2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
40 #include "book3s_hv_cma.h"
42 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
43 #define MAX_LPID_970 63
45 /* Power architecture requires HPT is at least 256kB */
46 #define PPC_MIN_HPT_ORDER 18
48 static long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
49 long pte_index
, unsigned long pteh
,
50 unsigned long ptel
, unsigned long *pte_idx_ret
);
51 static void kvmppc_rmap_reset(struct kvm
*kvm
);
53 long kvmppc_alloc_hpt(struct kvm
*kvm
, u32
*htab_orderp
)
56 struct revmap_entry
*rev
;
57 struct page
*page
= NULL
;
58 long order
= KVM_DEFAULT_HPT_ORDER
;
62 if (order
< PPC_MIN_HPT_ORDER
)
63 order
= PPC_MIN_HPT_ORDER
;
66 kvm
->arch
.hpt_cma_alloc
= 0;
68 * try first to allocate it from the kernel page allocator.
69 * We keep the CMA reserved for failed allocation.
71 hpt
= __get_free_pages(GFP_KERNEL
| __GFP_ZERO
| __GFP_REPEAT
|
72 __GFP_NOWARN
, order
- PAGE_SHIFT
);
74 /* Next try to allocate from the preallocated pool */
76 VM_BUG_ON(order
< KVM_CMA_CHUNK_ORDER
);
77 page
= kvm_alloc_hpt(1 << (order
- PAGE_SHIFT
));
79 hpt
= (unsigned long)pfn_to_kaddr(page_to_pfn(page
));
80 kvm
->arch
.hpt_cma_alloc
= 1;
85 /* Lastly try successively smaller sizes from the page allocator */
86 while (!hpt
&& order
> PPC_MIN_HPT_ORDER
) {
87 hpt
= __get_free_pages(GFP_KERNEL
|__GFP_ZERO
|__GFP_REPEAT
|
88 __GFP_NOWARN
, order
- PAGE_SHIFT
);
96 kvm
->arch
.hpt_virt
= hpt
;
97 kvm
->arch
.hpt_order
= order
;
98 /* HPTEs are 2**4 bytes long */
99 kvm
->arch
.hpt_npte
= 1ul << (order
- 4);
100 /* 128 (2**7) bytes in each HPTEG */
101 kvm
->arch
.hpt_mask
= (1ul << (order
- 7)) - 1;
103 /* Allocate reverse map array */
104 rev
= vmalloc(sizeof(struct revmap_entry
) * kvm
->arch
.hpt_npte
);
106 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
109 kvm
->arch
.revmap
= rev
;
110 kvm
->arch
.sdr1
= __pa(hpt
) | (order
- 18);
112 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
113 hpt
, order
, kvm
->arch
.lpid
);
116 *htab_orderp
= order
;
120 if (kvm
->arch
.hpt_cma_alloc
)
121 kvm_release_hpt(page
, 1 << (order
- PAGE_SHIFT
));
123 free_pages(hpt
, order
- PAGE_SHIFT
);
127 long kvmppc_alloc_reset_hpt(struct kvm
*kvm
, u32
*htab_orderp
)
132 mutex_lock(&kvm
->lock
);
133 if (kvm
->arch
.rma_setup_done
) {
134 kvm
->arch
.rma_setup_done
= 0;
135 /* order rma_setup_done vs. vcpus_running */
137 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
138 kvm
->arch
.rma_setup_done
= 1;
142 if (kvm
->arch
.hpt_virt
) {
143 order
= kvm
->arch
.hpt_order
;
144 /* Set the entire HPT to 0, i.e. invalid HPTEs */
145 memset((void *)kvm
->arch
.hpt_virt
, 0, 1ul << order
);
147 * Reset all the reverse-mapping chains for all memslots
149 kvmppc_rmap_reset(kvm
);
150 /* Ensure that each vcpu will flush its TLB on next entry. */
151 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
152 *htab_orderp
= order
;
155 err
= kvmppc_alloc_hpt(kvm
, htab_orderp
);
156 order
= *htab_orderp
;
159 mutex_unlock(&kvm
->lock
);
163 void kvmppc_free_hpt(struct kvm
*kvm
)
165 kvmppc_free_lpid(kvm
->arch
.lpid
);
166 vfree(kvm
->arch
.revmap
);
167 if (kvm
->arch
.hpt_cma_alloc
)
168 kvm_release_hpt(virt_to_page(kvm
->arch
.hpt_virt
),
169 1 << (kvm
->arch
.hpt_order
- PAGE_SHIFT
));
171 free_pages(kvm
->arch
.hpt_virt
,
172 kvm
->arch
.hpt_order
- PAGE_SHIFT
);
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize
)
178 return (pgsize
> 0x1000) ? HPTE_V_LARGE
: 0;
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize
)
184 return (pgsize
== 0x10000) ? 0x1000 : 0;
187 void kvmppc_map_vrma(struct kvm_vcpu
*vcpu
, struct kvm_memory_slot
*memslot
,
188 unsigned long porder
)
191 unsigned long npages
;
192 unsigned long hp_v
, hp_r
;
193 unsigned long addr
, hash
;
195 unsigned long hp0
, hp1
;
196 unsigned long idx_ret
;
198 struct kvm
*kvm
= vcpu
->kvm
;
200 psize
= 1ul << porder
;
201 npages
= memslot
->npages
>> (porder
- PAGE_SHIFT
);
203 /* VRMA can't be > 1TB */
204 if (npages
> 1ul << (40 - porder
))
205 npages
= 1ul << (40 - porder
);
206 /* Can't use more than 1 HPTE per HPTEG */
207 if (npages
> kvm
->arch
.hpt_mask
+ 1)
208 npages
= kvm
->arch
.hpt_mask
+ 1;
210 hp0
= HPTE_V_1TB_SEG
| (VRMA_VSID
<< (40 - 16)) |
211 HPTE_V_BOLTED
| hpte0_pgsize_encoding(psize
);
212 hp1
= hpte1_pgsize_encoding(psize
) |
213 HPTE_R_R
| HPTE_R_C
| HPTE_R_M
| PP_RWXX
;
215 for (i
= 0; i
< npages
; ++i
) {
217 /* can't use hpt_hash since va > 64 bits */
218 hash
= (i
^ (VRMA_VSID
^ (VRMA_VSID
<< 25))) & kvm
->arch
.hpt_mask
;
220 * We assume that the hash table is empty and no
221 * vcpus are using it at this stage. Since we create
222 * at most one HPTE per HPTEG, we just assume entry 7
223 * is available and use it.
225 hash
= (hash
<< 3) + 7;
226 hp_v
= hp0
| ((addr
>> 16) & ~0x7fUL
);
228 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, hash
, hp_v
, hp_r
,
230 if (ret
!= H_SUCCESS
) {
231 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
238 int kvmppc_mmu_hv_init(void)
240 unsigned long host_lpid
, rsvd_lpid
;
242 if (!cpu_has_feature(CPU_FTR_HVMODE
))
245 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
247 host_lpid
= mfspr(SPRN_LPID
); /* POWER7 */
248 rsvd_lpid
= LPID_RSVD
;
250 host_lpid
= 0; /* PPC970 */
251 rsvd_lpid
= MAX_LPID_970
;
254 kvmppc_init_lpid(rsvd_lpid
+ 1);
256 kvmppc_claim_lpid(host_lpid
);
257 /* rsvd_lpid is reserved for use in partition switching */
258 kvmppc_claim_lpid(rsvd_lpid
);
263 void kvmppc_mmu_destroy(struct kvm_vcpu
*vcpu
)
267 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu
*vcpu
)
269 kvmppc_set_msr(vcpu
, MSR_SF
| MSR_ME
);
273 * This is called to get a reference to a guest page if there isn't
274 * one already in the memslot->arch.slot_phys[] array.
276 static long kvmppc_get_guest_page(struct kvm
*kvm
, unsigned long gfn
,
277 struct kvm_memory_slot
*memslot
,
282 struct page
*page
, *hpage
, *pages
[1];
283 unsigned long s
, pgsize
;
284 unsigned long *physp
;
285 unsigned int is_io
, got
, pgorder
;
286 struct vm_area_struct
*vma
;
287 unsigned long pfn
, i
, npages
;
289 physp
= memslot
->arch
.slot_phys
;
292 if (physp
[gfn
- memslot
->base_gfn
])
300 start
= gfn_to_hva_memslot(memslot
, gfn
);
302 /* Instantiate and get the page we want access to */
303 np
= get_user_pages_fast(start
, 1, 1, pages
);
305 /* Look up the vma for the page */
306 down_read(¤t
->mm
->mmap_sem
);
307 vma
= find_vma(current
->mm
, start
);
308 if (!vma
|| vma
->vm_start
> start
||
309 start
+ psize
> vma
->vm_end
||
310 !(vma
->vm_flags
& VM_PFNMAP
))
312 is_io
= hpte_cache_bits(pgprot_val(vma
->vm_page_prot
));
313 pfn
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
314 /* check alignment of pfn vs. requested page size */
315 if (psize
> PAGE_SIZE
&& (pfn
& ((psize
>> PAGE_SHIFT
) - 1)))
317 up_read(¤t
->mm
->mmap_sem
);
321 got
= KVMPPC_GOT_PAGE
;
323 /* See if this is a large page */
325 if (PageHuge(page
)) {
326 hpage
= compound_head(page
);
327 s
<<= compound_order(hpage
);
328 /* Get the whole large page if slot alignment is ok */
329 if (s
> psize
&& slot_is_aligned(memslot
, s
) &&
330 !(memslot
->userspace_addr
& (s
- 1))) {
340 pfn
= page_to_pfn(page
);
343 npages
= pgsize
>> PAGE_SHIFT
;
344 pgorder
= __ilog2(npages
);
345 physp
+= (gfn
- memslot
->base_gfn
) & ~(npages
- 1);
346 spin_lock(&kvm
->arch
.slot_phys_lock
);
347 for (i
= 0; i
< npages
; ++i
) {
349 physp
[i
] = ((pfn
+ i
) << PAGE_SHIFT
) +
350 got
+ is_io
+ pgorder
;
354 spin_unlock(&kvm
->arch
.slot_phys_lock
);
363 up_read(¤t
->mm
->mmap_sem
);
367 long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
368 long pte_index
, unsigned long pteh
,
369 unsigned long ptel
, unsigned long *pte_idx_ret
)
371 unsigned long psize
, gpa
, gfn
;
372 struct kvm_memory_slot
*memslot
;
375 if (kvm
->arch
.using_mmu_notifiers
)
378 psize
= hpte_page_size(pteh
, ptel
);
382 pteh
&= ~(HPTE_V_HVLOCK
| HPTE_V_ABSENT
| HPTE_V_VALID
);
384 /* Find the memslot (if any) for this address */
385 gpa
= (ptel
& HPTE_R_RPN
) & ~(psize
- 1);
386 gfn
= gpa
>> PAGE_SHIFT
;
387 memslot
= gfn_to_memslot(kvm
, gfn
);
388 if (memslot
&& !(memslot
->flags
& KVM_MEMSLOT_INVALID
)) {
389 if (!slot_is_aligned(memslot
, psize
))
391 if (kvmppc_get_guest_page(kvm
, gfn
, memslot
, psize
) < 0)
396 /* Protect linux PTE lookup from page table destruction */
397 rcu_read_lock_sched(); /* this disables preemption too */
398 ret
= kvmppc_do_h_enter(kvm
, flags
, pte_index
, pteh
, ptel
,
399 current
->mm
->pgd
, false, pte_idx_ret
);
400 rcu_read_unlock_sched();
401 if (ret
== H_TOO_HARD
) {
402 /* this can't happen */
403 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
404 ret
= H_RESOURCE
; /* or something */
411 * We come here on a H_ENTER call from the guest when we are not
412 * using mmu notifiers and we don't have the requested page pinned
415 long kvmppc_virtmode_h_enter(struct kvm_vcpu
*vcpu
, unsigned long flags
,
416 long pte_index
, unsigned long pteh
,
419 return kvmppc_virtmode_do_h_enter(vcpu
->kvm
, flags
, pte_index
,
420 pteh
, ptel
, &vcpu
->arch
.gpr
[4]);
423 static struct kvmppc_slb
*kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu
*vcpu
,
429 for (i
= 0; i
< vcpu
->arch
.slb_nr
; i
++) {
430 if (!(vcpu
->arch
.slb
[i
].orige
& SLB_ESID_V
))
433 if (vcpu
->arch
.slb
[i
].origv
& SLB_VSID_B_1T
)
438 if (((vcpu
->arch
.slb
[i
].orige
^ eaddr
) & mask
) == 0)
439 return &vcpu
->arch
.slb
[i
];
444 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v
, unsigned long r
,
447 unsigned long ra_mask
;
449 ra_mask
= hpte_page_size(v
, r
) - 1;
450 return (r
& HPTE_R_RPN
& ~ra_mask
) | (ea
& ra_mask
);
453 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu
*vcpu
, gva_t eaddr
,
454 struct kvmppc_pte
*gpte
, bool data
)
456 struct kvm
*kvm
= vcpu
->kvm
;
457 struct kvmppc_slb
*slbe
;
459 unsigned long pp
, key
;
461 unsigned long *hptep
;
463 int virtmode
= vcpu
->arch
.shregs
.msr
& (data
? MSR_DR
: MSR_IR
);
467 slbe
= kvmppc_mmu_book3s_hv_find_slbe(vcpu
, eaddr
);
472 /* real mode access */
473 slb_v
= vcpu
->kvm
->arch
.vrma_slb_v
;
477 /* Find the HPTE in the hash table */
478 index
= kvmppc_hv_find_lock_hpte(kvm
, eaddr
, slb_v
,
479 HPTE_V_VALID
| HPTE_V_ABSENT
);
484 hptep
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (index
<< 4));
485 v
= hptep
[0] & ~HPTE_V_HVLOCK
;
486 gr
= kvm
->arch
.revmap
[index
].guest_rpte
;
488 /* Unlock the HPTE */
489 asm volatile("lwsync" : : : "memory");
494 gpte
->vpage
= ((v
& HPTE_V_AVPN
) << 4) | ((eaddr
>> 12) & 0xfff);
496 /* Get PP bits and key for permission check */
497 pp
= gr
& (HPTE_R_PP0
| HPTE_R_PP
);
498 key
= (vcpu
->arch
.shregs
.msr
& MSR_PR
) ? SLB_VSID_KP
: SLB_VSID_KS
;
501 /* Calculate permissions */
502 gpte
->may_read
= hpte_read_permission(pp
, key
);
503 gpte
->may_write
= hpte_write_permission(pp
, key
);
504 gpte
->may_execute
= gpte
->may_read
&& !(gr
& (HPTE_R_N
| HPTE_R_G
));
506 /* Storage key permission check for POWER7 */
507 if (data
&& virtmode
&& cpu_has_feature(CPU_FTR_ARCH_206
)) {
508 int amrfield
= hpte_get_skey_perm(gr
, vcpu
->arch
.amr
);
515 /* Get the guest physical address */
516 gpte
->raddr
= kvmppc_mmu_get_real_addr(v
, gr
, eaddr
);
521 * Quick test for whether an instruction is a load or a store.
522 * If the instruction is a load or a store, then this will indicate
523 * which it is, at least on server processors. (Embedded processors
524 * have some external PID instructions that don't follow the rule
525 * embodied here.) If the instruction isn't a load or store, then
526 * this doesn't return anything useful.
528 static int instruction_is_store(unsigned int instr
)
533 if ((instr
& 0xfc000000) == 0x7c000000)
534 mask
= 0x100; /* major opcode 31 */
535 return (instr
& mask
) != 0;
538 static int kvmppc_hv_emulate_mmio(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
539 unsigned long gpa
, gva_t ea
, int is_store
)
543 unsigned long srr0
= kvmppc_get_pc(vcpu
);
545 /* We try to load the last instruction. We don't let
546 * emulate_instruction do it as it doesn't check what
548 * If we fail, we just return to the guest and try executing it again.
550 if (vcpu
->arch
.last_inst
== KVM_INST_FETCH_FAILED
) {
551 ret
= kvmppc_ld(vcpu
, &srr0
, sizeof(u32
), &last_inst
, false);
552 if (ret
!= EMULATE_DONE
|| last_inst
== KVM_INST_FETCH_FAILED
)
554 vcpu
->arch
.last_inst
= last_inst
;
558 * WARNING: We do not know for sure whether the instruction we just
559 * read from memory is the same that caused the fault in the first
560 * place. If the instruction we read is neither an load or a store,
561 * then it can't access memory, so we don't need to worry about
562 * enforcing access permissions. So, assuming it is a load or
563 * store, we just check that its direction (load or store) is
564 * consistent with the original fault, since that's what we
565 * checked the access permissions against. If there is a mismatch
566 * we just return and retry the instruction.
569 if (instruction_is_store(vcpu
->arch
.last_inst
) != !!is_store
)
573 * Emulated accesses are emulated by looking at the hash for
574 * translation once, then performing the access later. The
575 * translation could be invalidated in the meantime in which
576 * point performing the subsequent memory access on the old
577 * physical address could possibly be a security hole for the
578 * guest (but not the host).
580 * This is less of an issue for MMIO stores since they aren't
581 * globally visible. It could be an issue for MMIO loads to
582 * a certain extent but we'll ignore it for now.
585 vcpu
->arch
.paddr_accessed
= gpa
;
586 vcpu
->arch
.vaddr_accessed
= ea
;
587 return kvmppc_emulate_mmio(run
, vcpu
);
590 int kvmppc_book3s_hv_page_fault(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
591 unsigned long ea
, unsigned long dsisr
)
593 struct kvm
*kvm
= vcpu
->kvm
;
594 unsigned long *hptep
, hpte
[3], r
;
595 unsigned long mmu_seq
, psize
, pte_size
;
596 unsigned long gpa
, gfn
, hva
, pfn
;
597 struct kvm_memory_slot
*memslot
;
599 struct revmap_entry
*rev
;
600 struct page
*page
, *pages
[1];
601 long index
, ret
, npages
;
603 unsigned int writing
, write_ok
;
604 struct vm_area_struct
*vma
;
605 unsigned long rcbits
;
608 * Real-mode code has already searched the HPT and found the
609 * entry we're interested in. Lock the entry and check that
610 * it hasn't changed. If it has, just return and re-execute the
613 if (ea
!= vcpu
->arch
.pgfault_addr
)
615 index
= vcpu
->arch
.pgfault_index
;
616 hptep
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (index
<< 4));
617 rev
= &kvm
->arch
.revmap
[index
];
619 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
621 hpte
[0] = hptep
[0] & ~HPTE_V_HVLOCK
;
623 hpte
[2] = r
= rev
->guest_rpte
;
624 asm volatile("lwsync" : : : "memory");
628 if (hpte
[0] != vcpu
->arch
.pgfault_hpte
[0] ||
629 hpte
[1] != vcpu
->arch
.pgfault_hpte
[1])
632 /* Translate the logical address and get the page */
633 psize
= hpte_page_size(hpte
[0], r
);
634 gpa
= (r
& HPTE_R_RPN
& ~(psize
- 1)) | (ea
& (psize
- 1));
635 gfn
= gpa
>> PAGE_SHIFT
;
636 memslot
= gfn_to_memslot(kvm
, gfn
);
638 /* No memslot means it's an emulated MMIO region */
639 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
640 return kvmppc_hv_emulate_mmio(run
, vcpu
, gpa
, ea
,
641 dsisr
& DSISR_ISSTORE
);
643 if (!kvm
->arch
.using_mmu_notifiers
)
644 return -EFAULT
; /* should never get here */
646 /* used to check for invalidations in progress */
647 mmu_seq
= kvm
->mmu_notifier_seq
;
653 pte_size
= PAGE_SIZE
;
654 writing
= (dsisr
& DSISR_ISSTORE
) != 0;
655 /* If writing != 0, then the HPTE must allow writing, if we get here */
657 hva
= gfn_to_hva_memslot(memslot
, gfn
);
658 npages
= get_user_pages_fast(hva
, 1, writing
, pages
);
660 /* Check if it's an I/O mapping */
661 down_read(¤t
->mm
->mmap_sem
);
662 vma
= find_vma(current
->mm
, hva
);
663 if (vma
&& vma
->vm_start
<= hva
&& hva
+ psize
<= vma
->vm_end
&&
664 (vma
->vm_flags
& VM_PFNMAP
)) {
665 pfn
= vma
->vm_pgoff
+
666 ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
668 is_io
= hpte_cache_bits(pgprot_val(vma
->vm_page_prot
));
669 write_ok
= vma
->vm_flags
& VM_WRITE
;
671 up_read(¤t
->mm
->mmap_sem
);
676 if (PageHuge(page
)) {
677 page
= compound_head(page
);
678 pte_size
<<= compound_order(page
);
680 /* if the guest wants write access, see if that is OK */
681 if (!writing
&& hpte_is_writable(r
)) {
682 unsigned int hugepage_shift
;
686 * We need to protect against page table destruction
687 * while looking up and updating the pte.
689 rcu_read_lock_sched();
690 ptep
= find_linux_pte_or_hugepte(current
->mm
->pgd
,
691 hva
, &hugepage_shift
);
693 pte
= kvmppc_read_update_linux_pte(ptep
, 1,
698 rcu_read_unlock_sched();
700 pfn
= page_to_pfn(page
);
704 if (psize
> pte_size
)
707 /* Check WIMG vs. the actual page we're accessing */
708 if (!hpte_cache_flags_ok(r
, is_io
)) {
712 * Allow guest to map emulated device memory as
713 * uncacheable, but actually make it cacheable.
715 r
= (r
& ~(HPTE_R_W
|HPTE_R_I
|HPTE_R_G
)) | HPTE_R_M
;
718 /* Set the HPTE to point to pfn */
719 r
= (r
& ~(HPTE_R_PP0
- pte_size
)) | (pfn
<< PAGE_SHIFT
);
720 if (hpte_is_writable(r
) && !write_ok
)
721 r
= hpte_make_readonly(r
);
724 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
726 if ((hptep
[0] & ~HPTE_V_HVLOCK
) != hpte
[0] || hptep
[1] != hpte
[1] ||
727 rev
->guest_rpte
!= hpte
[2])
728 /* HPTE has been changed under us; let the guest retry */
730 hpte
[0] = (hpte
[0] & ~HPTE_V_ABSENT
) | HPTE_V_VALID
;
732 rmap
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
735 /* Check if we might have been invalidated; let the guest retry if so */
737 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
)) {
742 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
743 rcbits
= *rmap
>> KVMPPC_RMAP_RC_SHIFT
;
744 r
&= rcbits
| ~(HPTE_R_R
| HPTE_R_C
);
746 if (hptep
[0] & HPTE_V_VALID
) {
747 /* HPTE was previously valid, so we need to invalidate it */
749 hptep
[0] |= HPTE_V_ABSENT
;
750 kvmppc_invalidate_hpte(kvm
, hptep
, index
);
751 /* don't lose previous R and C bits */
752 r
|= hptep
[1] & (HPTE_R_R
| HPTE_R_C
);
754 kvmppc_add_revmap_chain(kvm
, rev
, rmap
, index
, 0);
760 asm volatile("ptesync" : : : "memory");
762 if (page
&& hpte_is_writable(r
))
768 * We drop pages[0] here, not page because page might
769 * have been set to the head page of a compound, but
770 * we have to drop the reference on the correct tail
771 * page to match the get inside gup()
778 hptep
[0] &= ~HPTE_V_HVLOCK
;
783 static void kvmppc_rmap_reset(struct kvm
*kvm
)
785 struct kvm_memslots
*slots
;
786 struct kvm_memory_slot
*memslot
;
789 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
790 slots
= kvm
->memslots
;
791 kvm_for_each_memslot(memslot
, slots
) {
793 * This assumes it is acceptable to lose reference and
794 * change bits across a reset.
796 memset(memslot
->arch
.rmap
, 0,
797 memslot
->npages
* sizeof(*memslot
->arch
.rmap
));
799 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
802 static int kvm_handle_hva_range(struct kvm
*kvm
,
805 int (*handler
)(struct kvm
*kvm
,
806 unsigned long *rmapp
,
811 struct kvm_memslots
*slots
;
812 struct kvm_memory_slot
*memslot
;
814 slots
= kvm_memslots(kvm
);
815 kvm_for_each_memslot(memslot
, slots
) {
816 unsigned long hva_start
, hva_end
;
819 hva_start
= max(start
, memslot
->userspace_addr
);
820 hva_end
= min(end
, memslot
->userspace_addr
+
821 (memslot
->npages
<< PAGE_SHIFT
));
822 if (hva_start
>= hva_end
)
825 * {gfn(page) | page intersects with [hva_start, hva_end)} =
826 * {gfn, gfn+1, ..., gfn_end-1}.
828 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
829 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
831 for (; gfn
< gfn_end
; ++gfn
) {
832 gfn_t gfn_offset
= gfn
- memslot
->base_gfn
;
834 ret
= handler(kvm
, &memslot
->arch
.rmap
[gfn_offset
], gfn
);
842 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
843 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
846 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, handler
);
849 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
852 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
853 unsigned long h
, i
, j
;
854 unsigned long *hptep
;
855 unsigned long ptel
, psize
, rcbits
;
859 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
865 * To avoid an ABBA deadlock with the HPTE lock bit,
866 * we can't spin on the HPTE lock while holding the
869 i
= *rmapp
& KVMPPC_RMAP_INDEX
;
870 hptep
= (unsigned long *) (kvm
->arch
.hpt_virt
+ (i
<< 4));
871 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
872 /* unlock rmap before spinning on the HPTE lock */
874 while (hptep
[0] & HPTE_V_HVLOCK
)
880 /* chain is now empty */
881 *rmapp
&= ~(KVMPPC_RMAP_PRESENT
| KVMPPC_RMAP_INDEX
);
883 /* remove i from chain */
887 rev
[i
].forw
= rev
[i
].back
= i
;
888 *rmapp
= (*rmapp
& ~KVMPPC_RMAP_INDEX
) | j
;
891 /* Now check and modify the HPTE */
892 ptel
= rev
[i
].guest_rpte
;
893 psize
= hpte_page_size(hptep
[0], ptel
);
894 if ((hptep
[0] & HPTE_V_VALID
) &&
895 hpte_rpn(ptel
, psize
) == gfn
) {
896 if (kvm
->arch
.using_mmu_notifiers
)
897 hptep
[0] |= HPTE_V_ABSENT
;
898 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
899 /* Harvest R and C */
900 rcbits
= hptep
[1] & (HPTE_R_R
| HPTE_R_C
);
901 *rmapp
|= rcbits
<< KVMPPC_RMAP_RC_SHIFT
;
902 if (rcbits
& ~rev
[i
].guest_rpte
) {
903 rev
[i
].guest_rpte
= ptel
| rcbits
;
904 note_hpte_modification(kvm
, &rev
[i
]);
908 hptep
[0] &= ~HPTE_V_HVLOCK
;
913 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
915 if (kvm
->arch
.using_mmu_notifiers
)
916 kvm_handle_hva(kvm
, hva
, kvm_unmap_rmapp
);
920 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
922 if (kvm
->arch
.using_mmu_notifiers
)
923 kvm_handle_hva_range(kvm
, start
, end
, kvm_unmap_rmapp
);
927 void kvmppc_core_flush_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
929 unsigned long *rmapp
;
933 rmapp
= memslot
->arch
.rmap
;
934 gfn
= memslot
->base_gfn
;
935 for (n
= memslot
->npages
; n
; --n
) {
937 * Testing the present bit without locking is OK because
938 * the memslot has been marked invalid already, and hence
939 * no new HPTEs referencing this page can be created,
940 * thus the present bit can't go from 0 to 1.
942 if (*rmapp
& KVMPPC_RMAP_PRESENT
)
943 kvm_unmap_rmapp(kvm
, rmapp
, gfn
);
949 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
952 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
953 unsigned long head
, i
, j
;
954 unsigned long *hptep
;
959 if (*rmapp
& KVMPPC_RMAP_REFERENCED
) {
960 *rmapp
&= ~KVMPPC_RMAP_REFERENCED
;
963 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
968 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
970 hptep
= (unsigned long *) (kvm
->arch
.hpt_virt
+ (i
<< 4));
973 /* If this HPTE isn't referenced, ignore it */
974 if (!(hptep
[1] & HPTE_R_R
))
977 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
978 /* unlock rmap before spinning on the HPTE lock */
980 while (hptep
[0] & HPTE_V_HVLOCK
)
985 /* Now check and modify the HPTE */
986 if ((hptep
[0] & HPTE_V_VALID
) && (hptep
[1] & HPTE_R_R
)) {
987 kvmppc_clear_ref_hpte(kvm
, hptep
, i
);
988 if (!(rev
[i
].guest_rpte
& HPTE_R_R
)) {
989 rev
[i
].guest_rpte
|= HPTE_R_R
;
990 note_hpte_modification(kvm
, &rev
[i
]);
994 hptep
[0] &= ~HPTE_V_HVLOCK
;
995 } while ((i
= j
) != head
);
1001 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
1003 if (!kvm
->arch
.using_mmu_notifiers
)
1005 return kvm_handle_hva(kvm
, hva
, kvm_age_rmapp
);
1008 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1011 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
1012 unsigned long head
, i
, j
;
1016 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
1020 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
1023 if (*rmapp
& KVMPPC_RMAP_PRESENT
) {
1024 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1026 hp
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (i
<< 4));
1028 if (hp
[1] & HPTE_R_R
)
1030 } while ((i
= j
) != head
);
1039 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1041 if (!kvm
->arch
.using_mmu_notifiers
)
1043 return kvm_handle_hva(kvm
, hva
, kvm_test_age_rmapp
);
1046 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1048 if (!kvm
->arch
.using_mmu_notifiers
)
1050 kvm_handle_hva(kvm
, hva
, kvm_unmap_rmapp
);
1053 static int kvm_test_clear_dirty(struct kvm
*kvm
, unsigned long *rmapp
)
1055 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
1056 unsigned long head
, i
, j
;
1057 unsigned long *hptep
;
1062 if (*rmapp
& KVMPPC_RMAP_CHANGED
) {
1063 *rmapp
&= ~KVMPPC_RMAP_CHANGED
;
1066 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
1071 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1073 hptep
= (unsigned long *) (kvm
->arch
.hpt_virt
+ (i
<< 4));
1076 if (!(hptep
[1] & HPTE_R_C
))
1079 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
1080 /* unlock rmap before spinning on the HPTE lock */
1082 while (hptep
[0] & HPTE_V_HVLOCK
)
1087 /* Now check and modify the HPTE */
1088 if ((hptep
[0] & HPTE_V_VALID
) && (hptep
[1] & HPTE_R_C
)) {
1089 /* need to make it temporarily absent to clear C */
1090 hptep
[0] |= HPTE_V_ABSENT
;
1091 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
1092 hptep
[1] &= ~HPTE_R_C
;
1094 hptep
[0] = (hptep
[0] & ~HPTE_V_ABSENT
) | HPTE_V_VALID
;
1095 if (!(rev
[i
].guest_rpte
& HPTE_R_C
)) {
1096 rev
[i
].guest_rpte
|= HPTE_R_C
;
1097 note_hpte_modification(kvm
, &rev
[i
]);
1101 hptep
[0] &= ~HPTE_V_HVLOCK
;
1102 } while ((i
= j
) != head
);
1108 static void harvest_vpa_dirty(struct kvmppc_vpa
*vpa
,
1109 struct kvm_memory_slot
*memslot
,
1114 if (!vpa
->dirty
|| !vpa
->pinned_addr
)
1116 gfn
= vpa
->gpa
>> PAGE_SHIFT
;
1117 if (gfn
< memslot
->base_gfn
||
1118 gfn
>= memslot
->base_gfn
+ memslot
->npages
)
1123 __set_bit_le(gfn
- memslot
->base_gfn
, map
);
1126 long kvmppc_hv_get_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1130 unsigned long *rmapp
;
1131 struct kvm_vcpu
*vcpu
;
1134 rmapp
= memslot
->arch
.rmap
;
1135 for (i
= 0; i
< memslot
->npages
; ++i
) {
1136 if (kvm_test_clear_dirty(kvm
, rmapp
) && map
)
1137 __set_bit_le(i
, map
);
1141 /* Harvest dirty bits from VPA and DTL updates */
1142 /* Note: we never modify the SLB shadow buffer areas */
1143 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1144 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1145 harvest_vpa_dirty(&vcpu
->arch
.vpa
, memslot
, map
);
1146 harvest_vpa_dirty(&vcpu
->arch
.dtl
, memslot
, map
);
1147 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1153 void *kvmppc_pin_guest_page(struct kvm
*kvm
, unsigned long gpa
,
1154 unsigned long *nb_ret
)
1156 struct kvm_memory_slot
*memslot
;
1157 unsigned long gfn
= gpa
>> PAGE_SHIFT
;
1158 struct page
*page
, *pages
[1];
1160 unsigned long hva
, offset
;
1162 unsigned long *physp
;
1165 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1166 memslot
= gfn_to_memslot(kvm
, gfn
);
1167 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
1169 if (!kvm
->arch
.using_mmu_notifiers
) {
1170 physp
= memslot
->arch
.slot_phys
;
1173 physp
+= gfn
- memslot
->base_gfn
;
1176 if (kvmppc_get_guest_page(kvm
, gfn
, memslot
,
1181 page
= pfn_to_page(pa
>> PAGE_SHIFT
);
1184 hva
= gfn_to_hva_memslot(memslot
, gfn
);
1185 npages
= get_user_pages_fast(hva
, 1, 1, pages
);
1190 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1192 offset
= gpa
& (PAGE_SIZE
- 1);
1194 *nb_ret
= PAGE_SIZE
- offset
;
1195 return page_address(page
) + offset
;
1198 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1202 void kvmppc_unpin_guest_page(struct kvm
*kvm
, void *va
, unsigned long gpa
,
1205 struct page
*page
= virt_to_page(va
);
1206 struct kvm_memory_slot
*memslot
;
1208 unsigned long *rmap
;
1213 if (!dirty
|| !kvm
->arch
.using_mmu_notifiers
)
1216 /* We need to mark this page dirty in the rmap chain */
1217 gfn
= gpa
>> PAGE_SHIFT
;
1218 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1219 memslot
= gfn_to_memslot(kvm
, gfn
);
1221 rmap
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
1223 *rmap
|= KVMPPC_RMAP_CHANGED
;
1226 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1230 * Functions for reading and writing the hash table via reads and
1231 * writes on a file descriptor.
1233 * Reads return the guest view of the hash table, which has to be
1234 * pieced together from the real hash table and the guest_rpte
1235 * values in the revmap array.
1237 * On writes, each HPTE written is considered in turn, and if it
1238 * is valid, it is written to the HPT as if an H_ENTER with the
1239 * exact flag set was done. When the invalid count is non-zero
1240 * in the header written to the stream, the kernel will make
1241 * sure that that many HPTEs are invalid, and invalidate them
1245 struct kvm_htab_ctx
{
1246 unsigned long index
;
1247 unsigned long flags
;
1252 #define HPTE_SIZE (2 * sizeof(unsigned long))
1255 * Returns 1 if this HPT entry has been modified or has pending
1258 static int hpte_dirty(struct revmap_entry
*revp
, unsigned long *hptp
)
1260 unsigned long rcbits_unset
;
1262 if (revp
->guest_rpte
& HPTE_GR_MODIFIED
)
1265 /* Also need to consider changes in reference and changed bits */
1266 rcbits_unset
= ~revp
->guest_rpte
& (HPTE_R_R
| HPTE_R_C
);
1267 if ((hptp
[0] & HPTE_V_VALID
) && (hptp
[1] & rcbits_unset
))
1273 static long record_hpte(unsigned long flags
, unsigned long *hptp
,
1274 unsigned long *hpte
, struct revmap_entry
*revp
,
1275 int want_valid
, int first_pass
)
1278 unsigned long rcbits_unset
;
1282 /* Unmodified entries are uninteresting except on the first pass */
1283 dirty
= hpte_dirty(revp
, hptp
);
1284 if (!first_pass
&& !dirty
)
1288 if (hptp
[0] & (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
1290 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) &&
1291 !(hptp
[0] & HPTE_V_BOLTED
))
1294 if (valid
!= want_valid
)
1298 if (valid
|| dirty
) {
1299 /* lock the HPTE so it's stable and read it */
1301 while (!try_lock_hpte(hptp
, HPTE_V_HVLOCK
))
1305 /* re-evaluate valid and dirty from synchronized HPTE value */
1306 valid
= !!(v
& HPTE_V_VALID
);
1307 dirty
= !!(revp
->guest_rpte
& HPTE_GR_MODIFIED
);
1309 /* Harvest R and C into guest view if necessary */
1310 rcbits_unset
= ~revp
->guest_rpte
& (HPTE_R_R
| HPTE_R_C
);
1311 if (valid
&& (rcbits_unset
& hptp
[1])) {
1312 revp
->guest_rpte
|= (hptp
[1] & (HPTE_R_R
| HPTE_R_C
)) |
1317 if (v
& HPTE_V_ABSENT
) {
1318 v
&= ~HPTE_V_ABSENT
;
1322 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) && !(v
& HPTE_V_BOLTED
))
1325 r
= revp
->guest_rpte
;
1326 /* only clear modified if this is the right sort of entry */
1327 if (valid
== want_valid
&& dirty
) {
1328 r
&= ~HPTE_GR_MODIFIED
;
1329 revp
->guest_rpte
= r
;
1331 asm volatile(PPC_RELEASE_BARRIER
"" : : : "memory");
1332 hptp
[0] &= ~HPTE_V_HVLOCK
;
1334 if (!(valid
== want_valid
&& (first_pass
|| dirty
)))
1342 static ssize_t
kvm_htab_read(struct file
*file
, char __user
*buf
,
1343 size_t count
, loff_t
*ppos
)
1345 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1346 struct kvm
*kvm
= ctx
->kvm
;
1347 struct kvm_get_htab_header hdr
;
1348 unsigned long *hptp
;
1349 struct revmap_entry
*revp
;
1350 unsigned long i
, nb
, nw
;
1351 unsigned long __user
*lbuf
;
1352 struct kvm_get_htab_header __user
*hptr
;
1353 unsigned long flags
;
1355 unsigned long hpte
[2];
1357 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1360 first_pass
= ctx
->first_pass
;
1364 hptp
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (i
* HPTE_SIZE
));
1365 revp
= kvm
->arch
.revmap
+ i
;
1366 lbuf
= (unsigned long __user
*)buf
;
1369 while (nb
+ sizeof(hdr
) + HPTE_SIZE
< count
) {
1370 /* Initialize header */
1371 hptr
= (struct kvm_get_htab_header __user
*)buf
;
1376 lbuf
= (unsigned long __user
*)(buf
+ sizeof(hdr
));
1378 /* Skip uninteresting entries, i.e. clean on not-first pass */
1380 while (i
< kvm
->arch
.hpt_npte
&&
1381 !hpte_dirty(revp
, hptp
)) {
1389 /* Grab a series of valid entries */
1390 while (i
< kvm
->arch
.hpt_npte
&&
1391 hdr
.n_valid
< 0xffff &&
1392 nb
+ HPTE_SIZE
< count
&&
1393 record_hpte(flags
, hptp
, hpte
, revp
, 1, first_pass
)) {
1394 /* valid entry, write it out */
1396 if (__put_user(hpte
[0], lbuf
) ||
1397 __put_user(hpte
[1], lbuf
+ 1))
1405 /* Now skip invalid entries while we can */
1406 while (i
< kvm
->arch
.hpt_npte
&&
1407 hdr
.n_invalid
< 0xffff &&
1408 record_hpte(flags
, hptp
, hpte
, revp
, 0, first_pass
)) {
1409 /* found an invalid entry */
1416 if (hdr
.n_valid
|| hdr
.n_invalid
) {
1417 /* write back the header */
1418 if (__copy_to_user(hptr
, &hdr
, sizeof(hdr
)))
1421 buf
= (char __user
*)lbuf
;
1426 /* Check if we've wrapped around the hash table */
1427 if (i
>= kvm
->arch
.hpt_npte
) {
1429 ctx
->first_pass
= 0;
1439 static ssize_t
kvm_htab_write(struct file
*file
, const char __user
*buf
,
1440 size_t count
, loff_t
*ppos
)
1442 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1443 struct kvm
*kvm
= ctx
->kvm
;
1444 struct kvm_get_htab_header hdr
;
1447 unsigned long __user
*lbuf
;
1448 unsigned long *hptp
;
1449 unsigned long tmp
[2];
1454 if (!access_ok(VERIFY_READ
, buf
, count
))
1457 /* lock out vcpus from running while we're doing this */
1458 mutex_lock(&kvm
->lock
);
1459 rma_setup
= kvm
->arch
.rma_setup_done
;
1461 kvm
->arch
.rma_setup_done
= 0; /* temporarily */
1462 /* order rma_setup_done vs. vcpus_running */
1464 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
1465 kvm
->arch
.rma_setup_done
= 1;
1466 mutex_unlock(&kvm
->lock
);
1472 for (nb
= 0; nb
+ sizeof(hdr
) <= count
; ) {
1474 if (__copy_from_user(&hdr
, buf
, sizeof(hdr
)))
1478 if (nb
+ hdr
.n_valid
* HPTE_SIZE
> count
)
1486 if (i
>= kvm
->arch
.hpt_npte
||
1487 i
+ hdr
.n_valid
+ hdr
.n_invalid
> kvm
->arch
.hpt_npte
)
1490 hptp
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (i
* HPTE_SIZE
));
1491 lbuf
= (unsigned long __user
*)buf
;
1492 for (j
= 0; j
< hdr
.n_valid
; ++j
) {
1494 if (__get_user(v
, lbuf
) || __get_user(r
, lbuf
+ 1))
1497 if (!(v
& HPTE_V_VALID
))
1502 if (hptp
[0] & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1503 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1505 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, i
, v
, r
,
1507 if (ret
!= H_SUCCESS
) {
1508 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1509 "r=%lx\n", ret
, i
, v
, r
);
1512 if (!rma_setup
&& is_vrma_hpte(v
)) {
1513 unsigned long psize
= hpte_page_size(v
, r
);
1514 unsigned long senc
= slb_pgsize_encoding(psize
);
1517 kvm
->arch
.vrma_slb_v
= senc
| SLB_VSID_B_1T
|
1518 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
1519 lpcr
= kvm
->arch
.lpcr
& ~LPCR_VRMASD
;
1520 lpcr
|= senc
<< (LPCR_VRMASD_SH
- 4);
1521 kvm
->arch
.lpcr
= lpcr
;
1528 for (j
= 0; j
< hdr
.n_invalid
; ++j
) {
1529 if (hptp
[0] & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1530 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1538 /* Order HPTE updates vs. rma_setup_done */
1540 kvm
->arch
.rma_setup_done
= rma_setup
;
1541 mutex_unlock(&kvm
->lock
);
1548 static int kvm_htab_release(struct inode
*inode
, struct file
*filp
)
1550 struct kvm_htab_ctx
*ctx
= filp
->private_data
;
1552 filp
->private_data
= NULL
;
1553 if (!(ctx
->flags
& KVM_GET_HTAB_WRITE
))
1554 atomic_dec(&ctx
->kvm
->arch
.hpte_mod_interest
);
1555 kvm_put_kvm(ctx
->kvm
);
1560 static const struct file_operations kvm_htab_fops
= {
1561 .read
= kvm_htab_read
,
1562 .write
= kvm_htab_write
,
1563 .llseek
= default_llseek
,
1564 .release
= kvm_htab_release
,
1567 int kvm_vm_ioctl_get_htab_fd(struct kvm
*kvm
, struct kvm_get_htab_fd
*ghf
)
1570 struct kvm_htab_ctx
*ctx
;
1573 /* reject flags we don't recognize */
1574 if (ghf
->flags
& ~(KVM_GET_HTAB_BOLTED_ONLY
| KVM_GET_HTAB_WRITE
))
1576 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
1581 ctx
->index
= ghf
->start_index
;
1582 ctx
->flags
= ghf
->flags
;
1583 ctx
->first_pass
= 1;
1585 rwflag
= (ghf
->flags
& KVM_GET_HTAB_WRITE
) ? O_WRONLY
: O_RDONLY
;
1586 ret
= anon_inode_getfd("kvm-htab", &kvm_htab_fops
, ctx
, rwflag
| O_CLOEXEC
);
1592 if (rwflag
== O_RDONLY
) {
1593 mutex_lock(&kvm
->slots_lock
);
1594 atomic_inc(&kvm
->arch
.hpte_mod_interest
);
1595 /* make sure kvmppc_do_h_enter etc. see the increment */
1596 synchronize_srcu_expedited(&kvm
->srcu
);
1597 mutex_unlock(&kvm
->slots_lock
);
1603 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu
*vcpu
)
1605 struct kvmppc_mmu
*mmu
= &vcpu
->arch
.mmu
;
1607 if (cpu_has_feature(CPU_FTR_ARCH_206
))
1608 vcpu
->arch
.slb_nr
= 32; /* POWER7 */
1610 vcpu
->arch
.slb_nr
= 64;
1612 mmu
->xlate
= kvmppc_mmu_book3s_64_hv_xlate
;
1613 mmu
->reset_msr
= kvmppc_mmu_book3s_64_hv_reset_msr
;
1615 vcpu
->arch
.hflags
|= BOOK3S_HFLAG_SLB
;