x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stub
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv.c
blob211974a386d6af189582468ef1f848fa892f80dc
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL (~(u64)0)
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
71 int me;
72 int cpu = vcpu->cpu;
73 wait_queue_head_t *wqp;
75 wqp = kvm_arch_vcpu_wq(vcpu);
76 if (waitqueue_active(wqp)) {
77 wake_up_interruptible(wqp);
78 ++vcpu->stat.halt_wakeup;
81 me = get_cpu();
83 /* CPU points to the first thread of the core */
84 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85 #ifdef CONFIG_PPC_ICP_NATIVE
86 int real_cpu = cpu + vcpu->arch.ptid;
87 if (paca[real_cpu].kvm_hstate.xics_phys)
88 xics_wake_cpu(real_cpu);
89 else
90 #endif
91 if (cpu_online(cpu))
92 smp_send_reschedule(cpu);
94 put_cpu();
98 * We use the vcpu_load/put functions to measure stolen time.
99 * Stolen time is counted as time when either the vcpu is able to
100 * run as part of a virtual core, but the task running the vcore
101 * is preempted or sleeping, or when the vcpu needs something done
102 * in the kernel by the task running the vcpu, but that task is
103 * preempted or sleeping. Those two things have to be counted
104 * separately, since one of the vcpu tasks will take on the job
105 * of running the core, and the other vcpu tasks in the vcore will
106 * sleep waiting for it to do that, but that sleep shouldn't count
107 * as stolen time.
109 * Hence we accumulate stolen time when the vcpu can run as part of
110 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
111 * needs its task to do other things in the kernel (for example,
112 * service a page fault) in busy_stolen. We don't accumulate
113 * stolen time for a vcore when it is inactive, or for a vcpu
114 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
115 * a misnomer; it means that the vcpu task is not executing in
116 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
117 * the kernel. We don't have any way of dividing up that time
118 * between time that the vcpu is genuinely stopped, time that
119 * the task is actively working on behalf of the vcpu, and time
120 * that the task is preempted, so we don't count any of it as
121 * stolen.
123 * Updates to busy_stolen are protected by arch.tbacct_lock;
124 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
125 * of the vcpu that has taken responsibility for running the vcore
126 * (i.e. vc->runner). The stolen times are measured in units of
127 * timebase ticks. (Note that the != TB_NIL checks below are
128 * purely defensive; they should never fail.)
131 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
133 struct kvmppc_vcore *vc = vcpu->arch.vcore;
135 spin_lock(&vcpu->arch.tbacct_lock);
136 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
137 vc->preempt_tb != TB_NIL) {
138 vc->stolen_tb += mftb() - vc->preempt_tb;
139 vc->preempt_tb = TB_NIL;
141 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
142 vcpu->arch.busy_preempt != TB_NIL) {
143 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
144 vcpu->arch.busy_preempt = TB_NIL;
146 spin_unlock(&vcpu->arch.tbacct_lock);
149 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
151 struct kvmppc_vcore *vc = vcpu->arch.vcore;
153 spin_lock(&vcpu->arch.tbacct_lock);
154 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
155 vc->preempt_tb = mftb();
156 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
157 vcpu->arch.busy_preempt = mftb();
158 spin_unlock(&vcpu->arch.tbacct_lock);
161 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
163 vcpu->arch.shregs.msr = msr;
164 kvmppc_end_cede(vcpu);
167 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
169 vcpu->arch.pvr = pvr;
172 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
174 int r;
176 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
177 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
178 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
179 for (r = 0; r < 16; ++r)
180 pr_err("r%2d = %.16lx r%d = %.16lx\n",
181 r, kvmppc_get_gpr(vcpu, r),
182 r+16, kvmppc_get_gpr(vcpu, r+16));
183 pr_err("ctr = %.16lx lr = %.16lx\n",
184 vcpu->arch.ctr, vcpu->arch.lr);
185 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
186 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
187 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
188 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
189 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
190 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
191 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
192 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
193 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
194 pr_err("fault dar = %.16lx dsisr = %.8x\n",
195 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
196 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
197 for (r = 0; r < vcpu->arch.slb_max; ++r)
198 pr_err(" ESID = %.16llx VSID = %.16llx\n",
199 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
200 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
201 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
202 vcpu->arch.last_inst);
205 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
207 int r;
208 struct kvm_vcpu *v, *ret = NULL;
210 mutex_lock(&kvm->lock);
211 kvm_for_each_vcpu(r, v, kvm) {
212 if (v->vcpu_id == id) {
213 ret = v;
214 break;
217 mutex_unlock(&kvm->lock);
218 return ret;
221 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
223 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
224 vpa->yield_count = 1;
227 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
228 unsigned long addr, unsigned long len)
230 /* check address is cacheline aligned */
231 if (addr & (L1_CACHE_BYTES - 1))
232 return -EINVAL;
233 spin_lock(&vcpu->arch.vpa_update_lock);
234 if (v->next_gpa != addr || v->len != len) {
235 v->next_gpa = addr;
236 v->len = addr ? len : 0;
237 v->update_pending = 1;
239 spin_unlock(&vcpu->arch.vpa_update_lock);
240 return 0;
243 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
244 struct reg_vpa {
245 u32 dummy;
246 union {
247 u16 hword;
248 u32 word;
249 } length;
252 static int vpa_is_registered(struct kvmppc_vpa *vpap)
254 if (vpap->update_pending)
255 return vpap->next_gpa != 0;
256 return vpap->pinned_addr != NULL;
259 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
260 unsigned long flags,
261 unsigned long vcpuid, unsigned long vpa)
263 struct kvm *kvm = vcpu->kvm;
264 unsigned long len, nb;
265 void *va;
266 struct kvm_vcpu *tvcpu;
267 int err;
268 int subfunc;
269 struct kvmppc_vpa *vpap;
271 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
272 if (!tvcpu)
273 return H_PARAMETER;
275 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
276 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
277 subfunc == H_VPA_REG_SLB) {
278 /* Registering new area - address must be cache-line aligned */
279 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
280 return H_PARAMETER;
282 /* convert logical addr to kernel addr and read length */
283 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
284 if (va == NULL)
285 return H_PARAMETER;
286 if (subfunc == H_VPA_REG_VPA)
287 len = ((struct reg_vpa *)va)->length.hword;
288 else
289 len = ((struct reg_vpa *)va)->length.word;
290 kvmppc_unpin_guest_page(kvm, va, vpa, false);
292 /* Check length */
293 if (len > nb || len < sizeof(struct reg_vpa))
294 return H_PARAMETER;
295 } else {
296 vpa = 0;
297 len = 0;
300 err = H_PARAMETER;
301 vpap = NULL;
302 spin_lock(&tvcpu->arch.vpa_update_lock);
304 switch (subfunc) {
305 case H_VPA_REG_VPA: /* register VPA */
306 if (len < sizeof(struct lppaca))
307 break;
308 vpap = &tvcpu->arch.vpa;
309 err = 0;
310 break;
312 case H_VPA_REG_DTL: /* register DTL */
313 if (len < sizeof(struct dtl_entry))
314 break;
315 len -= len % sizeof(struct dtl_entry);
317 /* Check that they have previously registered a VPA */
318 err = H_RESOURCE;
319 if (!vpa_is_registered(&tvcpu->arch.vpa))
320 break;
322 vpap = &tvcpu->arch.dtl;
323 err = 0;
324 break;
326 case H_VPA_REG_SLB: /* register SLB shadow buffer */
327 /* Check that they have previously registered a VPA */
328 err = H_RESOURCE;
329 if (!vpa_is_registered(&tvcpu->arch.vpa))
330 break;
332 vpap = &tvcpu->arch.slb_shadow;
333 err = 0;
334 break;
336 case H_VPA_DEREG_VPA: /* deregister VPA */
337 /* Check they don't still have a DTL or SLB buf registered */
338 err = H_RESOURCE;
339 if (vpa_is_registered(&tvcpu->arch.dtl) ||
340 vpa_is_registered(&tvcpu->arch.slb_shadow))
341 break;
343 vpap = &tvcpu->arch.vpa;
344 err = 0;
345 break;
347 case H_VPA_DEREG_DTL: /* deregister DTL */
348 vpap = &tvcpu->arch.dtl;
349 err = 0;
350 break;
352 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
353 vpap = &tvcpu->arch.slb_shadow;
354 err = 0;
355 break;
358 if (vpap) {
359 vpap->next_gpa = vpa;
360 vpap->len = len;
361 vpap->update_pending = 1;
364 spin_unlock(&tvcpu->arch.vpa_update_lock);
366 return err;
369 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
371 struct kvm *kvm = vcpu->kvm;
372 void *va;
373 unsigned long nb;
374 unsigned long gpa;
377 * We need to pin the page pointed to by vpap->next_gpa,
378 * but we can't call kvmppc_pin_guest_page under the lock
379 * as it does get_user_pages() and down_read(). So we
380 * have to drop the lock, pin the page, then get the lock
381 * again and check that a new area didn't get registered
382 * in the meantime.
384 for (;;) {
385 gpa = vpap->next_gpa;
386 spin_unlock(&vcpu->arch.vpa_update_lock);
387 va = NULL;
388 nb = 0;
389 if (gpa)
390 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
391 spin_lock(&vcpu->arch.vpa_update_lock);
392 if (gpa == vpap->next_gpa)
393 break;
394 /* sigh... unpin that one and try again */
395 if (va)
396 kvmppc_unpin_guest_page(kvm, va, gpa, false);
399 vpap->update_pending = 0;
400 if (va && nb < vpap->len) {
402 * If it's now too short, it must be that userspace
403 * has changed the mappings underlying guest memory,
404 * so unregister the region.
406 kvmppc_unpin_guest_page(kvm, va, gpa, false);
407 va = NULL;
409 if (vpap->pinned_addr)
410 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
411 vpap->dirty);
412 vpap->gpa = gpa;
413 vpap->pinned_addr = va;
414 vpap->dirty = false;
415 if (va)
416 vpap->pinned_end = va + vpap->len;
419 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
421 if (!(vcpu->arch.vpa.update_pending ||
422 vcpu->arch.slb_shadow.update_pending ||
423 vcpu->arch.dtl.update_pending))
424 return;
426 spin_lock(&vcpu->arch.vpa_update_lock);
427 if (vcpu->arch.vpa.update_pending) {
428 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
429 if (vcpu->arch.vpa.pinned_addr)
430 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
432 if (vcpu->arch.dtl.update_pending) {
433 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
434 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
435 vcpu->arch.dtl_index = 0;
437 if (vcpu->arch.slb_shadow.update_pending)
438 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
439 spin_unlock(&vcpu->arch.vpa_update_lock);
443 * Return the accumulated stolen time for the vcore up until `now'.
444 * The caller should hold the vcore lock.
446 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
448 u64 p;
451 * If we are the task running the vcore, then since we hold
452 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
453 * can't be updated, so we don't need the tbacct_lock.
454 * If the vcore is inactive, it can't become active (since we
455 * hold the vcore lock), so the vcpu load/put functions won't
456 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
458 if (vc->vcore_state != VCORE_INACTIVE &&
459 vc->runner->arch.run_task != current) {
460 spin_lock(&vc->runner->arch.tbacct_lock);
461 p = vc->stolen_tb;
462 if (vc->preempt_tb != TB_NIL)
463 p += now - vc->preempt_tb;
464 spin_unlock(&vc->runner->arch.tbacct_lock);
465 } else {
466 p = vc->stolen_tb;
468 return p;
471 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
472 struct kvmppc_vcore *vc)
474 struct dtl_entry *dt;
475 struct lppaca *vpa;
476 unsigned long stolen;
477 unsigned long core_stolen;
478 u64 now;
480 dt = vcpu->arch.dtl_ptr;
481 vpa = vcpu->arch.vpa.pinned_addr;
482 now = mftb();
483 core_stolen = vcore_stolen_time(vc, now);
484 stolen = core_stolen - vcpu->arch.stolen_logged;
485 vcpu->arch.stolen_logged = core_stolen;
486 spin_lock(&vcpu->arch.tbacct_lock);
487 stolen += vcpu->arch.busy_stolen;
488 vcpu->arch.busy_stolen = 0;
489 spin_unlock(&vcpu->arch.tbacct_lock);
490 if (!dt || !vpa)
491 return;
492 memset(dt, 0, sizeof(struct dtl_entry));
493 dt->dispatch_reason = 7;
494 dt->processor_id = vc->pcpu + vcpu->arch.ptid;
495 dt->timebase = now;
496 dt->enqueue_to_dispatch_time = stolen;
497 dt->srr0 = kvmppc_get_pc(vcpu);
498 dt->srr1 = vcpu->arch.shregs.msr;
499 ++dt;
500 if (dt == vcpu->arch.dtl.pinned_end)
501 dt = vcpu->arch.dtl.pinned_addr;
502 vcpu->arch.dtl_ptr = dt;
503 /* order writing *dt vs. writing vpa->dtl_idx */
504 smp_wmb();
505 vpa->dtl_idx = ++vcpu->arch.dtl_index;
506 vcpu->arch.dtl.dirty = true;
509 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
511 unsigned long req = kvmppc_get_gpr(vcpu, 3);
512 unsigned long target, ret = H_SUCCESS;
513 struct kvm_vcpu *tvcpu;
514 int idx, rc;
516 switch (req) {
517 case H_ENTER:
518 idx = srcu_read_lock(&vcpu->kvm->srcu);
519 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
520 kvmppc_get_gpr(vcpu, 5),
521 kvmppc_get_gpr(vcpu, 6),
522 kvmppc_get_gpr(vcpu, 7));
523 srcu_read_unlock(&vcpu->kvm->srcu, idx);
524 break;
525 case H_CEDE:
526 break;
527 case H_PROD:
528 target = kvmppc_get_gpr(vcpu, 4);
529 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
530 if (!tvcpu) {
531 ret = H_PARAMETER;
532 break;
534 tvcpu->arch.prodded = 1;
535 smp_mb();
536 if (vcpu->arch.ceded) {
537 if (waitqueue_active(&vcpu->wq)) {
538 wake_up_interruptible(&vcpu->wq);
539 vcpu->stat.halt_wakeup++;
542 break;
543 case H_CONFER:
544 break;
545 case H_REGISTER_VPA:
546 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
547 kvmppc_get_gpr(vcpu, 5),
548 kvmppc_get_gpr(vcpu, 6));
549 break;
550 case H_RTAS:
551 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
552 return RESUME_HOST;
554 rc = kvmppc_rtas_hcall(vcpu);
556 if (rc == -ENOENT)
557 return RESUME_HOST;
558 else if (rc == 0)
559 break;
561 /* Send the error out to userspace via KVM_RUN */
562 return rc;
564 case H_XIRR:
565 case H_CPPR:
566 case H_EOI:
567 case H_IPI:
568 case H_IPOLL:
569 case H_XIRR_X:
570 if (kvmppc_xics_enabled(vcpu)) {
571 ret = kvmppc_xics_hcall(vcpu, req);
572 break;
573 } /* fallthrough */
574 default:
575 return RESUME_HOST;
577 kvmppc_set_gpr(vcpu, 3, ret);
578 vcpu->arch.hcall_needed = 0;
579 return RESUME_GUEST;
582 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
583 struct task_struct *tsk)
585 int r = RESUME_HOST;
587 vcpu->stat.sum_exits++;
589 run->exit_reason = KVM_EXIT_UNKNOWN;
590 run->ready_for_interrupt_injection = 1;
591 switch (vcpu->arch.trap) {
592 /* We're good on these - the host merely wanted to get our attention */
593 case BOOK3S_INTERRUPT_HV_DECREMENTER:
594 vcpu->stat.dec_exits++;
595 r = RESUME_GUEST;
596 break;
597 case BOOK3S_INTERRUPT_EXTERNAL:
598 vcpu->stat.ext_intr_exits++;
599 r = RESUME_GUEST;
600 break;
601 case BOOK3S_INTERRUPT_PERFMON:
602 r = RESUME_GUEST;
603 break;
604 case BOOK3S_INTERRUPT_MACHINE_CHECK:
606 * Deliver a machine check interrupt to the guest.
607 * We have to do this, even if the host has handled the
608 * machine check, because machine checks use SRR0/1 and
609 * the interrupt might have trashed guest state in them.
611 kvmppc_book3s_queue_irqprio(vcpu,
612 BOOK3S_INTERRUPT_MACHINE_CHECK);
613 r = RESUME_GUEST;
614 break;
615 case BOOK3S_INTERRUPT_PROGRAM:
617 ulong flags;
619 * Normally program interrupts are delivered directly
620 * to the guest by the hardware, but we can get here
621 * as a result of a hypervisor emulation interrupt
622 * (e40) getting turned into a 700 by BML RTAS.
624 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
625 kvmppc_core_queue_program(vcpu, flags);
626 r = RESUME_GUEST;
627 break;
629 case BOOK3S_INTERRUPT_SYSCALL:
631 /* hcall - punt to userspace */
632 int i;
634 if (vcpu->arch.shregs.msr & MSR_PR) {
635 /* sc 1 from userspace - reflect to guest syscall */
636 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
637 r = RESUME_GUEST;
638 break;
640 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
641 for (i = 0; i < 9; ++i)
642 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
643 run->exit_reason = KVM_EXIT_PAPR_HCALL;
644 vcpu->arch.hcall_needed = 1;
645 r = RESUME_HOST;
646 break;
649 * We get these next two if the guest accesses a page which it thinks
650 * it has mapped but which is not actually present, either because
651 * it is for an emulated I/O device or because the corresonding
652 * host page has been paged out. Any other HDSI/HISI interrupts
653 * have been handled already.
655 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
656 r = RESUME_PAGE_FAULT;
657 break;
658 case BOOK3S_INTERRUPT_H_INST_STORAGE:
659 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
660 vcpu->arch.fault_dsisr = 0;
661 r = RESUME_PAGE_FAULT;
662 break;
664 * This occurs if the guest executes an illegal instruction.
665 * We just generate a program interrupt to the guest, since
666 * we don't emulate any guest instructions at this stage.
668 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
669 kvmppc_core_queue_program(vcpu, 0x80000);
670 r = RESUME_GUEST;
671 break;
672 default:
673 kvmppc_dump_regs(vcpu);
674 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
675 vcpu->arch.trap, kvmppc_get_pc(vcpu),
676 vcpu->arch.shregs.msr);
677 r = RESUME_HOST;
678 BUG();
679 break;
682 return r;
685 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
686 struct kvm_sregs *sregs)
688 int i;
690 memset(sregs, 0, sizeof(struct kvm_sregs));
691 sregs->pvr = vcpu->arch.pvr;
692 for (i = 0; i < vcpu->arch.slb_max; i++) {
693 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
694 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
697 return 0;
700 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
701 struct kvm_sregs *sregs)
703 int i, j;
705 kvmppc_set_pvr(vcpu, sregs->pvr);
707 j = 0;
708 for (i = 0; i < vcpu->arch.slb_nr; i++) {
709 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
710 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
711 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
712 ++j;
715 vcpu->arch.slb_max = j;
717 return 0;
720 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
722 int r = 0;
723 long int i;
725 switch (id) {
726 case KVM_REG_PPC_HIOR:
727 *val = get_reg_val(id, 0);
728 break;
729 case KVM_REG_PPC_DABR:
730 *val = get_reg_val(id, vcpu->arch.dabr);
731 break;
732 case KVM_REG_PPC_DSCR:
733 *val = get_reg_val(id, vcpu->arch.dscr);
734 break;
735 case KVM_REG_PPC_PURR:
736 *val = get_reg_val(id, vcpu->arch.purr);
737 break;
738 case KVM_REG_PPC_SPURR:
739 *val = get_reg_val(id, vcpu->arch.spurr);
740 break;
741 case KVM_REG_PPC_AMR:
742 *val = get_reg_val(id, vcpu->arch.amr);
743 break;
744 case KVM_REG_PPC_UAMOR:
745 *val = get_reg_val(id, vcpu->arch.uamor);
746 break;
747 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
748 i = id - KVM_REG_PPC_MMCR0;
749 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
750 break;
751 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
752 i = id - KVM_REG_PPC_PMC1;
753 *val = get_reg_val(id, vcpu->arch.pmc[i]);
754 break;
755 #ifdef CONFIG_VSX
756 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
757 if (cpu_has_feature(CPU_FTR_VSX)) {
758 /* VSX => FP reg i is stored in arch.vsr[2*i] */
759 long int i = id - KVM_REG_PPC_FPR0;
760 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
761 } else {
762 /* let generic code handle it */
763 r = -EINVAL;
765 break;
766 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
767 if (cpu_has_feature(CPU_FTR_VSX)) {
768 long int i = id - KVM_REG_PPC_VSR0;
769 val->vsxval[0] = vcpu->arch.vsr[2 * i];
770 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
771 } else {
772 r = -ENXIO;
774 break;
775 #endif /* CONFIG_VSX */
776 case KVM_REG_PPC_VPA_ADDR:
777 spin_lock(&vcpu->arch.vpa_update_lock);
778 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
779 spin_unlock(&vcpu->arch.vpa_update_lock);
780 break;
781 case KVM_REG_PPC_VPA_SLB:
782 spin_lock(&vcpu->arch.vpa_update_lock);
783 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
784 val->vpaval.length = vcpu->arch.slb_shadow.len;
785 spin_unlock(&vcpu->arch.vpa_update_lock);
786 break;
787 case KVM_REG_PPC_VPA_DTL:
788 spin_lock(&vcpu->arch.vpa_update_lock);
789 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
790 val->vpaval.length = vcpu->arch.dtl.len;
791 spin_unlock(&vcpu->arch.vpa_update_lock);
792 break;
793 default:
794 r = -EINVAL;
795 break;
798 return r;
801 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
803 int r = 0;
804 long int i;
805 unsigned long addr, len;
807 switch (id) {
808 case KVM_REG_PPC_HIOR:
809 /* Only allow this to be set to zero */
810 if (set_reg_val(id, *val))
811 r = -EINVAL;
812 break;
813 case KVM_REG_PPC_DABR:
814 vcpu->arch.dabr = set_reg_val(id, *val);
815 break;
816 case KVM_REG_PPC_DSCR:
817 vcpu->arch.dscr = set_reg_val(id, *val);
818 break;
819 case KVM_REG_PPC_PURR:
820 vcpu->arch.purr = set_reg_val(id, *val);
821 break;
822 case KVM_REG_PPC_SPURR:
823 vcpu->arch.spurr = set_reg_val(id, *val);
824 break;
825 case KVM_REG_PPC_AMR:
826 vcpu->arch.amr = set_reg_val(id, *val);
827 break;
828 case KVM_REG_PPC_UAMOR:
829 vcpu->arch.uamor = set_reg_val(id, *val);
830 break;
831 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
832 i = id - KVM_REG_PPC_MMCR0;
833 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
834 break;
835 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
836 i = id - KVM_REG_PPC_PMC1;
837 vcpu->arch.pmc[i] = set_reg_val(id, *val);
838 break;
839 #ifdef CONFIG_VSX
840 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
841 if (cpu_has_feature(CPU_FTR_VSX)) {
842 /* VSX => FP reg i is stored in arch.vsr[2*i] */
843 long int i = id - KVM_REG_PPC_FPR0;
844 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
845 } else {
846 /* let generic code handle it */
847 r = -EINVAL;
849 break;
850 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
851 if (cpu_has_feature(CPU_FTR_VSX)) {
852 long int i = id - KVM_REG_PPC_VSR0;
853 vcpu->arch.vsr[2 * i] = val->vsxval[0];
854 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
855 } else {
856 r = -ENXIO;
858 break;
859 #endif /* CONFIG_VSX */
860 case KVM_REG_PPC_VPA_ADDR:
861 addr = set_reg_val(id, *val);
862 r = -EINVAL;
863 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
864 vcpu->arch.dtl.next_gpa))
865 break;
866 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
867 break;
868 case KVM_REG_PPC_VPA_SLB:
869 addr = val->vpaval.addr;
870 len = val->vpaval.length;
871 r = -EINVAL;
872 if (addr && !vcpu->arch.vpa.next_gpa)
873 break;
874 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
875 break;
876 case KVM_REG_PPC_VPA_DTL:
877 addr = val->vpaval.addr;
878 len = val->vpaval.length;
879 r = -EINVAL;
880 if (addr && (len < sizeof(struct dtl_entry) ||
881 !vcpu->arch.vpa.next_gpa))
882 break;
883 len -= len % sizeof(struct dtl_entry);
884 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
885 break;
886 default:
887 r = -EINVAL;
888 break;
891 return r;
894 int kvmppc_core_check_processor_compat(void)
896 if (cpu_has_feature(CPU_FTR_HVMODE))
897 return 0;
898 return -EIO;
901 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
903 struct kvm_vcpu *vcpu;
904 int err = -EINVAL;
905 int core;
906 struct kvmppc_vcore *vcore;
908 core = id / threads_per_core;
909 if (core >= KVM_MAX_VCORES)
910 goto out;
912 err = -ENOMEM;
913 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
914 if (!vcpu)
915 goto out;
917 err = kvm_vcpu_init(vcpu, kvm, id);
918 if (err)
919 goto free_vcpu;
921 vcpu->arch.shared = &vcpu->arch.shregs;
922 vcpu->arch.mmcr[0] = MMCR0_FC;
923 vcpu->arch.ctrl = CTRL_RUNLATCH;
924 /* default to host PVR, since we can't spoof it */
925 vcpu->arch.pvr = mfspr(SPRN_PVR);
926 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
927 spin_lock_init(&vcpu->arch.vpa_update_lock);
928 spin_lock_init(&vcpu->arch.tbacct_lock);
929 vcpu->arch.busy_preempt = TB_NIL;
931 kvmppc_mmu_book3s_hv_init(vcpu);
933 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
935 init_waitqueue_head(&vcpu->arch.cpu_run);
937 mutex_lock(&kvm->lock);
938 vcore = kvm->arch.vcores[core];
939 if (!vcore) {
940 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
941 if (vcore) {
942 INIT_LIST_HEAD(&vcore->runnable_threads);
943 spin_lock_init(&vcore->lock);
944 init_waitqueue_head(&vcore->wq);
945 vcore->preempt_tb = TB_NIL;
947 kvm->arch.vcores[core] = vcore;
948 kvm->arch.online_vcores++;
950 mutex_unlock(&kvm->lock);
952 if (!vcore)
953 goto free_vcpu;
955 spin_lock(&vcore->lock);
956 ++vcore->num_threads;
957 spin_unlock(&vcore->lock);
958 vcpu->arch.vcore = vcore;
960 vcpu->arch.cpu_type = KVM_CPU_3S_64;
961 kvmppc_sanity_check(vcpu);
963 return vcpu;
965 free_vcpu:
966 kmem_cache_free(kvm_vcpu_cache, vcpu);
967 out:
968 return ERR_PTR(err);
971 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
973 if (vpa->pinned_addr)
974 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
975 vpa->dirty);
978 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
980 spin_lock(&vcpu->arch.vpa_update_lock);
981 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
982 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
983 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
984 spin_unlock(&vcpu->arch.vpa_update_lock);
985 kvm_vcpu_uninit(vcpu);
986 kmem_cache_free(kvm_vcpu_cache, vcpu);
989 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
991 unsigned long dec_nsec, now;
993 now = get_tb();
994 if (now > vcpu->arch.dec_expires) {
995 /* decrementer has already gone negative */
996 kvmppc_core_queue_dec(vcpu);
997 kvmppc_core_prepare_to_enter(vcpu);
998 return;
1000 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1001 / tb_ticks_per_sec;
1002 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1003 HRTIMER_MODE_REL);
1004 vcpu->arch.timer_running = 1;
1007 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1009 vcpu->arch.ceded = 0;
1010 if (vcpu->arch.timer_running) {
1011 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1012 vcpu->arch.timer_running = 0;
1016 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1018 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1019 struct kvm_vcpu *vcpu)
1021 u64 now;
1023 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1024 return;
1025 spin_lock(&vcpu->arch.tbacct_lock);
1026 now = mftb();
1027 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1028 vcpu->arch.stolen_logged;
1029 vcpu->arch.busy_preempt = now;
1030 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1031 spin_unlock(&vcpu->arch.tbacct_lock);
1032 --vc->n_runnable;
1033 list_del(&vcpu->arch.run_list);
1036 static int kvmppc_grab_hwthread(int cpu)
1038 struct paca_struct *tpaca;
1039 long timeout = 1000;
1041 tpaca = &paca[cpu];
1043 /* Ensure the thread won't go into the kernel if it wakes */
1044 tpaca->kvm_hstate.hwthread_req = 1;
1045 tpaca->kvm_hstate.kvm_vcpu = NULL;
1048 * If the thread is already executing in the kernel (e.g. handling
1049 * a stray interrupt), wait for it to get back to nap mode.
1050 * The smp_mb() is to ensure that our setting of hwthread_req
1051 * is visible before we look at hwthread_state, so if this
1052 * races with the code at system_reset_pSeries and the thread
1053 * misses our setting of hwthread_req, we are sure to see its
1054 * setting of hwthread_state, and vice versa.
1056 smp_mb();
1057 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1058 if (--timeout <= 0) {
1059 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1060 return -EBUSY;
1062 udelay(1);
1064 return 0;
1067 static void kvmppc_release_hwthread(int cpu)
1069 struct paca_struct *tpaca;
1071 tpaca = &paca[cpu];
1072 tpaca->kvm_hstate.hwthread_req = 0;
1073 tpaca->kvm_hstate.kvm_vcpu = NULL;
1076 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1078 int cpu;
1079 struct paca_struct *tpaca;
1080 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1082 if (vcpu->arch.timer_running) {
1083 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1084 vcpu->arch.timer_running = 0;
1086 cpu = vc->pcpu + vcpu->arch.ptid;
1087 tpaca = &paca[cpu];
1088 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1089 tpaca->kvm_hstate.kvm_vcore = vc;
1090 tpaca->kvm_hstate.napping = 0;
1091 vcpu->cpu = vc->pcpu;
1092 smp_wmb();
1093 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1094 if (vcpu->arch.ptid) {
1095 xics_wake_cpu(cpu);
1096 ++vc->n_woken;
1098 #endif
1101 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1103 int i;
1105 HMT_low();
1106 i = 0;
1107 while (vc->nap_count < vc->n_woken) {
1108 if (++i >= 1000000) {
1109 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1110 vc->nap_count, vc->n_woken);
1111 break;
1113 cpu_relax();
1115 HMT_medium();
1119 * Check that we are on thread 0 and that any other threads in
1120 * this core are off-line. Then grab the threads so they can't
1121 * enter the kernel.
1123 static int on_primary_thread(void)
1125 int cpu = smp_processor_id();
1126 int thr = cpu_thread_in_core(cpu);
1128 if (thr)
1129 return 0;
1130 while (++thr < threads_per_core)
1131 if (cpu_online(cpu + thr))
1132 return 0;
1134 /* Grab all hw threads so they can't go into the kernel */
1135 for (thr = 1; thr < threads_per_core; ++thr) {
1136 if (kvmppc_grab_hwthread(cpu + thr)) {
1137 /* Couldn't grab one; let the others go */
1138 do {
1139 kvmppc_release_hwthread(cpu + thr);
1140 } while (--thr > 0);
1141 return 0;
1144 return 1;
1148 * Run a set of guest threads on a physical core.
1149 * Called with vc->lock held.
1151 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1153 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1154 long ret;
1155 u64 now;
1156 int ptid, i, need_vpa_update;
1157 int srcu_idx;
1158 struct kvm_vcpu *vcpus_to_update[threads_per_core];
1160 /* don't start if any threads have a signal pending */
1161 need_vpa_update = 0;
1162 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1163 if (signal_pending(vcpu->arch.run_task))
1164 return;
1165 if (vcpu->arch.vpa.update_pending ||
1166 vcpu->arch.slb_shadow.update_pending ||
1167 vcpu->arch.dtl.update_pending)
1168 vcpus_to_update[need_vpa_update++] = vcpu;
1172 * Initialize *vc, in particular vc->vcore_state, so we can
1173 * drop the vcore lock if necessary.
1175 vc->n_woken = 0;
1176 vc->nap_count = 0;
1177 vc->entry_exit_count = 0;
1178 vc->vcore_state = VCORE_STARTING;
1179 vc->in_guest = 0;
1180 vc->napping_threads = 0;
1183 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1184 * which can't be called with any spinlocks held.
1186 if (need_vpa_update) {
1187 spin_unlock(&vc->lock);
1188 for (i = 0; i < need_vpa_update; ++i)
1189 kvmppc_update_vpas(vcpus_to_update[i]);
1190 spin_lock(&vc->lock);
1194 * Assign physical thread IDs, first to non-ceded vcpus
1195 * and then to ceded ones.
1197 ptid = 0;
1198 vcpu0 = NULL;
1199 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1200 if (!vcpu->arch.ceded) {
1201 if (!ptid)
1202 vcpu0 = vcpu;
1203 vcpu->arch.ptid = ptid++;
1206 if (!vcpu0)
1207 goto out; /* nothing to run; should never happen */
1208 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1209 if (vcpu->arch.ceded)
1210 vcpu->arch.ptid = ptid++;
1213 * Make sure we are running on thread 0, and that
1214 * secondary threads are offline.
1216 if (threads_per_core > 1 && !on_primary_thread()) {
1217 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1218 vcpu->arch.ret = -EBUSY;
1219 goto out;
1222 vc->pcpu = smp_processor_id();
1223 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1224 kvmppc_start_thread(vcpu);
1225 kvmppc_create_dtl_entry(vcpu, vc);
1228 vc->vcore_state = VCORE_RUNNING;
1229 preempt_disable();
1230 spin_unlock(&vc->lock);
1232 kvm_guest_enter();
1234 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1236 __kvmppc_vcore_entry(NULL, vcpu0);
1238 spin_lock(&vc->lock);
1239 /* disable sending of IPIs on virtual external irqs */
1240 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1241 vcpu->cpu = -1;
1242 /* wait for secondary threads to finish writing their state to memory */
1243 if (vc->nap_count < vc->n_woken)
1244 kvmppc_wait_for_nap(vc);
1245 for (i = 0; i < threads_per_core; ++i)
1246 kvmppc_release_hwthread(vc->pcpu + i);
1247 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1248 vc->vcore_state = VCORE_EXITING;
1249 spin_unlock(&vc->lock);
1251 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1253 /* make sure updates to secondary vcpu structs are visible now */
1254 smp_mb();
1255 kvm_guest_exit();
1257 preempt_enable();
1258 kvm_resched(vcpu);
1260 spin_lock(&vc->lock);
1261 now = get_tb();
1262 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1263 /* cancel pending dec exception if dec is positive */
1264 if (now < vcpu->arch.dec_expires &&
1265 kvmppc_core_pending_dec(vcpu))
1266 kvmppc_core_dequeue_dec(vcpu);
1268 ret = RESUME_GUEST;
1269 if (vcpu->arch.trap)
1270 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1271 vcpu->arch.run_task);
1273 vcpu->arch.ret = ret;
1274 vcpu->arch.trap = 0;
1276 if (vcpu->arch.ceded) {
1277 if (ret != RESUME_GUEST)
1278 kvmppc_end_cede(vcpu);
1279 else
1280 kvmppc_set_timer(vcpu);
1284 out:
1285 vc->vcore_state = VCORE_INACTIVE;
1286 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1287 arch.run_list) {
1288 if (vcpu->arch.ret != RESUME_GUEST) {
1289 kvmppc_remove_runnable(vc, vcpu);
1290 wake_up(&vcpu->arch.cpu_run);
1296 * Wait for some other vcpu thread to execute us, and
1297 * wake us up when we need to handle something in the host.
1299 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1301 DEFINE_WAIT(wait);
1303 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1304 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1305 schedule();
1306 finish_wait(&vcpu->arch.cpu_run, &wait);
1310 * All the vcpus in this vcore are idle, so wait for a decrementer
1311 * or external interrupt to one of the vcpus. vc->lock is held.
1313 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1315 DEFINE_WAIT(wait);
1317 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1318 vc->vcore_state = VCORE_SLEEPING;
1319 spin_unlock(&vc->lock);
1320 schedule();
1321 finish_wait(&vc->wq, &wait);
1322 spin_lock(&vc->lock);
1323 vc->vcore_state = VCORE_INACTIVE;
1326 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1328 int n_ceded;
1329 struct kvmppc_vcore *vc;
1330 struct kvm_vcpu *v, *vn;
1332 kvm_run->exit_reason = 0;
1333 vcpu->arch.ret = RESUME_GUEST;
1334 vcpu->arch.trap = 0;
1335 kvmppc_update_vpas(vcpu);
1338 * Synchronize with other threads in this virtual core
1340 vc = vcpu->arch.vcore;
1341 spin_lock(&vc->lock);
1342 vcpu->arch.ceded = 0;
1343 vcpu->arch.run_task = current;
1344 vcpu->arch.kvm_run = kvm_run;
1345 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1346 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1347 vcpu->arch.busy_preempt = TB_NIL;
1348 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1349 ++vc->n_runnable;
1352 * This happens the first time this is called for a vcpu.
1353 * If the vcore is already running, we may be able to start
1354 * this thread straight away and have it join in.
1356 if (!signal_pending(current)) {
1357 if (vc->vcore_state == VCORE_RUNNING &&
1358 VCORE_EXIT_COUNT(vc) == 0) {
1359 vcpu->arch.ptid = vc->n_runnable - 1;
1360 kvmppc_create_dtl_entry(vcpu, vc);
1361 kvmppc_start_thread(vcpu);
1362 } else if (vc->vcore_state == VCORE_SLEEPING) {
1363 wake_up(&vc->wq);
1368 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1369 !signal_pending(current)) {
1370 if (vc->vcore_state != VCORE_INACTIVE) {
1371 spin_unlock(&vc->lock);
1372 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1373 spin_lock(&vc->lock);
1374 continue;
1376 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1377 arch.run_list) {
1378 kvmppc_core_prepare_to_enter(v);
1379 if (signal_pending(v->arch.run_task)) {
1380 kvmppc_remove_runnable(vc, v);
1381 v->stat.signal_exits++;
1382 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1383 v->arch.ret = -EINTR;
1384 wake_up(&v->arch.cpu_run);
1387 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1388 break;
1389 vc->runner = vcpu;
1390 n_ceded = 0;
1391 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1392 if (!v->arch.pending_exceptions)
1393 n_ceded += v->arch.ceded;
1394 else
1395 v->arch.ceded = 0;
1397 if (n_ceded == vc->n_runnable)
1398 kvmppc_vcore_blocked(vc);
1399 else
1400 kvmppc_run_core(vc);
1401 vc->runner = NULL;
1404 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1405 (vc->vcore_state == VCORE_RUNNING ||
1406 vc->vcore_state == VCORE_EXITING)) {
1407 spin_unlock(&vc->lock);
1408 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1409 spin_lock(&vc->lock);
1412 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1413 kvmppc_remove_runnable(vc, vcpu);
1414 vcpu->stat.signal_exits++;
1415 kvm_run->exit_reason = KVM_EXIT_INTR;
1416 vcpu->arch.ret = -EINTR;
1419 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1420 /* Wake up some vcpu to run the core */
1421 v = list_first_entry(&vc->runnable_threads,
1422 struct kvm_vcpu, arch.run_list);
1423 wake_up(&v->arch.cpu_run);
1426 spin_unlock(&vc->lock);
1427 return vcpu->arch.ret;
1430 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1432 int r;
1433 int srcu_idx;
1435 if (!vcpu->arch.sane) {
1436 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1437 return -EINVAL;
1440 kvmppc_core_prepare_to_enter(vcpu);
1442 /* No need to go into the guest when all we'll do is come back out */
1443 if (signal_pending(current)) {
1444 run->exit_reason = KVM_EXIT_INTR;
1445 return -EINTR;
1448 atomic_inc(&vcpu->kvm->arch.vcpus_running);
1449 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1450 smp_mb();
1452 /* On the first time here, set up HTAB and VRMA or RMA */
1453 if (!vcpu->kvm->arch.rma_setup_done) {
1454 r = kvmppc_hv_setup_htab_rma(vcpu);
1455 if (r)
1456 goto out;
1459 flush_fp_to_thread(current);
1460 flush_altivec_to_thread(current);
1461 flush_vsx_to_thread(current);
1462 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1463 vcpu->arch.pgdir = current->mm->pgd;
1464 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1466 do {
1467 r = kvmppc_run_vcpu(run, vcpu);
1469 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1470 !(vcpu->arch.shregs.msr & MSR_PR)) {
1471 r = kvmppc_pseries_do_hcall(vcpu);
1472 kvmppc_core_prepare_to_enter(vcpu);
1473 } else if (r == RESUME_PAGE_FAULT) {
1474 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1475 r = kvmppc_book3s_hv_page_fault(run, vcpu,
1476 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1477 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1479 } while (r == RESUME_GUEST);
1481 out:
1482 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1483 atomic_dec(&vcpu->kvm->arch.vcpus_running);
1484 return r;
1488 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1489 Assumes POWER7 or PPC970. */
1490 static inline int lpcr_rmls(unsigned long rma_size)
1492 switch (rma_size) {
1493 case 32ul << 20: /* 32 MB */
1494 if (cpu_has_feature(CPU_FTR_ARCH_206))
1495 return 8; /* only supported on POWER7 */
1496 return -1;
1497 case 64ul << 20: /* 64 MB */
1498 return 3;
1499 case 128ul << 20: /* 128 MB */
1500 return 7;
1501 case 256ul << 20: /* 256 MB */
1502 return 4;
1503 case 1ul << 30: /* 1 GB */
1504 return 2;
1505 case 16ul << 30: /* 16 GB */
1506 return 1;
1507 case 256ul << 30: /* 256 GB */
1508 return 0;
1509 default:
1510 return -1;
1514 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1516 struct page *page;
1517 struct kvm_rma_info *ri = vma->vm_file->private_data;
1519 if (vmf->pgoff >= kvm_rma_pages)
1520 return VM_FAULT_SIGBUS;
1522 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1523 get_page(page);
1524 vmf->page = page;
1525 return 0;
1528 static const struct vm_operations_struct kvm_rma_vm_ops = {
1529 .fault = kvm_rma_fault,
1532 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1534 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1535 vma->vm_ops = &kvm_rma_vm_ops;
1536 return 0;
1539 static int kvm_rma_release(struct inode *inode, struct file *filp)
1541 struct kvm_rma_info *ri = filp->private_data;
1543 kvm_release_rma(ri);
1544 return 0;
1547 static const struct file_operations kvm_rma_fops = {
1548 .mmap = kvm_rma_mmap,
1549 .release = kvm_rma_release,
1552 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1554 long fd;
1555 struct kvm_rma_info *ri;
1557 * Only do this on PPC970 in HV mode
1559 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1560 !cpu_has_feature(CPU_FTR_ARCH_201))
1561 return -EINVAL;
1563 if (!kvm_rma_pages)
1564 return -EINVAL;
1566 ri = kvm_alloc_rma();
1567 if (!ri)
1568 return -ENOMEM;
1570 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1571 if (fd < 0)
1572 kvm_release_rma(ri);
1574 ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1575 return fd;
1578 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1579 int linux_psize)
1581 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1583 if (!def->shift)
1584 return;
1585 (*sps)->page_shift = def->shift;
1586 (*sps)->slb_enc = def->sllp;
1587 (*sps)->enc[0].page_shift = def->shift;
1589 * Only return base page encoding. We don't want to return
1590 * all the supporting pte_enc, because our H_ENTER doesn't
1591 * support MPSS yet. Once they do, we can start passing all
1592 * support pte_enc here
1594 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1595 (*sps)++;
1598 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1600 struct kvm_ppc_one_seg_page_size *sps;
1602 info->flags = KVM_PPC_PAGE_SIZES_REAL;
1603 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1604 info->flags |= KVM_PPC_1T_SEGMENTS;
1605 info->slb_size = mmu_slb_size;
1607 /* We only support these sizes for now, and no muti-size segments */
1608 sps = &info->sps[0];
1609 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1610 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1611 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1613 return 0;
1617 * Get (and clear) the dirty memory log for a memory slot.
1619 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1621 struct kvm_memory_slot *memslot;
1622 int r;
1623 unsigned long n;
1625 mutex_lock(&kvm->slots_lock);
1627 r = -EINVAL;
1628 if (log->slot >= KVM_USER_MEM_SLOTS)
1629 goto out;
1631 memslot = id_to_memslot(kvm->memslots, log->slot);
1632 r = -ENOENT;
1633 if (!memslot->dirty_bitmap)
1634 goto out;
1636 n = kvm_dirty_bitmap_bytes(memslot);
1637 memset(memslot->dirty_bitmap, 0, n);
1639 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1640 if (r)
1641 goto out;
1643 r = -EFAULT;
1644 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1645 goto out;
1647 r = 0;
1648 out:
1649 mutex_unlock(&kvm->slots_lock);
1650 return r;
1653 static void unpin_slot(struct kvm_memory_slot *memslot)
1655 unsigned long *physp;
1656 unsigned long j, npages, pfn;
1657 struct page *page;
1659 physp = memslot->arch.slot_phys;
1660 npages = memslot->npages;
1661 if (!physp)
1662 return;
1663 for (j = 0; j < npages; j++) {
1664 if (!(physp[j] & KVMPPC_GOT_PAGE))
1665 continue;
1666 pfn = physp[j] >> PAGE_SHIFT;
1667 page = pfn_to_page(pfn);
1668 SetPageDirty(page);
1669 put_page(page);
1673 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1674 struct kvm_memory_slot *dont)
1676 if (!dont || free->arch.rmap != dont->arch.rmap) {
1677 vfree(free->arch.rmap);
1678 free->arch.rmap = NULL;
1680 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1681 unpin_slot(free);
1682 vfree(free->arch.slot_phys);
1683 free->arch.slot_phys = NULL;
1687 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1688 unsigned long npages)
1690 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1691 if (!slot->arch.rmap)
1692 return -ENOMEM;
1693 slot->arch.slot_phys = NULL;
1695 return 0;
1698 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1699 struct kvm_memory_slot *memslot,
1700 struct kvm_userspace_memory_region *mem)
1702 unsigned long *phys;
1704 /* Allocate a slot_phys array if needed */
1705 phys = memslot->arch.slot_phys;
1706 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1707 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1708 if (!phys)
1709 return -ENOMEM;
1710 memslot->arch.slot_phys = phys;
1713 return 0;
1716 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1717 struct kvm_userspace_memory_region *mem,
1718 const struct kvm_memory_slot *old)
1720 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1721 struct kvm_memory_slot *memslot;
1723 if (npages && old->npages) {
1725 * If modifying a memslot, reset all the rmap dirty bits.
1726 * If this is a new memslot, we don't need to do anything
1727 * since the rmap array starts out as all zeroes,
1728 * i.e. no pages are dirty.
1730 memslot = id_to_memslot(kvm->memslots, mem->slot);
1731 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1735 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1737 int err = 0;
1738 struct kvm *kvm = vcpu->kvm;
1739 struct kvm_rma_info *ri = NULL;
1740 unsigned long hva;
1741 struct kvm_memory_slot *memslot;
1742 struct vm_area_struct *vma;
1743 unsigned long lpcr, senc;
1744 unsigned long psize, porder;
1745 unsigned long rma_size;
1746 unsigned long rmls;
1747 unsigned long *physp;
1748 unsigned long i, npages;
1749 int srcu_idx;
1751 mutex_lock(&kvm->lock);
1752 if (kvm->arch.rma_setup_done)
1753 goto out; /* another vcpu beat us to it */
1755 /* Allocate hashed page table (if not done already) and reset it */
1756 if (!kvm->arch.hpt_virt) {
1757 err = kvmppc_alloc_hpt(kvm, NULL);
1758 if (err) {
1759 pr_err("KVM: Couldn't alloc HPT\n");
1760 goto out;
1764 /* Look up the memslot for guest physical address 0 */
1765 srcu_idx = srcu_read_lock(&kvm->srcu);
1766 memslot = gfn_to_memslot(kvm, 0);
1768 /* We must have some memory at 0 by now */
1769 err = -EINVAL;
1770 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1771 goto out_srcu;
1773 /* Look up the VMA for the start of this memory slot */
1774 hva = memslot->userspace_addr;
1775 down_read(&current->mm->mmap_sem);
1776 vma = find_vma(current->mm, hva);
1777 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1778 goto up_out;
1780 psize = vma_kernel_pagesize(vma);
1781 porder = __ilog2(psize);
1783 /* Is this one of our preallocated RMAs? */
1784 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1785 hva == vma->vm_start)
1786 ri = vma->vm_file->private_data;
1788 up_read(&current->mm->mmap_sem);
1790 if (!ri) {
1791 /* On POWER7, use VRMA; on PPC970, give up */
1792 err = -EPERM;
1793 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1794 pr_err("KVM: CPU requires an RMO\n");
1795 goto out_srcu;
1798 /* We can handle 4k, 64k or 16M pages in the VRMA */
1799 err = -EINVAL;
1800 if (!(psize == 0x1000 || psize == 0x10000 ||
1801 psize == 0x1000000))
1802 goto out_srcu;
1804 /* Update VRMASD field in the LPCR */
1805 senc = slb_pgsize_encoding(psize);
1806 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1807 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1808 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1809 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1810 kvm->arch.lpcr = lpcr;
1812 /* Create HPTEs in the hash page table for the VRMA */
1813 kvmppc_map_vrma(vcpu, memslot, porder);
1815 } else {
1816 /* Set up to use an RMO region */
1817 rma_size = kvm_rma_pages;
1818 if (rma_size > memslot->npages)
1819 rma_size = memslot->npages;
1820 rma_size <<= PAGE_SHIFT;
1821 rmls = lpcr_rmls(rma_size);
1822 err = -EINVAL;
1823 if ((long)rmls < 0) {
1824 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1825 goto out_srcu;
1827 atomic_inc(&ri->use_count);
1828 kvm->arch.rma = ri;
1830 /* Update LPCR and RMOR */
1831 lpcr = kvm->arch.lpcr;
1832 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1833 /* PPC970; insert RMLS value (split field) in HID4 */
1834 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1835 (3ul << HID4_RMLS2_SH));
1836 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1837 ((rmls & 3) << HID4_RMLS2_SH);
1838 /* RMOR is also in HID4 */
1839 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1840 << HID4_RMOR_SH;
1841 } else {
1842 /* POWER7 */
1843 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1844 lpcr |= rmls << LPCR_RMLS_SH;
1845 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1847 kvm->arch.lpcr = lpcr;
1848 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1849 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1851 /* Initialize phys addrs of pages in RMO */
1852 npages = kvm_rma_pages;
1853 porder = __ilog2(npages);
1854 physp = memslot->arch.slot_phys;
1855 if (physp) {
1856 if (npages > memslot->npages)
1857 npages = memslot->npages;
1858 spin_lock(&kvm->arch.slot_phys_lock);
1859 for (i = 0; i < npages; ++i)
1860 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1861 porder;
1862 spin_unlock(&kvm->arch.slot_phys_lock);
1866 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1867 smp_wmb();
1868 kvm->arch.rma_setup_done = 1;
1869 err = 0;
1870 out_srcu:
1871 srcu_read_unlock(&kvm->srcu, srcu_idx);
1872 out:
1873 mutex_unlock(&kvm->lock);
1874 return err;
1876 up_out:
1877 up_read(&current->mm->mmap_sem);
1878 goto out_srcu;
1881 int kvmppc_core_init_vm(struct kvm *kvm)
1883 unsigned long lpcr, lpid;
1885 /* Allocate the guest's logical partition ID */
1887 lpid = kvmppc_alloc_lpid();
1888 if ((long)lpid < 0)
1889 return -ENOMEM;
1890 kvm->arch.lpid = lpid;
1893 * Since we don't flush the TLB when tearing down a VM,
1894 * and this lpid might have previously been used,
1895 * make sure we flush on each core before running the new VM.
1897 cpumask_setall(&kvm->arch.need_tlb_flush);
1899 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1900 INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1902 kvm->arch.rma = NULL;
1904 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1906 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1907 /* PPC970; HID4 is effectively the LPCR */
1908 kvm->arch.host_lpid = 0;
1909 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1910 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1911 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1912 ((lpid & 0xf) << HID4_LPID5_SH);
1913 } else {
1914 /* POWER7; init LPCR for virtual RMA mode */
1915 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1916 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1917 lpcr &= LPCR_PECE | LPCR_LPES;
1918 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1919 LPCR_VPM0 | LPCR_VPM1;
1920 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1921 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1923 kvm->arch.lpcr = lpcr;
1925 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1926 spin_lock_init(&kvm->arch.slot_phys_lock);
1929 * Don't allow secondary CPU threads to come online
1930 * while any KVM VMs exist.
1932 inhibit_secondary_onlining();
1934 return 0;
1937 void kvmppc_core_destroy_vm(struct kvm *kvm)
1939 uninhibit_secondary_onlining();
1941 if (kvm->arch.rma) {
1942 kvm_release_rma(kvm->arch.rma);
1943 kvm->arch.rma = NULL;
1946 kvmppc_rtas_tokens_free(kvm);
1948 kvmppc_free_hpt(kvm);
1949 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1952 /* These are stubs for now */
1953 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1957 /* We don't need to emulate any privileged instructions or dcbz */
1958 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1959 unsigned int inst, int *advance)
1961 return EMULATE_FAIL;
1964 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1966 return EMULATE_FAIL;
1969 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1971 return EMULATE_FAIL;
1974 static int kvmppc_book3s_hv_init(void)
1976 int r;
1978 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1980 if (r)
1981 return r;
1983 r = kvmppc_mmu_hv_init();
1985 return r;
1988 static void kvmppc_book3s_hv_exit(void)
1990 kvm_exit();
1993 module_init(kvmppc_book3s_hv_init);
1994 module_exit(kvmppc_book3s_hv_exit);