Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_si_intf.c
blobf124a2d2bb9f536664d06f4b72172d15a57d328c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_si.c
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
22 #define pr_fmt(fmt) "ipmi_si: " fmt
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include <linux/string.h>
44 #include <linux/ctype.h>
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC 10000
51 #define SI_USEC_PER_JIFFY (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
54 short timeout */
56 enum si_intf_state {
57 SI_NORMAL,
58 SI_GETTING_FLAGS,
59 SI_GETTING_EVENTS,
60 SI_CLEARING_FLAGS,
61 SI_GETTING_MESSAGES,
62 SI_CHECKING_ENABLES,
63 SI_SETTING_ENABLES
64 /* FIXME - add watchdog stuff. */
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG 2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
74 static int initialized;
77 * Indexes into stats[] in smi_info below.
79 enum si_stat_indexes {
81 * Number of times the driver requested a timer while an operation
82 * was in progress.
84 SI_STAT_short_timeouts = 0,
87 * Number of times the driver requested a timer while nothing was in
88 * progress.
90 SI_STAT_long_timeouts,
92 /* Number of times the interface was idle while being polled. */
93 SI_STAT_idles,
95 /* Number of interrupts the driver handled. */
96 SI_STAT_interrupts,
98 /* Number of time the driver got an ATTN from the hardware. */
99 SI_STAT_attentions,
101 /* Number of times the driver requested flags from the hardware. */
102 SI_STAT_flag_fetches,
104 /* Number of times the hardware didn't follow the state machine. */
105 SI_STAT_hosed_count,
107 /* Number of completed messages. */
108 SI_STAT_complete_transactions,
110 /* Number of IPMI events received from the hardware. */
111 SI_STAT_events,
113 /* Number of watchdog pretimeouts. */
114 SI_STAT_watchdog_pretimeouts,
116 /* Number of asynchronous messages received. */
117 SI_STAT_incoming_messages,
120 /* This *must* remain last, add new values above this. */
121 SI_NUM_STATS
124 struct smi_info {
125 int si_num;
126 struct ipmi_smi *intf;
127 struct si_sm_data *si_sm;
128 const struct si_sm_handlers *handlers;
129 spinlock_t si_lock;
130 struct ipmi_smi_msg *waiting_msg;
131 struct ipmi_smi_msg *curr_msg;
132 enum si_intf_state si_state;
135 * Used to handle the various types of I/O that can occur with
136 * IPMI
138 struct si_sm_io io;
141 * Per-OEM handler, called from handle_flags(). Returns 1
142 * when handle_flags() needs to be re-run or 0 indicating it
143 * set si_state itself.
145 int (*oem_data_avail_handler)(struct smi_info *smi_info);
148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 * is set to hold the flags until we are done handling everything
150 * from the flags.
152 #define RECEIVE_MSG_AVAIL 0x01
153 #define EVENT_MSG_BUFFER_FULL 0x02
154 #define WDT_PRE_TIMEOUT_INT 0x08
155 #define OEM0_DATA_AVAIL 0x20
156 #define OEM1_DATA_AVAIL 0x40
157 #define OEM2_DATA_AVAIL 0x80
158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
159 OEM1_DATA_AVAIL | \
160 OEM2_DATA_AVAIL)
161 unsigned char msg_flags;
163 /* Does the BMC have an event buffer? */
164 bool has_event_buffer;
167 * If set to true, this will request events the next time the
168 * state machine is idle.
170 atomic_t req_events;
173 * If true, run the state machine to completion on every send
174 * call. Generally used after a panic to make sure stuff goes
175 * out.
177 bool run_to_completion;
179 /* The timer for this si. */
180 struct timer_list si_timer;
182 /* This flag is set, if the timer can be set */
183 bool timer_can_start;
185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
186 bool timer_running;
188 /* The time (in jiffies) the last timeout occurred at. */
189 unsigned long last_timeout_jiffies;
191 /* Are we waiting for the events, pretimeouts, received msgs? */
192 atomic_t need_watch;
195 * The driver will disable interrupts when it gets into a
196 * situation where it cannot handle messages due to lack of
197 * memory. Once that situation clears up, it will re-enable
198 * interrupts.
200 bool interrupt_disabled;
203 * Does the BMC support events?
205 bool supports_event_msg_buff;
208 * Can we disable interrupts the global enables receive irq
209 * bit? There are currently two forms of brokenness, some
210 * systems cannot disable the bit (which is technically within
211 * the spec but a bad idea) and some systems have the bit
212 * forced to zero even though interrupts work (which is
213 * clearly outside the spec). The next bool tells which form
214 * of brokenness is present.
216 bool cannot_disable_irq;
219 * Some systems are broken and cannot set the irq enable
220 * bit, even if they support interrupts.
222 bool irq_enable_broken;
225 * Did we get an attention that we did not handle?
227 bool got_attn;
229 /* From the get device id response... */
230 struct ipmi_device_id device_id;
232 /* Have we added the device group to the device? */
233 bool dev_group_added;
235 /* Counters and things for the proc filesystem. */
236 atomic_t stats[SI_NUM_STATS];
238 struct task_struct *thread;
240 struct list_head link;
243 #define smi_inc_stat(smi, stat) \
244 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
245 #define smi_get_stat(smi, stat) \
246 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
248 #define IPMI_MAX_INTFS 4
249 static int force_kipmid[IPMI_MAX_INTFS];
250 static int num_force_kipmid;
252 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
253 static int num_max_busy_us;
255 static bool unload_when_empty = true;
257 static int try_smi_init(struct smi_info *smi);
258 static void cleanup_one_si(struct smi_info *smi_info);
259 static void cleanup_ipmi_si(void);
261 #ifdef DEBUG_TIMING
262 void debug_timestamp(char *msg)
264 struct timespec64 t;
266 ktime_get_ts64(&t);
267 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
269 #else
270 #define debug_timestamp(x)
271 #endif
273 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
274 static int register_xaction_notifier(struct notifier_block *nb)
276 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
279 static void deliver_recv_msg(struct smi_info *smi_info,
280 struct ipmi_smi_msg *msg)
282 /* Deliver the message to the upper layer. */
283 ipmi_smi_msg_received(smi_info->intf, msg);
286 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
288 struct ipmi_smi_msg *msg = smi_info->curr_msg;
290 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
291 cCode = IPMI_ERR_UNSPECIFIED;
292 /* else use it as is */
294 /* Make it a response */
295 msg->rsp[0] = msg->data[0] | 4;
296 msg->rsp[1] = msg->data[1];
297 msg->rsp[2] = cCode;
298 msg->rsp_size = 3;
300 smi_info->curr_msg = NULL;
301 deliver_recv_msg(smi_info, msg);
304 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
306 int rv;
308 if (!smi_info->waiting_msg) {
309 smi_info->curr_msg = NULL;
310 rv = SI_SM_IDLE;
311 } else {
312 int err;
314 smi_info->curr_msg = smi_info->waiting_msg;
315 smi_info->waiting_msg = NULL;
316 debug_timestamp("Start2");
317 err = atomic_notifier_call_chain(&xaction_notifier_list,
318 0, smi_info);
319 if (err & NOTIFY_STOP_MASK) {
320 rv = SI_SM_CALL_WITHOUT_DELAY;
321 goto out;
323 err = smi_info->handlers->start_transaction(
324 smi_info->si_sm,
325 smi_info->curr_msg->data,
326 smi_info->curr_msg->data_size);
327 if (err)
328 return_hosed_msg(smi_info, err);
330 rv = SI_SM_CALL_WITHOUT_DELAY;
332 out:
333 return rv;
336 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
338 if (!smi_info->timer_can_start)
339 return;
340 smi_info->last_timeout_jiffies = jiffies;
341 mod_timer(&smi_info->si_timer, new_val);
342 smi_info->timer_running = true;
346 * Start a new message and (re)start the timer and thread.
348 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
349 unsigned int size)
351 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
353 if (smi_info->thread)
354 wake_up_process(smi_info->thread);
356 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
359 static void start_check_enables(struct smi_info *smi_info)
361 unsigned char msg[2];
363 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
364 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
366 start_new_msg(smi_info, msg, 2);
367 smi_info->si_state = SI_CHECKING_ENABLES;
370 static void start_clear_flags(struct smi_info *smi_info)
372 unsigned char msg[3];
374 /* Make sure the watchdog pre-timeout flag is not set at startup. */
375 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
376 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
377 msg[2] = WDT_PRE_TIMEOUT_INT;
379 start_new_msg(smi_info, msg, 3);
380 smi_info->si_state = SI_CLEARING_FLAGS;
383 static void start_getting_msg_queue(struct smi_info *smi_info)
385 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
387 smi_info->curr_msg->data_size = 2;
389 start_new_msg(smi_info, smi_info->curr_msg->data,
390 smi_info->curr_msg->data_size);
391 smi_info->si_state = SI_GETTING_MESSAGES;
394 static void start_getting_events(struct smi_info *smi_info)
396 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
397 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
398 smi_info->curr_msg->data_size = 2;
400 start_new_msg(smi_info, smi_info->curr_msg->data,
401 smi_info->curr_msg->data_size);
402 smi_info->si_state = SI_GETTING_EVENTS;
406 * When we have a situtaion where we run out of memory and cannot
407 * allocate messages, we just leave them in the BMC and run the system
408 * polled until we can allocate some memory. Once we have some
409 * memory, we will re-enable the interrupt.
411 * Note that we cannot just use disable_irq(), since the interrupt may
412 * be shared.
414 static inline bool disable_si_irq(struct smi_info *smi_info)
416 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
417 smi_info->interrupt_disabled = true;
418 start_check_enables(smi_info);
419 return true;
421 return false;
424 static inline bool enable_si_irq(struct smi_info *smi_info)
426 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
427 smi_info->interrupt_disabled = false;
428 start_check_enables(smi_info);
429 return true;
431 return false;
435 * Allocate a message. If unable to allocate, start the interrupt
436 * disable process and return NULL. If able to allocate but
437 * interrupts are disabled, free the message and return NULL after
438 * starting the interrupt enable process.
440 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
442 struct ipmi_smi_msg *msg;
444 msg = ipmi_alloc_smi_msg();
445 if (!msg) {
446 if (!disable_si_irq(smi_info))
447 smi_info->si_state = SI_NORMAL;
448 } else if (enable_si_irq(smi_info)) {
449 ipmi_free_smi_msg(msg);
450 msg = NULL;
452 return msg;
455 static void handle_flags(struct smi_info *smi_info)
457 retry:
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
468 if (!smi_info->curr_msg)
469 return;
471 start_getting_msg_queue(smi_info);
472 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
473 /* Events available. */
474 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
475 if (!smi_info->curr_msg)
476 return;
478 start_getting_events(smi_info);
479 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
480 smi_info->oem_data_avail_handler) {
481 if (smi_info->oem_data_avail_handler(smi_info))
482 goto retry;
483 } else
484 smi_info->si_state = SI_NORMAL;
488 * Global enables we care about.
490 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
491 IPMI_BMC_EVT_MSG_INTR)
493 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
494 bool *irq_on)
496 u8 enables = 0;
498 if (smi_info->supports_event_msg_buff)
499 enables |= IPMI_BMC_EVT_MSG_BUFF;
501 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
502 smi_info->cannot_disable_irq) &&
503 !smi_info->irq_enable_broken)
504 enables |= IPMI_BMC_RCV_MSG_INTR;
506 if (smi_info->supports_event_msg_buff &&
507 smi_info->io.irq && !smi_info->interrupt_disabled &&
508 !smi_info->irq_enable_broken)
509 enables |= IPMI_BMC_EVT_MSG_INTR;
511 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
513 return enables;
516 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
518 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
520 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
522 if ((bool)irqstate == irq_on)
523 return;
525 if (irq_on)
526 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
527 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
528 else
529 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
532 static void handle_transaction_done(struct smi_info *smi_info)
534 struct ipmi_smi_msg *msg;
536 debug_timestamp("Done");
537 switch (smi_info->si_state) {
538 case SI_NORMAL:
539 if (!smi_info->curr_msg)
540 break;
542 smi_info->curr_msg->rsp_size
543 = smi_info->handlers->get_result(
544 smi_info->si_sm,
545 smi_info->curr_msg->rsp,
546 IPMI_MAX_MSG_LENGTH);
549 * Do this here becase deliver_recv_msg() releases the
550 * lock, and a new message can be put in during the
551 * time the lock is released.
553 msg = smi_info->curr_msg;
554 smi_info->curr_msg = NULL;
555 deliver_recv_msg(smi_info, msg);
556 break;
558 case SI_GETTING_FLAGS:
560 unsigned char msg[4];
561 unsigned int len;
563 /* We got the flags from the SMI, now handle them. */
564 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
565 if (msg[2] != 0) {
566 /* Error fetching flags, just give up for now. */
567 smi_info->si_state = SI_NORMAL;
568 } else if (len < 4) {
570 * Hmm, no flags. That's technically illegal, but
571 * don't use uninitialized data.
573 smi_info->si_state = SI_NORMAL;
574 } else {
575 smi_info->msg_flags = msg[3];
576 handle_flags(smi_info);
578 break;
581 case SI_CLEARING_FLAGS:
583 unsigned char msg[3];
585 /* We cleared the flags. */
586 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
587 if (msg[2] != 0) {
588 /* Error clearing flags */
589 dev_warn(smi_info->io.dev,
590 "Error clearing flags: %2.2x\n", msg[2]);
592 smi_info->si_state = SI_NORMAL;
593 break;
596 case SI_GETTING_EVENTS:
598 smi_info->curr_msg->rsp_size
599 = smi_info->handlers->get_result(
600 smi_info->si_sm,
601 smi_info->curr_msg->rsp,
602 IPMI_MAX_MSG_LENGTH);
605 * Do this here becase deliver_recv_msg() releases the
606 * lock, and a new message can be put in during the
607 * time the lock is released.
609 msg = smi_info->curr_msg;
610 smi_info->curr_msg = NULL;
611 if (msg->rsp[2] != 0) {
612 /* Error getting event, probably done. */
613 msg->done(msg);
615 /* Take off the event flag. */
616 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
617 handle_flags(smi_info);
618 } else {
619 smi_inc_stat(smi_info, events);
622 * Do this before we deliver the message
623 * because delivering the message releases the
624 * lock and something else can mess with the
625 * state.
627 handle_flags(smi_info);
629 deliver_recv_msg(smi_info, msg);
631 break;
634 case SI_GETTING_MESSAGES:
636 smi_info->curr_msg->rsp_size
637 = smi_info->handlers->get_result(
638 smi_info->si_sm,
639 smi_info->curr_msg->rsp,
640 IPMI_MAX_MSG_LENGTH);
643 * Do this here becase deliver_recv_msg() releases the
644 * lock, and a new message can be put in during the
645 * time the lock is released.
647 msg = smi_info->curr_msg;
648 smi_info->curr_msg = NULL;
649 if (msg->rsp[2] != 0) {
650 /* Error getting event, probably done. */
651 msg->done(msg);
653 /* Take off the msg flag. */
654 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
655 handle_flags(smi_info);
656 } else {
657 smi_inc_stat(smi_info, incoming_messages);
660 * Do this before we deliver the message
661 * because delivering the message releases the
662 * lock and something else can mess with the
663 * state.
665 handle_flags(smi_info);
667 deliver_recv_msg(smi_info, msg);
669 break;
672 case SI_CHECKING_ENABLES:
674 unsigned char msg[4];
675 u8 enables;
676 bool irq_on;
678 /* We got the flags from the SMI, now handle them. */
679 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
680 if (msg[2] != 0) {
681 dev_warn(smi_info->io.dev,
682 "Couldn't get irq info: %x.\n", msg[2]);
683 dev_warn(smi_info->io.dev,
684 "Maybe ok, but ipmi might run very slowly.\n");
685 smi_info->si_state = SI_NORMAL;
686 break;
688 enables = current_global_enables(smi_info, 0, &irq_on);
689 if (smi_info->io.si_type == SI_BT)
690 /* BT has its own interrupt enable bit. */
691 check_bt_irq(smi_info, irq_on);
692 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
693 /* Enables are not correct, fix them. */
694 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
695 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
696 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
697 smi_info->handlers->start_transaction(
698 smi_info->si_sm, msg, 3);
699 smi_info->si_state = SI_SETTING_ENABLES;
700 } else if (smi_info->supports_event_msg_buff) {
701 smi_info->curr_msg = ipmi_alloc_smi_msg();
702 if (!smi_info->curr_msg) {
703 smi_info->si_state = SI_NORMAL;
704 break;
706 start_getting_events(smi_info);
707 } else {
708 smi_info->si_state = SI_NORMAL;
710 break;
713 case SI_SETTING_ENABLES:
715 unsigned char msg[4];
717 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
718 if (msg[2] != 0)
719 dev_warn(smi_info->io.dev,
720 "Could not set the global enables: 0x%x.\n",
721 msg[2]);
723 if (smi_info->supports_event_msg_buff) {
724 smi_info->curr_msg = ipmi_alloc_smi_msg();
725 if (!smi_info->curr_msg) {
726 smi_info->si_state = SI_NORMAL;
727 break;
729 start_getting_events(smi_info);
730 } else {
731 smi_info->si_state = SI_NORMAL;
733 break;
739 * Called on timeouts and events. Timeouts should pass the elapsed
740 * time, interrupts should pass in zero. Must be called with
741 * si_lock held and interrupts disabled.
743 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
744 int time)
746 enum si_sm_result si_sm_result;
748 restart:
750 * There used to be a loop here that waited a little while
751 * (around 25us) before giving up. That turned out to be
752 * pointless, the minimum delays I was seeing were in the 300us
753 * range, which is far too long to wait in an interrupt. So
754 * we just run until the state machine tells us something
755 * happened or it needs a delay.
757 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
758 time = 0;
759 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
760 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
762 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
763 smi_inc_stat(smi_info, complete_transactions);
765 handle_transaction_done(smi_info);
766 goto restart;
767 } else if (si_sm_result == SI_SM_HOSED) {
768 smi_inc_stat(smi_info, hosed_count);
771 * Do the before return_hosed_msg, because that
772 * releases the lock.
774 smi_info->si_state = SI_NORMAL;
775 if (smi_info->curr_msg != NULL) {
777 * If we were handling a user message, format
778 * a response to send to the upper layer to
779 * tell it about the error.
781 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
783 goto restart;
787 * We prefer handling attn over new messages. But don't do
788 * this if there is not yet an upper layer to handle anything.
790 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
791 unsigned char msg[2];
793 if (smi_info->si_state != SI_NORMAL) {
795 * We got an ATTN, but we are doing something else.
796 * Handle the ATTN later.
798 smi_info->got_attn = true;
799 } else {
800 smi_info->got_attn = false;
801 smi_inc_stat(smi_info, attentions);
804 * Got a attn, send down a get message flags to see
805 * what's causing it. It would be better to handle
806 * this in the upper layer, but due to the way
807 * interrupts work with the SMI, that's not really
808 * possible.
810 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
811 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
813 start_new_msg(smi_info, msg, 2);
814 smi_info->si_state = SI_GETTING_FLAGS;
815 goto restart;
819 /* If we are currently idle, try to start the next message. */
820 if (si_sm_result == SI_SM_IDLE) {
821 smi_inc_stat(smi_info, idles);
823 si_sm_result = start_next_msg(smi_info);
824 if (si_sm_result != SI_SM_IDLE)
825 goto restart;
828 if ((si_sm_result == SI_SM_IDLE)
829 && (atomic_read(&smi_info->req_events))) {
831 * We are idle and the upper layer requested that I fetch
832 * events, so do so.
834 atomic_set(&smi_info->req_events, 0);
837 * Take this opportunity to check the interrupt and
838 * message enable state for the BMC. The BMC can be
839 * asynchronously reset, and may thus get interrupts
840 * disable and messages disabled.
842 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
843 start_check_enables(smi_info);
844 } else {
845 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
846 if (!smi_info->curr_msg)
847 goto out;
849 start_getting_events(smi_info);
851 goto restart;
854 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
855 /* Ok it if fails, the timer will just go off. */
856 if (del_timer(&smi_info->si_timer))
857 smi_info->timer_running = false;
860 out:
861 return si_sm_result;
864 static void check_start_timer_thread(struct smi_info *smi_info)
866 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
867 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
869 if (smi_info->thread)
870 wake_up_process(smi_info->thread);
872 start_next_msg(smi_info);
873 smi_event_handler(smi_info, 0);
877 static void flush_messages(void *send_info)
879 struct smi_info *smi_info = send_info;
880 enum si_sm_result result;
883 * Currently, this function is called only in run-to-completion
884 * mode. This means we are single-threaded, no need for locks.
886 result = smi_event_handler(smi_info, 0);
887 while (result != SI_SM_IDLE) {
888 udelay(SI_SHORT_TIMEOUT_USEC);
889 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
893 static void sender(void *send_info,
894 struct ipmi_smi_msg *msg)
896 struct smi_info *smi_info = send_info;
897 unsigned long flags;
899 debug_timestamp("Enqueue");
901 if (smi_info->run_to_completion) {
903 * If we are running to completion, start it. Upper
904 * layer will call flush_messages to clear it out.
906 smi_info->waiting_msg = msg;
907 return;
910 spin_lock_irqsave(&smi_info->si_lock, flags);
912 * The following two lines don't need to be under the lock for
913 * the lock's sake, but they do need SMP memory barriers to
914 * avoid getting things out of order. We are already claiming
915 * the lock, anyway, so just do it under the lock to avoid the
916 * ordering problem.
918 BUG_ON(smi_info->waiting_msg);
919 smi_info->waiting_msg = msg;
920 check_start_timer_thread(smi_info);
921 spin_unlock_irqrestore(&smi_info->si_lock, flags);
924 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
926 struct smi_info *smi_info = send_info;
928 smi_info->run_to_completion = i_run_to_completion;
929 if (i_run_to_completion)
930 flush_messages(smi_info);
934 * Use -1 in the nsec value of the busy waiting timespec to tell that
935 * we are spinning in kipmid looking for something and not delaying
936 * between checks
938 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
940 ts->tv_nsec = -1;
942 static inline int ipmi_si_is_busy(struct timespec64 *ts)
944 return ts->tv_nsec != -1;
947 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
948 const struct smi_info *smi_info,
949 struct timespec64 *busy_until)
951 unsigned int max_busy_us = 0;
953 if (smi_info->si_num < num_max_busy_us)
954 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
955 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
956 ipmi_si_set_not_busy(busy_until);
957 else if (!ipmi_si_is_busy(busy_until)) {
958 ktime_get_ts64(busy_until);
959 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
960 } else {
961 struct timespec64 now;
963 ktime_get_ts64(&now);
964 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
965 ipmi_si_set_not_busy(busy_until);
966 return 0;
969 return 1;
974 * A busy-waiting loop for speeding up IPMI operation.
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
982 static int ipmi_thread(void *data)
984 struct smi_info *smi_info = data;
985 unsigned long flags;
986 enum si_sm_result smi_result;
987 struct timespec64 busy_until;
989 ipmi_si_set_not_busy(&busy_until);
990 set_user_nice(current, MAX_NICE);
991 while (!kthread_should_stop()) {
992 int busy_wait;
994 spin_lock_irqsave(&(smi_info->si_lock), flags);
995 smi_result = smi_event_handler(smi_info, 0);
998 * If the driver is doing something, there is a possible
999 * race with the timer. If the timer handler see idle,
1000 * and the thread here sees something else, the timer
1001 * handler won't restart the timer even though it is
1002 * required. So start it here if necessary.
1004 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1005 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1007 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1008 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1009 &busy_until);
1010 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1011 ; /* do nothing */
1012 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1013 schedule();
1014 else if (smi_result == SI_SM_IDLE) {
1015 if (atomic_read(&smi_info->need_watch)) {
1016 schedule_timeout_interruptible(100);
1017 } else {
1018 /* Wait to be woken up when we are needed. */
1019 __set_current_state(TASK_INTERRUPTIBLE);
1020 schedule();
1022 } else
1023 schedule_timeout_interruptible(1);
1025 return 0;
1029 static void poll(void *send_info)
1031 struct smi_info *smi_info = send_info;
1032 unsigned long flags = 0;
1033 bool run_to_completion = smi_info->run_to_completion;
1036 * Make sure there is some delay in the poll loop so we can
1037 * drive time forward and timeout things.
1039 udelay(10);
1040 if (!run_to_completion)
1041 spin_lock_irqsave(&smi_info->si_lock, flags);
1042 smi_event_handler(smi_info, 10);
1043 if (!run_to_completion)
1044 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047 static void request_events(void *send_info)
1049 struct smi_info *smi_info = send_info;
1051 if (!smi_info->has_event_buffer)
1052 return;
1054 atomic_set(&smi_info->req_events, 1);
1057 static void set_need_watch(void *send_info, unsigned int watch_mask)
1059 struct smi_info *smi_info = send_info;
1060 unsigned long flags;
1061 int enable;
1063 enable = !!watch_mask;
1065 atomic_set(&smi_info->need_watch, enable);
1066 spin_lock_irqsave(&smi_info->si_lock, flags);
1067 check_start_timer_thread(smi_info);
1068 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1071 static void smi_timeout(struct timer_list *t)
1073 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1074 enum si_sm_result smi_result;
1075 unsigned long flags;
1076 unsigned long jiffies_now;
1077 long time_diff;
1078 long timeout;
1080 spin_lock_irqsave(&(smi_info->si_lock), flags);
1081 debug_timestamp("Timer");
1083 jiffies_now = jiffies;
1084 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1085 * SI_USEC_PER_JIFFY);
1086 smi_result = smi_event_handler(smi_info, time_diff);
1088 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1089 /* Running with interrupts, only do long timeouts. */
1090 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1091 smi_inc_stat(smi_info, long_timeouts);
1092 goto do_mod_timer;
1096 * If the state machine asks for a short delay, then shorten
1097 * the timer timeout.
1099 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1100 smi_inc_stat(smi_info, short_timeouts);
1101 timeout = jiffies + 1;
1102 } else {
1103 smi_inc_stat(smi_info, long_timeouts);
1104 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107 do_mod_timer:
1108 if (smi_result != SI_SM_IDLE)
1109 smi_mod_timer(smi_info, timeout);
1110 else
1111 smi_info->timer_running = false;
1112 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1117 struct smi_info *smi_info = data;
1118 unsigned long flags;
1120 if (smi_info->io.si_type == SI_BT)
1121 /* We need to clear the IRQ flag for the BT interface. */
1122 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1126 spin_lock_irqsave(&(smi_info->si_lock), flags);
1128 smi_inc_stat(smi_info, interrupts);
1130 debug_timestamp("Interrupt");
1132 smi_event_handler(smi_info, 0);
1133 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1134 return IRQ_HANDLED;
1137 static int smi_start_processing(void *send_info,
1138 struct ipmi_smi *intf)
1140 struct smi_info *new_smi = send_info;
1141 int enable = 0;
1143 new_smi->intf = intf;
1145 /* Set up the timer that drives the interface. */
1146 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1147 new_smi->timer_can_start = true;
1148 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1150 /* Try to claim any interrupts. */
1151 if (new_smi->io.irq_setup) {
1152 new_smi->io.irq_handler_data = new_smi;
1153 new_smi->io.irq_setup(&new_smi->io);
1157 * Check if the user forcefully enabled the daemon.
1159 if (new_smi->si_num < num_force_kipmid)
1160 enable = force_kipmid[new_smi->si_num];
1162 * The BT interface is efficient enough to not need a thread,
1163 * and there is no need for a thread if we have interrupts.
1165 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1166 enable = 1;
1168 if (enable) {
1169 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1170 "kipmi%d", new_smi->si_num);
1171 if (IS_ERR(new_smi->thread)) {
1172 dev_notice(new_smi->io.dev, "Could not start"
1173 " kernel thread due to error %ld, only using"
1174 " timers to drive the interface\n",
1175 PTR_ERR(new_smi->thread));
1176 new_smi->thread = NULL;
1180 return 0;
1183 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1185 struct smi_info *smi = send_info;
1187 data->addr_src = smi->io.addr_source;
1188 data->dev = smi->io.dev;
1189 data->addr_info = smi->io.addr_info;
1190 get_device(smi->io.dev);
1192 return 0;
1195 static void set_maintenance_mode(void *send_info, bool enable)
1197 struct smi_info *smi_info = send_info;
1199 if (!enable)
1200 atomic_set(&smi_info->req_events, 0);
1203 static void shutdown_smi(void *send_info);
1204 static const struct ipmi_smi_handlers handlers = {
1205 .owner = THIS_MODULE,
1206 .start_processing = smi_start_processing,
1207 .shutdown = shutdown_smi,
1208 .get_smi_info = get_smi_info,
1209 .sender = sender,
1210 .request_events = request_events,
1211 .set_need_watch = set_need_watch,
1212 .set_maintenance_mode = set_maintenance_mode,
1213 .set_run_to_completion = set_run_to_completion,
1214 .flush_messages = flush_messages,
1215 .poll = poll,
1218 static LIST_HEAD(smi_infos);
1219 static DEFINE_MUTEX(smi_infos_lock);
1220 static int smi_num; /* Used to sequence the SMIs */
1222 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1224 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1225 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1226 " disabled(0). Normally the IPMI driver auto-detects"
1227 " this, but the value may be overridden by this parm.");
1228 module_param(unload_when_empty, bool, 0);
1229 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1230 " specified or found, default is 1. Setting to 0"
1231 " is useful for hot add of devices using hotmod.");
1232 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233 MODULE_PARM_DESC(kipmid_max_busy_us,
1234 "Max time (in microseconds) to busy-wait for IPMI data before"
1235 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1236 " if kipmid is using up a lot of CPU time.");
1238 void ipmi_irq_finish_setup(struct si_sm_io *io)
1240 if (io->si_type == SI_BT)
1241 /* Enable the interrupt in the BT interface. */
1242 io->outputb(io, IPMI_BT_INTMASK_REG,
1243 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1246 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1248 if (io->si_type == SI_BT)
1249 /* Disable the interrupt in the BT interface. */
1250 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1253 static void std_irq_cleanup(struct si_sm_io *io)
1255 ipmi_irq_start_cleanup(io);
1256 free_irq(io->irq, io->irq_handler_data);
1259 int ipmi_std_irq_setup(struct si_sm_io *io)
1261 int rv;
1263 if (!io->irq)
1264 return 0;
1266 rv = request_irq(io->irq,
1267 ipmi_si_irq_handler,
1268 IRQF_SHARED,
1269 DEVICE_NAME,
1270 io->irq_handler_data);
1271 if (rv) {
1272 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1273 " running polled\n",
1274 DEVICE_NAME, io->irq);
1275 io->irq = 0;
1276 } else {
1277 io->irq_cleanup = std_irq_cleanup;
1278 ipmi_irq_finish_setup(io);
1279 dev_info(io->dev, "Using irq %d\n", io->irq);
1282 return rv;
1285 static int wait_for_msg_done(struct smi_info *smi_info)
1287 enum si_sm_result smi_result;
1289 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1290 for (;;) {
1291 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1292 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1293 schedule_timeout_uninterruptible(1);
1294 smi_result = smi_info->handlers->event(
1295 smi_info->si_sm, jiffies_to_usecs(1));
1296 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1297 smi_result = smi_info->handlers->event(
1298 smi_info->si_sm, 0);
1299 } else
1300 break;
1302 if (smi_result == SI_SM_HOSED)
1304 * We couldn't get the state machine to run, so whatever's at
1305 * the port is probably not an IPMI SMI interface.
1307 return -ENODEV;
1309 return 0;
1312 static int try_get_dev_id(struct smi_info *smi_info)
1314 unsigned char msg[2];
1315 unsigned char *resp;
1316 unsigned long resp_len;
1317 int rv = 0;
1319 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1320 if (!resp)
1321 return -ENOMEM;
1324 * Do a Get Device ID command, since it comes back with some
1325 * useful info.
1327 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1328 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1329 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1331 rv = wait_for_msg_done(smi_info);
1332 if (rv)
1333 goto out;
1335 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336 resp, IPMI_MAX_MSG_LENGTH);
1338 /* Check and record info from the get device id, in case we need it. */
1339 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340 resp + 2, resp_len - 2, &smi_info->device_id);
1342 out:
1343 kfree(resp);
1344 return rv;
1347 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1349 unsigned char msg[3];
1350 unsigned char *resp;
1351 unsigned long resp_len;
1352 int rv;
1354 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1355 if (!resp)
1356 return -ENOMEM;
1358 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1359 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1360 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1362 rv = wait_for_msg_done(smi_info);
1363 if (rv) {
1364 dev_warn(smi_info->io.dev,
1365 "Error getting response from get global enables command: %d\n",
1366 rv);
1367 goto out;
1370 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1371 resp, IPMI_MAX_MSG_LENGTH);
1373 if (resp_len < 4 ||
1374 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1375 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1376 resp[2] != 0) {
1377 dev_warn(smi_info->io.dev,
1378 "Invalid return from get global enables command: %ld %x %x %x\n",
1379 resp_len, resp[0], resp[1], resp[2]);
1380 rv = -EINVAL;
1381 goto out;
1382 } else {
1383 *enables = resp[3];
1386 out:
1387 kfree(resp);
1388 return rv;
1392 * Returns 1 if it gets an error from the command.
1394 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1396 unsigned char msg[3];
1397 unsigned char *resp;
1398 unsigned long resp_len;
1399 int rv;
1401 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1402 if (!resp)
1403 return -ENOMEM;
1405 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1406 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1407 msg[2] = enables;
1408 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1410 rv = wait_for_msg_done(smi_info);
1411 if (rv) {
1412 dev_warn(smi_info->io.dev,
1413 "Error getting response from set global enables command: %d\n",
1414 rv);
1415 goto out;
1418 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1419 resp, IPMI_MAX_MSG_LENGTH);
1421 if (resp_len < 3 ||
1422 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1423 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1424 dev_warn(smi_info->io.dev,
1425 "Invalid return from set global enables command: %ld %x %x\n",
1426 resp_len, resp[0], resp[1]);
1427 rv = -EINVAL;
1428 goto out;
1431 if (resp[2] != 0)
1432 rv = 1;
1434 out:
1435 kfree(resp);
1436 return rv;
1440 * Some BMCs do not support clearing the receive irq bit in the global
1441 * enables (even if they don't support interrupts on the BMC). Check
1442 * for this and handle it properly.
1444 static void check_clr_rcv_irq(struct smi_info *smi_info)
1446 u8 enables = 0;
1447 int rv;
1449 rv = get_global_enables(smi_info, &enables);
1450 if (!rv) {
1451 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1452 /* Already clear, should work ok. */
1453 return;
1455 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1456 rv = set_global_enables(smi_info, enables);
1459 if (rv < 0) {
1460 dev_err(smi_info->io.dev,
1461 "Cannot check clearing the rcv irq: %d\n", rv);
1462 return;
1465 if (rv) {
1467 * An error when setting the event buffer bit means
1468 * clearing the bit is not supported.
1470 dev_warn(smi_info->io.dev,
1471 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1472 smi_info->cannot_disable_irq = true;
1477 * Some BMCs do not support setting the interrupt bits in the global
1478 * enables even if they support interrupts. Clearly bad, but we can
1479 * compensate.
1481 static void check_set_rcv_irq(struct smi_info *smi_info)
1483 u8 enables = 0;
1484 int rv;
1486 if (!smi_info->io.irq)
1487 return;
1489 rv = get_global_enables(smi_info, &enables);
1490 if (!rv) {
1491 enables |= IPMI_BMC_RCV_MSG_INTR;
1492 rv = set_global_enables(smi_info, enables);
1495 if (rv < 0) {
1496 dev_err(smi_info->io.dev,
1497 "Cannot check setting the rcv irq: %d\n", rv);
1498 return;
1501 if (rv) {
1503 * An error when setting the event buffer bit means
1504 * setting the bit is not supported.
1506 dev_warn(smi_info->io.dev,
1507 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1508 smi_info->cannot_disable_irq = true;
1509 smi_info->irq_enable_broken = true;
1513 static int try_enable_event_buffer(struct smi_info *smi_info)
1515 unsigned char msg[3];
1516 unsigned char *resp;
1517 unsigned long resp_len;
1518 int rv = 0;
1520 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1521 if (!resp)
1522 return -ENOMEM;
1524 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1525 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1526 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1528 rv = wait_for_msg_done(smi_info);
1529 if (rv) {
1530 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1531 goto out;
1534 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1535 resp, IPMI_MAX_MSG_LENGTH);
1537 if (resp_len < 4 ||
1538 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1539 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1540 resp[2] != 0) {
1541 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1542 rv = -EINVAL;
1543 goto out;
1546 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1547 /* buffer is already enabled, nothing to do. */
1548 smi_info->supports_event_msg_buff = true;
1549 goto out;
1552 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1553 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1554 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1555 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1557 rv = wait_for_msg_done(smi_info);
1558 if (rv) {
1559 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1560 goto out;
1563 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1564 resp, IPMI_MAX_MSG_LENGTH);
1566 if (resp_len < 3 ||
1567 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1568 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1569 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1570 rv = -EINVAL;
1571 goto out;
1574 if (resp[2] != 0)
1576 * An error when setting the event buffer bit means
1577 * that the event buffer is not supported.
1579 rv = -ENOENT;
1580 else
1581 smi_info->supports_event_msg_buff = true;
1583 out:
1584 kfree(resp);
1585 return rv;
1588 #define IPMI_SI_ATTR(name) \
1589 static ssize_t ipmi_##name##_show(struct device *dev, \
1590 struct device_attribute *attr, \
1591 char *buf) \
1593 struct smi_info *smi_info = dev_get_drvdata(dev); \
1595 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1597 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1599 static ssize_t ipmi_type_show(struct device *dev,
1600 struct device_attribute *attr,
1601 char *buf)
1603 struct smi_info *smi_info = dev_get_drvdata(dev);
1605 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1607 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1609 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1610 struct device_attribute *attr,
1611 char *buf)
1613 struct smi_info *smi_info = dev_get_drvdata(dev);
1614 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1616 return snprintf(buf, 10, "%d\n", enabled);
1618 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1619 ipmi_interrupts_enabled_show, NULL);
1621 IPMI_SI_ATTR(short_timeouts);
1622 IPMI_SI_ATTR(long_timeouts);
1623 IPMI_SI_ATTR(idles);
1624 IPMI_SI_ATTR(interrupts);
1625 IPMI_SI_ATTR(attentions);
1626 IPMI_SI_ATTR(flag_fetches);
1627 IPMI_SI_ATTR(hosed_count);
1628 IPMI_SI_ATTR(complete_transactions);
1629 IPMI_SI_ATTR(events);
1630 IPMI_SI_ATTR(watchdog_pretimeouts);
1631 IPMI_SI_ATTR(incoming_messages);
1633 static ssize_t ipmi_params_show(struct device *dev,
1634 struct device_attribute *attr,
1635 char *buf)
1637 struct smi_info *smi_info = dev_get_drvdata(dev);
1639 return snprintf(buf, 200,
1640 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1641 si_to_str[smi_info->io.si_type],
1642 addr_space_to_str[smi_info->io.addr_space],
1643 smi_info->io.addr_data,
1644 smi_info->io.regspacing,
1645 smi_info->io.regsize,
1646 smi_info->io.regshift,
1647 smi_info->io.irq,
1648 smi_info->io.slave_addr);
1650 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1652 static struct attribute *ipmi_si_dev_attrs[] = {
1653 &dev_attr_type.attr,
1654 &dev_attr_interrupts_enabled.attr,
1655 &dev_attr_short_timeouts.attr,
1656 &dev_attr_long_timeouts.attr,
1657 &dev_attr_idles.attr,
1658 &dev_attr_interrupts.attr,
1659 &dev_attr_attentions.attr,
1660 &dev_attr_flag_fetches.attr,
1661 &dev_attr_hosed_count.attr,
1662 &dev_attr_complete_transactions.attr,
1663 &dev_attr_events.attr,
1664 &dev_attr_watchdog_pretimeouts.attr,
1665 &dev_attr_incoming_messages.attr,
1666 &dev_attr_params.attr,
1667 NULL
1670 static const struct attribute_group ipmi_si_dev_attr_group = {
1671 .attrs = ipmi_si_dev_attrs,
1675 * oem_data_avail_to_receive_msg_avail
1676 * @info - smi_info structure with msg_flags set
1678 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1679 * Returns 1 indicating need to re-run handle_flags().
1681 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1683 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1684 RECEIVE_MSG_AVAIL);
1685 return 1;
1689 * setup_dell_poweredge_oem_data_handler
1690 * @info - smi_info.device_id must be populated
1692 * Systems that match, but have firmware version < 1.40 may assert
1693 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1694 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1695 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1696 * as RECEIVE_MSG_AVAIL instead.
1698 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1699 * assert the OEM[012] bits, and if it did, the driver would have to
1700 * change to handle that properly, we don't actually check for the
1701 * firmware version.
1702 * Device ID = 0x20 BMC on PowerEdge 8G servers
1703 * Device Revision = 0x80
1704 * Firmware Revision1 = 0x01 BMC version 1.40
1705 * Firmware Revision2 = 0x40 BCD encoded
1706 * IPMI Version = 0x51 IPMI 1.5
1707 * Manufacturer ID = A2 02 00 Dell IANA
1709 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1710 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1713 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1714 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1715 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1716 #define DELL_IANA_MFR_ID 0x0002a2
1717 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1719 struct ipmi_device_id *id = &smi_info->device_id;
1720 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1721 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1722 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1723 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1724 smi_info->oem_data_avail_handler =
1725 oem_data_avail_to_receive_msg_avail;
1726 } else if (ipmi_version_major(id) < 1 ||
1727 (ipmi_version_major(id) == 1 &&
1728 ipmi_version_minor(id) < 5)) {
1729 smi_info->oem_data_avail_handler =
1730 oem_data_avail_to_receive_msg_avail;
1735 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1736 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1738 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1740 /* Make it a response */
1741 msg->rsp[0] = msg->data[0] | 4;
1742 msg->rsp[1] = msg->data[1];
1743 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1744 msg->rsp_size = 3;
1745 smi_info->curr_msg = NULL;
1746 deliver_recv_msg(smi_info, msg);
1750 * dell_poweredge_bt_xaction_handler
1751 * @info - smi_info.device_id must be populated
1753 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1754 * not respond to a Get SDR command if the length of the data
1755 * requested is exactly 0x3A, which leads to command timeouts and no
1756 * data returned. This intercepts such commands, and causes userspace
1757 * callers to try again with a different-sized buffer, which succeeds.
1760 #define STORAGE_NETFN 0x0A
1761 #define STORAGE_CMD_GET_SDR 0x23
1762 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1763 unsigned long unused,
1764 void *in)
1766 struct smi_info *smi_info = in;
1767 unsigned char *data = smi_info->curr_msg->data;
1768 unsigned int size = smi_info->curr_msg->data_size;
1769 if (size >= 8 &&
1770 (data[0]>>2) == STORAGE_NETFN &&
1771 data[1] == STORAGE_CMD_GET_SDR &&
1772 data[7] == 0x3A) {
1773 return_hosed_msg_badsize(smi_info);
1774 return NOTIFY_STOP;
1776 return NOTIFY_DONE;
1779 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1780 .notifier_call = dell_poweredge_bt_xaction_handler,
1784 * setup_dell_poweredge_bt_xaction_handler
1785 * @info - smi_info.device_id must be filled in already
1787 * Fills in smi_info.device_id.start_transaction_pre_hook
1788 * when we know what function to use there.
1790 static void
1791 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1793 struct ipmi_device_id *id = &smi_info->device_id;
1794 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1795 smi_info->io.si_type == SI_BT)
1796 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1800 * setup_oem_data_handler
1801 * @info - smi_info.device_id must be filled in already
1803 * Fills in smi_info.device_id.oem_data_available_handler
1804 * when we know what function to use there.
1807 static void setup_oem_data_handler(struct smi_info *smi_info)
1809 setup_dell_poweredge_oem_data_handler(smi_info);
1812 static void setup_xaction_handlers(struct smi_info *smi_info)
1814 setup_dell_poweredge_bt_xaction_handler(smi_info);
1817 static void check_for_broken_irqs(struct smi_info *smi_info)
1819 check_clr_rcv_irq(smi_info);
1820 check_set_rcv_irq(smi_info);
1823 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1825 if (smi_info->thread != NULL) {
1826 kthread_stop(smi_info->thread);
1827 smi_info->thread = NULL;
1830 smi_info->timer_can_start = false;
1831 if (smi_info->timer_running)
1832 del_timer_sync(&smi_info->si_timer);
1835 static struct smi_info *find_dup_si(struct smi_info *info)
1837 struct smi_info *e;
1839 list_for_each_entry(e, &smi_infos, link) {
1840 if (e->io.addr_space != info->io.addr_space)
1841 continue;
1842 if (e->io.addr_data == info->io.addr_data) {
1844 * This is a cheap hack, ACPI doesn't have a defined
1845 * slave address but SMBIOS does. Pick it up from
1846 * any source that has it available.
1848 if (info->io.slave_addr && !e->io.slave_addr)
1849 e->io.slave_addr = info->io.slave_addr;
1850 return e;
1854 return NULL;
1857 int ipmi_si_add_smi(struct si_sm_io *io)
1859 int rv = 0;
1860 struct smi_info *new_smi, *dup;
1863 * If the user gave us a hard-coded device at the same
1864 * address, they presumably want us to use it and not what is
1865 * in the firmware.
1867 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1868 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1869 dev_info(io->dev,
1870 "Hard-coded device at this address already exists");
1871 return -ENODEV;
1874 if (!io->io_setup) {
1875 if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1876 io->io_setup = ipmi_si_port_setup;
1877 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1878 io->io_setup = ipmi_si_mem_setup;
1879 } else {
1880 return -EINVAL;
1884 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1885 if (!new_smi)
1886 return -ENOMEM;
1887 spin_lock_init(&new_smi->si_lock);
1889 new_smi->io = *io;
1891 mutex_lock(&smi_infos_lock);
1892 dup = find_dup_si(new_smi);
1893 if (dup) {
1894 if (new_smi->io.addr_source == SI_ACPI &&
1895 dup->io.addr_source == SI_SMBIOS) {
1896 /* We prefer ACPI over SMBIOS. */
1897 dev_info(dup->io.dev,
1898 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1899 si_to_str[new_smi->io.si_type]);
1900 cleanup_one_si(dup);
1901 } else {
1902 dev_info(new_smi->io.dev,
1903 "%s-specified %s state machine: duplicate\n",
1904 ipmi_addr_src_to_str(new_smi->io.addr_source),
1905 si_to_str[new_smi->io.si_type]);
1906 rv = -EBUSY;
1907 kfree(new_smi);
1908 goto out_err;
1912 pr_info("Adding %s-specified %s state machine\n",
1913 ipmi_addr_src_to_str(new_smi->io.addr_source),
1914 si_to_str[new_smi->io.si_type]);
1916 list_add_tail(&new_smi->link, &smi_infos);
1918 if (initialized)
1919 rv = try_smi_init(new_smi);
1920 out_err:
1921 mutex_unlock(&smi_infos_lock);
1922 return rv;
1926 * Try to start up an interface. Must be called with smi_infos_lock
1927 * held, primarily to keep smi_num consistent, we only one to do these
1928 * one at a time.
1930 static int try_smi_init(struct smi_info *new_smi)
1932 int rv = 0;
1933 int i;
1935 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1936 ipmi_addr_src_to_str(new_smi->io.addr_source),
1937 si_to_str[new_smi->io.si_type],
1938 addr_space_to_str[new_smi->io.addr_space],
1939 new_smi->io.addr_data,
1940 new_smi->io.slave_addr, new_smi->io.irq);
1942 switch (new_smi->io.si_type) {
1943 case SI_KCS:
1944 new_smi->handlers = &kcs_smi_handlers;
1945 break;
1947 case SI_SMIC:
1948 new_smi->handlers = &smic_smi_handlers;
1949 break;
1951 case SI_BT:
1952 new_smi->handlers = &bt_smi_handlers;
1953 break;
1955 default:
1956 /* No support for anything else yet. */
1957 rv = -EIO;
1958 goto out_err;
1961 new_smi->si_num = smi_num;
1963 /* Do this early so it's available for logs. */
1964 if (!new_smi->io.dev) {
1965 pr_err("IPMI interface added with no device\n");
1966 rv = EIO;
1967 goto out_err;
1970 /* Allocate the state machine's data and initialize it. */
1971 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1972 if (!new_smi->si_sm) {
1973 rv = -ENOMEM;
1974 goto out_err;
1976 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1977 &new_smi->io);
1979 /* Now that we know the I/O size, we can set up the I/O. */
1980 rv = new_smi->io.io_setup(&new_smi->io);
1981 if (rv) {
1982 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1983 goto out_err;
1986 /* Do low-level detection first. */
1987 if (new_smi->handlers->detect(new_smi->si_sm)) {
1988 if (new_smi->io.addr_source)
1989 dev_err(new_smi->io.dev,
1990 "Interface detection failed\n");
1991 rv = -ENODEV;
1992 goto out_err;
1996 * Attempt a get device id command. If it fails, we probably
1997 * don't have a BMC here.
1999 rv = try_get_dev_id(new_smi);
2000 if (rv) {
2001 if (new_smi->io.addr_source)
2002 dev_err(new_smi->io.dev,
2003 "There appears to be no BMC at this location\n");
2004 goto out_err;
2007 setup_oem_data_handler(new_smi);
2008 setup_xaction_handlers(new_smi);
2009 check_for_broken_irqs(new_smi);
2011 new_smi->waiting_msg = NULL;
2012 new_smi->curr_msg = NULL;
2013 atomic_set(&new_smi->req_events, 0);
2014 new_smi->run_to_completion = false;
2015 for (i = 0; i < SI_NUM_STATS; i++)
2016 atomic_set(&new_smi->stats[i], 0);
2018 new_smi->interrupt_disabled = true;
2019 atomic_set(&new_smi->need_watch, 0);
2021 rv = try_enable_event_buffer(new_smi);
2022 if (rv == 0)
2023 new_smi->has_event_buffer = true;
2026 * Start clearing the flags before we enable interrupts or the
2027 * timer to avoid racing with the timer.
2029 start_clear_flags(new_smi);
2032 * IRQ is defined to be set when non-zero. req_events will
2033 * cause a global flags check that will enable interrupts.
2035 if (new_smi->io.irq) {
2036 new_smi->interrupt_disabled = false;
2037 atomic_set(&new_smi->req_events, 1);
2040 dev_set_drvdata(new_smi->io.dev, new_smi);
2041 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2042 if (rv) {
2043 dev_err(new_smi->io.dev,
2044 "Unable to add device attributes: error %d\n",
2045 rv);
2046 goto out_err;
2048 new_smi->dev_group_added = true;
2050 rv = ipmi_register_smi(&handlers,
2051 new_smi,
2052 new_smi->io.dev,
2053 new_smi->io.slave_addr);
2054 if (rv) {
2055 dev_err(new_smi->io.dev,
2056 "Unable to register device: error %d\n",
2057 rv);
2058 goto out_err;
2061 /* Don't increment till we know we have succeeded. */
2062 smi_num++;
2064 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2065 si_to_str[new_smi->io.si_type]);
2067 WARN_ON(new_smi->io.dev->init_name != NULL);
2069 out_err:
2070 if (rv && new_smi->io.io_cleanup) {
2071 new_smi->io.io_cleanup(&new_smi->io);
2072 new_smi->io.io_cleanup = NULL;
2075 return rv;
2078 static int __init init_ipmi_si(void)
2080 struct smi_info *e;
2081 enum ipmi_addr_src type = SI_INVALID;
2083 if (initialized)
2084 return 0;
2086 ipmi_hardcode_init();
2088 pr_info("IPMI System Interface driver\n");
2090 ipmi_si_platform_init();
2092 ipmi_si_pci_init();
2094 ipmi_si_parisc_init();
2096 /* We prefer devices with interrupts, but in the case of a machine
2097 with multiple BMCs we assume that there will be several instances
2098 of a given type so if we succeed in registering a type then also
2099 try to register everything else of the same type */
2100 mutex_lock(&smi_infos_lock);
2101 list_for_each_entry(e, &smi_infos, link) {
2102 /* Try to register a device if it has an IRQ and we either
2103 haven't successfully registered a device yet or this
2104 device has the same type as one we successfully registered */
2105 if (e->io.irq && (!type || e->io.addr_source == type)) {
2106 if (!try_smi_init(e)) {
2107 type = e->io.addr_source;
2112 /* type will only have been set if we successfully registered an si */
2113 if (type)
2114 goto skip_fallback_noirq;
2116 /* Fall back to the preferred device */
2118 list_for_each_entry(e, &smi_infos, link) {
2119 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2120 if (!try_smi_init(e)) {
2121 type = e->io.addr_source;
2126 skip_fallback_noirq:
2127 initialized = 1;
2128 mutex_unlock(&smi_infos_lock);
2130 if (type)
2131 return 0;
2133 mutex_lock(&smi_infos_lock);
2134 if (unload_when_empty && list_empty(&smi_infos)) {
2135 mutex_unlock(&smi_infos_lock);
2136 cleanup_ipmi_si();
2137 pr_warn("Unable to find any System Interface(s)\n");
2138 return -ENODEV;
2139 } else {
2140 mutex_unlock(&smi_infos_lock);
2141 return 0;
2144 module_init(init_ipmi_si);
2146 static void shutdown_smi(void *send_info)
2148 struct smi_info *smi_info = send_info;
2150 if (smi_info->dev_group_added) {
2151 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2152 smi_info->dev_group_added = false;
2154 if (smi_info->io.dev)
2155 dev_set_drvdata(smi_info->io.dev, NULL);
2158 * Make sure that interrupts, the timer and the thread are
2159 * stopped and will not run again.
2161 smi_info->interrupt_disabled = true;
2162 if (smi_info->io.irq_cleanup) {
2163 smi_info->io.irq_cleanup(&smi_info->io);
2164 smi_info->io.irq_cleanup = NULL;
2166 stop_timer_and_thread(smi_info);
2169 * Wait until we know that we are out of any interrupt
2170 * handlers might have been running before we freed the
2171 * interrupt.
2173 synchronize_rcu();
2176 * Timeouts are stopped, now make sure the interrupts are off
2177 * in the BMC. Note that timers and CPU interrupts are off,
2178 * so no need for locks.
2180 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2181 poll(smi_info);
2182 schedule_timeout_uninterruptible(1);
2184 if (smi_info->handlers)
2185 disable_si_irq(smi_info);
2186 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2187 poll(smi_info);
2188 schedule_timeout_uninterruptible(1);
2190 if (smi_info->handlers)
2191 smi_info->handlers->cleanup(smi_info->si_sm);
2193 if (smi_info->io.addr_source_cleanup) {
2194 smi_info->io.addr_source_cleanup(&smi_info->io);
2195 smi_info->io.addr_source_cleanup = NULL;
2197 if (smi_info->io.io_cleanup) {
2198 smi_info->io.io_cleanup(&smi_info->io);
2199 smi_info->io.io_cleanup = NULL;
2202 kfree(smi_info->si_sm);
2203 smi_info->si_sm = NULL;
2205 smi_info->intf = NULL;
2209 * Must be called with smi_infos_lock held, to serialize the
2210 * smi_info->intf check.
2212 static void cleanup_one_si(struct smi_info *smi_info)
2214 if (!smi_info)
2215 return;
2217 list_del(&smi_info->link);
2219 if (smi_info->intf)
2220 ipmi_unregister_smi(smi_info->intf);
2222 kfree(smi_info);
2225 int ipmi_si_remove_by_dev(struct device *dev)
2227 struct smi_info *e;
2228 int rv = -ENOENT;
2230 mutex_lock(&smi_infos_lock);
2231 list_for_each_entry(e, &smi_infos, link) {
2232 if (e->io.dev == dev) {
2233 cleanup_one_si(e);
2234 rv = 0;
2235 break;
2238 mutex_unlock(&smi_infos_lock);
2240 return rv;
2243 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2244 unsigned long addr)
2246 /* remove */
2247 struct smi_info *e, *tmp_e;
2248 struct device *dev = NULL;
2250 mutex_lock(&smi_infos_lock);
2251 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2252 if (e->io.addr_space != addr_space)
2253 continue;
2254 if (e->io.si_type != si_type)
2255 continue;
2256 if (e->io.addr_data == addr) {
2257 dev = get_device(e->io.dev);
2258 cleanup_one_si(e);
2261 mutex_unlock(&smi_infos_lock);
2263 return dev;
2266 static void cleanup_ipmi_si(void)
2268 struct smi_info *e, *tmp_e;
2270 if (!initialized)
2271 return;
2273 ipmi_si_pci_shutdown();
2275 ipmi_si_parisc_shutdown();
2277 ipmi_si_platform_shutdown();
2279 mutex_lock(&smi_infos_lock);
2280 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2281 cleanup_one_si(e);
2282 mutex_unlock(&smi_infos_lock);
2284 ipmi_si_hardcode_exit();
2285 ipmi_si_hotmod_exit();
2287 module_exit(cleanup_ipmi_si);
2289 MODULE_ALIAS("platform:dmi-ipmi-si");
2290 MODULE_LICENSE("GPL");
2291 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2292 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2293 " system interfaces.");