2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
41 #include <asm/starfire.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
46 #include <asm/hypervisor.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
54 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
76 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
83 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
86 static unsigned long cpu_pgsz_mask
;
90 static struct linux_prom64_registers pavail
[MAX_BANKS
];
91 static int pavail_ents
;
93 static int cmp_p64(const void *a
, const void *b
)
95 const struct linux_prom64_registers
*x
= a
, *y
= b
;
97 if (x
->phys_addr
> y
->phys_addr
)
99 if (x
->phys_addr
< y
->phys_addr
)
104 static void __init
read_obp_memory(const char *property
,
105 struct linux_prom64_registers
*regs
,
108 phandle node
= prom_finddevice("/memory");
109 int prop_size
= prom_getproplen(node
, property
);
112 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
113 if (ents
> MAX_BANKS
) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property
, MAX_BANKS
);
120 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
122 prom_printf("Couldn't get %s property from /memory.\n",
127 /* Sanitize what we got from the firmware, by page aligning
130 for (i
= 0; i
< ents
; i
++) {
131 unsigned long base
, size
;
133 base
= regs
[i
].phys_addr
;
134 size
= regs
[i
].reg_size
;
137 if (base
& ~PAGE_MASK
) {
138 unsigned long new_base
= PAGE_ALIGN(base
);
140 size
-= new_base
- base
;
141 if ((long) size
< 0L)
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
150 memmove(®s
[i
], ®s
[i
+ 1],
151 (ents
- i
- 1) * sizeof(regs
[0]));
156 regs
[i
].phys_addr
= base
;
157 regs
[i
].reg_size
= size
;
162 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
166 unsigned long sparc64_valid_addr_bitmap
[VALID_ADDR_BITMAP_BYTES
/
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap
);
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly
;
172 unsigned long kern_size __read_mostly
;
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64
;
176 extern unsigned int sparc_ramdisk_image
;
177 extern unsigned int sparc_ramdisk_size
;
179 struct page
*mem_map_zero __read_mostly
;
180 EXPORT_SYMBOL(mem_map_zero
);
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
184 unsigned long sparc64_kern_pri_context __read_mostly
;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
186 unsigned long sparc64_kern_sec_context __read_mostly
;
188 int num_kernel_image_mappings
;
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
193 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
197 inline void flush_dcache_page_impl(struct page
*page
)
199 BUG_ON(tlb_type
== hypervisor
);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes
);
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page
),
206 ((tlb_type
== spitfire
) &&
207 page_mapping(page
) != NULL
));
209 if (page_mapping(page
) != NULL
&&
210 tlb_type
== spitfire
)
211 __flush_icache_page(__pa(page_address(page
)));
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
225 unsigned long mask
= this_cpu
;
226 unsigned long non_cpu_bits
;
228 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
229 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
231 __asm__
__volatile__("1:\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
240 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
244 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
246 unsigned long mask
= (1UL << PG_dcache_dirty
);
248 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
262 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
263 "i" (PG_dcache_cpu_mask
),
264 "i" (PG_dcache_cpu_shift
)
268 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
270 unsigned long tsb_addr
= (unsigned long) ent
;
272 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
273 tsb_addr
= __pa(tsb_addr
);
275 __tsb_insert(tsb_addr
, tag
, pte
);
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
280 static void flush_dcache(unsigned long pfn
)
284 page
= pfn_to_page(pfn
);
286 unsigned long pg_flags
;
288 pg_flags
= page
->flags
;
289 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
290 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
292 int this_cpu
= get_cpu();
294 /* This is just to optimize away some function calls
298 flush_dcache_page_impl(page
);
300 smp_flush_dcache_page_impl(page
, cpu
);
302 clear_dcache_dirty_cpu(page
, cpu
);
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
311 unsigned long tsb_hash_shift
, unsigned long address
,
314 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
320 tsb
+= ((address
>> tsb_hash_shift
) &
321 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
322 tag
= (address
>> 22UL);
323 tsb_insert(tsb
, tag
, tte
);
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte
)
329 if ((tlb_type
== hypervisor
&&
330 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
331 (tlb_type
!= hypervisor
&&
332 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
))
338 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
340 struct mm_struct
*mm
;
344 if (tlb_type
!= hypervisor
) {
345 unsigned long pfn
= pte_pfn(pte
);
353 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
354 if (!pte_accessible(mm
, pte
))
357 spin_lock_irqsave(&mm
->context
.lock
, flags
);
359 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
360 if (mm
->context
.huge_pte_count
&& is_hugetlb_pte(pte
))
361 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, HPAGE_SHIFT
,
362 address
, pte_val(pte
));
365 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
366 address
, pte_val(pte
));
368 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
371 void flush_dcache_page(struct page
*page
)
373 struct address_space
*mapping
;
376 if (tlb_type
== hypervisor
)
379 /* Do not bother with the expensive D-cache flush if it
380 * is merely the zero page. The 'bigcore' testcase in GDB
381 * causes this case to run millions of times.
383 if (page
== ZERO_PAGE(0))
386 this_cpu
= get_cpu();
388 mapping
= page_mapping(page
);
389 if (mapping
&& !mapping_mapped(mapping
)) {
390 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
392 int dirty_cpu
= dcache_dirty_cpu(page
);
394 if (dirty_cpu
== this_cpu
)
396 smp_flush_dcache_page_impl(page
, dirty_cpu
);
398 set_dcache_dirty(page
, this_cpu
);
400 /* We could delay the flush for the !page_mapping
401 * case too. But that case is for exec env/arg
402 * pages and those are %99 certainly going to get
403 * faulted into the tlb (and thus flushed) anyways.
405 flush_dcache_page_impl(page
);
411 EXPORT_SYMBOL(flush_dcache_page
);
413 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
415 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
416 if (tlb_type
== spitfire
) {
419 /* This code only runs on Spitfire cpus so this is
420 * why we can assume _PAGE_PADDR_4U.
422 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
423 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
425 if (kaddr
>= PAGE_OFFSET
)
426 paddr
= kaddr
& mask
;
428 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
429 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
430 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
431 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
433 paddr
= pte_val(*ptep
) & mask
;
435 __flush_icache_page(paddr
);
439 EXPORT_SYMBOL(flush_icache_range
);
441 void mmu_info(struct seq_file
*m
)
443 static const char *pgsz_strings
[] = {
444 "8K", "64K", "512K", "4MB", "32MB",
445 "256MB", "2GB", "16GB",
449 if (tlb_type
== cheetah
)
450 seq_printf(m
, "MMU Type\t: Cheetah\n");
451 else if (tlb_type
== cheetah_plus
)
452 seq_printf(m
, "MMU Type\t: Cheetah+\n");
453 else if (tlb_type
== spitfire
)
454 seq_printf(m
, "MMU Type\t: Spitfire\n");
455 else if (tlb_type
== hypervisor
)
456 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
458 seq_printf(m
, "MMU Type\t: ???\n");
460 seq_printf(m
, "MMU PGSZs\t: ");
462 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
463 if (cpu_pgsz_mask
& (1UL << i
)) {
464 seq_printf(m
, "%s%s",
465 printed
? "," : "", pgsz_strings
[i
]);
471 #ifdef CONFIG_DEBUG_DCFLUSH
472 seq_printf(m
, "DCPageFlushes\t: %d\n",
473 atomic_read(&dcpage_flushes
));
475 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
476 atomic_read(&dcpage_flushes_xcall
));
477 #endif /* CONFIG_SMP */
478 #endif /* CONFIG_DEBUG_DCFLUSH */
481 struct linux_prom_translation prom_trans
[512] __read_mostly
;
482 unsigned int prom_trans_ents __read_mostly
;
484 unsigned long kern_locked_tte_data
;
486 /* The obp translations are saved based on 8k pagesize, since obp can
487 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
488 * HI_OBP_ADDRESS range are handled in ktlb.S.
490 static inline int in_obp_range(unsigned long vaddr
)
492 return (vaddr
>= LOW_OBP_ADDRESS
&&
493 vaddr
< HI_OBP_ADDRESS
);
496 static int cmp_ptrans(const void *a
, const void *b
)
498 const struct linux_prom_translation
*x
= a
, *y
= b
;
500 if (x
->virt
> y
->virt
)
502 if (x
->virt
< y
->virt
)
507 /* Read OBP translations property into 'prom_trans[]'. */
508 static void __init
read_obp_translations(void)
510 int n
, node
, ents
, first
, last
, i
;
512 node
= prom_finddevice("/virtual-memory");
513 n
= prom_getproplen(node
, "translations");
514 if (unlikely(n
== 0 || n
== -1)) {
515 prom_printf("prom_mappings: Couldn't get size.\n");
518 if (unlikely(n
> sizeof(prom_trans
))) {
519 prom_printf("prom_mappings: Size %d is too big.\n", n
);
523 if ((n
= prom_getproperty(node
, "translations",
524 (char *)&prom_trans
[0],
525 sizeof(prom_trans
))) == -1) {
526 prom_printf("prom_mappings: Couldn't get property.\n");
530 n
= n
/ sizeof(struct linux_prom_translation
);
534 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
537 /* Now kick out all the non-OBP entries. */
538 for (i
= 0; i
< ents
; i
++) {
539 if (in_obp_range(prom_trans
[i
].virt
))
543 for (; i
< ents
; i
++) {
544 if (!in_obp_range(prom_trans
[i
].virt
))
549 for (i
= 0; i
< (last
- first
); i
++) {
550 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
551 struct linux_prom_translation
*dest
= &prom_trans
[i
];
555 for (; i
< ents
; i
++) {
556 struct linux_prom_translation
*dest
= &prom_trans
[i
];
557 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
560 prom_trans_ents
= last
- first
;
562 if (tlb_type
== spitfire
) {
563 /* Clear diag TTE bits. */
564 for (i
= 0; i
< prom_trans_ents
; i
++)
565 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
568 /* Force execute bit on. */
569 for (i
= 0; i
< prom_trans_ents
; i
++)
570 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
571 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
574 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
578 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
581 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
582 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
587 static unsigned long kern_large_tte(unsigned long paddr
);
589 static void __init
remap_kernel(void)
591 unsigned long phys_page
, tte_vaddr
, tte_data
;
592 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
594 tte_vaddr
= (unsigned long) KERNBASE
;
595 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
596 tte_data
= kern_large_tte(phys_page
);
598 kern_locked_tte_data
= tte_data
;
600 /* Now lock us into the TLBs via Hypervisor or OBP. */
601 if (tlb_type
== hypervisor
) {
602 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
603 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
604 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
605 tte_vaddr
+= 0x400000;
606 tte_data
+= 0x400000;
609 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
610 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
611 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
612 tte_vaddr
+= 0x400000;
613 tte_data
+= 0x400000;
615 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
617 if (tlb_type
== cheetah_plus
) {
618 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
619 CTX_CHEETAH_PLUS_NUC
);
620 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
621 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
626 static void __init
inherit_prom_mappings(void)
628 /* Now fixup OBP's idea about where we really are mapped. */
629 printk("Remapping the kernel... ");
634 void prom_world(int enter
)
639 __asm__
__volatile__("flushw");
642 void __flush_dcache_range(unsigned long start
, unsigned long end
)
646 if (tlb_type
== spitfire
) {
649 for (va
= start
; va
< end
; va
+= 32) {
650 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
654 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
657 for (va
= start
; va
< end
; va
+= 32)
658 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
662 "i" (ASI_DCACHE_INVALIDATE
));
665 EXPORT_SYMBOL(__flush_dcache_range
);
667 /* get_new_mmu_context() uses "cache + 1". */
668 DEFINE_SPINLOCK(ctx_alloc_lock
);
669 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
670 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
671 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
672 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
674 /* Caller does TLB context flushing on local CPU if necessary.
675 * The caller also ensures that CTX_VALID(mm->context) is false.
677 * We must be careful about boundary cases so that we never
678 * let the user have CTX 0 (nucleus) or we ever use a CTX
679 * version of zero (and thus NO_CONTEXT would not be caught
680 * by version mis-match tests in mmu_context.h).
682 * Always invoked with interrupts disabled.
684 void get_new_mmu_context(struct mm_struct
*mm
)
686 unsigned long ctx
, new_ctx
;
687 unsigned long orig_pgsz_bits
;
690 spin_lock(&ctx_alloc_lock
);
691 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
692 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
693 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
695 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
696 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
697 if (new_ctx
>= ctx
) {
699 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
702 new_ctx
= CTX_FIRST_VERSION
;
704 /* Don't call memset, for 16 entries that's just
707 mmu_context_bmap
[0] = 3;
708 mmu_context_bmap
[1] = 0;
709 mmu_context_bmap
[2] = 0;
710 mmu_context_bmap
[3] = 0;
711 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
712 mmu_context_bmap
[i
+ 0] = 0;
713 mmu_context_bmap
[i
+ 1] = 0;
714 mmu_context_bmap
[i
+ 2] = 0;
715 mmu_context_bmap
[i
+ 3] = 0;
721 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
722 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
724 tlb_context_cache
= new_ctx
;
725 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
726 spin_unlock(&ctx_alloc_lock
);
728 if (unlikely(new_version
))
729 smp_new_mmu_context_version();
732 static int numa_enabled
= 1;
733 static int numa_debug
;
735 static int __init
early_numa(char *p
)
740 if (strstr(p
, "off"))
743 if (strstr(p
, "debug"))
748 early_param("numa", early_numa
);
750 #define numadbg(f, a...) \
751 do { if (numa_debug) \
752 printk(KERN_INFO f, ## a); \
755 static void __init
find_ramdisk(unsigned long phys_base
)
757 #ifdef CONFIG_BLK_DEV_INITRD
758 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
759 unsigned long ramdisk_image
;
761 /* Older versions of the bootloader only supported a
762 * 32-bit physical address for the ramdisk image
763 * location, stored at sparc_ramdisk_image. Newer
764 * SILO versions set sparc_ramdisk_image to zero and
765 * provide a full 64-bit physical address at
766 * sparc_ramdisk_image64.
768 ramdisk_image
= sparc_ramdisk_image
;
770 ramdisk_image
= sparc_ramdisk_image64
;
772 /* Another bootloader quirk. The bootloader normalizes
773 * the physical address to KERNBASE, so we have to
774 * factor that back out and add in the lowest valid
775 * physical page address to get the true physical address.
777 ramdisk_image
-= KERNBASE
;
778 ramdisk_image
+= phys_base
;
780 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
781 ramdisk_image
, sparc_ramdisk_size
);
783 initrd_start
= ramdisk_image
;
784 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
786 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
788 initrd_start
+= PAGE_OFFSET
;
789 initrd_end
+= PAGE_OFFSET
;
794 struct node_mem_mask
{
798 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
799 static int num_node_masks
;
801 int numa_cpu_lookup_table
[NR_CPUS
];
802 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
804 #ifdef CONFIG_NEED_MULTIPLE_NODES
806 struct mdesc_mblock
{
809 u64 offset
; /* RA-to-PA */
811 static struct mdesc_mblock
*mblocks
;
812 static int num_mblocks
;
814 static unsigned long ra_to_pa(unsigned long addr
)
818 for (i
= 0; i
< num_mblocks
; i
++) {
819 struct mdesc_mblock
*m
= &mblocks
[i
];
821 if (addr
>= m
->base
&&
822 addr
< (m
->base
+ m
->size
)) {
830 static int find_node(unsigned long addr
)
834 addr
= ra_to_pa(addr
);
835 for (i
= 0; i
< num_node_masks
; i
++) {
836 struct node_mem_mask
*p
= &node_masks
[i
];
838 if ((addr
& p
->mask
) == p
->val
)
844 static u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
846 *nid
= find_node(start
);
848 while (start
< end
) {
849 int n
= find_node(start
);
863 /* This must be invoked after performing all of the necessary
864 * memblock_set_node() calls for 'nid'. We need to be able to get
865 * correct data from get_pfn_range_for_nid().
867 static void __init
allocate_node_data(int nid
)
869 struct pglist_data
*p
;
870 unsigned long start_pfn
, end_pfn
;
871 #ifdef CONFIG_NEED_MULTIPLE_NODES
874 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
876 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
879 NODE_DATA(nid
) = __va(paddr
);
880 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
882 NODE_DATA(nid
)->node_id
= nid
;
887 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
888 p
->node_start_pfn
= start_pfn
;
889 p
->node_spanned_pages
= end_pfn
- start_pfn
;
892 static void init_node_masks_nonnuma(void)
896 numadbg("Initializing tables for non-numa.\n");
898 node_masks
[0].mask
= node_masks
[0].val
= 0;
901 for (i
= 0; i
< NR_CPUS
; i
++)
902 numa_cpu_lookup_table
[i
] = 0;
904 cpumask_setall(&numa_cpumask_lookup_table
[0]);
907 #ifdef CONFIG_NEED_MULTIPLE_NODES
908 struct pglist_data
*node_data
[MAX_NUMNODES
];
910 EXPORT_SYMBOL(numa_cpu_lookup_table
);
911 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
912 EXPORT_SYMBOL(node_data
);
914 struct mdesc_mlgroup
{
920 static struct mdesc_mlgroup
*mlgroups
;
921 static int num_mlgroups
;
923 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
928 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
929 u64 target
= mdesc_arc_target(md
, arc
);
932 val
= mdesc_get_property(md
, target
,
934 if (val
&& *val
== cfg_handle
)
940 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
943 u64 arc
, candidate
, best_latency
= ~(u64
)0;
945 candidate
= MDESC_NODE_NULL
;
946 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
947 u64 target
= mdesc_arc_target(md
, arc
);
948 const char *name
= mdesc_node_name(md
, target
);
951 if (strcmp(name
, "pio-latency-group"))
954 val
= mdesc_get_property(md
, target
, "latency", NULL
);
958 if (*val
< best_latency
) {
964 if (candidate
== MDESC_NODE_NULL
)
967 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
970 int of_node_to_nid(struct device_node
*dp
)
972 const struct linux_prom64_registers
*regs
;
973 struct mdesc_handle
*md
;
978 /* This is the right thing to do on currently supported
979 * SUN4U NUMA platforms as well, as the PCI controller does
980 * not sit behind any particular memory controller.
985 regs
= of_get_property(dp
, "reg", NULL
);
989 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
995 mdesc_for_each_node_by_name(md
, grp
, "group") {
996 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1008 static void __init
add_node_ranges(void)
1010 struct memblock_region
*reg
;
1012 for_each_memblock(memory
, reg
) {
1013 unsigned long size
= reg
->size
;
1014 unsigned long start
, end
;
1018 while (start
< end
) {
1019 unsigned long this_end
;
1022 this_end
= memblock_nid_range(start
, end
, &nid
);
1024 numadbg("Setting memblock NUMA node nid[%d] "
1025 "start[%lx] end[%lx]\n",
1026 nid
, start
, this_end
);
1028 memblock_set_node(start
, this_end
- start
, nid
);
1034 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1036 unsigned long paddr
;
1040 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1045 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
1050 mlgroups
= __va(paddr
);
1051 num_mlgroups
= count
;
1054 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1055 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1060 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1062 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1064 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1067 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1068 "match[%llx] mask[%llx]\n",
1069 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1075 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1077 unsigned long paddr
;
1081 mdesc_for_each_node_by_name(md
, node
, "mblock")
1086 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1091 mblocks
= __va(paddr
);
1092 num_mblocks
= count
;
1095 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1096 struct mdesc_mblock
*m
= &mblocks
[count
++];
1099 val
= mdesc_get_property(md
, node
, "base", NULL
);
1101 val
= mdesc_get_property(md
, node
, "size", NULL
);
1103 val
= mdesc_get_property(md
, node
,
1104 "address-congruence-offset", NULL
);
1106 /* The address-congruence-offset property is optional.
1107 * Explicity zero it be identifty this.
1114 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1115 count
- 1, m
->base
, m
->size
, m
->offset
);
1121 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1122 u64 grp
, cpumask_t
*mask
)
1126 cpumask_clear(mask
);
1128 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1129 u64 target
= mdesc_arc_target(md
, arc
);
1130 const char *name
= mdesc_node_name(md
, target
);
1133 if (strcmp(name
, "cpu"))
1135 id
= mdesc_get_property(md
, target
, "id", NULL
);
1136 if (*id
< nr_cpu_ids
)
1137 cpumask_set_cpu(*id
, mask
);
1141 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1145 for (i
= 0; i
< num_mlgroups
; i
++) {
1146 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1147 if (m
->node
== node
)
1153 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1156 struct mdesc_mlgroup
*candidate
= NULL
;
1157 u64 arc
, best_latency
= ~(u64
)0;
1158 struct node_mem_mask
*n
;
1160 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1161 u64 target
= mdesc_arc_target(md
, arc
);
1162 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1165 if (m
->latency
< best_latency
) {
1167 best_latency
= m
->latency
;
1173 if (num_node_masks
!= index
) {
1174 printk(KERN_ERR
"Inconsistent NUMA state, "
1175 "index[%d] != num_node_masks[%d]\n",
1176 index
, num_node_masks
);
1180 n
= &node_masks
[num_node_masks
++];
1182 n
->mask
= candidate
->mask
;
1183 n
->val
= candidate
->match
;
1185 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1186 index
, n
->mask
, n
->val
, candidate
->latency
);
1191 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1197 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1199 for_each_cpu(cpu
, &mask
)
1200 numa_cpu_lookup_table
[cpu
] = index
;
1201 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1204 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1205 for_each_cpu(cpu
, &mask
)
1210 return numa_attach_mlgroup(md
, grp
, index
);
1213 static int __init
numa_parse_mdesc(void)
1215 struct mdesc_handle
*md
= mdesc_grab();
1219 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1220 if (node
== MDESC_NODE_NULL
) {
1225 err
= grab_mblocks(md
);
1229 err
= grab_mlgroups(md
);
1234 mdesc_for_each_node_by_name(md
, node
, "group") {
1235 err
= numa_parse_mdesc_group(md
, node
, count
);
1243 for (i
= 0; i
< num_node_masks
; i
++) {
1244 allocate_node_data(i
);
1254 static int __init
numa_parse_jbus(void)
1256 unsigned long cpu
, index
;
1258 /* NUMA node id is encoded in bits 36 and higher, and there is
1259 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1262 for_each_present_cpu(cpu
) {
1263 numa_cpu_lookup_table
[cpu
] = index
;
1264 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1265 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1266 node_masks
[index
].val
= cpu
<< 36UL;
1270 num_node_masks
= index
;
1274 for (index
= 0; index
< num_node_masks
; index
++) {
1275 allocate_node_data(index
);
1276 node_set_online(index
);
1282 static int __init
numa_parse_sun4u(void)
1284 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1287 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1288 if ((ver
>> 32UL) == __JALAPENO_ID
||
1289 (ver
>> 32UL) == __SERRANO_ID
)
1290 return numa_parse_jbus();
1295 static int __init
bootmem_init_numa(void)
1299 numadbg("bootmem_init_numa()\n");
1302 if (tlb_type
== hypervisor
)
1303 err
= numa_parse_mdesc();
1305 err
= numa_parse_sun4u();
1312 static int bootmem_init_numa(void)
1319 static void __init
bootmem_init_nonnuma(void)
1321 unsigned long top_of_ram
= memblock_end_of_DRAM();
1322 unsigned long total_ram
= memblock_phys_mem_size();
1324 numadbg("bootmem_init_nonnuma()\n");
1326 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1327 top_of_ram
, total_ram
);
1328 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1329 (top_of_ram
- total_ram
) >> 20);
1331 init_node_masks_nonnuma();
1332 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, 0);
1333 allocate_node_data(0);
1337 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1339 unsigned long end_pfn
;
1341 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1342 max_pfn
= max_low_pfn
= end_pfn
;
1343 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1345 if (bootmem_init_numa() < 0)
1346 bootmem_init_nonnuma();
1348 /* Dump memblock with node info. */
1349 memblock_dump_all();
1351 /* XXX cpu notifier XXX */
1353 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1359 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1360 static int pall_ents __initdata
;
1362 #ifdef CONFIG_DEBUG_PAGEALLOC
1363 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1364 unsigned long pend
, pgprot_t prot
)
1366 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1367 unsigned long vend
= PAGE_OFFSET
+ pend
;
1368 unsigned long alloc_bytes
= 0UL;
1370 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1371 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1376 while (vstart
< vend
) {
1377 unsigned long this_end
, paddr
= __pa(vstart
);
1378 pgd_t
*pgd
= pgd_offset_k(vstart
);
1383 pud
= pud_offset(pgd
, vstart
);
1384 if (pud_none(*pud
)) {
1387 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1388 alloc_bytes
+= PAGE_SIZE
;
1389 pud_populate(&init_mm
, pud
, new);
1392 pmd
= pmd_offset(pud
, vstart
);
1393 if (!pmd_present(*pmd
)) {
1396 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1397 alloc_bytes
+= PAGE_SIZE
;
1398 pmd_populate_kernel(&init_mm
, pmd
, new);
1401 pte
= pte_offset_kernel(pmd
, vstart
);
1402 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1403 if (this_end
> vend
)
1406 while (vstart
< this_end
) {
1407 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1409 vstart
+= PAGE_SIZE
;
1418 extern unsigned int kvmap_linear_patch
[1];
1419 #endif /* CONFIG_DEBUG_PAGEALLOC */
1421 static void __init
kpte_set_val(unsigned long index
, unsigned long val
)
1423 unsigned long *ptr
= kpte_linear_bitmap
;
1425 val
<<= ((index
% (BITS_PER_LONG
/ 2)) * 2);
1426 ptr
+= (index
/ (BITS_PER_LONG
/ 2));
1431 static const unsigned long kpte_shift_min
= 28; /* 256MB */
1432 static const unsigned long kpte_shift_max
= 34; /* 16GB */
1433 static const unsigned long kpte_shift_incr
= 3;
1435 static unsigned long kpte_mark_using_shift(unsigned long start
, unsigned long end
,
1436 unsigned long shift
)
1438 unsigned long size
= (1UL << shift
);
1439 unsigned long mask
= (size
- 1UL);
1440 unsigned long remains
= end
- start
;
1443 if (remains
< size
|| (start
& mask
))
1448 * shift 28 --> kern_linear_pte_xor index 1
1449 * shift 31 --> kern_linear_pte_xor index 2
1450 * shift 34 --> kern_linear_pte_xor index 3
1452 val
= ((shift
- kpte_shift_min
) / kpte_shift_incr
) + 1;
1455 if (shift
!= kpte_shift_max
)
1459 unsigned long index
= start
>> kpte_shift_min
;
1461 kpte_set_val(index
, val
);
1463 start
+= 1UL << kpte_shift_min
;
1464 remains
-= 1UL << kpte_shift_min
;
1470 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1472 unsigned long smallest_size
, smallest_mask
;
1475 smallest_size
= (1UL << kpte_shift_min
);
1476 smallest_mask
= (smallest_size
- 1UL);
1478 while (start
< end
) {
1479 unsigned long orig_start
= start
;
1481 for (s
= kpte_shift_max
; s
>= kpte_shift_min
; s
-= kpte_shift_incr
) {
1482 start
= kpte_mark_using_shift(start
, end
, s
);
1484 if (start
!= orig_start
)
1488 if (start
== orig_start
)
1489 start
= (start
+ smallest_size
) & ~smallest_mask
;
1493 static void __init
init_kpte_bitmap(void)
1497 for (i
= 0; i
< pall_ents
; i
++) {
1498 unsigned long phys_start
, phys_end
;
1500 phys_start
= pall
[i
].phys_addr
;
1501 phys_end
= phys_start
+ pall
[i
].reg_size
;
1503 mark_kpte_bitmap(phys_start
, phys_end
);
1507 static void __init
kernel_physical_mapping_init(void)
1509 #ifdef CONFIG_DEBUG_PAGEALLOC
1510 unsigned long i
, mem_alloced
= 0UL;
1512 for (i
= 0; i
< pall_ents
; i
++) {
1513 unsigned long phys_start
, phys_end
;
1515 phys_start
= pall
[i
].phys_addr
;
1516 phys_end
= phys_start
+ pall
[i
].reg_size
;
1518 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1522 printk("Allocated %ld bytes for kernel page tables.\n",
1525 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1526 flushi(&kvmap_linear_patch
[0]);
1532 #ifdef CONFIG_DEBUG_PAGEALLOC
1533 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1535 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1536 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1538 kernel_map_range(phys_start
, phys_end
,
1539 (enable
? PAGE_KERNEL
: __pgprot(0)));
1541 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1542 PAGE_OFFSET
+ phys_end
);
1544 /* we should perform an IPI and flush all tlbs,
1545 * but that can deadlock->flush only current cpu.
1547 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1548 PAGE_OFFSET
+ phys_end
);
1552 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1556 for (i
= 0; i
< pavail_ents
; i
++) {
1557 if (pavail
[i
].reg_size
>= size
)
1558 return pavail
[i
].phys_addr
;
1564 static void __init
tsb_phys_patch(void)
1566 struct tsb_ldquad_phys_patch_entry
*pquad
;
1567 struct tsb_phys_patch_entry
*p
;
1569 pquad
= &__tsb_ldquad_phys_patch
;
1570 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1571 unsigned long addr
= pquad
->addr
;
1573 if (tlb_type
== hypervisor
)
1574 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1576 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1578 __asm__
__volatile__("flush %0"
1585 p
= &__tsb_phys_patch
;
1586 while (p
< &__tsb_phys_patch_end
) {
1587 unsigned long addr
= p
->addr
;
1589 *(unsigned int *) addr
= p
->insn
;
1591 __asm__
__volatile__("flush %0"
1599 /* Don't mark as init, we give this to the Hypervisor. */
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601 #define NUM_KTSB_DESCR 2
1603 #define NUM_KTSB_DESCR 1
1605 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1606 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1608 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
1610 pa
>>= KTSB_PHYS_SHIFT
;
1612 while (start
< end
) {
1613 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
1615 ia
[0] = (ia
[0] & ~0x3fffff) | (pa
>> 10);
1616 __asm__
__volatile__("flush %0" : : "r" (ia
));
1618 ia
[1] = (ia
[1] & ~0x3ff) | (pa
& 0x3ff);
1619 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
1625 static void ktsb_phys_patch(void)
1627 extern unsigned int __swapper_tsb_phys_patch
;
1628 extern unsigned int __swapper_tsb_phys_patch_end
;
1629 unsigned long ktsb_pa
;
1631 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1632 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
1633 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
1634 #ifndef CONFIG_DEBUG_PAGEALLOC
1636 extern unsigned int __swapper_4m_tsb_phys_patch
;
1637 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
1638 ktsb_pa
= (kern_base
+
1639 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1640 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
1641 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
1646 static void __init
sun4v_ktsb_init(void)
1648 unsigned long ktsb_pa
;
1650 /* First KTSB for PAGE_SIZE mappings. */
1651 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1653 switch (PAGE_SIZE
) {
1656 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1657 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1661 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1662 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1666 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1667 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1670 case 4 * 1024 * 1024:
1671 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1672 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1676 ktsb_descr
[0].assoc
= 1;
1677 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1678 ktsb_descr
[0].ctx_idx
= 0;
1679 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1680 ktsb_descr
[0].resv
= 0;
1682 #ifndef CONFIG_DEBUG_PAGEALLOC
1683 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1684 ktsb_pa
= (kern_base
+
1685 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1687 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1688 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
1689 HV_PGSZ_MASK_256MB
|
1691 HV_PGSZ_MASK_16GB
) &
1693 ktsb_descr
[1].assoc
= 1;
1694 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1695 ktsb_descr
[1].ctx_idx
= 0;
1696 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1697 ktsb_descr
[1].resv
= 0;
1701 void sun4v_ktsb_register(void)
1703 unsigned long pa
, ret
;
1705 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1707 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1709 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1710 "errors with %lx\n", pa
, ret
);
1715 static void __init
sun4u_linear_pte_xor_finalize(void)
1717 #ifndef CONFIG_DEBUG_PAGEALLOC
1718 /* This is where we would add Panther support for
1719 * 32MB and 256MB pages.
1724 static void __init
sun4v_linear_pte_xor_finalize(void)
1726 #ifndef CONFIG_DEBUG_PAGEALLOC
1727 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
1728 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1729 0xfffff80000000000UL
;
1730 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1731 _PAGE_P_4V
| _PAGE_W_4V
);
1733 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1736 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
1737 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
1738 0xfffff80000000000UL
;
1739 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1740 _PAGE_P_4V
| _PAGE_W_4V
);
1742 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
1745 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
1746 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
1747 0xfffff80000000000UL
;
1748 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1749 _PAGE_P_4V
| _PAGE_W_4V
);
1751 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
1756 /* paging_init() sets up the page tables */
1758 static unsigned long last_valid_pfn
;
1759 pgd_t swapper_pg_dir
[2048];
1761 static void sun4u_pgprot_init(void);
1762 static void sun4v_pgprot_init(void);
1764 void __init
paging_init(void)
1766 unsigned long end_pfn
, shift
, phys_base
;
1767 unsigned long real_end
, i
;
1770 /* These build time checkes make sure that the dcache_dirty_cpu()
1771 * page->flags usage will work.
1773 * When a page gets marked as dcache-dirty, we store the
1774 * cpu number starting at bit 32 in the page->flags. Also,
1775 * functions like clear_dcache_dirty_cpu use the cpu mask
1776 * in 13-bit signed-immediate instruction fields.
1780 * Page flags must not reach into upper 32 bits that are used
1781 * for the cpu number
1783 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1786 * The bit fields placed in the high range must not reach below
1787 * the 32 bit boundary. Otherwise we cannot place the cpu field
1788 * at the 32 bit boundary.
1790 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1791 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1793 BUILD_BUG_ON(NR_CPUS
> 4096);
1795 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1796 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1798 /* Invalidate both kernel TSBs. */
1799 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1800 #ifndef CONFIG_DEBUG_PAGEALLOC
1801 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1804 if (tlb_type
== hypervisor
)
1805 sun4v_pgprot_init();
1807 sun4u_pgprot_init();
1809 if (tlb_type
== cheetah_plus
||
1810 tlb_type
== hypervisor
) {
1815 if (tlb_type
== hypervisor
)
1816 sun4v_patch_tlb_handlers();
1818 /* Find available physical memory...
1820 * Read it twice in order to work around a bug in openfirmware.
1821 * The call to grab this table itself can cause openfirmware to
1822 * allocate memory, which in turn can take away some space from
1823 * the list of available memory. Reading it twice makes sure
1824 * we really do get the final value.
1826 read_obp_translations();
1827 read_obp_memory("reg", &pall
[0], &pall_ents
);
1828 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1829 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1831 phys_base
= 0xffffffffffffffffUL
;
1832 for (i
= 0; i
< pavail_ents
; i
++) {
1833 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1834 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1837 memblock_reserve(kern_base
, kern_size
);
1839 find_ramdisk(phys_base
);
1841 memblock_enforce_memory_limit(cmdline_memory_size
);
1843 memblock_allow_resize();
1844 memblock_dump_all();
1846 set_bit(0, mmu_context_bmap
);
1848 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1850 real_end
= (unsigned long)_end
;
1851 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1852 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1853 num_kernel_image_mappings
);
1855 /* Set kernel pgd to upper alias so physical page computations
1858 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1860 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1862 /* Now can init the kernel/bad page tables. */
1863 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1864 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1866 inherit_prom_mappings();
1870 /* Ok, we can use our TLB miss and window trap handlers safely. */
1875 prom_build_devicetree();
1876 of_populate_present_mask();
1878 of_fill_in_cpu_data();
1881 if (tlb_type
== hypervisor
) {
1883 mdesc_populate_present_mask(cpu_all_mask
);
1885 mdesc_fill_in_cpu_data(cpu_all_mask
);
1887 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
1889 sun4v_linear_pte_xor_finalize();
1892 sun4v_ktsb_register();
1894 unsigned long impl
, ver
;
1896 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
1897 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
1899 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
1900 impl
= ((ver
>> 32) & 0xffff);
1901 if (impl
== PANTHER_IMPL
)
1902 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
1903 HV_PGSZ_MASK_256MB
);
1905 sun4u_linear_pte_xor_finalize();
1908 /* Flush the TLBs and the 4M TSB so that the updated linear
1909 * pte XOR settings are realized for all mappings.
1912 #ifndef CONFIG_DEBUG_PAGEALLOC
1913 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1917 /* Setup bootmem... */
1918 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
1920 /* Once the OF device tree and MDESC have been setup, we know
1921 * the list of possible cpus. Therefore we can allocate the
1924 for_each_possible_cpu(i
) {
1925 node
= cpu_to_node(i
);
1927 softirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
1930 hardirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
1935 kernel_physical_mapping_init();
1938 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1940 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1942 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
1944 free_area_init_nodes(max_zone_pfns
);
1947 printk("Booting Linux...\n");
1950 int page_in_phys_avail(unsigned long paddr
)
1956 for (i
= 0; i
< pavail_ents
; i
++) {
1957 unsigned long start
, end
;
1959 start
= pavail
[i
].phys_addr
;
1960 end
= start
+ pavail
[i
].reg_size
;
1962 if (paddr
>= start
&& paddr
< end
)
1965 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1967 #ifdef CONFIG_BLK_DEV_INITRD
1968 if (paddr
>= __pa(initrd_start
) &&
1969 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1976 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
1977 static int pavail_rescan_ents __initdata
;
1979 /* Certain OBP calls, such as fetching "available" properties, can
1980 * claim physical memory. So, along with initializing the valid
1981 * address bitmap, what we do here is refetch the physical available
1982 * memory list again, and make sure it provides at least as much
1983 * memory as 'pavail' does.
1985 static void __init
setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap
)
1989 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1991 for (i
= 0; i
< pavail_ents
; i
++) {
1992 unsigned long old_start
, old_end
;
1994 old_start
= pavail
[i
].phys_addr
;
1995 old_end
= old_start
+ pavail
[i
].reg_size
;
1996 while (old_start
< old_end
) {
1999 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
2000 unsigned long new_start
, new_end
;
2002 new_start
= pavail_rescan
[n
].phys_addr
;
2003 new_end
= new_start
+
2004 pavail_rescan
[n
].reg_size
;
2006 if (new_start
<= old_start
&&
2007 new_end
>= (old_start
+ PAGE_SIZE
)) {
2008 set_bit(old_start
>> 22, bitmap
);
2013 prom_printf("mem_init: Lost memory in pavail\n");
2014 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2015 pavail
[i
].phys_addr
,
2016 pavail
[i
].reg_size
);
2017 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2018 pavail_rescan
[i
].phys_addr
,
2019 pavail_rescan
[i
].reg_size
);
2020 prom_printf("mem_init: Cannot continue, aborting.\n");
2024 old_start
+= PAGE_SIZE
;
2029 static void __init
patch_tlb_miss_handler_bitmap(void)
2031 extern unsigned int valid_addr_bitmap_insn
[];
2032 extern unsigned int valid_addr_bitmap_patch
[];
2034 valid_addr_bitmap_insn
[1] = valid_addr_bitmap_patch
[1];
2036 valid_addr_bitmap_insn
[0] = valid_addr_bitmap_patch
[0];
2037 flushi(&valid_addr_bitmap_insn
[0]);
2040 static void __init
register_page_bootmem_info(void)
2042 #ifdef CONFIG_NEED_MULTIPLE_NODES
2045 for_each_online_node(i
)
2046 if (NODE_DATA(i
)->node_spanned_pages
)
2047 register_page_bootmem_info_node(NODE_DATA(i
));
2050 void __init
mem_init(void)
2052 unsigned long addr
, last
;
2054 addr
= PAGE_OFFSET
+ kern_base
;
2055 last
= PAGE_ALIGN(kern_size
) + addr
;
2056 while (addr
< last
) {
2057 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
2061 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap
);
2062 patch_tlb_miss_handler_bitmap();
2064 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2066 register_page_bootmem_info();
2070 * Set up the zero page, mark it reserved, so that page count
2071 * is not manipulated when freeing the page from user ptes.
2073 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2074 if (mem_map_zero
== NULL
) {
2075 prom_printf("paging_init: Cannot alloc zero page.\n");
2078 mark_page_reserved(mem_map_zero
);
2080 mem_init_print_info(NULL
);
2082 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2083 cheetah_ecache_flush_init();
2086 void free_initmem(void)
2088 unsigned long addr
, initend
;
2091 /* If the physical memory maps were trimmed by kernel command
2092 * line options, don't even try freeing this initmem stuff up.
2093 * The kernel image could have been in the trimmed out region
2094 * and if so the freeing below will free invalid page structs.
2096 if (cmdline_memory_size
)
2100 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2102 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2103 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2104 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2108 ((unsigned long) __va(kern_base
)) -
2109 ((unsigned long) KERNBASE
));
2110 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2113 free_reserved_page(virt_to_page(page
));
2117 #ifdef CONFIG_BLK_DEV_INITRD
2118 void free_initrd_mem(unsigned long start
, unsigned long end
)
2120 free_reserved_area((void *)start
, (void *)end
, POISON_FREE_INITMEM
,
2125 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2126 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2127 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2128 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2129 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2130 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2132 pgprot_t PAGE_KERNEL __read_mostly
;
2133 EXPORT_SYMBOL(PAGE_KERNEL
);
2135 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2136 pgprot_t PAGE_COPY __read_mostly
;
2138 pgprot_t PAGE_SHARED __read_mostly
;
2139 EXPORT_SYMBOL(PAGE_SHARED
);
2141 unsigned long pg_iobits __read_mostly
;
2143 unsigned long _PAGE_IE __read_mostly
;
2144 EXPORT_SYMBOL(_PAGE_IE
);
2146 unsigned long _PAGE_E __read_mostly
;
2147 EXPORT_SYMBOL(_PAGE_E
);
2149 unsigned long _PAGE_CACHE __read_mostly
;
2150 EXPORT_SYMBOL(_PAGE_CACHE
);
2152 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2153 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2155 static long __meminitdata addr_start
, addr_end
;
2156 static int __meminitdata node_start
;
2158 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2161 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2162 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2163 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2164 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2165 unsigned long pte_base
;
2167 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2168 _PAGE_CP_4U
| _PAGE_CV_4U
|
2169 _PAGE_P_4U
| _PAGE_W_4U
);
2170 if (tlb_type
== hypervisor
)
2171 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2172 _PAGE_CP_4V
| _PAGE_CV_4V
|
2173 _PAGE_P_4V
| _PAGE_W_4V
);
2175 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2176 unsigned long *vmem_pp
=
2177 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2180 if (!(*vmem_pp
& _PAGE_VALID
)) {
2181 block
= vmemmap_alloc_block(1UL << 22, node
);
2185 *vmem_pp
= pte_base
| __pa(block
);
2187 /* check to see if we have contiguous blocks */
2188 if (addr_end
!= addr
|| node_start
!= node
) {
2190 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2191 addr_start
, addr_end
-1, node_start
);
2195 addr_end
= addr
+ VMEMMAP_CHUNK
;
2201 void __meminit
vmemmap_populate_print_last(void)
2204 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2205 addr_start
, addr_end
-1, node_start
);
2212 void vmemmap_free(unsigned long start
, unsigned long end
)
2216 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2218 static void prot_init_common(unsigned long page_none
,
2219 unsigned long page_shared
,
2220 unsigned long page_copy
,
2221 unsigned long page_readonly
,
2222 unsigned long page_exec_bit
)
2224 PAGE_COPY
= __pgprot(page_copy
);
2225 PAGE_SHARED
= __pgprot(page_shared
);
2227 protection_map
[0x0] = __pgprot(page_none
);
2228 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2229 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2230 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2231 protection_map
[0x4] = __pgprot(page_readonly
);
2232 protection_map
[0x5] = __pgprot(page_readonly
);
2233 protection_map
[0x6] = __pgprot(page_copy
);
2234 protection_map
[0x7] = __pgprot(page_copy
);
2235 protection_map
[0x8] = __pgprot(page_none
);
2236 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2237 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2238 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2239 protection_map
[0xc] = __pgprot(page_readonly
);
2240 protection_map
[0xd] = __pgprot(page_readonly
);
2241 protection_map
[0xe] = __pgprot(page_shared
);
2242 protection_map
[0xf] = __pgprot(page_shared
);
2245 static void __init
sun4u_pgprot_init(void)
2247 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2248 unsigned long page_exec_bit
;
2251 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2252 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2253 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2255 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2256 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2257 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2258 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2260 _PAGE_IE
= _PAGE_IE_4U
;
2261 _PAGE_E
= _PAGE_E_4U
;
2262 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2264 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2265 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2267 #ifdef CONFIG_DEBUG_PAGEALLOC
2268 kern_linear_pte_xor
[0] = _PAGE_VALID
^ 0xfffff80000000000UL
;
2270 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2271 0xfffff80000000000UL
;
2273 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2274 _PAGE_P_4U
| _PAGE_W_4U
);
2276 for (i
= 1; i
< 4; i
++)
2277 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2279 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2280 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2281 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2284 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2285 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2286 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2287 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2288 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2289 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2290 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2292 page_exec_bit
= _PAGE_EXEC_4U
;
2294 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2298 static void __init
sun4v_pgprot_init(void)
2300 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2301 unsigned long page_exec_bit
;
2304 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2305 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2306 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2308 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2310 _PAGE_IE
= _PAGE_IE_4V
;
2311 _PAGE_E
= _PAGE_E_4V
;
2312 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2314 #ifdef CONFIG_DEBUG_PAGEALLOC
2315 kern_linear_pte_xor
[0] = _PAGE_VALID
^ 0xfffff80000000000UL
;
2317 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2318 0xfffff80000000000UL
;
2320 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2321 _PAGE_P_4V
| _PAGE_W_4V
);
2323 for (i
= 1; i
< 4; i
++)
2324 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2326 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2327 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2329 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2330 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2331 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2332 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2334 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2335 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2336 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2337 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2338 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2339 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2340 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2342 page_exec_bit
= _PAGE_EXEC_4V
;
2344 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2348 unsigned long pte_sz_bits(unsigned long sz
)
2350 if (tlb_type
== hypervisor
) {
2354 return _PAGE_SZ8K_4V
;
2356 return _PAGE_SZ64K_4V
;
2358 return _PAGE_SZ512K_4V
;
2359 case 4 * 1024 * 1024:
2360 return _PAGE_SZ4MB_4V
;
2366 return _PAGE_SZ8K_4U
;
2368 return _PAGE_SZ64K_4U
;
2370 return _PAGE_SZ512K_4U
;
2371 case 4 * 1024 * 1024:
2372 return _PAGE_SZ4MB_4U
;
2377 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2381 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2382 pte_val(pte
) |= (((unsigned long)space
) << 32);
2383 pte_val(pte
) |= pte_sz_bits(page_size
);
2388 static unsigned long kern_large_tte(unsigned long paddr
)
2392 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2393 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2394 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2395 if (tlb_type
== hypervisor
)
2396 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2397 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2398 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2403 /* If not locked, zap it. */
2404 void __flush_tlb_all(void)
2406 unsigned long pstate
;
2409 __asm__
__volatile__("flushw\n\t"
2410 "rdpr %%pstate, %0\n\t"
2411 "wrpr %0, %1, %%pstate"
2414 if (tlb_type
== hypervisor
) {
2415 sun4v_mmu_demap_all();
2416 } else if (tlb_type
== spitfire
) {
2417 for (i
= 0; i
< 64; i
++) {
2418 /* Spitfire Errata #32 workaround */
2419 /* NOTE: Always runs on spitfire, so no
2420 * cheetah+ page size encodings.
2422 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2426 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2428 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2429 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2432 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2433 spitfire_put_dtlb_data(i
, 0x0UL
);
2436 /* Spitfire Errata #32 workaround */
2437 /* NOTE: Always runs on spitfire, so no
2438 * cheetah+ page size encodings.
2440 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2444 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2446 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2447 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2450 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2451 spitfire_put_itlb_data(i
, 0x0UL
);
2454 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2455 cheetah_flush_dtlb_all();
2456 cheetah_flush_itlb_all();
2458 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2462 static pte_t
*get_from_cache(struct mm_struct
*mm
)
2467 spin_lock(&mm
->page_table_lock
);
2468 page
= mm
->context
.pgtable_page
;
2471 void *p
= page_address(page
);
2473 mm
->context
.pgtable_page
= NULL
;
2475 ret
= (pte_t
*) (p
+ (PAGE_SIZE
/ 2));
2477 spin_unlock(&mm
->page_table_lock
);
2482 static struct page
*__alloc_for_cache(struct mm_struct
*mm
)
2484 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
2485 __GFP_REPEAT
| __GFP_ZERO
);
2488 spin_lock(&mm
->page_table_lock
);
2489 if (!mm
->context
.pgtable_page
) {
2490 atomic_set(&page
->_count
, 2);
2491 mm
->context
.pgtable_page
= page
;
2493 spin_unlock(&mm
->page_table_lock
);
2498 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
,
2499 unsigned long address
)
2504 pte
= get_from_cache(mm
);
2508 page
= __alloc_for_cache(mm
);
2510 pte
= (pte_t
*) page_address(page
);
2515 pgtable_t
pte_alloc_one(struct mm_struct
*mm
,
2516 unsigned long address
)
2521 pte
= get_from_cache(mm
);
2525 page
= __alloc_for_cache(mm
);
2527 pgtable_page_ctor(page
);
2528 pte
= (pte_t
*) page_address(page
);
2534 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2536 struct page
*page
= virt_to_page(pte
);
2537 if (put_page_testzero(page
))
2538 free_hot_cold_page(page
, 0);
2541 static void __pte_free(pgtable_t pte
)
2543 struct page
*page
= virt_to_page(pte
);
2544 if (put_page_testzero(page
)) {
2545 pgtable_page_dtor(page
);
2546 free_hot_cold_page(page
, 0);
2550 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2555 void pgtable_free(void *table
, bool is_page
)
2560 kmem_cache_free(pgtable_cache
, table
);
2563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564 static pmd_t
pmd_set_protbits(pmd_t pmd
, pgprot_t pgprot
, bool for_modify
)
2566 if (pgprot_val(pgprot
) & _PAGE_VALID
)
2567 pmd_val(pmd
) |= PMD_HUGE_PRESENT
;
2568 if (tlb_type
== hypervisor
) {
2569 if (pgprot_val(pgprot
) & _PAGE_WRITE_4V
)
2570 pmd_val(pmd
) |= PMD_HUGE_WRITE
;
2571 if (pgprot_val(pgprot
) & _PAGE_EXEC_4V
)
2572 pmd_val(pmd
) |= PMD_HUGE_EXEC
;
2575 if (pgprot_val(pgprot
) & _PAGE_ACCESSED_4V
)
2576 pmd_val(pmd
) |= PMD_HUGE_ACCESSED
;
2577 if (pgprot_val(pgprot
) & _PAGE_MODIFIED_4V
)
2578 pmd_val(pmd
) |= PMD_HUGE_DIRTY
;
2581 if (pgprot_val(pgprot
) & _PAGE_WRITE_4U
)
2582 pmd_val(pmd
) |= PMD_HUGE_WRITE
;
2583 if (pgprot_val(pgprot
) & _PAGE_EXEC_4U
)
2584 pmd_val(pmd
) |= PMD_HUGE_EXEC
;
2587 if (pgprot_val(pgprot
) & _PAGE_ACCESSED_4U
)
2588 pmd_val(pmd
) |= PMD_HUGE_ACCESSED
;
2589 if (pgprot_val(pgprot
) & _PAGE_MODIFIED_4U
)
2590 pmd_val(pmd
) |= PMD_HUGE_DIRTY
;
2597 pmd_t
pfn_pmd(unsigned long page_nr
, pgprot_t pgprot
)
2601 pmd_val(pmd
) = (page_nr
<< ((PAGE_SHIFT
- PMD_PADDR_SHIFT
)));
2602 pmd_val(pmd
) |= PMD_ISHUGE
;
2603 pmd
= pmd_set_protbits(pmd
, pgprot
, false);
2607 pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
2609 pmd_val(pmd
) &= ~(PMD_HUGE_PRESENT
|
2612 pmd
= pmd_set_protbits(pmd
, newprot
, true);
2616 pgprot_t
pmd_pgprot(pmd_t entry
)
2618 unsigned long pte
= 0;
2620 if (pmd_val(entry
) & PMD_HUGE_PRESENT
)
2623 if (tlb_type
== hypervisor
) {
2624 if (pmd_val(entry
) & PMD_HUGE_PRESENT
)
2625 pte
|= _PAGE_PRESENT_4V
;
2626 if (pmd_val(entry
) & PMD_HUGE_EXEC
)
2627 pte
|= _PAGE_EXEC_4V
;
2628 if (pmd_val(entry
) & PMD_HUGE_WRITE
)
2630 if (pmd_val(entry
) & PMD_HUGE_ACCESSED
)
2631 pte
|= _PAGE_ACCESSED_4V
;
2632 if (pmd_val(entry
) & PMD_HUGE_DIRTY
)
2633 pte
|= _PAGE_MODIFIED_4V
;
2634 pte
|= _PAGE_CP_4V
|_PAGE_CV_4V
;
2636 if (pmd_val(entry
) & PMD_HUGE_PRESENT
)
2637 pte
|= _PAGE_PRESENT_4U
;
2638 if (pmd_val(entry
) & PMD_HUGE_EXEC
)
2639 pte
|= _PAGE_EXEC_4U
;
2640 if (pmd_val(entry
) & PMD_HUGE_WRITE
)
2642 if (pmd_val(entry
) & PMD_HUGE_ACCESSED
)
2643 pte
|= _PAGE_ACCESSED_4U
;
2644 if (pmd_val(entry
) & PMD_HUGE_DIRTY
)
2645 pte
|= _PAGE_MODIFIED_4U
;
2646 pte
|= _PAGE_CP_4U
|_PAGE_CV_4U
;
2649 return __pgprot(pte
);
2652 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2655 unsigned long pte
, flags
;
2656 struct mm_struct
*mm
;
2660 if (!pmd_large(entry
) || !pmd_young(entry
))
2663 pte
= (pmd_val(entry
) & ~PMD_HUGE_PROTBITS
);
2664 pte
<<= PMD_PADDR_SHIFT
;
2667 prot
= pmd_pgprot(entry
);
2669 if (tlb_type
== hypervisor
)
2670 pgprot_val(prot
) |= _PAGE_SZHUGE_4V
;
2672 pgprot_val(prot
) |= _PAGE_SZHUGE_4U
;
2674 pte
|= pgprot_val(prot
);
2678 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2680 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2681 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, HPAGE_SHIFT
,
2684 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2688 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2689 static void context_reload(void *__data
)
2691 struct mm_struct
*mm
= __data
;
2693 if (mm
== current
->mm
)
2694 load_secondary_context(mm
);
2697 void hugetlb_setup(struct pt_regs
*regs
)
2699 struct mm_struct
*mm
= current
->mm
;
2700 struct tsb_config
*tp
;
2702 if (in_atomic() || !mm
) {
2703 const struct exception_table_entry
*entry
;
2705 entry
= search_exception_tables(regs
->tpc
);
2707 regs
->tpc
= entry
->fixup
;
2708 regs
->tnpc
= regs
->tpc
+ 4;
2711 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2712 die_if_kernel("HugeTSB in atomic", regs
);
2715 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
2716 if (likely(tp
->tsb
== NULL
))
2717 tsb_grow(mm
, MM_TSB_HUGE
, 0);
2719 tsb_context_switch(mm
);
2722 /* On UltraSPARC-III+ and later, configure the second half of
2723 * the Data-TLB for huge pages.
2725 if (tlb_type
== cheetah_plus
) {
2728 spin_lock(&ctx_alloc_lock
);
2729 ctx
= mm
->context
.sparc64_ctx_val
;
2730 ctx
&= ~CTX_PGSZ_MASK
;
2731 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
2732 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
2734 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
2735 /* When changing the page size fields, we
2736 * must perform a context flush so that no
2737 * stale entries match. This flush must
2738 * occur with the original context register
2741 do_flush_tlb_mm(mm
);
2743 /* Reload the context register of all processors
2744 * also executing in this address space.
2746 mm
->context
.sparc64_ctx_val
= ctx
;
2747 on_each_cpu(context_reload
, mm
, 0);
2749 spin_unlock(&ctx_alloc_lock
);
2755 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2757 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2760 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
2762 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
2763 if (start
< LOW_OBP_ADDRESS
) {
2764 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
2765 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
2767 if (end
> HI_OBP_ADDRESS
) {
2768 flush_tsb_kernel_range(end
, HI_OBP_ADDRESS
);
2769 do_flush_tlb_kernel_range(end
, HI_OBP_ADDRESS
);
2772 flush_tsb_kernel_range(start
, end
);
2773 do_flush_tlb_kernel_range(start
, end
);