This is used to
244 * determine top-level anonymous enums that need to be emitted as an
245 * independent type declarations.
246 * Anonymous enums come in two flavors: either embedded in a struct's field
247 * definition, in which case they have to be declared inline as part of field
248 * type declaration; or as a top-level anonymous enum, typically used for
249 * declaring global constants. It's impossible to distinguish between two
250 * without knowning whether given enum type was referenced from other type:
251 * top-level anonymous enum won't be referenced by anything, while embedded
254 static int btf_dump_mark_referenced(struct btf_dump
*d
)
256 int i
, j
, n
= btf__get_nr_types(d
->btf
);
257 const struct btf_type
*t
;
260 for (i
= 1; i
<= n
; i
++) {
261 t
= btf__type_by_id(d
->btf
, i
);
264 switch (btf_kind(t
)) {
270 case BTF_KIND_VOLATILE
:
272 case BTF_KIND_RESTRICT
:
274 case BTF_KIND_TYPEDEF
:
277 d
->type_states
[t
->type
].referenced
= 1;
280 case BTF_KIND_ARRAY
: {
281 const struct btf_array
*a
= btf_array(t
);
283 d
->type_states
[a
->index_type
].referenced
= 1;
284 d
->type_states
[a
->type
].referenced
= 1;
287 case BTF_KIND_STRUCT
:
288 case BTF_KIND_UNION
: {
289 const struct btf_member
*m
= btf_members(t
);
291 for (j
= 0; j
< vlen
; j
++, m
++)
292 d
->type_states
[m
->type
].referenced
= 1;
295 case BTF_KIND_FUNC_PROTO
: {
296 const struct btf_param
*p
= btf_params(t
);
298 for (j
= 0; j
< vlen
; j
++, p
++)
299 d
->type_states
[p
->type
].referenced
= 1;
302 case BTF_KIND_DATASEC
: {
303 const struct btf_var_secinfo
*v
= btf_var_secinfos(t
);
305 for (j
= 0; j
< vlen
; j
++, v
++)
306 d
->type_states
[v
->type
].referenced
= 1;
315 static int btf_dump_add_emit_queue_id(struct btf_dump
*d
, __u32 id
)
320 if (d
->emit_queue_cnt
>= d
->emit_queue_cap
) {
321 new_cap
= max(16, d
->emit_queue_cap
* 3 / 2);
322 new_queue
= realloc(d
->emit_queue
,
323 new_cap
* sizeof(new_queue
[0]));
326 d
->emit_queue
= new_queue
;
327 d
->emit_queue_cap
= new_cap
;
330 d
->emit_queue
[d
->emit_queue_cnt
++] = id
;
335 * Determine order of emitting dependent types and specified type to satisfy
336 * C compilation rules. This is done through topological sorting with an
337 * additional complication which comes from C rules. The main idea for C is
338 * that if some type is "embedded" into a struct/union, it's size needs to be
339 * known at the time of definition of containing type. E.g., for:
342 * struct B { struct A x; }
344 * struct A *HAS* to be defined before struct B, because it's "embedded",
345 * i.e., it is part of struct B layout. But in the following case:
348 * struct B { struct A *x; }
351 * it's enough to just have a forward declaration of struct A at the time of
352 * struct B definition, as struct B has a pointer to struct A, so the size of
353 * field x is known without knowing struct A size: it's sizeof(void *).
355 * Unfortunately, there are some trickier cases we need to handle, e.g.:
357 * struct A {}; // if this was forward-declaration: compilation error
359 * struct { // anonymous struct
364 * In this case, struct B's field x is a pointer, so it's size is known
365 * regardless of the size of (anonymous) struct it points to. But because this
366 * struct is anonymous and thus defined inline inside struct B, *and* it
367 * embeds struct A, compiler requires full definition of struct A to be known
368 * before struct B can be defined. This creates a transitive dependency
369 * between struct A and struct B. If struct A was forward-declared before
370 * struct B definition and fully defined after struct B definition, that would
371 * trigger compilation error.
373 * All this means that while we are doing topological sorting on BTF type
374 * graph, we need to determine relationships between different types (graph
376 * - weak link (relationship) between X and Y, if Y *CAN* be
377 * forward-declared at the point of X definition;
378 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
380 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
381 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
382 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
383 * Weak/strong relationship is determined recursively during DFS traversal and
384 * is returned as a result from btf_dump_order_type().
386 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
387 * but it is not guaranteeing that no extraneous forward declarations will be
390 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
391 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
392 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
393 * entire graph path, so depending where from one came to that BTF type, it
394 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
395 * once they are processed, there is no need to do it again, so they are
396 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
397 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
398 * in any case, once those are processed, no need to do it again, as the
399 * result won't change.
402 * - 1, if type is part of strong link (so there is strong topological
403 * ordering requirements);
404 * - 0, if type is part of weak link (so can be satisfied through forward
406 * - <0, on error (e.g., unsatisfiable type loop detected).
408 static int btf_dump_order_type(struct btf_dump
*d
, __u32 id
, bool through_ptr
)
411 * Order state is used to detect strong link cycles, but only for BTF
412 * kinds that are or could be an independent definition (i.e.,
413 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
414 * func_protos, modifiers are just means to get to these definitions.
415 * Int/void don't need definitions, they are assumed to be always
416 * properly defined. We also ignore datasec, var, and funcs for now.
417 * So for all non-defining kinds, we never even set ordering state,
418 * for defining kinds we set ORDERING and subsequently ORDERED if it
419 * forms a strong link.
421 struct btf_dump_type_aux_state
*tstate
= &d
->type_states
[id
];
422 const struct btf_type
*t
;
426 /* return true, letting typedefs know that it's ok to be emitted */
427 if (tstate
->order_state
== ORDERED
)
430 t
= btf__type_by_id(d
->btf
, id
);
432 if (tstate
->order_state
== ORDERING
) {
433 /* type loop, but resolvable through fwd declaration */
434 if (btf_is_composite(t
) && through_ptr
&& t
->name_off
!= 0)
436 pr_warn("unsatisfiable type cycle, id:[%u]\n", id
);
440 switch (btf_kind(t
)) {
442 tstate
->order_state
= ORDERED
;
446 err
= btf_dump_order_type(d
, t
->type
, true);
447 tstate
->order_state
= ORDERED
;
451 return btf_dump_order_type(d
, btf_array(t
)->type
, through_ptr
);
453 case BTF_KIND_STRUCT
:
454 case BTF_KIND_UNION
: {
455 const struct btf_member
*m
= btf_members(t
);
457 * struct/union is part of strong link, only if it's embedded
458 * (so no ptr in a path) or it's anonymous (so has to be
459 * defined inline, even if declared through ptr)
461 if (through_ptr
&& t
->name_off
!= 0)
464 tstate
->order_state
= ORDERING
;
467 for (i
= 0; i
< vlen
; i
++, m
++) {
468 err
= btf_dump_order_type(d
, m
->type
, false);
473 if (t
->name_off
!= 0) {
474 err
= btf_dump_add_emit_queue_id(d
, id
);
479 tstate
->order_state
= ORDERED
;
485 * non-anonymous or non-referenced enums are top-level
486 * declarations and should be emitted. Same logic can be
487 * applied to FWDs, it won't hurt anyways.
489 if (t
->name_off
!= 0 || !tstate
->referenced
) {
490 err
= btf_dump_add_emit_queue_id(d
, id
);
494 tstate
->order_state
= ORDERED
;
497 case BTF_KIND_TYPEDEF
: {
500 is_strong
= btf_dump_order_type(d
, t
->type
, through_ptr
);
504 /* typedef is similar to struct/union w.r.t. fwd-decls */
505 if (through_ptr
&& !is_strong
)
508 /* typedef is always a named definition */
509 err
= btf_dump_add_emit_queue_id(d
, id
);
513 d
->type_states
[id
].order_state
= ORDERED
;
516 case BTF_KIND_VOLATILE
:
518 case BTF_KIND_RESTRICT
:
519 return btf_dump_order_type(d
, t
->type
, through_ptr
);
521 case BTF_KIND_FUNC_PROTO
: {
522 const struct btf_param
*p
= btf_params(t
);
525 err
= btf_dump_order_type(d
, t
->type
, through_ptr
);
531 for (i
= 0; i
< vlen
; i
++, p
++) {
532 err
= btf_dump_order_type(d
, p
->type
, through_ptr
);
542 case BTF_KIND_DATASEC
:
543 d
->type_states
[id
].order_state
= ORDERED
;
551 static void btf_dump_emit_struct_fwd(struct btf_dump
*d
, __u32 id
,
552 const struct btf_type
*t
);
553 static void btf_dump_emit_struct_def(struct btf_dump
*d
, __u32 id
,
554 const struct btf_type
*t
, int lvl
);
556 static void btf_dump_emit_enum_fwd(struct btf_dump
*d
, __u32 id
,
557 const struct btf_type
*t
);
558 static void btf_dump_emit_enum_def(struct btf_dump
*d
, __u32 id
,
559 const struct btf_type
*t
, int lvl
);
561 static void btf_dump_emit_fwd_def(struct btf_dump
*d
, __u32 id
,
562 const struct btf_type
*t
);
564 static void btf_dump_emit_typedef_def(struct btf_dump
*d
, __u32 id
,
565 const struct btf_type
*t
, int lvl
);
567 /* a local view into a shared stack */
573 static void btf_dump_emit_type_decl(struct btf_dump
*d
, __u32 id
,
574 const char *fname
, int lvl
);
575 static void btf_dump_emit_type_chain(struct btf_dump
*d
,
576 struct id_stack
*decl_stack
,
577 const char *fname
, int lvl
);
579 static const char *btf_dump_type_name(struct btf_dump
*d
, __u32 id
);
580 static const char *btf_dump_ident_name(struct btf_dump
*d
, __u32 id
);
581 static size_t btf_dump_name_dups(struct btf_dump
*d
, struct hashmap
*name_map
,
582 const char *orig_name
);
584 static bool btf_dump_is_blacklisted(struct btf_dump
*d
, __u32 id
)
586 const struct btf_type
*t
= btf__type_by_id(d
->btf
, id
);
588 /* __builtin_va_list is a compiler built-in, which causes compilation
589 * errors, when compiling w/ different compiler, then used to compile
590 * original code (e.g., GCC to compile kernel, Clang to use generated
591 * C header from BTF). As it is built-in, it should be already defined
592 * properly internally in compiler.
594 if (t
->name_off
== 0)
596 return strcmp(btf_name_of(d
, t
->name_off
), "__builtin_va_list") == 0;
600 * Emit C-syntax definitions of types from chains of BTF types.
602 * High-level handling of determining necessary forward declarations are handled
603 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
604 * declarations/definitions in C syntax are handled by a combo of
605 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
606 * corresponding btf_dump_emit_*_{def,fwd}() functions.
608 * We also keep track of "containing struct/union type ID" to determine when
609 * we reference it from inside and thus can avoid emitting unnecessary forward
612 * This algorithm is designed in such a way, that even if some error occurs
613 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
614 * that doesn't comply to C rules completely), algorithm will try to proceed
615 * and produce as much meaningful output as possible.
617 static void btf_dump_emit_type(struct btf_dump
*d
, __u32 id
, __u32 cont_id
)
619 struct btf_dump_type_aux_state
*tstate
= &d
->type_states
[id
];
620 bool top_level_def
= cont_id
== 0;
621 const struct btf_type
*t
;
624 if (tstate
->emit_state
== EMITTED
)
627 t
= btf__type_by_id(d
->btf
, id
);
630 if (tstate
->emit_state
== EMITTING
) {
631 if (tstate
->fwd_emitted
)
635 case BTF_KIND_STRUCT
:
638 * if we are referencing a struct/union that we are
639 * part of - then no need for fwd declaration
643 if (t
->name_off
== 0) {
644 pr_warn("anonymous struct/union loop, id:[%u]\n",
648 btf_dump_emit_struct_fwd(d
, id
, t
);
649 btf_dump_printf(d
, ";\n\n");
650 tstate
->fwd_emitted
= 1;
652 case BTF_KIND_TYPEDEF
:
654 * for typedef fwd_emitted means typedef definition
655 * was emitted, but it can be used only for "weak"
656 * references through pointer only, not for embedding
658 if (!btf_dump_is_blacklisted(d
, id
)) {
659 btf_dump_emit_typedef_def(d
, id
, t
, 0);
660 btf_dump_printf(d
, ";\n\n");
662 tstate
->fwd_emitted
= 1;
673 tstate
->emit_state
= EMITTED
;
677 btf_dump_emit_enum_def(d
, id
, t
, 0);
678 btf_dump_printf(d
, ";\n\n");
680 tstate
->emit_state
= EMITTED
;
683 case BTF_KIND_VOLATILE
:
685 case BTF_KIND_RESTRICT
:
686 btf_dump_emit_type(d
, t
->type
, cont_id
);
689 btf_dump_emit_type(d
, btf_array(t
)->type
, cont_id
);
692 btf_dump_emit_fwd_def(d
, id
, t
);
693 btf_dump_printf(d
, ";\n\n");
694 tstate
->emit_state
= EMITTED
;
696 case BTF_KIND_TYPEDEF
:
697 tstate
->emit_state
= EMITTING
;
698 btf_dump_emit_type(d
, t
->type
, id
);
700 * typedef can server as both definition and forward
701 * declaration; at this stage someone depends on
702 * typedef as a forward declaration (refers to it
703 * through pointer), so unless we already did it,
704 * emit typedef as a forward declaration
706 if (!tstate
->fwd_emitted
&& !btf_dump_is_blacklisted(d
, id
)) {
707 btf_dump_emit_typedef_def(d
, id
, t
, 0);
708 btf_dump_printf(d
, ";\n\n");
710 tstate
->emit_state
= EMITTED
;
712 case BTF_KIND_STRUCT
:
714 tstate
->emit_state
= EMITTING
;
715 /* if it's a top-level struct/union definition or struct/union
716 * is anonymous, then in C we'll be emitting all fields and
717 * their types (as opposed to just `struct X`), so we need to
718 * make sure that all types, referenced from struct/union
719 * members have necessary forward-declarations, where
722 if (top_level_def
|| t
->name_off
== 0) {
723 const struct btf_member
*m
= btf_members(t
);
724 __u16 vlen
= btf_vlen(t
);
727 new_cont_id
= t
->name_off
== 0 ? cont_id
: id
;
728 for (i
= 0; i
< vlen
; i
++, m
++)
729 btf_dump_emit_type(d
, m
->type
, new_cont_id
);
730 } else if (!tstate
->fwd_emitted
&& id
!= cont_id
) {
731 btf_dump_emit_struct_fwd(d
, id
, t
);
732 btf_dump_printf(d
, ";\n\n");
733 tstate
->fwd_emitted
= 1;
737 btf_dump_emit_struct_def(d
, id
, t
, 0);
738 btf_dump_printf(d
, ";\n\n");
739 tstate
->emit_state
= EMITTED
;
741 tstate
->emit_state
= NOT_EMITTED
;
744 case BTF_KIND_FUNC_PROTO
: {
745 const struct btf_param
*p
= btf_params(t
);
746 __u16 vlen
= btf_vlen(t
);
749 btf_dump_emit_type(d
, t
->type
, cont_id
);
750 for (i
= 0; i
< vlen
; i
++, p
++)
751 btf_dump_emit_type(d
, p
->type
, cont_id
);
760 static bool btf_is_struct_packed(const struct btf
*btf
, __u32 id
,
761 const struct btf_type
*t
)
763 const struct btf_member
*m
;
764 int align
, i
, bit_sz
;
767 align
= btf__align_of(btf
, id
);
768 /* size of a non-packed struct has to be a multiple of its alignment*/
769 if (align
&& t
->size
% align
)
774 /* all non-bitfield fields have to be naturally aligned */
775 for (i
= 0; i
< vlen
; i
++, m
++) {
776 align
= btf__align_of(btf
, m
->type
);
777 bit_sz
= btf_member_bitfield_size(t
, i
);
778 if (align
&& bit_sz
== 0 && m
->offset
% (8 * align
) != 0)
783 * if original struct was marked as packed, but its layout is
784 * naturally aligned, we'll detect that it's not packed
789 static int chip_away_bits(int total
, int at_most
)
791 return total
% at_most
? : at_most
;
794 static void btf_dump_emit_bit_padding(const struct btf_dump
*d
,
795 int cur_off
, int m_off
, int m_bit_sz
,
798 int off_diff
= m_off
- cur_off
;
799 int ptr_bits
= sizeof(void *) * 8;
804 if (m_bit_sz
== 0 && off_diff
< align
* 8)
805 /* natural padding will take care of a gap */
808 while (off_diff
> 0) {
809 const char *pad_type
;
812 if (ptr_bits
> 32 && off_diff
> 32) {
814 pad_bits
= chip_away_bits(off_diff
, ptr_bits
);
815 } else if (off_diff
> 16) {
817 pad_bits
= chip_away_bits(off_diff
, 32);
818 } else if (off_diff
> 8) {
820 pad_bits
= chip_away_bits(off_diff
, 16);
823 pad_bits
= chip_away_bits(off_diff
, 8);
825 btf_dump_printf(d
, "\n%s%s: %d;", pfx(lvl
), pad_type
, pad_bits
);
826 off_diff
-= pad_bits
;
830 static void btf_dump_emit_struct_fwd(struct btf_dump
*d
, __u32 id
,
831 const struct btf_type
*t
)
833 btf_dump_printf(d
, "%s %s",
834 btf_is_struct(t
) ? "struct" : "union",
835 btf_dump_type_name(d
, id
));
838 static void btf_dump_emit_struct_def(struct btf_dump
*d
,
840 const struct btf_type
*t
,
843 const struct btf_member
*m
= btf_members(t
);
844 bool is_struct
= btf_is_struct(t
);
845 int align
, i
, packed
, off
= 0;
846 __u16 vlen
= btf_vlen(t
);
848 packed
= is_struct
? btf_is_struct_packed(d
->btf
, id
, t
) : 0;
850 btf_dump_printf(d
, "%s%s%s {",
851 is_struct
? "struct" : "union",
852 t
->name_off
? " " : "",
853 btf_dump_type_name(d
, id
));
855 for (i
= 0; i
< vlen
; i
++, m
++) {
859 fname
= btf_name_of(d
, m
->name_off
);
860 m_sz
= btf_member_bitfield_size(t
, i
);
861 m_off
= btf_member_bit_offset(t
, i
);
862 align
= packed
? 1 : btf__align_of(d
->btf
, m
->type
);
864 btf_dump_emit_bit_padding(d
, off
, m_off
, m_sz
, align
, lvl
+ 1);
865 btf_dump_printf(d
, "\n%s", pfx(lvl
+ 1));
866 btf_dump_emit_type_decl(d
, m
->type
, fname
, lvl
+ 1);
869 btf_dump_printf(d
, ": %d", m_sz
);
872 m_sz
= max(0, btf__resolve_size(d
->btf
, m
->type
));
873 off
= m_off
+ m_sz
* 8;
875 btf_dump_printf(d
, ";");
878 /* pad at the end, if necessary */
880 align
= packed
? 1 : btf__align_of(d
->btf
, id
);
881 btf_dump_emit_bit_padding(d
, off
, t
->size
* 8, 0, align
,
886 btf_dump_printf(d
, "\n");
887 btf_dump_printf(d
, "%s}", pfx(lvl
));
889 btf_dump_printf(d
, " __attribute__((packed))");
892 static void btf_dump_emit_enum_fwd(struct btf_dump
*d
, __u32 id
,
893 const struct btf_type
*t
)
895 btf_dump_printf(d
, "enum %s", btf_dump_type_name(d
, id
));
898 static void btf_dump_emit_enum_def(struct btf_dump
*d
, __u32 id
,
899 const struct btf_type
*t
,
902 const struct btf_enum
*v
= btf_enum(t
);
903 __u16 vlen
= btf_vlen(t
);
908 btf_dump_printf(d
, "enum%s%s",
909 t
->name_off
? " " : "",
910 btf_dump_type_name(d
, id
));
913 btf_dump_printf(d
, " {");
914 for (i
= 0; i
< vlen
; i
++, v
++) {
915 name
= btf_name_of(d
, v
->name_off
);
916 /* enumerators share namespace with typedef idents */
917 dup_cnt
= btf_dump_name_dups(d
, d
->ident_names
, name
);
919 btf_dump_printf(d
, "\n%s%s___%zu = %d,",
920 pfx(lvl
+ 1), name
, dup_cnt
,
923 btf_dump_printf(d
, "\n%s%s = %d,",
928 btf_dump_printf(d
, "\n%s}", pfx(lvl
));
932 static void btf_dump_emit_fwd_def(struct btf_dump
*d
, __u32 id
,
933 const struct btf_type
*t
)
935 const char *name
= btf_dump_type_name(d
, id
);
938 btf_dump_printf(d
, "union %s", name
);
940 btf_dump_printf(d
, "struct %s", name
);
943 static void btf_dump_emit_typedef_def(struct btf_dump
*d
, __u32 id
,
944 const struct btf_type
*t
, int lvl
)
946 const char *name
= btf_dump_ident_name(d
, id
);
949 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
950 * pointing to VOID. This generates warnings from btf_dump() and
951 * results in uncompilable header file, so we are fixing it up here
952 * with valid typedef into __builtin_va_list.
954 if (t
->type
== 0 && strcmp(name
, "__gnuc_va_list") == 0) {
955 btf_dump_printf(d
, "typedef __builtin_va_list __gnuc_va_list");
959 btf_dump_printf(d
, "typedef ");
960 btf_dump_emit_type_decl(d
, t
->type
, name
, lvl
);
963 static int btf_dump_push_decl_stack_id(struct btf_dump
*d
, __u32 id
)
968 if (d
->decl_stack_cnt
>= d
->decl_stack_cap
) {
969 new_cap
= max(16, d
->decl_stack_cap
* 3 / 2);
970 new_stack
= realloc(d
->decl_stack
,
971 new_cap
* sizeof(new_stack
[0]));
974 d
->decl_stack
= new_stack
;
975 d
->decl_stack_cap
= new_cap
;
978 d
->decl_stack
[d
->decl_stack_cnt
++] = id
;
984 * Emit type declaration (e.g., field type declaration in a struct or argument
985 * declaration in function prototype) in correct C syntax.
987 * For most types it's trivial, but there are few quirky type declaration
988 * cases worth mentioning:
989 * - function prototypes (especially nesting of function prototypes);
991 * - const/volatile/restrict for pointers vs other types.
993 * For a good discussion of *PARSING* C syntax (as a human), see
994 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
995 * Ch.3 "Unscrambling Declarations in C".
997 * It won't help with BTF to C conversion much, though, as it's an opposite
998 * problem. So we came up with this algorithm in reverse to van der Linden's
999 * parsing algorithm. It goes from structured BTF representation of type
1000 * declaration to a valid compilable C syntax.
1002 * For instance, consider this C typedef:
1003 * typedef const int * const * arr[10] arr_t;
1004 * It will be represented in BTF with this chain of BTF types:
1005 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1007 * Notice how [const] modifier always goes before type it modifies in BTF type
1008 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1009 * the right of pointers, but to the left of other types. There are also other
1010 * quirks, like function pointers, arrays of them, functions returning other
1013 * We handle that by pushing all the types to a stack, until we hit "terminal"
1014 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1015 * top of a stack, modifiers are handled differently. Array/function pointers
1016 * have also wildly different syntax and how nesting of them are done. See
1017 * code for authoritative definition.
1019 * To avoid allocating new stack for each independent chain of BTF types, we
1020 * share one bigger stack, with each chain working only on its own local view
1021 * of a stack frame. Some care is required to "pop" stack frames after
1022 * processing type declaration chain.
1024 int btf_dump__emit_type_decl(struct btf_dump
*d
, __u32 id
,
1025 const struct btf_dump_emit_type_decl_opts
*opts
)
1030 if (!OPTS_VALID(opts
, btf_dump_emit_type_decl_opts
))
1033 fname
= OPTS_GET(opts
, field_name
, NULL
);
1034 lvl
= OPTS_GET(opts
, indent_level
, 0);
1035 btf_dump_emit_type_decl(d
, id
, fname
, lvl
);
1039 static void btf_dump_emit_type_decl(struct btf_dump
*d
, __u32 id
,
1040 const char *fname
, int lvl
)
1042 struct id_stack decl_stack
;
1043 const struct btf_type
*t
;
1044 int err
, stack_start
;
1046 stack_start
= d
->decl_stack_cnt
;
1048 err
= btf_dump_push_decl_stack_id(d
, id
);
1051 * if we don't have enough memory for entire type decl
1052 * chain, restore stack, emit warning, and try to
1053 * proceed nevertheless
1055 pr_warn("not enough memory for decl stack:%d", err
);
1056 d
->decl_stack_cnt
= stack_start
;
1064 t
= btf__type_by_id(d
->btf
, id
);
1065 switch (btf_kind(t
)) {
1067 case BTF_KIND_VOLATILE
:
1068 case BTF_KIND_CONST
:
1069 case BTF_KIND_RESTRICT
:
1070 case BTF_KIND_FUNC_PROTO
:
1073 case BTF_KIND_ARRAY
:
1074 id
= btf_array(t
)->type
;
1079 case BTF_KIND_STRUCT
:
1080 case BTF_KIND_UNION
:
1081 case BTF_KIND_TYPEDEF
:
1084 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1091 * We might be inside a chain of declarations (e.g., array of function
1092 * pointers returning anonymous (so inlined) structs, having another
1093 * array field). Each of those needs its own "stack frame" to handle
1094 * emitting of declarations. Those stack frames are non-overlapping
1095 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1096 * handle this set of nested stacks, we create a view corresponding to
1097 * our own "stack frame" and work with it as an independent stack.
1098 * We'll need to clean up after emit_type_chain() returns, though.
1100 decl_stack
.ids
= d
->decl_stack
+ stack_start
;
1101 decl_stack
.cnt
= d
->decl_stack_cnt
- stack_start
;
1102 btf_dump_emit_type_chain(d
, &decl_stack
, fname
, lvl
);
1104 * emit_type_chain() guarantees that it will pop its entire decl_stack
1105 * frame before returning. But it works with a read-only view into
1106 * decl_stack, so it doesn't actually pop anything from the
1107 * perspective of shared btf_dump->decl_stack, per se. We need to
1108 * reset decl_stack state to how it was before us to avoid it growing
1111 d
->decl_stack_cnt
= stack_start
;
1114 static void btf_dump_emit_mods(struct btf_dump
*d
, struct id_stack
*decl_stack
)
1116 const struct btf_type
*t
;
1119 while (decl_stack
->cnt
) {
1120 id
= decl_stack
->ids
[decl_stack
->cnt
- 1];
1121 t
= btf__type_by_id(d
->btf
, id
);
1123 switch (btf_kind(t
)) {
1124 case BTF_KIND_VOLATILE
:
1125 btf_dump_printf(d
, "volatile ");
1127 case BTF_KIND_CONST
:
1128 btf_dump_printf(d
, "const ");
1130 case BTF_KIND_RESTRICT
:
1131 btf_dump_printf(d
, "restrict ");
1140 static void btf_dump_emit_name(const struct btf_dump
*d
,
1141 const char *name
, bool last_was_ptr
)
1143 bool separate
= name
[0] && !last_was_ptr
;
1145 btf_dump_printf(d
, "%s%s", separate
? " " : "", name
);
1148 static void btf_dump_emit_type_chain(struct btf_dump
*d
,
1149 struct id_stack
*decls
,
1150 const char *fname
, int lvl
)
1153 * last_was_ptr is used to determine if we need to separate pointer
1154 * asterisk (*) from previous part of type signature with space, so
1155 * that we get `int ***`, instead of `int * * *`. We default to true
1156 * for cases where we have single pointer in a chain. E.g., in ptr ->
1157 * func_proto case. func_proto will start a new emit_type_chain call
1158 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1159 * don't want to prepend space for that last pointer.
1161 bool last_was_ptr
= true;
1162 const struct btf_type
*t
;
1167 while (decls
->cnt
) {
1168 id
= decls
->ids
[--decls
->cnt
];
1170 /* VOID is a special snowflake */
1171 btf_dump_emit_mods(d
, decls
);
1172 btf_dump_printf(d
, "void");
1173 last_was_ptr
= false;
1177 t
= btf__type_by_id(d
->btf
, id
);
1182 btf_dump_emit_mods(d
, decls
);
1183 name
= btf_name_of(d
, t
->name_off
);
1184 btf_dump_printf(d
, "%s", name
);
1186 case BTF_KIND_STRUCT
:
1187 case BTF_KIND_UNION
:
1188 btf_dump_emit_mods(d
, decls
);
1189 /* inline anonymous struct/union */
1190 if (t
->name_off
== 0)
1191 btf_dump_emit_struct_def(d
, id
, t
, lvl
);
1193 btf_dump_emit_struct_fwd(d
, id
, t
);
1196 btf_dump_emit_mods(d
, decls
);
1197 /* inline anonymous enum */
1198 if (t
->name_off
== 0)
1199 btf_dump_emit_enum_def(d
, id
, t
, lvl
);
1201 btf_dump_emit_enum_fwd(d
, id
, t
);
1204 btf_dump_emit_mods(d
, decls
);
1205 btf_dump_emit_fwd_def(d
, id
, t
);
1207 case BTF_KIND_TYPEDEF
:
1208 btf_dump_emit_mods(d
, decls
);
1209 btf_dump_printf(d
, "%s", btf_dump_ident_name(d
, id
));
1212 btf_dump_printf(d
, "%s", last_was_ptr
? "*" : " *");
1214 case BTF_KIND_VOLATILE
:
1215 btf_dump_printf(d
, " volatile");
1217 case BTF_KIND_CONST
:
1218 btf_dump_printf(d
, " const");
1220 case BTF_KIND_RESTRICT
:
1221 btf_dump_printf(d
, " restrict");
1223 case BTF_KIND_ARRAY
: {
1224 const struct btf_array
*a
= btf_array(t
);
1225 const struct btf_type
*next_t
;
1230 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1231 * which causes it to emit extra const/volatile
1232 * modifiers for an array, if array's element type has
1233 * const/volatile modifiers. Clang doesn't do that.
1234 * In general, it doesn't seem very meaningful to have
1235 * a const/volatile modifier for array, so we are
1236 * going to silently skip them here.
1238 while (decls
->cnt
) {
1239 next_id
= decls
->ids
[decls
->cnt
- 1];
1240 next_t
= btf__type_by_id(d
->btf
, next_id
);
1241 if (btf_is_mod(next_t
))
1247 if (decls
->cnt
== 0) {
1248 btf_dump_emit_name(d
, fname
, last_was_ptr
);
1249 btf_dump_printf(d
, "[%u]", a
->nelems
);
1253 next_id
= decls
->ids
[decls
->cnt
- 1];
1254 next_t
= btf__type_by_id(d
->btf
, next_id
);
1255 multidim
= btf_is_array(next_t
);
1256 /* we need space if we have named non-pointer */
1257 if (fname
[0] && !last_was_ptr
)
1258 btf_dump_printf(d
, " ");
1259 /* no parentheses for multi-dimensional array */
1261 btf_dump_printf(d
, "(");
1262 btf_dump_emit_type_chain(d
, decls
, fname
, lvl
);
1264 btf_dump_printf(d
, ")");
1265 btf_dump_printf(d
, "[%u]", a
->nelems
);
1268 case BTF_KIND_FUNC_PROTO
: {
1269 const struct btf_param
*p
= btf_params(t
);
1270 __u16 vlen
= btf_vlen(t
);
1273 btf_dump_emit_mods(d
, decls
);
1275 btf_dump_printf(d
, " (");
1276 btf_dump_emit_type_chain(d
, decls
, fname
, lvl
);
1277 btf_dump_printf(d
, ")");
1279 btf_dump_emit_name(d
, fname
, last_was_ptr
);
1281 btf_dump_printf(d
, "(");
1283 * Clang for BPF target generates func_proto with no
1284 * args as a func_proto with a single void arg (e.g.,
1285 * `int (*f)(void)` vs just `int (*f)()`). We are
1286 * going to pretend there are no args for such case.
1288 if (vlen
== 1 && p
->type
== 0) {
1289 btf_dump_printf(d
, ")");
1293 for (i
= 0; i
< vlen
; i
++, p
++) {
1295 btf_dump_printf(d
, ", ");
1297 /* last arg of type void is vararg */
1298 if (i
== vlen
- 1 && p
->type
== 0) {
1299 btf_dump_printf(d
, "...");
1303 name
= btf_name_of(d
, p
->name_off
);
1304 btf_dump_emit_type_decl(d
, p
->type
, name
, lvl
);
1307 btf_dump_printf(d
, ")");
1311 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1316 last_was_ptr
= kind
== BTF_KIND_PTR
;
1319 btf_dump_emit_name(d
, fname
, last_was_ptr
);
1322 /* return number of duplicates (occurrences) of a given name */
1323 static size_t btf_dump_name_dups(struct btf_dump
*d
, struct hashmap
*name_map
,
1324 const char *orig_name
)
1328 hashmap__find(name_map
, orig_name
, (void **)&dup_cnt
);
1330 hashmap__set(name_map
, orig_name
, (void *)dup_cnt
, NULL
, NULL
);
1335 static const char *btf_dump_resolve_name(struct btf_dump
*d
, __u32 id
,
1336 struct hashmap
*name_map
)
1338 struct btf_dump_type_aux_state
*s
= &d
->type_states
[id
];
1339 const struct btf_type
*t
= btf__type_by_id(d
->btf
, id
);
1340 const char *orig_name
= btf_name_of(d
, t
->name_off
);
1341 const char **cached_name
= &d
->cached_names
[id
];
1344 if (t
->name_off
== 0)
1347 if (s
->name_resolved
)
1348 return *cached_name
? *cached_name
: orig_name
;
1350 dup_cnt
= btf_dump_name_dups(d
, name_map
, orig_name
);
1352 const size_t max_len
= 256;
1353 char new_name
[max_len
];
1355 snprintf(new_name
, max_len
, "%s___%zu", orig_name
, dup_cnt
);
1356 *cached_name
= strdup(new_name
);
1359 s
->name_resolved
= 1;
1360 return *cached_name
? *cached_name
: orig_name
;
1363 static const char *btf_dump_type_name(struct btf_dump
*d
, __u32 id
)
1365 return btf_dump_resolve_name(d
, id
, d
->type_names
);
1368 static const char *btf_dump_ident_name(struct btf_dump
*d
, __u32 id
)
1370 return btf_dump_resolve_name(d
, id
, d
->ident_names
);