4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <linux/stop_machine.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/uaccess.h>
29 #include <linux/slab.h>
30 #include <asm/cputhreads.h>
31 #include <asm/sparsemem.h>
34 #include <asm/cputhreads.h>
35 #include <asm/topology.h>
36 #include <asm/firmware.h>
38 #include <asm/hvcall.h>
39 #include <asm/setup.h>
42 static int numa_enabled
= 1;
44 static char *cmdline __initdata
;
46 static int numa_debug
;
47 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
49 int numa_cpu_lookup_table
[NR_CPUS
];
50 cpumask_var_t node_to_cpumask_map
[MAX_NUMNODES
];
51 struct pglist_data
*node_data
[MAX_NUMNODES
];
53 EXPORT_SYMBOL(numa_cpu_lookup_table
);
54 EXPORT_SYMBOL(node_to_cpumask_map
);
55 EXPORT_SYMBOL(node_data
);
57 static int min_common_depth
;
58 static int n_mem_addr_cells
, n_mem_size_cells
;
59 static int form1_affinity
;
61 #define MAX_DISTANCE_REF_POINTS 4
62 static int distance_ref_points_depth
;
63 static const __be32
*distance_ref_points
;
64 static int distance_lookup_table
[MAX_NUMNODES
][MAX_DISTANCE_REF_POINTS
];
67 * Allocate node_to_cpumask_map based on number of available nodes
68 * Requires node_possible_map to be valid.
70 * Note: cpumask_of_node() is not valid until after this is done.
72 static void __init
setup_node_to_cpumask_map(void)
76 /* setup nr_node_ids if not done yet */
77 if (nr_node_ids
== MAX_NUMNODES
)
80 /* allocate the map */
81 for (node
= 0; node
< nr_node_ids
; node
++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map
[node
]);
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids
);
88 static int __init
fake_numa_create_new_node(unsigned long end_pfn
,
91 unsigned long long mem
;
93 static unsigned int fake_nid
;
94 static unsigned long long curr_boundary
;
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
110 mem
= memparse(p
, &p
);
114 if (mem
< curr_boundary
)
119 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
121 * Skip commas and spaces
123 while (*p
== ',' || *p
== ' ' || *p
== '\t')
129 dbg("created new fake_node with id %d\n", fake_nid
);
136 * get_node_active_region - Return active region containing pfn
137 * Active range returned is empty if none found.
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
141 static void __init
get_node_active_region(unsigned long pfn
,
142 struct node_active_region
*node_ar
)
144 unsigned long start_pfn
, end_pfn
;
147 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
148 if (pfn
>= start_pfn
&& pfn
< end_pfn
) {
150 node_ar
->start_pfn
= start_pfn
;
151 node_ar
->end_pfn
= end_pfn
;
157 static void reset_numa_cpu_lookup_table(void)
161 for_each_possible_cpu(cpu
)
162 numa_cpu_lookup_table
[cpu
] = -1;
165 static void update_numa_cpu_lookup_table(unsigned int cpu
, int node
)
167 numa_cpu_lookup_table
[cpu
] = node
;
170 static void map_cpu_to_node(int cpu
, int node
)
172 update_numa_cpu_lookup_table(cpu
, node
);
174 dbg("adding cpu %d to node %d\n", cpu
, node
);
176 if (!(cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])))
177 cpumask_set_cpu(cpu
, node_to_cpumask_map
[node
]);
180 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
181 static void unmap_cpu_from_node(unsigned long cpu
)
183 int node
= numa_cpu_lookup_table
[cpu
];
185 dbg("removing cpu %lu from node %d\n", cpu
, node
);
187 if (cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])) {
188 cpumask_clear_cpu(cpu
, node_to_cpumask_map
[node
]);
190 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
194 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
196 /* must hold reference to node during call */
197 static const __be32
*of_get_associativity(struct device_node
*dev
)
199 return of_get_property(dev
, "ibm,associativity", NULL
);
203 * Returns the property linux,drconf-usable-memory if
204 * it exists (the property exists only in kexec/kdump kernels,
205 * added by kexec-tools)
207 static const __be32
*of_get_usable_memory(struct device_node
*memory
)
211 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
212 if (!prop
|| len
< sizeof(unsigned int))
217 int __node_distance(int a
, int b
)
220 int distance
= LOCAL_DISTANCE
;
223 return ((a
== b
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
);
225 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
226 if (distance_lookup_table
[a
][i
] == distance_lookup_table
[b
][i
])
229 /* Double the distance for each NUMA level */
235 EXPORT_SYMBOL(__node_distance
);
237 static void initialize_distance_lookup_table(int nid
,
238 const __be32
*associativity
)
245 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
248 entry
= &associativity
[be32_to_cpu(distance_ref_points
[i
])];
249 distance_lookup_table
[nid
][i
] = of_read_number(entry
, 1);
253 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
256 static int associativity_to_nid(const __be32
*associativity
)
260 if (min_common_depth
== -1)
263 if (of_read_number(associativity
, 1) >= min_common_depth
)
264 nid
= of_read_number(&associativity
[min_common_depth
], 1);
266 /* POWER4 LPAR uses 0xffff as invalid node */
267 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
271 of_read_number(associativity
, 1) >= distance_ref_points_depth
)
272 initialize_distance_lookup_table(nid
, associativity
);
278 /* Returns the nid associated with the given device tree node,
279 * or -1 if not found.
281 static int of_node_to_nid_single(struct device_node
*device
)
286 tmp
= of_get_associativity(device
);
288 nid
= associativity_to_nid(tmp
);
292 /* Walk the device tree upwards, looking for an associativity id */
293 int of_node_to_nid(struct device_node
*device
)
295 struct device_node
*tmp
;
300 nid
= of_node_to_nid_single(device
);
305 device
= of_get_parent(tmp
);
312 EXPORT_SYMBOL_GPL(of_node_to_nid
);
314 static int __init
find_min_common_depth(void)
317 struct device_node
*root
;
319 if (firmware_has_feature(FW_FEATURE_OPAL
))
320 root
= of_find_node_by_path("/ibm,opal");
322 root
= of_find_node_by_path("/rtas");
324 root
= of_find_node_by_path("/");
327 * This property is a set of 32-bit integers, each representing
328 * an index into the ibm,associativity nodes.
330 * With form 0 affinity the first integer is for an SMP configuration
331 * (should be all 0's) and the second is for a normal NUMA
332 * configuration. We have only one level of NUMA.
334 * With form 1 affinity the first integer is the most significant
335 * NUMA boundary and the following are progressively less significant
336 * boundaries. There can be more than one level of NUMA.
338 distance_ref_points
= of_get_property(root
,
339 "ibm,associativity-reference-points",
340 &distance_ref_points_depth
);
342 if (!distance_ref_points
) {
343 dbg("NUMA: ibm,associativity-reference-points not found.\n");
347 distance_ref_points_depth
/= sizeof(int);
349 if (firmware_has_feature(FW_FEATURE_OPAL
) ||
350 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY
)) {
351 dbg("Using form 1 affinity\n");
355 if (form1_affinity
) {
356 depth
= of_read_number(distance_ref_points
, 1);
358 if (distance_ref_points_depth
< 2) {
359 printk(KERN_WARNING
"NUMA: "
360 "short ibm,associativity-reference-points\n");
364 depth
= of_read_number(&distance_ref_points
[1], 1);
368 * Warn and cap if the hardware supports more than
369 * MAX_DISTANCE_REF_POINTS domains.
371 if (distance_ref_points_depth
> MAX_DISTANCE_REF_POINTS
) {
372 printk(KERN_WARNING
"NUMA: distance array capped at "
373 "%d entries\n", MAX_DISTANCE_REF_POINTS
);
374 distance_ref_points_depth
= MAX_DISTANCE_REF_POINTS
;
385 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
387 struct device_node
*memory
= NULL
;
389 memory
= of_find_node_by_type(memory
, "memory");
391 panic("numa.c: No memory nodes found!");
393 *n_addr_cells
= of_n_addr_cells(memory
);
394 *n_size_cells
= of_n_size_cells(memory
);
398 static unsigned long read_n_cells(int n
, const __be32
**buf
)
400 unsigned long result
= 0;
403 result
= (result
<< 32) | of_read_number(*buf
, 1);
410 * Read the next memblock list entry from the ibm,dynamic-memory property
411 * and return the information in the provided of_drconf_cell structure.
413 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const __be32
**cellp
)
417 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
420 drmem
->drc_index
= of_read_number(cp
, 1);
421 drmem
->reserved
= of_read_number(&cp
[1], 1);
422 drmem
->aa_index
= of_read_number(&cp
[2], 1);
423 drmem
->flags
= of_read_number(&cp
[3], 1);
429 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
431 * The layout of the ibm,dynamic-memory property is a number N of memblock
432 * list entries followed by N memblock list entries. Each memblock list entry
433 * contains information as laid out in the of_drconf_cell struct above.
435 static int of_get_drconf_memory(struct device_node
*memory
, const __be32
**dm
)
440 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
441 if (!prop
|| len
< sizeof(unsigned int))
444 entries
= of_read_number(prop
++, 1);
446 /* Now that we know the number of entries, revalidate the size
447 * of the property read in to ensure we have everything
449 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
457 * Retrieve and validate the ibm,lmb-size property for drconf memory
458 * from the device tree.
460 static u64
of_get_lmb_size(struct device_node
*memory
)
465 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
466 if (!prop
|| len
< sizeof(unsigned int))
469 return read_n_cells(n_mem_size_cells
, &prop
);
472 struct assoc_arrays
{
475 const __be32
*arrays
;
479 * Retrieve and validate the list of associativity arrays for drconf
480 * memory from the ibm,associativity-lookup-arrays property of the
483 * The layout of the ibm,associativity-lookup-arrays property is a number N
484 * indicating the number of associativity arrays, followed by a number M
485 * indicating the size of each associativity array, followed by a list
486 * of N associativity arrays.
488 static int of_get_assoc_arrays(struct device_node
*memory
,
489 struct assoc_arrays
*aa
)
494 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
495 if (!prop
|| len
< 2 * sizeof(unsigned int))
498 aa
->n_arrays
= of_read_number(prop
++, 1);
499 aa
->array_sz
= of_read_number(prop
++, 1);
501 /* Now that we know the number of arrays and size of each array,
502 * revalidate the size of the property read in.
504 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
512 * This is like of_node_to_nid_single() for memory represented in the
513 * ibm,dynamic-reconfiguration-memory node.
515 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
516 struct assoc_arrays
*aa
)
519 int nid
= default_nid
;
522 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
523 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
524 drmem
->aa_index
< aa
->n_arrays
) {
525 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
526 nid
= of_read_number(&aa
->arrays
[index
], 1);
528 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
536 * Figure out to which domain a cpu belongs and stick it there.
537 * Return the id of the domain used.
539 static int numa_setup_cpu(unsigned long lcpu
)
542 struct device_node
*cpu
;
545 * If a valid cpu-to-node mapping is already available, use it
546 * directly instead of querying the firmware, since it represents
547 * the most recent mapping notified to us by the platform (eg: VPHN).
549 if ((nid
= numa_cpu_lookup_table
[lcpu
]) >= 0) {
550 map_cpu_to_node(lcpu
, nid
);
554 cpu
= of_get_cpu_node(lcpu
, NULL
);
562 nid
= of_node_to_nid_single(cpu
);
564 if (nid
< 0 || !node_online(nid
))
565 nid
= first_online_node
;
567 map_cpu_to_node(lcpu
, nid
);
574 static int cpu_numa_callback(struct notifier_block
*nfb
, unsigned long action
,
577 unsigned long lcpu
= (unsigned long)hcpu
;
578 int ret
= NOTIFY_DONE
;
582 case CPU_UP_PREPARE_FROZEN
:
583 numa_setup_cpu(lcpu
);
586 #ifdef CONFIG_HOTPLUG_CPU
588 case CPU_DEAD_FROZEN
:
589 case CPU_UP_CANCELED
:
590 case CPU_UP_CANCELED_FROZEN
:
591 unmap_cpu_from_node(lcpu
);
600 * Check and possibly modify a memory region to enforce the memory limit.
602 * Returns the size the region should have to enforce the memory limit.
603 * This will either be the original value of size, a truncated value,
604 * or zero. If the returned value of size is 0 the region should be
605 * discarded as it lies wholly above the memory limit.
607 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
611 * We use memblock_end_of_DRAM() in here instead of memory_limit because
612 * we've already adjusted it for the limit and it takes care of
613 * having memory holes below the limit. Also, in the case of
614 * iommu_is_off, memory_limit is not set but is implicitly enforced.
617 if (start
+ size
<= memblock_end_of_DRAM())
620 if (start
>= memblock_end_of_DRAM())
623 return memblock_end_of_DRAM() - start
;
627 * Reads the counter for a given entry in
628 * linux,drconf-usable-memory property
630 static inline int __init
read_usm_ranges(const __be32
**usm
)
633 * For each lmb in ibm,dynamic-memory a corresponding
634 * entry in linux,drconf-usable-memory property contains
635 * a counter followed by that many (base, size) duple.
636 * read the counter from linux,drconf-usable-memory
638 return read_n_cells(n_mem_size_cells
, usm
);
642 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
643 * node. This assumes n_mem_{addr,size}_cells have been set.
645 static void __init
parse_drconf_memory(struct device_node
*memory
)
647 const __be32
*uninitialized_var(dm
), *usm
;
648 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
649 unsigned long lmb_size
, base
, size
, sz
;
651 struct assoc_arrays aa
= { .arrays
= NULL
};
653 n
= of_get_drconf_memory(memory
, &dm
);
657 lmb_size
= of_get_lmb_size(memory
);
661 rc
= of_get_assoc_arrays(memory
, &aa
);
665 /* check if this is a kexec/kdump kernel */
666 usm
= of_get_usable_memory(memory
);
670 for (; n
!= 0; --n
) {
671 struct of_drconf_cell drmem
;
673 read_drconf_cell(&drmem
, &dm
);
675 /* skip this block if the reserved bit is set in flags (0x80)
676 or if the block is not assigned to this partition (0x8) */
677 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
678 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
681 base
= drmem
.base_addr
;
685 if (is_kexec_kdump
) {
686 ranges
= read_usm_ranges(&usm
);
687 if (!ranges
) /* there are no (base, size) duple */
691 if (is_kexec_kdump
) {
692 base
= read_n_cells(n_mem_addr_cells
, &usm
);
693 size
= read_n_cells(n_mem_size_cells
, &usm
);
695 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
696 fake_numa_create_new_node(
697 ((base
+ size
) >> PAGE_SHIFT
),
699 node_set_online(nid
);
700 sz
= numa_enforce_memory_limit(base
, size
);
702 memblock_set_node(base
, sz
, nid
);
707 static int __init
parse_numa_properties(void)
709 struct device_node
*memory
;
713 if (numa_enabled
== 0) {
714 printk(KERN_WARNING
"NUMA disabled by user\n");
718 min_common_depth
= find_min_common_depth();
720 if (min_common_depth
< 0)
721 return min_common_depth
;
723 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
726 * Even though we connect cpus to numa domains later in SMP
727 * init, we need to know the node ids now. This is because
728 * each node to be onlined must have NODE_DATA etc backing it.
730 for_each_present_cpu(i
) {
731 struct device_node
*cpu
;
734 cpu
= of_get_cpu_node(i
, NULL
);
736 nid
= of_node_to_nid_single(cpu
);
740 * Don't fall back to default_nid yet -- we will plug
741 * cpus into nodes once the memory scan has discovered
746 node_set_online(nid
);
749 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
751 for_each_node_by_type(memory
, "memory") {
756 const __be32
*memcell_buf
;
759 memcell_buf
= of_get_property(memory
,
760 "linux,usable-memory", &len
);
761 if (!memcell_buf
|| len
<= 0)
762 memcell_buf
= of_get_property(memory
, "reg", &len
);
763 if (!memcell_buf
|| len
<= 0)
767 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
769 /* these are order-sensitive, and modify the buffer pointer */
770 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
771 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
774 * Assumption: either all memory nodes or none will
775 * have associativity properties. If none, then
776 * everything goes to default_nid.
778 nid
= of_node_to_nid_single(memory
);
782 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
783 node_set_online(nid
);
785 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
792 memblock_set_node(start
, size
, nid
);
799 * Now do the same thing for each MEMBLOCK listed in the
800 * ibm,dynamic-memory property in the
801 * ibm,dynamic-reconfiguration-memory node.
803 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
805 parse_drconf_memory(memory
);
810 static void __init
setup_nonnuma(void)
812 unsigned long top_of_ram
= memblock_end_of_DRAM();
813 unsigned long total_ram
= memblock_phys_mem_size();
814 unsigned long start_pfn
, end_pfn
;
815 unsigned int nid
= 0;
816 struct memblock_region
*reg
;
818 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
819 top_of_ram
, total_ram
);
820 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
821 (top_of_ram
- total_ram
) >> 20);
823 for_each_memblock(memory
, reg
) {
824 start_pfn
= memblock_region_memory_base_pfn(reg
);
825 end_pfn
= memblock_region_memory_end_pfn(reg
);
827 fake_numa_create_new_node(end_pfn
, &nid
);
828 memblock_set_node(PFN_PHYS(start_pfn
),
829 PFN_PHYS(end_pfn
- start_pfn
), nid
);
830 node_set_online(nid
);
834 void __init
dump_numa_cpu_topology(void)
837 unsigned int cpu
, count
;
839 if (min_common_depth
== -1 || !numa_enabled
)
842 for_each_online_node(node
) {
843 printk(KERN_DEBUG
"Node %d CPUs:", node
);
847 * If we used a CPU iterator here we would miss printing
848 * the holes in the cpumap.
850 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
851 if (cpumask_test_cpu(cpu
,
852 node_to_cpumask_map
[node
])) {
858 printk("-%u", cpu
- 1);
864 printk("-%u", nr_cpu_ids
- 1);
869 static void __init
dump_numa_memory_topology(void)
874 if (min_common_depth
== -1 || !numa_enabled
)
877 for_each_online_node(node
) {
880 printk(KERN_DEBUG
"Node %d Memory:", node
);
884 for (i
= 0; i
< memblock_end_of_DRAM();
885 i
+= (1 << SECTION_SIZE_BITS
)) {
886 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
904 * Allocate some memory, satisfying the memblock or bootmem allocator where
905 * required. nid is the preferred node and end is the physical address of
906 * the highest address in the node.
908 * Returns the virtual address of the memory.
910 static void __init
*careful_zallocation(int nid
, unsigned long size
,
912 unsigned long end_pfn
)
916 unsigned long ret_paddr
;
918 ret_paddr
= __memblock_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
920 /* retry over all memory */
922 ret_paddr
= __memblock_alloc_base(size
, align
, memblock_end_of_DRAM());
925 panic("numa.c: cannot allocate %lu bytes for node %d",
928 ret
= __va(ret_paddr
);
931 * We initialize the nodes in numeric order: 0, 1, 2...
932 * and hand over control from the MEMBLOCK allocator to the
933 * bootmem allocator. If this function is called for
934 * node 5, then we know that all nodes <5 are using the
935 * bootmem allocator instead of the MEMBLOCK allocator.
937 * So, check the nid from which this allocation came
938 * and double check to see if we need to use bootmem
939 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
940 * since it would be useless.
942 new_nid
= early_pfn_to_nid(ret_paddr
>> PAGE_SHIFT
);
944 ret
= __alloc_bootmem_node(NODE_DATA(new_nid
),
947 dbg("alloc_bootmem %p %lx\n", ret
, size
);
950 memset(ret
, 0, size
);
954 static struct notifier_block ppc64_numa_nb
= {
955 .notifier_call
= cpu_numa_callback
,
956 .priority
= 1 /* Must run before sched domains notifier. */
959 static void __init
mark_reserved_regions_for_nid(int nid
)
961 struct pglist_data
*node
= NODE_DATA(nid
);
962 struct memblock_region
*reg
;
964 for_each_memblock(reserved
, reg
) {
965 unsigned long physbase
= reg
->base
;
966 unsigned long size
= reg
->size
;
967 unsigned long start_pfn
= physbase
>> PAGE_SHIFT
;
968 unsigned long end_pfn
= PFN_UP(physbase
+ size
);
969 struct node_active_region node_ar
;
970 unsigned long node_end_pfn
= node
->node_start_pfn
+
971 node
->node_spanned_pages
;
974 * Check to make sure that this memblock.reserved area is
975 * within the bounds of the node that we care about.
976 * Checking the nid of the start and end points is not
977 * sufficient because the reserved area could span the
980 if (end_pfn
<= node
->node_start_pfn
||
981 start_pfn
>= node_end_pfn
)
984 get_node_active_region(start_pfn
, &node_ar
);
985 while (start_pfn
< end_pfn
&&
986 node_ar
.start_pfn
< node_ar
.end_pfn
) {
987 unsigned long reserve_size
= size
;
989 * if reserved region extends past active region
990 * then trim size to active region
992 if (end_pfn
> node_ar
.end_pfn
)
993 reserve_size
= (node_ar
.end_pfn
<< PAGE_SHIFT
)
996 * Only worry about *this* node, others may not
997 * yet have valid NODE_DATA().
999 if (node_ar
.nid
== nid
) {
1000 dbg("reserve_bootmem %lx %lx nid=%d\n",
1001 physbase
, reserve_size
, node_ar
.nid
);
1002 reserve_bootmem_node(NODE_DATA(node_ar
.nid
),
1003 physbase
, reserve_size
,
1007 * if reserved region is contained in the active region
1010 if (end_pfn
<= node_ar
.end_pfn
)
1014 * reserved region extends past the active region
1015 * get next active region that contains this
1018 start_pfn
= node_ar
.end_pfn
;
1019 physbase
= start_pfn
<< PAGE_SHIFT
;
1020 size
= size
- reserve_size
;
1021 get_node_active_region(start_pfn
, &node_ar
);
1027 void __init
do_init_bootmem(void)
1032 max_low_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1033 max_pfn
= max_low_pfn
;
1035 if (parse_numa_properties())
1038 dump_numa_memory_topology();
1040 for_each_online_node(nid
) {
1041 unsigned long start_pfn
, end_pfn
;
1042 void *bootmem_vaddr
;
1043 unsigned long bootmap_pages
;
1045 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1048 * Allocate the node structure node local if possible
1050 * Be careful moving this around, as it relies on all
1051 * previous nodes' bootmem to be initialized and have
1052 * all reserved areas marked.
1054 NODE_DATA(nid
) = careful_zallocation(nid
,
1055 sizeof(struct pglist_data
),
1056 SMP_CACHE_BYTES
, end_pfn
);
1058 dbg("node %d\n", nid
);
1059 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
1061 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
1062 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
1063 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
1065 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
1068 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
1069 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
1071 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
1072 bootmem_vaddr
= careful_zallocation(nid
,
1073 bootmap_pages
<< PAGE_SHIFT
,
1074 PAGE_SIZE
, end_pfn
);
1076 dbg("bootmap_vaddr = %p\n", bootmem_vaddr
);
1078 init_bootmem_node(NODE_DATA(nid
),
1079 __pa(bootmem_vaddr
) >> PAGE_SHIFT
,
1080 start_pfn
, end_pfn
);
1082 free_bootmem_with_active_regions(nid
, end_pfn
);
1084 * Be very careful about moving this around. Future
1085 * calls to careful_zallocation() depend on this getting
1088 mark_reserved_regions_for_nid(nid
);
1089 sparse_memory_present_with_active_regions(nid
);
1092 init_bootmem_done
= 1;
1095 * Now bootmem is initialised we can create the node to cpumask
1096 * lookup tables and setup the cpu callback to populate them.
1098 setup_node_to_cpumask_map();
1100 reset_numa_cpu_lookup_table();
1101 register_cpu_notifier(&ppc64_numa_nb
);
1102 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
1103 (void *)(unsigned long)boot_cpuid
);
1106 void __init
paging_init(void)
1108 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1109 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1110 max_zone_pfns
[ZONE_DMA
] = memblock_end_of_DRAM() >> PAGE_SHIFT
;
1111 free_area_init_nodes(max_zone_pfns
);
1114 static int __init
early_numa(char *p
)
1119 if (strstr(p
, "off"))
1122 if (strstr(p
, "debug"))
1125 p
= strstr(p
, "fake=");
1127 cmdline
= p
+ strlen("fake=");
1131 early_param("numa", early_numa
);
1133 #ifdef CONFIG_MEMORY_HOTPLUG
1135 * Find the node associated with a hot added memory section for
1136 * memory represented in the device tree by the property
1137 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1139 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
1140 unsigned long scn_addr
)
1143 unsigned int drconf_cell_cnt
, rc
;
1144 unsigned long lmb_size
;
1145 struct assoc_arrays aa
;
1148 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1149 if (!drconf_cell_cnt
)
1152 lmb_size
= of_get_lmb_size(memory
);
1156 rc
= of_get_assoc_arrays(memory
, &aa
);
1160 for (; drconf_cell_cnt
!= 0; --drconf_cell_cnt
) {
1161 struct of_drconf_cell drmem
;
1163 read_drconf_cell(&drmem
, &dm
);
1165 /* skip this block if it is reserved or not assigned to
1167 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1168 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1171 if ((scn_addr
< drmem
.base_addr
)
1172 || (scn_addr
>= (drmem
.base_addr
+ lmb_size
)))
1175 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1183 * Find the node associated with a hot added memory section for memory
1184 * represented in the device tree as a node (i.e. memory@XXXX) for
1187 int hot_add_node_scn_to_nid(unsigned long scn_addr
)
1189 struct device_node
*memory
;
1192 for_each_node_by_type(memory
, "memory") {
1193 unsigned long start
, size
;
1195 const __be32
*memcell_buf
;
1198 memcell_buf
= of_get_property(memory
, "reg", &len
);
1199 if (!memcell_buf
|| len
<= 0)
1202 /* ranges in cell */
1203 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1206 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1207 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1209 if ((scn_addr
< start
) || (scn_addr
>= (start
+ size
)))
1212 nid
= of_node_to_nid_single(memory
);
1220 of_node_put(memory
);
1226 * Find the node associated with a hot added memory section. Section
1227 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1228 * sections are fully contained within a single MEMBLOCK.
1230 int hot_add_scn_to_nid(unsigned long scn_addr
)
1232 struct device_node
*memory
= NULL
;
1235 if (!numa_enabled
|| (min_common_depth
< 0))
1236 return first_online_node
;
1238 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1240 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1241 of_node_put(memory
);
1243 nid
= hot_add_node_scn_to_nid(scn_addr
);
1246 if (nid
< 0 || !node_online(nid
))
1247 nid
= first_online_node
;
1249 if (NODE_DATA(nid
)->node_spanned_pages
)
1252 for_each_online_node(nid
) {
1253 if (NODE_DATA(nid
)->node_spanned_pages
) {
1263 static u64
hot_add_drconf_memory_max(void)
1265 struct device_node
*memory
= NULL
;
1266 unsigned int drconf_cell_cnt
= 0;
1268 const __be32
*dm
= 0;
1270 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1272 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1273 lmb_size
= of_get_lmb_size(memory
);
1274 of_node_put(memory
);
1276 return lmb_size
* drconf_cell_cnt
;
1280 * memory_hotplug_max - return max address of memory that may be added
1282 * This is currently only used on systems that support drconfig memory
1285 u64
memory_hotplug_max(void)
1287 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1289 #endif /* CONFIG_MEMORY_HOTPLUG */
1291 /* Virtual Processor Home Node (VPHN) support */
1292 #ifdef CONFIG_PPC_SPLPAR
1293 struct topology_update_data
{
1294 struct topology_update_data
*next
;
1300 static u8 vphn_cpu_change_counts
[NR_CPUS
][MAX_DISTANCE_REF_POINTS
];
1301 static cpumask_t cpu_associativity_changes_mask
;
1302 static int vphn_enabled
;
1303 static int prrn_enabled
;
1304 static void reset_topology_timer(void);
1307 * Store the current values of the associativity change counters in the
1310 static void setup_cpu_associativity_change_counters(void)
1314 /* The VPHN feature supports a maximum of 8 reference points */
1315 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS
> 8);
1317 for_each_possible_cpu(cpu
) {
1319 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1320 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1322 for (i
= 0; i
< distance_ref_points_depth
; i
++)
1323 counts
[i
] = hypervisor_counts
[i
];
1328 * The hypervisor maintains a set of 8 associativity change counters in
1329 * the VPA of each cpu that correspond to the associativity levels in the
1330 * ibm,associativity-reference-points property. When an associativity
1331 * level changes, the corresponding counter is incremented.
1333 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1334 * node associativity levels have changed.
1336 * Returns the number of cpus with unhandled associativity changes.
1338 static int update_cpu_associativity_changes_mask(void)
1341 cpumask_t
*changes
= &cpu_associativity_changes_mask
;
1343 for_each_possible_cpu(cpu
) {
1345 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1346 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1348 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
1349 if (hypervisor_counts
[i
] != counts
[i
]) {
1350 counts
[i
] = hypervisor_counts
[i
];
1355 cpumask_or(changes
, changes
, cpu_sibling_mask(cpu
));
1356 cpu
= cpu_last_thread_sibling(cpu
);
1360 return cpumask_weight(changes
);
1364 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1365 * the complete property we have to add the length in the first cell.
1367 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1370 * Convert the associativity domain numbers returned from the hypervisor
1371 * to the sequence they would appear in the ibm,associativity property.
1373 static int vphn_unpack_associativity(const long *packed
, __be32
*unpacked
)
1375 int i
, nr_assoc_doms
= 0;
1376 const __be16
*field
= (const __be16
*) packed
;
1378 #define VPHN_FIELD_UNUSED (0xffff)
1379 #define VPHN_FIELD_MSB (0x8000)
1380 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1382 for (i
= 1; i
< VPHN_ASSOC_BUFSIZE
; i
++) {
1383 if (be16_to_cpup(field
) == VPHN_FIELD_UNUSED
) {
1384 /* All significant fields processed, and remaining
1385 * fields contain the reserved value of all 1's.
1388 unpacked
[i
] = *((__be32
*)field
);
1390 } else if (be16_to_cpup(field
) & VPHN_FIELD_MSB
) {
1391 /* Data is in the lower 15 bits of this field */
1392 unpacked
[i
] = cpu_to_be32(
1393 be16_to_cpup(field
) & VPHN_FIELD_MASK
);
1397 /* Data is in the lower 15 bits of this field
1398 * concatenated with the next 16 bit field
1400 unpacked
[i
] = *((__be32
*)field
);
1406 /* The first cell contains the length of the property */
1407 unpacked
[0] = cpu_to_be32(nr_assoc_doms
);
1409 return nr_assoc_doms
;
1413 * Retrieve the new associativity information for a virtual processor's
1416 static long hcall_vphn(unsigned long cpu
, __be32
*associativity
)
1419 long retbuf
[PLPAR_HCALL9_BUFSIZE
] = {0};
1421 int hwcpu
= get_hard_smp_processor_id(cpu
);
1423 rc
= plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY
, retbuf
, flags
, hwcpu
);
1424 vphn_unpack_associativity(retbuf
, associativity
);
1429 static long vphn_get_associativity(unsigned long cpu
,
1430 __be32
*associativity
)
1434 rc
= hcall_vphn(cpu
, associativity
);
1439 "VPHN is not supported. Disabling polling...\n");
1440 stop_topology_update();
1444 "hcall_vphn() experienced a hardware fault "
1445 "preventing VPHN. Disabling polling...\n");
1446 stop_topology_update();
1453 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1454 * characteristics change. This function doesn't perform any locking and is
1455 * only safe to call from stop_machine().
1457 static int update_cpu_topology(void *data
)
1459 struct topology_update_data
*update
;
1465 cpu
= smp_processor_id();
1467 for (update
= data
; update
; update
= update
->next
) {
1468 if (cpu
!= update
->cpu
)
1471 unmap_cpu_from_node(update
->cpu
);
1472 map_cpu_to_node(update
->cpu
, update
->new_nid
);
1479 static int update_lookup_table(void *data
)
1481 struct topology_update_data
*update
;
1487 * Upon topology update, the numa-cpu lookup table needs to be updated
1488 * for all threads in the core, including offline CPUs, to ensure that
1489 * future hotplug operations respect the cpu-to-node associativity
1492 for (update
= data
; update
; update
= update
->next
) {
1495 nid
= update
->new_nid
;
1496 base
= cpu_first_thread_sibling(update
->cpu
);
1498 for (j
= 0; j
< threads_per_core
; j
++) {
1499 update_numa_cpu_lookup_table(base
+ j
, nid
);
1507 * Update the node maps and sysfs entries for each cpu whose home node
1508 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1510 int arch_update_cpu_topology(void)
1512 unsigned int cpu
, sibling
, changed
= 0;
1513 struct topology_update_data
*updates
, *ud
;
1514 __be32 associativity
[VPHN_ASSOC_BUFSIZE
] = {0};
1515 cpumask_t updated_cpus
;
1517 int weight
, new_nid
, i
= 0;
1519 weight
= cpumask_weight(&cpu_associativity_changes_mask
);
1523 updates
= kzalloc(weight
* (sizeof(*updates
)), GFP_KERNEL
);
1527 cpumask_clear(&updated_cpus
);
1529 for_each_cpu(cpu
, &cpu_associativity_changes_mask
) {
1531 * If siblings aren't flagged for changes, updates list
1532 * will be too short. Skip on this update and set for next
1535 if (!cpumask_subset(cpu_sibling_mask(cpu
),
1536 &cpu_associativity_changes_mask
)) {
1537 pr_info("Sibling bits not set for associativity "
1538 "change, cpu%d\n", cpu
);
1539 cpumask_or(&cpu_associativity_changes_mask
,
1540 &cpu_associativity_changes_mask
,
1541 cpu_sibling_mask(cpu
));
1542 cpu
= cpu_last_thread_sibling(cpu
);
1546 /* Use associativity from first thread for all siblings */
1547 vphn_get_associativity(cpu
, associativity
);
1548 new_nid
= associativity_to_nid(associativity
);
1549 if (new_nid
< 0 || !node_online(new_nid
))
1550 new_nid
= first_online_node
;
1552 if (new_nid
== numa_cpu_lookup_table
[cpu
]) {
1553 cpumask_andnot(&cpu_associativity_changes_mask
,
1554 &cpu_associativity_changes_mask
,
1555 cpu_sibling_mask(cpu
));
1556 cpu
= cpu_last_thread_sibling(cpu
);
1560 for_each_cpu(sibling
, cpu_sibling_mask(cpu
)) {
1563 ud
->new_nid
= new_nid
;
1564 ud
->old_nid
= numa_cpu_lookup_table
[sibling
];
1565 cpumask_set_cpu(sibling
, &updated_cpus
);
1567 ud
->next
= &updates
[i
];
1569 cpu
= cpu_last_thread_sibling(cpu
);
1572 stop_machine(update_cpu_topology
, &updates
[0], &updated_cpus
);
1575 * Update the numa-cpu lookup table with the new mappings, even for
1576 * offline CPUs. It is best to perform this update from the stop-
1579 stop_machine(update_lookup_table
, &updates
[0],
1580 cpumask_of(raw_smp_processor_id()));
1582 for (ud
= &updates
[0]; ud
; ud
= ud
->next
) {
1583 unregister_cpu_under_node(ud
->cpu
, ud
->old_nid
);
1584 register_cpu_under_node(ud
->cpu
, ud
->new_nid
);
1586 dev
= get_cpu_device(ud
->cpu
);
1588 kobject_uevent(&dev
->kobj
, KOBJ_CHANGE
);
1589 cpumask_clear_cpu(ud
->cpu
, &cpu_associativity_changes_mask
);
1597 static void topology_work_fn(struct work_struct
*work
)
1599 rebuild_sched_domains();
1601 static DECLARE_WORK(topology_work
, topology_work_fn
);
1603 void topology_schedule_update(void)
1605 schedule_work(&topology_work
);
1608 static void topology_timer_fn(unsigned long ignored
)
1610 if (prrn_enabled
&& cpumask_weight(&cpu_associativity_changes_mask
))
1611 topology_schedule_update();
1612 else if (vphn_enabled
) {
1613 if (update_cpu_associativity_changes_mask() > 0)
1614 topology_schedule_update();
1615 reset_topology_timer();
1618 static struct timer_list topology_timer
=
1619 TIMER_INITIALIZER(topology_timer_fn
, 0, 0);
1621 static void reset_topology_timer(void)
1623 topology_timer
.data
= 0;
1624 topology_timer
.expires
= jiffies
+ 60 * HZ
;
1625 mod_timer(&topology_timer
, topology_timer
.expires
);
1630 static void stage_topology_update(int core_id
)
1632 cpumask_or(&cpu_associativity_changes_mask
,
1633 &cpu_associativity_changes_mask
, cpu_sibling_mask(core_id
));
1634 reset_topology_timer();
1637 static int dt_update_callback(struct notifier_block
*nb
,
1638 unsigned long action
, void *data
)
1640 struct of_prop_reconfig
*update
;
1641 int rc
= NOTIFY_DONE
;
1644 case OF_RECONFIG_UPDATE_PROPERTY
:
1645 update
= (struct of_prop_reconfig
*)data
;
1646 if (!of_prop_cmp(update
->dn
->type
, "cpu") &&
1647 !of_prop_cmp(update
->prop
->name
, "ibm,associativity")) {
1649 of_property_read_u32(update
->dn
, "reg", &core_id
);
1650 stage_topology_update(core_id
);
1659 static struct notifier_block dt_update_nb
= {
1660 .notifier_call
= dt_update_callback
,
1666 * Start polling for associativity changes.
1668 int start_topology_update(void)
1672 if (firmware_has_feature(FW_FEATURE_PRRN
)) {
1673 if (!prrn_enabled
) {
1677 rc
= of_reconfig_notifier_register(&dt_update_nb
);
1680 } else if (firmware_has_feature(FW_FEATURE_VPHN
) &&
1681 lppaca_shared_proc(get_lppaca())) {
1682 if (!vphn_enabled
) {
1685 setup_cpu_associativity_change_counters();
1686 init_timer_deferrable(&topology_timer
);
1687 reset_topology_timer();
1695 * Disable polling for VPHN associativity changes.
1697 int stop_topology_update(void)
1704 rc
= of_reconfig_notifier_unregister(&dt_update_nb
);
1706 } else if (vphn_enabled
) {
1708 rc
= del_timer_sync(&topology_timer
);
1714 int prrn_is_enabled(void)
1716 return prrn_enabled
;
1719 static int topology_read(struct seq_file
*file
, void *v
)
1721 if (vphn_enabled
|| prrn_enabled
)
1722 seq_puts(file
, "on\n");
1724 seq_puts(file
, "off\n");
1729 static int topology_open(struct inode
*inode
, struct file
*file
)
1731 return single_open(file
, topology_read
, NULL
);
1734 static ssize_t
topology_write(struct file
*file
, const char __user
*buf
,
1735 size_t count
, loff_t
*off
)
1737 char kbuf
[4]; /* "on" or "off" plus null. */
1740 read_len
= count
< 3 ? count
: 3;
1741 if (copy_from_user(kbuf
, buf
, read_len
))
1744 kbuf
[read_len
] = '\0';
1746 if (!strncmp(kbuf
, "on", 2))
1747 start_topology_update();
1748 else if (!strncmp(kbuf
, "off", 3))
1749 stop_topology_update();
1756 static const struct file_operations topology_ops
= {
1758 .write
= topology_write
,
1759 .open
= topology_open
,
1760 .release
= single_release
1763 static int topology_update_init(void)
1765 start_topology_update();
1766 proc_create("powerpc/topology_updates", 644, NULL
, &topology_ops
);
1770 device_initcall(topology_update_init
);
1771 #endif /* CONFIG_PPC_SPLPAR */