x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / powerpc / include / asm / ppc_asm.h
blobe6d03c7a8031b1c62cf796e8e7b61f623345974c
1 /*
2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3 */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
7 #include <linux/init.h>
8 #include <linux/stringify.h>
9 #include <asm/asm-compat.h>
10 #include <asm/processor.h>
11 #include <asm/ppc-opcode.h>
12 #include <asm/firmware.h>
14 #ifndef __ASSEMBLY__
15 #error __FILE__ should only be used in assembler files
16 #else
18 #define SZL (BITS_PER_LONG/8)
21 * Stuff for accurate CPU time accounting.
22 * These macros handle transitions between user and system state
23 * in exception entry and exit and accumulate time to the
24 * user_time and system_time fields in the paca.
27 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
28 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)
29 #define ACCOUNT_CPU_USER_EXIT(ra, rb)
30 #define ACCOUNT_STOLEN_TIME
31 #else
32 #define ACCOUNT_CPU_USER_ENTRY(ra, rb) \
33 MFTB(ra); /* get timebase */ \
34 ld rb,PACA_STARTTIME_USER(r13); \
35 std ra,PACA_STARTTIME(r13); \
36 subf rb,rb,ra; /* subtract start value */ \
37 ld ra,PACA_USER_TIME(r13); \
38 add ra,ra,rb; /* add on to user time */ \
39 std ra,PACA_USER_TIME(r13); \
41 #define ACCOUNT_CPU_USER_EXIT(ra, rb) \
42 MFTB(ra); /* get timebase */ \
43 ld rb,PACA_STARTTIME(r13); \
44 std ra,PACA_STARTTIME_USER(r13); \
45 subf rb,rb,ra; /* subtract start value */ \
46 ld ra,PACA_SYSTEM_TIME(r13); \
47 add ra,ra,rb; /* add on to system time */ \
48 std ra,PACA_SYSTEM_TIME(r13)
50 #ifdef CONFIG_PPC_SPLPAR
51 #define ACCOUNT_STOLEN_TIME \
52 BEGIN_FW_FTR_SECTION; \
53 beq 33f; \
54 /* from user - see if there are any DTL entries to process */ \
55 ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \
56 ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \
57 addi r10,r10,LPPACA_DTLIDX; \
58 LDX_BE r10,0,r10; /* get log write index */ \
59 cmpd cr1,r11,r10; \
60 beq+ cr1,33f; \
61 bl .accumulate_stolen_time; \
62 ld r12,_MSR(r1); \
63 andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \
64 33: \
65 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
67 #else /* CONFIG_PPC_SPLPAR */
68 #define ACCOUNT_STOLEN_TIME
70 #endif /* CONFIG_PPC_SPLPAR */
72 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
75 * Macros for storing registers into and loading registers from
76 * exception frames.
78 #ifdef __powerpc64__
79 #define SAVE_GPR(n, base) std n,GPR0+8*(n)(base)
80 #define REST_GPR(n, base) ld n,GPR0+8*(n)(base)
81 #define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
82 #define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base)
83 #else
84 #define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base)
85 #define REST_GPR(n, base) lwz n,GPR0+4*(n)(base)
86 #define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
87 SAVE_10GPRS(22, base)
88 #define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \
89 REST_10GPRS(22, base)
90 #endif
92 #define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base)
93 #define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
94 #define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
95 #define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
96 #define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base)
97 #define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base)
98 #define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base)
99 #define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base)
101 #define SAVE_FPR(n, base) stfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
102 #define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
103 #define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
104 #define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
105 #define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
106 #define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
107 #define REST_FPR(n, base) lfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
108 #define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
109 #define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
110 #define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
111 #define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
112 #define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
114 #define SAVE_VR(n,b,base) li b,THREAD_VR0+(16*(n)); stvx n,base,b
115 #define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
116 #define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
117 #define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
118 #define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
119 #define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
120 #define REST_VR(n,b,base) li b,THREAD_VR0+(16*(n)); lvx n,base,b
121 #define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
122 #define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
123 #define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
124 #define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
125 #define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
127 /* Save/restore FPRs, VRs and VSRs from their checkpointed backups in
128 * thread_struct:
130 #define SAVE_FPR_TRANSACT(n, base) stfd n,THREAD_TRANSACT_FPR0+ \
131 8*TS_FPRWIDTH*(n)(base)
132 #define SAVE_2FPRS_TRANSACT(n, base) SAVE_FPR_TRANSACT(n, base); \
133 SAVE_FPR_TRANSACT(n+1, base)
134 #define SAVE_4FPRS_TRANSACT(n, base) SAVE_2FPRS_TRANSACT(n, base); \
135 SAVE_2FPRS_TRANSACT(n+2, base)
136 #define SAVE_8FPRS_TRANSACT(n, base) SAVE_4FPRS_TRANSACT(n, base); \
137 SAVE_4FPRS_TRANSACT(n+4, base)
138 #define SAVE_16FPRS_TRANSACT(n, base) SAVE_8FPRS_TRANSACT(n, base); \
139 SAVE_8FPRS_TRANSACT(n+8, base)
140 #define SAVE_32FPRS_TRANSACT(n, base) SAVE_16FPRS_TRANSACT(n, base); \
141 SAVE_16FPRS_TRANSACT(n+16, base)
143 #define REST_FPR_TRANSACT(n, base) lfd n,THREAD_TRANSACT_FPR0+ \
144 8*TS_FPRWIDTH*(n)(base)
145 #define REST_2FPRS_TRANSACT(n, base) REST_FPR_TRANSACT(n, base); \
146 REST_FPR_TRANSACT(n+1, base)
147 #define REST_4FPRS_TRANSACT(n, base) REST_2FPRS_TRANSACT(n, base); \
148 REST_2FPRS_TRANSACT(n+2, base)
149 #define REST_8FPRS_TRANSACT(n, base) REST_4FPRS_TRANSACT(n, base); \
150 REST_4FPRS_TRANSACT(n+4, base)
151 #define REST_16FPRS_TRANSACT(n, base) REST_8FPRS_TRANSACT(n, base); \
152 REST_8FPRS_TRANSACT(n+8, base)
153 #define REST_32FPRS_TRANSACT(n, base) REST_16FPRS_TRANSACT(n, base); \
154 REST_16FPRS_TRANSACT(n+16, base)
157 #define SAVE_VR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VR0+(16*(n)); \
158 stvx n,b,base
159 #define SAVE_2VRS_TRANSACT(n,b,base) SAVE_VR_TRANSACT(n,b,base); \
160 SAVE_VR_TRANSACT(n+1,b,base)
161 #define SAVE_4VRS_TRANSACT(n,b,base) SAVE_2VRS_TRANSACT(n,b,base); \
162 SAVE_2VRS_TRANSACT(n+2,b,base)
163 #define SAVE_8VRS_TRANSACT(n,b,base) SAVE_4VRS_TRANSACT(n,b,base); \
164 SAVE_4VRS_TRANSACT(n+4,b,base)
165 #define SAVE_16VRS_TRANSACT(n,b,base) SAVE_8VRS_TRANSACT(n,b,base); \
166 SAVE_8VRS_TRANSACT(n+8,b,base)
167 #define SAVE_32VRS_TRANSACT(n,b,base) SAVE_16VRS_TRANSACT(n,b,base); \
168 SAVE_16VRS_TRANSACT(n+16,b,base)
170 #define REST_VR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VR0+(16*(n)); \
171 lvx n,b,base
172 #define REST_2VRS_TRANSACT(n,b,base) REST_VR_TRANSACT(n,b,base); \
173 REST_VR_TRANSACT(n+1,b,base)
174 #define REST_4VRS_TRANSACT(n,b,base) REST_2VRS_TRANSACT(n,b,base); \
175 REST_2VRS_TRANSACT(n+2,b,base)
176 #define REST_8VRS_TRANSACT(n,b,base) REST_4VRS_TRANSACT(n,b,base); \
177 REST_4VRS_TRANSACT(n+4,b,base)
178 #define REST_16VRS_TRANSACT(n,b,base) REST_8VRS_TRANSACT(n,b,base); \
179 REST_8VRS_TRANSACT(n+8,b,base)
180 #define REST_32VRS_TRANSACT(n,b,base) REST_16VRS_TRANSACT(n,b,base); \
181 REST_16VRS_TRANSACT(n+16,b,base)
184 #define SAVE_VSR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VSR0+(16*(n)); \
185 STXVD2X(n,R##base,R##b)
186 #define SAVE_2VSRS_TRANSACT(n,b,base) SAVE_VSR_TRANSACT(n,b,base); \
187 SAVE_VSR_TRANSACT(n+1,b,base)
188 #define SAVE_4VSRS_TRANSACT(n,b,base) SAVE_2VSRS_TRANSACT(n,b,base); \
189 SAVE_2VSRS_TRANSACT(n+2,b,base)
190 #define SAVE_8VSRS_TRANSACT(n,b,base) SAVE_4VSRS_TRANSACT(n,b,base); \
191 SAVE_4VSRS_TRANSACT(n+4,b,base)
192 #define SAVE_16VSRS_TRANSACT(n,b,base) SAVE_8VSRS_TRANSACT(n,b,base); \
193 SAVE_8VSRS_TRANSACT(n+8,b,base)
194 #define SAVE_32VSRS_TRANSACT(n,b,base) SAVE_16VSRS_TRANSACT(n,b,base); \
195 SAVE_16VSRS_TRANSACT(n+16,b,base)
197 #define REST_VSR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VSR0+(16*(n)); \
198 LXVD2X(n,R##base,R##b)
199 #define REST_2VSRS_TRANSACT(n,b,base) REST_VSR_TRANSACT(n,b,base); \
200 REST_VSR_TRANSACT(n+1,b,base)
201 #define REST_4VSRS_TRANSACT(n,b,base) REST_2VSRS_TRANSACT(n,b,base); \
202 REST_2VSRS_TRANSACT(n+2,b,base)
203 #define REST_8VSRS_TRANSACT(n,b,base) REST_4VSRS_TRANSACT(n,b,base); \
204 REST_4VSRS_TRANSACT(n+4,b,base)
205 #define REST_16VSRS_TRANSACT(n,b,base) REST_8VSRS_TRANSACT(n,b,base); \
206 REST_8VSRS_TRANSACT(n+8,b,base)
207 #define REST_32VSRS_TRANSACT(n,b,base) REST_16VSRS_TRANSACT(n,b,base); \
208 REST_16VSRS_TRANSACT(n+16,b,base)
210 /* Save the lower 32 VSRs in the thread VSR region */
211 #define SAVE_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); STXVD2X(n,R##base,R##b)
212 #define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
213 #define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
214 #define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
215 #define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
216 #define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
217 #define REST_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); LXVD2X(n,R##base,R##b)
218 #define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
219 #define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
220 #define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
221 #define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
222 #define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
225 * b = base register for addressing, o = base offset from register of 1st EVR
226 * n = first EVR, s = scratch
228 #define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b)
229 #define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
230 #define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
231 #define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
232 #define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
233 #define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
234 #define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n
235 #define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
236 #define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
237 #define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
238 #define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
239 #define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
241 /* Macros to adjust thread priority for hardware multithreading */
242 #define HMT_VERY_LOW or 31,31,31 # very low priority
243 #define HMT_LOW or 1,1,1
244 #define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
245 #define HMT_MEDIUM or 2,2,2
246 #define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
247 #define HMT_HIGH or 3,3,3
248 #define HMT_EXTRA_HIGH or 7,7,7 # power7 only
250 #ifdef CONFIG_PPC64
251 #define ULONG_SIZE 8
252 #else
253 #define ULONG_SIZE 4
254 #endif
255 #define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE))
256 #define VCPU_GPR(n) __VCPU_GPR(__REG_##n)
258 #ifdef __KERNEL__
259 #ifdef CONFIG_PPC64
261 #define STACKFRAMESIZE 256
262 #define __STK_REG(i) (112 + ((i)-14)*8)
263 #define STK_REG(i) __STK_REG(__REG_##i)
265 #define __STK_PARAM(i) (48 + ((i)-3)*8)
266 #define STK_PARAM(i) __STK_PARAM(__REG_##i)
268 #define XGLUE(a,b) a##b
269 #define GLUE(a,b) XGLUE(a,b)
271 #define _GLOBAL(name) \
272 .section ".text"; \
273 .align 2 ; \
274 .globl name; \
275 .globl GLUE(.,name); \
276 .section ".opd","aw"; \
277 name: \
278 .quad GLUE(.,name); \
279 .quad .TOC.@tocbase; \
280 .quad 0; \
281 .previous; \
282 .type GLUE(.,name),@function; \
283 GLUE(.,name):
285 #define _INIT_GLOBAL(name) \
286 __REF; \
287 .align 2 ; \
288 .globl name; \
289 .globl GLUE(.,name); \
290 .section ".opd","aw"; \
291 name: \
292 .quad GLUE(.,name); \
293 .quad .TOC.@tocbase; \
294 .quad 0; \
295 .previous; \
296 .type GLUE(.,name),@function; \
297 GLUE(.,name):
299 #define _KPROBE(name) \
300 .section ".kprobes.text","a"; \
301 .align 2 ; \
302 .globl name; \
303 .globl GLUE(.,name); \
304 .section ".opd","aw"; \
305 name: \
306 .quad GLUE(.,name); \
307 .quad .TOC.@tocbase; \
308 .quad 0; \
309 .previous; \
310 .type GLUE(.,name),@function; \
311 GLUE(.,name):
313 #define _STATIC(name) \
314 .section ".text"; \
315 .align 2 ; \
316 .section ".opd","aw"; \
317 name: \
318 .quad GLUE(.,name); \
319 .quad .TOC.@tocbase; \
320 .quad 0; \
321 .previous; \
322 .type GLUE(.,name),@function; \
323 GLUE(.,name):
325 #define _INIT_STATIC(name) \
326 __REF; \
327 .align 2 ; \
328 .section ".opd","aw"; \
329 name: \
330 .quad GLUE(.,name); \
331 .quad .TOC.@tocbase; \
332 .quad 0; \
333 .previous; \
334 .type GLUE(.,name),@function; \
335 GLUE(.,name):
337 #else /* 32-bit */
339 #define _ENTRY(n) \
340 .globl n; \
343 #define _GLOBAL(n) \
344 .text; \
345 .stabs __stringify(n:F-1),N_FUN,0,0,n;\
346 .globl n; \
349 #define _KPROBE(n) \
350 .section ".kprobes.text","a"; \
351 .globl n; \
354 #endif
357 * LOAD_REG_IMMEDIATE(rn, expr)
358 * Loads the value of the constant expression 'expr' into register 'rn'
359 * using immediate instructions only. Use this when it's important not
360 * to reference other data (i.e. on ppc64 when the TOC pointer is not
361 * valid) and when 'expr' is a constant or absolute address.
363 * LOAD_REG_ADDR(rn, name)
364 * Loads the address of label 'name' into register 'rn'. Use this when
365 * you don't particularly need immediate instructions only, but you need
366 * the whole address in one register (e.g. it's a structure address and
367 * you want to access various offsets within it). On ppc32 this is
368 * identical to LOAD_REG_IMMEDIATE.
370 * LOAD_REG_ADDRBASE(rn, name)
371 * ADDROFF(name)
372 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into
373 * register 'rn'. ADDROFF(name) returns the remainder of the address as
374 * a constant expression. ADDROFF(name) is a signed expression < 16 bits
375 * in size, so is suitable for use directly as an offset in load and store
376 * instructions. Use this when loading/storing a single word or less as:
377 * LOAD_REG_ADDRBASE(rX, name)
378 * ld rY,ADDROFF(name)(rX)
380 #ifdef __powerpc64__
381 #ifdef HAVE_AS_ATHIGH
382 #define __AS_ATHIGH high
383 #else
384 #define __AS_ATHIGH h
385 #endif
386 #define LOAD_REG_IMMEDIATE(reg,expr) \
387 lis reg,(expr)@highest; \
388 ori reg,reg,(expr)@higher; \
389 rldicr reg,reg,32,31; \
390 oris reg,reg,(expr)@__AS_ATHIGH; \
391 ori reg,reg,(expr)@l;
393 #define LOAD_REG_ADDR(reg,name) \
394 ld reg,name@got(r2)
396 #define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
397 #define ADDROFF(name) 0
399 /* offsets for stack frame layout */
400 #define LRSAVE 16
402 #else /* 32-bit */
404 #define LOAD_REG_IMMEDIATE(reg,expr) \
405 lis reg,(expr)@ha; \
406 addi reg,reg,(expr)@l;
408 #define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name)
410 #define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha
411 #define ADDROFF(name) name@l
413 /* offsets for stack frame layout */
414 #define LRSAVE 4
416 #endif
418 /* various errata or part fixups */
419 #ifdef CONFIG_PPC601_SYNC_FIX
420 #define SYNC \
421 BEGIN_FTR_SECTION \
422 sync; \
423 isync; \
424 END_FTR_SECTION_IFSET(CPU_FTR_601)
425 #define SYNC_601 \
426 BEGIN_FTR_SECTION \
427 sync; \
428 END_FTR_SECTION_IFSET(CPU_FTR_601)
429 #define ISYNC_601 \
430 BEGIN_FTR_SECTION \
431 isync; \
432 END_FTR_SECTION_IFSET(CPU_FTR_601)
433 #else
434 #define SYNC
435 #define SYNC_601
436 #define ISYNC_601
437 #endif
439 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
440 #define MFTB(dest) \
441 90: mfspr dest, SPRN_TBRL; \
442 BEGIN_FTR_SECTION_NESTED(96); \
443 cmpwi dest,0; \
444 beq- 90b; \
445 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
446 #elif defined(CONFIG_8xx)
447 #define MFTB(dest) mftb dest
448 #else
449 #define MFTB(dest) mfspr dest, SPRN_TBRL
450 #endif
452 #ifndef CONFIG_SMP
453 #define TLBSYNC
454 #else /* CONFIG_SMP */
455 /* tlbsync is not implemented on 601 */
456 #define TLBSYNC \
457 BEGIN_FTR_SECTION \
458 tlbsync; \
459 sync; \
460 END_FTR_SECTION_IFCLR(CPU_FTR_601)
461 #endif
463 #ifdef CONFIG_PPC64
464 #define MTOCRF(FXM, RS) \
465 BEGIN_FTR_SECTION_NESTED(848); \
466 mtcrf (FXM), RS; \
467 FTR_SECTION_ELSE_NESTED(848); \
468 mtocrf (FXM), RS; \
469 ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
472 * PPR restore macros used in entry_64.S
473 * Used for P7 or later processors
475 #define HMT_MEDIUM_LOW_HAS_PPR \
476 BEGIN_FTR_SECTION_NESTED(944) \
477 HMT_MEDIUM_LOW; \
478 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
480 #define SET_DEFAULT_THREAD_PPR(ra, rb) \
481 BEGIN_FTR_SECTION_NESTED(945) \
482 lis ra,INIT_PPR@highest; /* default ppr=3 */ \
483 ld rb,PACACURRENT(r13); \
484 sldi ra,ra,32; /* 11- 13 bits are used for ppr */ \
485 std ra,TASKTHREADPPR(rb); \
486 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
488 #endif
491 * This instruction is not implemented on the PPC 603 or 601; however, on
492 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
493 * All of these instructions exist in the 8xx, they have magical powers,
494 * and they must be used.
497 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
498 #define tlbia \
499 li r4,1024; \
500 mtctr r4; \
501 lis r4,KERNELBASE@h; \
502 0: tlbie r4; \
503 addi r4,r4,0x1000; \
504 bdnz 0b
505 #endif
508 #ifdef CONFIG_IBM440EP_ERR42
509 #define PPC440EP_ERR42 isync
510 #else
511 #define PPC440EP_ERR42
512 #endif
514 /* The following stops all load and store data streams associated with stream
515 * ID (ie. streams created explicitly). The embedded and server mnemonics for
516 * dcbt are different so we use machine "power4" here explicitly.
518 #define DCBT_STOP_ALL_STREAM_IDS(scratch) \
519 .machine push ; \
520 .machine "power4" ; \
521 lis scratch,0x60000000@h; \
522 dcbt r0,scratch,0b01010; \
523 .machine pop
526 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
527 * keep the address intact to be compatible with code shared with
528 * 32-bit classic.
530 * On the other hand, I find it useful to have them behave as expected
531 * by their name (ie always do the addition) on 64-bit BookE
533 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
534 #define toreal(rd)
535 #define fromreal(rd)
538 * We use addis to ensure compatibility with the "classic" ppc versions of
539 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
540 * converting the address in r0, and so this version has to do that too
541 * (i.e. set register rd to 0 when rs == 0).
543 #define tophys(rd,rs) \
544 addis rd,rs,0
546 #define tovirt(rd,rs) \
547 addis rd,rs,0
549 #elif defined(CONFIG_PPC64)
550 #define toreal(rd) /* we can access c000... in real mode */
551 #define fromreal(rd)
553 #define tophys(rd,rs) \
554 clrldi rd,rs,2
556 #define tovirt(rd,rs) \
557 rotldi rd,rs,16; \
558 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
559 rotldi rd,rd,48
560 #else
562 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
563 * physical base address of RAM at compile time.
565 #define toreal(rd) tophys(rd,rd)
566 #define fromreal(rd) tovirt(rd,rd)
568 #define tophys(rd,rs) \
569 0: addis rd,rs,-PAGE_OFFSET@h; \
570 .section ".vtop_fixup","aw"; \
571 .align 1; \
572 .long 0b; \
573 .previous
575 #define tovirt(rd,rs) \
576 0: addis rd,rs,PAGE_OFFSET@h; \
577 .section ".ptov_fixup","aw"; \
578 .align 1; \
579 .long 0b; \
580 .previous
581 #endif
583 #ifdef CONFIG_PPC_BOOK3S_64
584 #define RFI rfid
585 #define MTMSRD(r) mtmsrd r
586 #define MTMSR_EERI(reg) mtmsrd reg,1
587 #else
588 #define FIX_SRR1(ra, rb)
589 #ifndef CONFIG_40x
590 #define RFI rfi
591 #else
592 #define RFI rfi; b . /* Prevent prefetch past rfi */
593 #endif
594 #define MTMSRD(r) mtmsr r
595 #define MTMSR_EERI(reg) mtmsr reg
596 #define CLR_TOP32(r)
597 #endif
599 #endif /* __KERNEL__ */
601 /* The boring bits... */
603 /* Condition Register Bit Fields */
605 #define cr0 0
606 #define cr1 1
607 #define cr2 2
608 #define cr3 3
609 #define cr4 4
610 #define cr5 5
611 #define cr6 6
612 #define cr7 7
616 * General Purpose Registers (GPRs)
618 * The lower case r0-r31 should be used in preference to the upper
619 * case R0-R31 as they provide more error checking in the assembler.
620 * Use R0-31 only when really nessesary.
623 #define r0 %r0
624 #define r1 %r1
625 #define r2 %r2
626 #define r3 %r3
627 #define r4 %r4
628 #define r5 %r5
629 #define r6 %r6
630 #define r7 %r7
631 #define r8 %r8
632 #define r9 %r9
633 #define r10 %r10
634 #define r11 %r11
635 #define r12 %r12
636 #define r13 %r13
637 #define r14 %r14
638 #define r15 %r15
639 #define r16 %r16
640 #define r17 %r17
641 #define r18 %r18
642 #define r19 %r19
643 #define r20 %r20
644 #define r21 %r21
645 #define r22 %r22
646 #define r23 %r23
647 #define r24 %r24
648 #define r25 %r25
649 #define r26 %r26
650 #define r27 %r27
651 #define r28 %r28
652 #define r29 %r29
653 #define r30 %r30
654 #define r31 %r31
657 /* Floating Point Registers (FPRs) */
659 #define fr0 0
660 #define fr1 1
661 #define fr2 2
662 #define fr3 3
663 #define fr4 4
664 #define fr5 5
665 #define fr6 6
666 #define fr7 7
667 #define fr8 8
668 #define fr9 9
669 #define fr10 10
670 #define fr11 11
671 #define fr12 12
672 #define fr13 13
673 #define fr14 14
674 #define fr15 15
675 #define fr16 16
676 #define fr17 17
677 #define fr18 18
678 #define fr19 19
679 #define fr20 20
680 #define fr21 21
681 #define fr22 22
682 #define fr23 23
683 #define fr24 24
684 #define fr25 25
685 #define fr26 26
686 #define fr27 27
687 #define fr28 28
688 #define fr29 29
689 #define fr30 30
690 #define fr31 31
692 /* AltiVec Registers (VPRs) */
694 #define vr0 0
695 #define vr1 1
696 #define vr2 2
697 #define vr3 3
698 #define vr4 4
699 #define vr5 5
700 #define vr6 6
701 #define vr7 7
702 #define vr8 8
703 #define vr9 9
704 #define vr10 10
705 #define vr11 11
706 #define vr12 12
707 #define vr13 13
708 #define vr14 14
709 #define vr15 15
710 #define vr16 16
711 #define vr17 17
712 #define vr18 18
713 #define vr19 19
714 #define vr20 20
715 #define vr21 21
716 #define vr22 22
717 #define vr23 23
718 #define vr24 24
719 #define vr25 25
720 #define vr26 26
721 #define vr27 27
722 #define vr28 28
723 #define vr29 29
724 #define vr30 30
725 #define vr31 31
727 /* VSX Registers (VSRs) */
729 #define vsr0 0
730 #define vsr1 1
731 #define vsr2 2
732 #define vsr3 3
733 #define vsr4 4
734 #define vsr5 5
735 #define vsr6 6
736 #define vsr7 7
737 #define vsr8 8
738 #define vsr9 9
739 #define vsr10 10
740 #define vsr11 11
741 #define vsr12 12
742 #define vsr13 13
743 #define vsr14 14
744 #define vsr15 15
745 #define vsr16 16
746 #define vsr17 17
747 #define vsr18 18
748 #define vsr19 19
749 #define vsr20 20
750 #define vsr21 21
751 #define vsr22 22
752 #define vsr23 23
753 #define vsr24 24
754 #define vsr25 25
755 #define vsr26 26
756 #define vsr27 27
757 #define vsr28 28
758 #define vsr29 29
759 #define vsr30 30
760 #define vsr31 31
761 #define vsr32 32
762 #define vsr33 33
763 #define vsr34 34
764 #define vsr35 35
765 #define vsr36 36
766 #define vsr37 37
767 #define vsr38 38
768 #define vsr39 39
769 #define vsr40 40
770 #define vsr41 41
771 #define vsr42 42
772 #define vsr43 43
773 #define vsr44 44
774 #define vsr45 45
775 #define vsr46 46
776 #define vsr47 47
777 #define vsr48 48
778 #define vsr49 49
779 #define vsr50 50
780 #define vsr51 51
781 #define vsr52 52
782 #define vsr53 53
783 #define vsr54 54
784 #define vsr55 55
785 #define vsr56 56
786 #define vsr57 57
787 #define vsr58 58
788 #define vsr59 59
789 #define vsr60 60
790 #define vsr61 61
791 #define vsr62 62
792 #define vsr63 63
794 /* SPE Registers (EVPRs) */
796 #define evr0 0
797 #define evr1 1
798 #define evr2 2
799 #define evr3 3
800 #define evr4 4
801 #define evr5 5
802 #define evr6 6
803 #define evr7 7
804 #define evr8 8
805 #define evr9 9
806 #define evr10 10
807 #define evr11 11
808 #define evr12 12
809 #define evr13 13
810 #define evr14 14
811 #define evr15 15
812 #define evr16 16
813 #define evr17 17
814 #define evr18 18
815 #define evr19 19
816 #define evr20 20
817 #define evr21 21
818 #define evr22 22
819 #define evr23 23
820 #define evr24 24
821 #define evr25 25
822 #define evr26 26
823 #define evr27 27
824 #define evr28 28
825 #define evr29 29
826 #define evr30 30
827 #define evr31 31
829 /* some stab codes */
830 #define N_FUN 36
831 #define N_RSYM 64
832 #define N_SLINE 68
833 #define N_SO 100
835 #endif /* __ASSEMBLY__ */
837 #endif /* _ASM_POWERPC_PPC_ASM_H */