1 // SPDX-License-Identifier: GPL-2.0+
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
22 #define pr_fmt(fmt) "ipmi_si: " fmt
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
43 #include <linux/string.h>
44 #include <linux/ctype.h>
46 /* Measure times between events in the driver. */
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC 10000
51 #define SI_USEC_PER_JIFFY (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
64 /* FIXME - add watchdog stuff. */
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG 2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72 static const char * const si_to_str
[] = { "invalid", "kcs", "smic", "bt" };
74 static int initialized
;
77 * Indexes into stats[] in smi_info below.
79 enum si_stat_indexes
{
81 * Number of times the driver requested a timer while an operation
84 SI_STAT_short_timeouts
= 0,
87 * Number of times the driver requested a timer while nothing was in
90 SI_STAT_long_timeouts
,
92 /* Number of times the interface was idle while being polled. */
95 /* Number of interrupts the driver handled. */
98 /* Number of time the driver got an ATTN from the hardware. */
101 /* Number of times the driver requested flags from the hardware. */
102 SI_STAT_flag_fetches
,
104 /* Number of times the hardware didn't follow the state machine. */
107 /* Number of completed messages. */
108 SI_STAT_complete_transactions
,
110 /* Number of IPMI events received from the hardware. */
113 /* Number of watchdog pretimeouts. */
114 SI_STAT_watchdog_pretimeouts
,
116 /* Number of asynchronous messages received. */
117 SI_STAT_incoming_messages
,
120 /* This *must* remain last, add new values above this. */
126 struct ipmi_smi
*intf
;
127 struct si_sm_data
*si_sm
;
128 const struct si_sm_handlers
*handlers
;
130 struct ipmi_smi_msg
*waiting_msg
;
131 struct ipmi_smi_msg
*curr_msg
;
132 enum si_intf_state si_state
;
135 * Used to handle the various types of I/O that can occur with
141 * Per-OEM handler, called from handle_flags(). Returns 1
142 * when handle_flags() needs to be re-run or 0 indicating it
143 * set si_state itself.
145 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 * is set to hold the flags until we are done handling everything
152 #define RECEIVE_MSG_AVAIL 0x01
153 #define EVENT_MSG_BUFFER_FULL 0x02
154 #define WDT_PRE_TIMEOUT_INT 0x08
155 #define OEM0_DATA_AVAIL 0x20
156 #define OEM1_DATA_AVAIL 0x40
157 #define OEM2_DATA_AVAIL 0x80
158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
161 unsigned char msg_flags
;
163 /* Does the BMC have an event buffer? */
164 bool has_event_buffer
;
167 * If set to true, this will request events the next time the
168 * state machine is idle.
173 * If true, run the state machine to completion on every send
174 * call. Generally used after a panic to make sure stuff goes
177 bool run_to_completion
;
179 /* The timer for this si. */
180 struct timer_list si_timer
;
182 /* This flag is set, if the timer can be set */
183 bool timer_can_start
;
185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188 /* The time (in jiffies) the last timeout occurred at. */
189 unsigned long last_timeout_jiffies
;
191 /* Are we waiting for the events, pretimeouts, received msgs? */
195 * The driver will disable interrupts when it gets into a
196 * situation where it cannot handle messages due to lack of
197 * memory. Once that situation clears up, it will re-enable
200 bool interrupt_disabled
;
203 * Does the BMC support events?
205 bool supports_event_msg_buff
;
208 * Can we disable interrupts the global enables receive irq
209 * bit? There are currently two forms of brokenness, some
210 * systems cannot disable the bit (which is technically within
211 * the spec but a bad idea) and some systems have the bit
212 * forced to zero even though interrupts work (which is
213 * clearly outside the spec). The next bool tells which form
214 * of brokenness is present.
216 bool cannot_disable_irq
;
219 * Some systems are broken and cannot set the irq enable
220 * bit, even if they support interrupts.
222 bool irq_enable_broken
;
225 * Did we get an attention that we did not handle?
229 /* From the get device id response... */
230 struct ipmi_device_id device_id
;
232 /* Have we added the device group to the device? */
233 bool dev_group_added
;
235 /* Counters and things for the proc filesystem. */
236 atomic_t stats
[SI_NUM_STATS
];
238 struct task_struct
*thread
;
240 struct list_head link
;
243 #define smi_inc_stat(smi, stat) \
244 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
245 #define smi_get_stat(smi, stat) \
246 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
248 #define IPMI_MAX_INTFS 4
249 static int force_kipmid
[IPMI_MAX_INTFS
];
250 static int num_force_kipmid
;
252 static unsigned int kipmid_max_busy_us
[IPMI_MAX_INTFS
];
253 static int num_max_busy_us
;
255 static bool unload_when_empty
= true;
257 static int try_smi_init(struct smi_info
*smi
);
258 static void cleanup_one_si(struct smi_info
*smi_info
);
259 static void cleanup_ipmi_si(void);
262 void debug_timestamp(char *msg
)
267 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
270 #define debug_timestamp(x)
273 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
274 static int register_xaction_notifier(struct notifier_block
*nb
)
276 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
279 static void deliver_recv_msg(struct smi_info
*smi_info
,
280 struct ipmi_smi_msg
*msg
)
282 /* Deliver the message to the upper layer. */
283 ipmi_smi_msg_received(smi_info
->intf
, msg
);
286 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
288 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
290 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
291 cCode
= IPMI_ERR_UNSPECIFIED
;
292 /* else use it as is */
294 /* Make it a response */
295 msg
->rsp
[0] = msg
->data
[0] | 4;
296 msg
->rsp
[1] = msg
->data
[1];
300 smi_info
->curr_msg
= NULL
;
301 deliver_recv_msg(smi_info
, msg
);
304 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
308 if (!smi_info
->waiting_msg
) {
309 smi_info
->curr_msg
= NULL
;
314 smi_info
->curr_msg
= smi_info
->waiting_msg
;
315 smi_info
->waiting_msg
= NULL
;
316 debug_timestamp("Start2");
317 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
319 if (err
& NOTIFY_STOP_MASK
) {
320 rv
= SI_SM_CALL_WITHOUT_DELAY
;
323 err
= smi_info
->handlers
->start_transaction(
325 smi_info
->curr_msg
->data
,
326 smi_info
->curr_msg
->data_size
);
328 return_hosed_msg(smi_info
, err
);
330 rv
= SI_SM_CALL_WITHOUT_DELAY
;
336 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
338 if (!smi_info
->timer_can_start
)
340 smi_info
->last_timeout_jiffies
= jiffies
;
341 mod_timer(&smi_info
->si_timer
, new_val
);
342 smi_info
->timer_running
= true;
346 * Start a new message and (re)start the timer and thread.
348 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
351 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
353 if (smi_info
->thread
)
354 wake_up_process(smi_info
->thread
);
356 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
359 static void start_check_enables(struct smi_info
*smi_info
)
361 unsigned char msg
[2];
363 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
364 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
366 start_new_msg(smi_info
, msg
, 2);
367 smi_info
->si_state
= SI_CHECKING_ENABLES
;
370 static void start_clear_flags(struct smi_info
*smi_info
)
372 unsigned char msg
[3];
374 /* Make sure the watchdog pre-timeout flag is not set at startup. */
375 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
376 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
377 msg
[2] = WDT_PRE_TIMEOUT_INT
;
379 start_new_msg(smi_info
, msg
, 3);
380 smi_info
->si_state
= SI_CLEARING_FLAGS
;
383 static void start_getting_msg_queue(struct smi_info
*smi_info
)
385 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
386 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
387 smi_info
->curr_msg
->data_size
= 2;
389 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
390 smi_info
->curr_msg
->data_size
);
391 smi_info
->si_state
= SI_GETTING_MESSAGES
;
394 static void start_getting_events(struct smi_info
*smi_info
)
396 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
397 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
398 smi_info
->curr_msg
->data_size
= 2;
400 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
401 smi_info
->curr_msg
->data_size
);
402 smi_info
->si_state
= SI_GETTING_EVENTS
;
406 * When we have a situtaion where we run out of memory and cannot
407 * allocate messages, we just leave them in the BMC and run the system
408 * polled until we can allocate some memory. Once we have some
409 * memory, we will re-enable the interrupt.
411 * Note that we cannot just use disable_irq(), since the interrupt may
414 static inline bool disable_si_irq(struct smi_info
*smi_info
)
416 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
417 smi_info
->interrupt_disabled
= true;
418 start_check_enables(smi_info
);
424 static inline bool enable_si_irq(struct smi_info
*smi_info
)
426 if ((smi_info
->io
.irq
) && (smi_info
->interrupt_disabled
)) {
427 smi_info
->interrupt_disabled
= false;
428 start_check_enables(smi_info
);
435 * Allocate a message. If unable to allocate, start the interrupt
436 * disable process and return NULL. If able to allocate but
437 * interrupts are disabled, free the message and return NULL after
438 * starting the interrupt enable process.
440 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
442 struct ipmi_smi_msg
*msg
;
444 msg
= ipmi_alloc_smi_msg();
446 if (!disable_si_irq(smi_info
))
447 smi_info
->si_state
= SI_NORMAL
;
448 } else if (enable_si_irq(smi_info
)) {
449 ipmi_free_smi_msg(msg
);
455 static void handle_flags(struct smi_info
*smi_info
)
458 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
462 start_clear_flags(smi_info
);
463 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
464 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
465 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
466 /* Messages available. */
467 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
468 if (!smi_info
->curr_msg
)
471 start_getting_msg_queue(smi_info
);
472 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
473 /* Events available. */
474 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
475 if (!smi_info
->curr_msg
)
478 start_getting_events(smi_info
);
479 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
480 smi_info
->oem_data_avail_handler
) {
481 if (smi_info
->oem_data_avail_handler(smi_info
))
484 smi_info
->si_state
= SI_NORMAL
;
488 * Global enables we care about.
490 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
491 IPMI_BMC_EVT_MSG_INTR)
493 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
498 if (smi_info
->supports_event_msg_buff
)
499 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
501 if (((smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
) ||
502 smi_info
->cannot_disable_irq
) &&
503 !smi_info
->irq_enable_broken
)
504 enables
|= IPMI_BMC_RCV_MSG_INTR
;
506 if (smi_info
->supports_event_msg_buff
&&
507 smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
&&
508 !smi_info
->irq_enable_broken
)
509 enables
|= IPMI_BMC_EVT_MSG_INTR
;
511 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
516 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
518 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
520 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
522 if ((bool)irqstate
== irq_on
)
526 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
527 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
529 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
532 static void handle_transaction_done(struct smi_info
*smi_info
)
534 struct ipmi_smi_msg
*msg
;
536 debug_timestamp("Done");
537 switch (smi_info
->si_state
) {
539 if (!smi_info
->curr_msg
)
542 smi_info
->curr_msg
->rsp_size
543 = smi_info
->handlers
->get_result(
545 smi_info
->curr_msg
->rsp
,
546 IPMI_MAX_MSG_LENGTH
);
549 * Do this here becase deliver_recv_msg() releases the
550 * lock, and a new message can be put in during the
551 * time the lock is released.
553 msg
= smi_info
->curr_msg
;
554 smi_info
->curr_msg
= NULL
;
555 deliver_recv_msg(smi_info
, msg
);
558 case SI_GETTING_FLAGS
:
560 unsigned char msg
[4];
563 /* We got the flags from the SMI, now handle them. */
564 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
566 /* Error fetching flags, just give up for now. */
567 smi_info
->si_state
= SI_NORMAL
;
568 } else if (len
< 4) {
570 * Hmm, no flags. That's technically illegal, but
571 * don't use uninitialized data.
573 smi_info
->si_state
= SI_NORMAL
;
575 smi_info
->msg_flags
= msg
[3];
576 handle_flags(smi_info
);
581 case SI_CLEARING_FLAGS
:
583 unsigned char msg
[3];
585 /* We cleared the flags. */
586 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
588 /* Error clearing flags */
589 dev_warn(smi_info
->io
.dev
,
590 "Error clearing flags: %2.2x\n", msg
[2]);
592 smi_info
->si_state
= SI_NORMAL
;
596 case SI_GETTING_EVENTS
:
598 smi_info
->curr_msg
->rsp_size
599 = smi_info
->handlers
->get_result(
601 smi_info
->curr_msg
->rsp
,
602 IPMI_MAX_MSG_LENGTH
);
605 * Do this here becase deliver_recv_msg() releases the
606 * lock, and a new message can be put in during the
607 * time the lock is released.
609 msg
= smi_info
->curr_msg
;
610 smi_info
->curr_msg
= NULL
;
611 if (msg
->rsp
[2] != 0) {
612 /* Error getting event, probably done. */
615 /* Take off the event flag. */
616 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
617 handle_flags(smi_info
);
619 smi_inc_stat(smi_info
, events
);
622 * Do this before we deliver the message
623 * because delivering the message releases the
624 * lock and something else can mess with the
627 handle_flags(smi_info
);
629 deliver_recv_msg(smi_info
, msg
);
634 case SI_GETTING_MESSAGES
:
636 smi_info
->curr_msg
->rsp_size
637 = smi_info
->handlers
->get_result(
639 smi_info
->curr_msg
->rsp
,
640 IPMI_MAX_MSG_LENGTH
);
643 * Do this here becase deliver_recv_msg() releases the
644 * lock, and a new message can be put in during the
645 * time the lock is released.
647 msg
= smi_info
->curr_msg
;
648 smi_info
->curr_msg
= NULL
;
649 if (msg
->rsp
[2] != 0) {
650 /* Error getting event, probably done. */
653 /* Take off the msg flag. */
654 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
655 handle_flags(smi_info
);
657 smi_inc_stat(smi_info
, incoming_messages
);
660 * Do this before we deliver the message
661 * because delivering the message releases the
662 * lock and something else can mess with the
665 handle_flags(smi_info
);
667 deliver_recv_msg(smi_info
, msg
);
672 case SI_CHECKING_ENABLES
:
674 unsigned char msg
[4];
678 /* We got the flags from the SMI, now handle them. */
679 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
681 dev_warn(smi_info
->io
.dev
,
682 "Couldn't get irq info: %x.\n", msg
[2]);
683 dev_warn(smi_info
->io
.dev
,
684 "Maybe ok, but ipmi might run very slowly.\n");
685 smi_info
->si_state
= SI_NORMAL
;
688 enables
= current_global_enables(smi_info
, 0, &irq_on
);
689 if (smi_info
->io
.si_type
== SI_BT
)
690 /* BT has its own interrupt enable bit. */
691 check_bt_irq(smi_info
, irq_on
);
692 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
693 /* Enables are not correct, fix them. */
694 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
695 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
696 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
697 smi_info
->handlers
->start_transaction(
698 smi_info
->si_sm
, msg
, 3);
699 smi_info
->si_state
= SI_SETTING_ENABLES
;
700 } else if (smi_info
->supports_event_msg_buff
) {
701 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
702 if (!smi_info
->curr_msg
) {
703 smi_info
->si_state
= SI_NORMAL
;
706 start_getting_events(smi_info
);
708 smi_info
->si_state
= SI_NORMAL
;
713 case SI_SETTING_ENABLES
:
715 unsigned char msg
[4];
717 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
719 dev_warn(smi_info
->io
.dev
,
720 "Could not set the global enables: 0x%x.\n",
723 if (smi_info
->supports_event_msg_buff
) {
724 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
725 if (!smi_info
->curr_msg
) {
726 smi_info
->si_state
= SI_NORMAL
;
729 start_getting_events(smi_info
);
731 smi_info
->si_state
= SI_NORMAL
;
739 * Called on timeouts and events. Timeouts should pass the elapsed
740 * time, interrupts should pass in zero. Must be called with
741 * si_lock held and interrupts disabled.
743 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
746 enum si_sm_result si_sm_result
;
750 * There used to be a loop here that waited a little while
751 * (around 25us) before giving up. That turned out to be
752 * pointless, the minimum delays I was seeing were in the 300us
753 * range, which is far too long to wait in an interrupt. So
754 * we just run until the state machine tells us something
755 * happened or it needs a delay.
757 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
759 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
760 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
762 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
763 smi_inc_stat(smi_info
, complete_transactions
);
765 handle_transaction_done(smi_info
);
767 } else if (si_sm_result
== SI_SM_HOSED
) {
768 smi_inc_stat(smi_info
, hosed_count
);
771 * Do the before return_hosed_msg, because that
774 smi_info
->si_state
= SI_NORMAL
;
775 if (smi_info
->curr_msg
!= NULL
) {
777 * If we were handling a user message, format
778 * a response to send to the upper layer to
779 * tell it about the error.
781 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
787 * We prefer handling attn over new messages. But don't do
788 * this if there is not yet an upper layer to handle anything.
790 if (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
) {
791 unsigned char msg
[2];
793 if (smi_info
->si_state
!= SI_NORMAL
) {
795 * We got an ATTN, but we are doing something else.
796 * Handle the ATTN later.
798 smi_info
->got_attn
= true;
800 smi_info
->got_attn
= false;
801 smi_inc_stat(smi_info
, attentions
);
804 * Got a attn, send down a get message flags to see
805 * what's causing it. It would be better to handle
806 * this in the upper layer, but due to the way
807 * interrupts work with the SMI, that's not really
810 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
811 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
813 start_new_msg(smi_info
, msg
, 2);
814 smi_info
->si_state
= SI_GETTING_FLAGS
;
819 /* If we are currently idle, try to start the next message. */
820 if (si_sm_result
== SI_SM_IDLE
) {
821 smi_inc_stat(smi_info
, idles
);
823 si_sm_result
= start_next_msg(smi_info
);
824 if (si_sm_result
!= SI_SM_IDLE
)
828 if ((si_sm_result
== SI_SM_IDLE
)
829 && (atomic_read(&smi_info
->req_events
))) {
831 * We are idle and the upper layer requested that I fetch
834 atomic_set(&smi_info
->req_events
, 0);
837 * Take this opportunity to check the interrupt and
838 * message enable state for the BMC. The BMC can be
839 * asynchronously reset, and may thus get interrupts
840 * disable and messages disabled.
842 if (smi_info
->supports_event_msg_buff
|| smi_info
->io
.irq
) {
843 start_check_enables(smi_info
);
845 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
846 if (!smi_info
->curr_msg
)
849 start_getting_events(smi_info
);
854 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
855 /* Ok it if fails, the timer will just go off. */
856 if (del_timer(&smi_info
->si_timer
))
857 smi_info
->timer_running
= false;
864 static void check_start_timer_thread(struct smi_info
*smi_info
)
866 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
867 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
869 if (smi_info
->thread
)
870 wake_up_process(smi_info
->thread
);
872 start_next_msg(smi_info
);
873 smi_event_handler(smi_info
, 0);
877 static void flush_messages(void *send_info
)
879 struct smi_info
*smi_info
= send_info
;
880 enum si_sm_result result
;
883 * Currently, this function is called only in run-to-completion
884 * mode. This means we are single-threaded, no need for locks.
886 result
= smi_event_handler(smi_info
, 0);
887 while (result
!= SI_SM_IDLE
) {
888 udelay(SI_SHORT_TIMEOUT_USEC
);
889 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
893 static void sender(void *send_info
,
894 struct ipmi_smi_msg
*msg
)
896 struct smi_info
*smi_info
= send_info
;
899 debug_timestamp("Enqueue");
901 if (smi_info
->run_to_completion
) {
903 * If we are running to completion, start it. Upper
904 * layer will call flush_messages to clear it out.
906 smi_info
->waiting_msg
= msg
;
910 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
912 * The following two lines don't need to be under the lock for
913 * the lock's sake, but they do need SMP memory barriers to
914 * avoid getting things out of order. We are already claiming
915 * the lock, anyway, so just do it under the lock to avoid the
918 BUG_ON(smi_info
->waiting_msg
);
919 smi_info
->waiting_msg
= msg
;
920 check_start_timer_thread(smi_info
);
921 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
924 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
926 struct smi_info
*smi_info
= send_info
;
928 smi_info
->run_to_completion
= i_run_to_completion
;
929 if (i_run_to_completion
)
930 flush_messages(smi_info
);
934 * Use -1 in the nsec value of the busy waiting timespec to tell that
935 * we are spinning in kipmid looking for something and not delaying
938 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
942 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
944 return ts
->tv_nsec
!= -1;
947 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
948 const struct smi_info
*smi_info
,
949 struct timespec64
*busy_until
)
951 unsigned int max_busy_us
= 0;
953 if (smi_info
->si_num
< num_max_busy_us
)
954 max_busy_us
= kipmid_max_busy_us
[smi_info
->si_num
];
955 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
956 ipmi_si_set_not_busy(busy_until
);
957 else if (!ipmi_si_is_busy(busy_until
)) {
958 ktime_get_ts64(busy_until
);
959 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
961 struct timespec64 now
;
963 ktime_get_ts64(&now
);
964 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
965 ipmi_si_set_not_busy(busy_until
);
974 * A busy-waiting loop for speeding up IPMI operation.
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
982 static int ipmi_thread(void *data
)
984 struct smi_info
*smi_info
= data
;
986 enum si_sm_result smi_result
;
987 struct timespec64 busy_until
;
989 ipmi_si_set_not_busy(&busy_until
);
990 set_user_nice(current
, MAX_NICE
);
991 while (!kthread_should_stop()) {
994 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
995 smi_result
= smi_event_handler(smi_info
, 0);
998 * If the driver is doing something, there is a possible
999 * race with the timer. If the timer handler see idle,
1000 * and the thread here sees something else, the timer
1001 * handler won't restart the timer even though it is
1002 * required. So start it here if necessary.
1004 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1005 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1007 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1008 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1010 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1012 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1014 else if (smi_result
== SI_SM_IDLE
) {
1015 if (atomic_read(&smi_info
->need_watch
)) {
1016 schedule_timeout_interruptible(100);
1018 /* Wait to be woken up when we are needed. */
1019 __set_current_state(TASK_INTERRUPTIBLE
);
1023 schedule_timeout_interruptible(1);
1029 static void poll(void *send_info
)
1031 struct smi_info
*smi_info
= send_info
;
1032 unsigned long flags
= 0;
1033 bool run_to_completion
= smi_info
->run_to_completion
;
1036 * Make sure there is some delay in the poll loop so we can
1037 * drive time forward and timeout things.
1040 if (!run_to_completion
)
1041 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1042 smi_event_handler(smi_info
, 10);
1043 if (!run_to_completion
)
1044 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1047 static void request_events(void *send_info
)
1049 struct smi_info
*smi_info
= send_info
;
1051 if (!smi_info
->has_event_buffer
)
1054 atomic_set(&smi_info
->req_events
, 1);
1057 static void set_need_watch(void *send_info
, unsigned int watch_mask
)
1059 struct smi_info
*smi_info
= send_info
;
1060 unsigned long flags
;
1063 enable
= !!watch_mask
;
1065 atomic_set(&smi_info
->need_watch
, enable
);
1066 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1067 check_start_timer_thread(smi_info
);
1068 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1071 static void smi_timeout(struct timer_list
*t
)
1073 struct smi_info
*smi_info
= from_timer(smi_info
, t
, si_timer
);
1074 enum si_sm_result smi_result
;
1075 unsigned long flags
;
1076 unsigned long jiffies_now
;
1080 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1081 debug_timestamp("Timer");
1083 jiffies_now
= jiffies
;
1084 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1085 * SI_USEC_PER_JIFFY
);
1086 smi_result
= smi_event_handler(smi_info
, time_diff
);
1088 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
1089 /* Running with interrupts, only do long timeouts. */
1090 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1091 smi_inc_stat(smi_info
, long_timeouts
);
1096 * If the state machine asks for a short delay, then shorten
1097 * the timer timeout.
1099 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1100 smi_inc_stat(smi_info
, short_timeouts
);
1101 timeout
= jiffies
+ 1;
1103 smi_inc_stat(smi_info
, long_timeouts
);
1104 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1108 if (smi_result
!= SI_SM_IDLE
)
1109 smi_mod_timer(smi_info
, timeout
);
1111 smi_info
->timer_running
= false;
1112 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1115 irqreturn_t
ipmi_si_irq_handler(int irq
, void *data
)
1117 struct smi_info
*smi_info
= data
;
1118 unsigned long flags
;
1120 if (smi_info
->io
.si_type
== SI_BT
)
1121 /* We need to clear the IRQ flag for the BT interface. */
1122 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1126 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1128 smi_inc_stat(smi_info
, interrupts
);
1130 debug_timestamp("Interrupt");
1132 smi_event_handler(smi_info
, 0);
1133 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1137 static int smi_start_processing(void *send_info
,
1138 struct ipmi_smi
*intf
)
1140 struct smi_info
*new_smi
= send_info
;
1143 new_smi
->intf
= intf
;
1145 /* Set up the timer that drives the interface. */
1146 timer_setup(&new_smi
->si_timer
, smi_timeout
, 0);
1147 new_smi
->timer_can_start
= true;
1148 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1150 /* Try to claim any interrupts. */
1151 if (new_smi
->io
.irq_setup
) {
1152 new_smi
->io
.irq_handler_data
= new_smi
;
1153 new_smi
->io
.irq_setup(&new_smi
->io
);
1157 * Check if the user forcefully enabled the daemon.
1159 if (new_smi
->si_num
< num_force_kipmid
)
1160 enable
= force_kipmid
[new_smi
->si_num
];
1162 * The BT interface is efficient enough to not need a thread,
1163 * and there is no need for a thread if we have interrupts.
1165 else if ((new_smi
->io
.si_type
!= SI_BT
) && (!new_smi
->io
.irq
))
1169 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1170 "kipmi%d", new_smi
->si_num
);
1171 if (IS_ERR(new_smi
->thread
)) {
1172 dev_notice(new_smi
->io
.dev
, "Could not start"
1173 " kernel thread due to error %ld, only using"
1174 " timers to drive the interface\n",
1175 PTR_ERR(new_smi
->thread
));
1176 new_smi
->thread
= NULL
;
1183 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1185 struct smi_info
*smi
= send_info
;
1187 data
->addr_src
= smi
->io
.addr_source
;
1188 data
->dev
= smi
->io
.dev
;
1189 data
->addr_info
= smi
->io
.addr_info
;
1190 get_device(smi
->io
.dev
);
1195 static void set_maintenance_mode(void *send_info
, bool enable
)
1197 struct smi_info
*smi_info
= send_info
;
1200 atomic_set(&smi_info
->req_events
, 0);
1203 static void shutdown_smi(void *send_info
);
1204 static const struct ipmi_smi_handlers handlers
= {
1205 .owner
= THIS_MODULE
,
1206 .start_processing
= smi_start_processing
,
1207 .shutdown
= shutdown_smi
,
1208 .get_smi_info
= get_smi_info
,
1210 .request_events
= request_events
,
1211 .set_need_watch
= set_need_watch
,
1212 .set_maintenance_mode
= set_maintenance_mode
,
1213 .set_run_to_completion
= set_run_to_completion
,
1214 .flush_messages
= flush_messages
,
1218 static LIST_HEAD(smi_infos
);
1219 static DEFINE_MUTEX(smi_infos_lock
);
1220 static int smi_num
; /* Used to sequence the SMIs */
1222 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1224 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1225 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1226 " disabled(0). Normally the IPMI driver auto-detects"
1227 " this, but the value may be overridden by this parm.");
1228 module_param(unload_when_empty
, bool, 0);
1229 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1230 " specified or found, default is 1. Setting to 0"
1231 " is useful for hot add of devices using hotmod.");
1232 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1233 MODULE_PARM_DESC(kipmid_max_busy_us
,
1234 "Max time (in microseconds) to busy-wait for IPMI data before"
1235 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1236 " if kipmid is using up a lot of CPU time.");
1238 void ipmi_irq_finish_setup(struct si_sm_io
*io
)
1240 if (io
->si_type
== SI_BT
)
1241 /* Enable the interrupt in the BT interface. */
1242 io
->outputb(io
, IPMI_BT_INTMASK_REG
,
1243 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1246 void ipmi_irq_start_cleanup(struct si_sm_io
*io
)
1248 if (io
->si_type
== SI_BT
)
1249 /* Disable the interrupt in the BT interface. */
1250 io
->outputb(io
, IPMI_BT_INTMASK_REG
, 0);
1253 static void std_irq_cleanup(struct si_sm_io
*io
)
1255 ipmi_irq_start_cleanup(io
);
1256 free_irq(io
->irq
, io
->irq_handler_data
);
1259 int ipmi_std_irq_setup(struct si_sm_io
*io
)
1266 rv
= request_irq(io
->irq
,
1267 ipmi_si_irq_handler
,
1270 io
->irq_handler_data
);
1272 dev_warn(io
->dev
, "%s unable to claim interrupt %d,"
1273 " running polled\n",
1274 DEVICE_NAME
, io
->irq
);
1277 io
->irq_cleanup
= std_irq_cleanup
;
1278 ipmi_irq_finish_setup(io
);
1279 dev_info(io
->dev
, "Using irq %d\n", io
->irq
);
1285 static int wait_for_msg_done(struct smi_info
*smi_info
)
1287 enum si_sm_result smi_result
;
1289 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
1291 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
1292 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
1293 schedule_timeout_uninterruptible(1);
1294 smi_result
= smi_info
->handlers
->event(
1295 smi_info
->si_sm
, jiffies_to_usecs(1));
1296 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1297 smi_result
= smi_info
->handlers
->event(
1298 smi_info
->si_sm
, 0);
1302 if (smi_result
== SI_SM_HOSED
)
1304 * We couldn't get the state machine to run, so whatever's at
1305 * the port is probably not an IPMI SMI interface.
1312 static int try_get_dev_id(struct smi_info
*smi_info
)
1314 unsigned char msg
[2];
1315 unsigned char *resp
;
1316 unsigned long resp_len
;
1319 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1324 * Do a Get Device ID command, since it comes back with some
1327 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1328 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
1329 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1331 rv
= wait_for_msg_done(smi_info
);
1335 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1336 resp
, IPMI_MAX_MSG_LENGTH
);
1338 /* Check and record info from the get device id, in case we need it. */
1339 rv
= ipmi_demangle_device_id(resp
[0] >> 2, resp
[1],
1340 resp
+ 2, resp_len
- 2, &smi_info
->device_id
);
1347 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
1349 unsigned char msg
[3];
1350 unsigned char *resp
;
1351 unsigned long resp_len
;
1354 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1358 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1359 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1360 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1362 rv
= wait_for_msg_done(smi_info
);
1364 dev_warn(smi_info
->io
.dev
,
1365 "Error getting response from get global enables command: %d\n",
1370 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1371 resp
, IPMI_MAX_MSG_LENGTH
);
1374 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1375 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1377 dev_warn(smi_info
->io
.dev
,
1378 "Invalid return from get global enables command: %ld %x %x %x\n",
1379 resp_len
, resp
[0], resp
[1], resp
[2]);
1392 * Returns 1 if it gets an error from the command.
1394 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
1396 unsigned char msg
[3];
1397 unsigned char *resp
;
1398 unsigned long resp_len
;
1401 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1405 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1406 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1408 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1410 rv
= wait_for_msg_done(smi_info
);
1412 dev_warn(smi_info
->io
.dev
,
1413 "Error getting response from set global enables command: %d\n",
1418 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1419 resp
, IPMI_MAX_MSG_LENGTH
);
1422 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1423 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1424 dev_warn(smi_info
->io
.dev
,
1425 "Invalid return from set global enables command: %ld %x %x\n",
1426 resp_len
, resp
[0], resp
[1]);
1440 * Some BMCs do not support clearing the receive irq bit in the global
1441 * enables (even if they don't support interrupts on the BMC). Check
1442 * for this and handle it properly.
1444 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
1449 rv
= get_global_enables(smi_info
, &enables
);
1451 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
1452 /* Already clear, should work ok. */
1455 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
1456 rv
= set_global_enables(smi_info
, enables
);
1460 dev_err(smi_info
->io
.dev
,
1461 "Cannot check clearing the rcv irq: %d\n", rv
);
1467 * An error when setting the event buffer bit means
1468 * clearing the bit is not supported.
1470 dev_warn(smi_info
->io
.dev
,
1471 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1472 smi_info
->cannot_disable_irq
= true;
1477 * Some BMCs do not support setting the interrupt bits in the global
1478 * enables even if they support interrupts. Clearly bad, but we can
1481 static void check_set_rcv_irq(struct smi_info
*smi_info
)
1486 if (!smi_info
->io
.irq
)
1489 rv
= get_global_enables(smi_info
, &enables
);
1491 enables
|= IPMI_BMC_RCV_MSG_INTR
;
1492 rv
= set_global_enables(smi_info
, enables
);
1496 dev_err(smi_info
->io
.dev
,
1497 "Cannot check setting the rcv irq: %d\n", rv
);
1503 * An error when setting the event buffer bit means
1504 * setting the bit is not supported.
1506 dev_warn(smi_info
->io
.dev
,
1507 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1508 smi_info
->cannot_disable_irq
= true;
1509 smi_info
->irq_enable_broken
= true;
1513 static int try_enable_event_buffer(struct smi_info
*smi_info
)
1515 unsigned char msg
[3];
1516 unsigned char *resp
;
1517 unsigned long resp_len
;
1520 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1524 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1525 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1526 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1528 rv
= wait_for_msg_done(smi_info
);
1530 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1534 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1535 resp
, IPMI_MAX_MSG_LENGTH
);
1538 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1539 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1541 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1546 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
1547 /* buffer is already enabled, nothing to do. */
1548 smi_info
->supports_event_msg_buff
= true;
1552 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1553 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1554 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
1555 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1557 rv
= wait_for_msg_done(smi_info
);
1559 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1563 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1564 resp
, IPMI_MAX_MSG_LENGTH
);
1567 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1568 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1569 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1576 * An error when setting the event buffer bit means
1577 * that the event buffer is not supported.
1581 smi_info
->supports_event_msg_buff
= true;
1588 #define IPMI_SI_ATTR(name) \
1589 static ssize_t ipmi_##name##_show(struct device *dev, \
1590 struct device_attribute *attr, \
1593 struct smi_info *smi_info = dev_get_drvdata(dev); \
1595 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1597 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1599 static ssize_t
ipmi_type_show(struct device
*dev
,
1600 struct device_attribute
*attr
,
1603 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1605 return snprintf(buf
, 10, "%s\n", si_to_str
[smi_info
->io
.si_type
]);
1607 static DEVICE_ATTR(type
, S_IRUGO
, ipmi_type_show
, NULL
);
1609 static ssize_t
ipmi_interrupts_enabled_show(struct device
*dev
,
1610 struct device_attribute
*attr
,
1613 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1614 int enabled
= smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
;
1616 return snprintf(buf
, 10, "%d\n", enabled
);
1618 static DEVICE_ATTR(interrupts_enabled
, S_IRUGO
,
1619 ipmi_interrupts_enabled_show
, NULL
);
1621 IPMI_SI_ATTR(short_timeouts
);
1622 IPMI_SI_ATTR(long_timeouts
);
1623 IPMI_SI_ATTR(idles
);
1624 IPMI_SI_ATTR(interrupts
);
1625 IPMI_SI_ATTR(attentions
);
1626 IPMI_SI_ATTR(flag_fetches
);
1627 IPMI_SI_ATTR(hosed_count
);
1628 IPMI_SI_ATTR(complete_transactions
);
1629 IPMI_SI_ATTR(events
);
1630 IPMI_SI_ATTR(watchdog_pretimeouts
);
1631 IPMI_SI_ATTR(incoming_messages
);
1633 static ssize_t
ipmi_params_show(struct device
*dev
,
1634 struct device_attribute
*attr
,
1637 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1639 return snprintf(buf
, 200,
1640 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1641 si_to_str
[smi_info
->io
.si_type
],
1642 addr_space_to_str
[smi_info
->io
.addr_space
],
1643 smi_info
->io
.addr_data
,
1644 smi_info
->io
.regspacing
,
1645 smi_info
->io
.regsize
,
1646 smi_info
->io
.regshift
,
1648 smi_info
->io
.slave_addr
);
1650 static DEVICE_ATTR(params
, S_IRUGO
, ipmi_params_show
, NULL
);
1652 static struct attribute
*ipmi_si_dev_attrs
[] = {
1653 &dev_attr_type
.attr
,
1654 &dev_attr_interrupts_enabled
.attr
,
1655 &dev_attr_short_timeouts
.attr
,
1656 &dev_attr_long_timeouts
.attr
,
1657 &dev_attr_idles
.attr
,
1658 &dev_attr_interrupts
.attr
,
1659 &dev_attr_attentions
.attr
,
1660 &dev_attr_flag_fetches
.attr
,
1661 &dev_attr_hosed_count
.attr
,
1662 &dev_attr_complete_transactions
.attr
,
1663 &dev_attr_events
.attr
,
1664 &dev_attr_watchdog_pretimeouts
.attr
,
1665 &dev_attr_incoming_messages
.attr
,
1666 &dev_attr_params
.attr
,
1670 static const struct attribute_group ipmi_si_dev_attr_group
= {
1671 .attrs
= ipmi_si_dev_attrs
,
1675 * oem_data_avail_to_receive_msg_avail
1676 * @info - smi_info structure with msg_flags set
1678 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1679 * Returns 1 indicating need to re-run handle_flags().
1681 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
1683 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
1689 * setup_dell_poweredge_oem_data_handler
1690 * @info - smi_info.device_id must be populated
1692 * Systems that match, but have firmware version < 1.40 may assert
1693 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1694 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1695 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1696 * as RECEIVE_MSG_AVAIL instead.
1698 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1699 * assert the OEM[012] bits, and if it did, the driver would have to
1700 * change to handle that properly, we don't actually check for the
1702 * Device ID = 0x20 BMC on PowerEdge 8G servers
1703 * Device Revision = 0x80
1704 * Firmware Revision1 = 0x01 BMC version 1.40
1705 * Firmware Revision2 = 0x40 BCD encoded
1706 * IPMI Version = 0x51 IPMI 1.5
1707 * Manufacturer ID = A2 02 00 Dell IANA
1709 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1710 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1713 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1714 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1715 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1716 #define DELL_IANA_MFR_ID 0x0002a2
1717 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
1719 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1720 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
1721 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
1722 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
1723 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
1724 smi_info
->oem_data_avail_handler
=
1725 oem_data_avail_to_receive_msg_avail
;
1726 } else if (ipmi_version_major(id
) < 1 ||
1727 (ipmi_version_major(id
) == 1 &&
1728 ipmi_version_minor(id
) < 5)) {
1729 smi_info
->oem_data_avail_handler
=
1730 oem_data_avail_to_receive_msg_avail
;
1735 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1736 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
1738 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
1740 /* Make it a response */
1741 msg
->rsp
[0] = msg
->data
[0] | 4;
1742 msg
->rsp
[1] = msg
->data
[1];
1743 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
1745 smi_info
->curr_msg
= NULL
;
1746 deliver_recv_msg(smi_info
, msg
);
1750 * dell_poweredge_bt_xaction_handler
1751 * @info - smi_info.device_id must be populated
1753 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1754 * not respond to a Get SDR command if the length of the data
1755 * requested is exactly 0x3A, which leads to command timeouts and no
1756 * data returned. This intercepts such commands, and causes userspace
1757 * callers to try again with a different-sized buffer, which succeeds.
1760 #define STORAGE_NETFN 0x0A
1761 #define STORAGE_CMD_GET_SDR 0x23
1762 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
1763 unsigned long unused
,
1766 struct smi_info
*smi_info
= in
;
1767 unsigned char *data
= smi_info
->curr_msg
->data
;
1768 unsigned int size
= smi_info
->curr_msg
->data_size
;
1770 (data
[0]>>2) == STORAGE_NETFN
&&
1771 data
[1] == STORAGE_CMD_GET_SDR
&&
1773 return_hosed_msg_badsize(smi_info
);
1779 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
1780 .notifier_call
= dell_poweredge_bt_xaction_handler
,
1784 * setup_dell_poweredge_bt_xaction_handler
1785 * @info - smi_info.device_id must be filled in already
1787 * Fills in smi_info.device_id.start_transaction_pre_hook
1788 * when we know what function to use there.
1791 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
1793 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1794 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
1795 smi_info
->io
.si_type
== SI_BT
)
1796 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
1800 * setup_oem_data_handler
1801 * @info - smi_info.device_id must be filled in already
1803 * Fills in smi_info.device_id.oem_data_available_handler
1804 * when we know what function to use there.
1807 static void setup_oem_data_handler(struct smi_info
*smi_info
)
1809 setup_dell_poweredge_oem_data_handler(smi_info
);
1812 static void setup_xaction_handlers(struct smi_info
*smi_info
)
1814 setup_dell_poweredge_bt_xaction_handler(smi_info
);
1817 static void check_for_broken_irqs(struct smi_info
*smi_info
)
1819 check_clr_rcv_irq(smi_info
);
1820 check_set_rcv_irq(smi_info
);
1823 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
1825 if (smi_info
->thread
!= NULL
) {
1826 kthread_stop(smi_info
->thread
);
1827 smi_info
->thread
= NULL
;
1830 smi_info
->timer_can_start
= false;
1831 if (smi_info
->timer_running
)
1832 del_timer_sync(&smi_info
->si_timer
);
1835 static struct smi_info
*find_dup_si(struct smi_info
*info
)
1839 list_for_each_entry(e
, &smi_infos
, link
) {
1840 if (e
->io
.addr_space
!= info
->io
.addr_space
)
1842 if (e
->io
.addr_data
== info
->io
.addr_data
) {
1844 * This is a cheap hack, ACPI doesn't have a defined
1845 * slave address but SMBIOS does. Pick it up from
1846 * any source that has it available.
1848 if (info
->io
.slave_addr
&& !e
->io
.slave_addr
)
1849 e
->io
.slave_addr
= info
->io
.slave_addr
;
1857 int ipmi_si_add_smi(struct si_sm_io
*io
)
1860 struct smi_info
*new_smi
, *dup
;
1863 * If the user gave us a hard-coded device at the same
1864 * address, they presumably want us to use it and not what is
1867 if (io
->addr_source
!= SI_HARDCODED
&& io
->addr_source
!= SI_HOTMOD
&&
1868 ipmi_si_hardcode_match(io
->addr_space
, io
->addr_data
)) {
1870 "Hard-coded device at this address already exists");
1874 if (!io
->io_setup
) {
1875 if (io
->addr_space
== IPMI_IO_ADDR_SPACE
) {
1876 io
->io_setup
= ipmi_si_port_setup
;
1877 } else if (io
->addr_space
== IPMI_MEM_ADDR_SPACE
) {
1878 io
->io_setup
= ipmi_si_mem_setup
;
1884 new_smi
= kzalloc(sizeof(*new_smi
), GFP_KERNEL
);
1887 spin_lock_init(&new_smi
->si_lock
);
1891 mutex_lock(&smi_infos_lock
);
1892 dup
= find_dup_si(new_smi
);
1894 if (new_smi
->io
.addr_source
== SI_ACPI
&&
1895 dup
->io
.addr_source
== SI_SMBIOS
) {
1896 /* We prefer ACPI over SMBIOS. */
1897 dev_info(dup
->io
.dev
,
1898 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1899 si_to_str
[new_smi
->io
.si_type
]);
1900 cleanup_one_si(dup
);
1902 dev_info(new_smi
->io
.dev
,
1903 "%s-specified %s state machine: duplicate\n",
1904 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1905 si_to_str
[new_smi
->io
.si_type
]);
1912 pr_info("Adding %s-specified %s state machine\n",
1913 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1914 si_to_str
[new_smi
->io
.si_type
]);
1916 list_add_tail(&new_smi
->link
, &smi_infos
);
1919 rv
= try_smi_init(new_smi
);
1921 mutex_unlock(&smi_infos_lock
);
1926 * Try to start up an interface. Must be called with smi_infos_lock
1927 * held, primarily to keep smi_num consistent, we only one to do these
1930 static int try_smi_init(struct smi_info
*new_smi
)
1935 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1936 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1937 si_to_str
[new_smi
->io
.si_type
],
1938 addr_space_to_str
[new_smi
->io
.addr_space
],
1939 new_smi
->io
.addr_data
,
1940 new_smi
->io
.slave_addr
, new_smi
->io
.irq
);
1942 switch (new_smi
->io
.si_type
) {
1944 new_smi
->handlers
= &kcs_smi_handlers
;
1948 new_smi
->handlers
= &smic_smi_handlers
;
1952 new_smi
->handlers
= &bt_smi_handlers
;
1956 /* No support for anything else yet. */
1961 new_smi
->si_num
= smi_num
;
1963 /* Do this early so it's available for logs. */
1964 if (!new_smi
->io
.dev
) {
1965 pr_err("IPMI interface added with no device\n");
1970 /* Allocate the state machine's data and initialize it. */
1971 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
1972 if (!new_smi
->si_sm
) {
1976 new_smi
->io
.io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
1979 /* Now that we know the I/O size, we can set up the I/O. */
1980 rv
= new_smi
->io
.io_setup(&new_smi
->io
);
1982 dev_err(new_smi
->io
.dev
, "Could not set up I/O space\n");
1986 /* Do low-level detection first. */
1987 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
1988 if (new_smi
->io
.addr_source
)
1989 dev_err(new_smi
->io
.dev
,
1990 "Interface detection failed\n");
1996 * Attempt a get device id command. If it fails, we probably
1997 * don't have a BMC here.
1999 rv
= try_get_dev_id(new_smi
);
2001 if (new_smi
->io
.addr_source
)
2002 dev_err(new_smi
->io
.dev
,
2003 "There appears to be no BMC at this location\n");
2007 setup_oem_data_handler(new_smi
);
2008 setup_xaction_handlers(new_smi
);
2009 check_for_broken_irqs(new_smi
);
2011 new_smi
->waiting_msg
= NULL
;
2012 new_smi
->curr_msg
= NULL
;
2013 atomic_set(&new_smi
->req_events
, 0);
2014 new_smi
->run_to_completion
= false;
2015 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2016 atomic_set(&new_smi
->stats
[i
], 0);
2018 new_smi
->interrupt_disabled
= true;
2019 atomic_set(&new_smi
->need_watch
, 0);
2021 rv
= try_enable_event_buffer(new_smi
);
2023 new_smi
->has_event_buffer
= true;
2026 * Start clearing the flags before we enable interrupts or the
2027 * timer to avoid racing with the timer.
2029 start_clear_flags(new_smi
);
2032 * IRQ is defined to be set when non-zero. req_events will
2033 * cause a global flags check that will enable interrupts.
2035 if (new_smi
->io
.irq
) {
2036 new_smi
->interrupt_disabled
= false;
2037 atomic_set(&new_smi
->req_events
, 1);
2040 dev_set_drvdata(new_smi
->io
.dev
, new_smi
);
2041 rv
= device_add_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2043 dev_err(new_smi
->io
.dev
,
2044 "Unable to add device attributes: error %d\n",
2048 new_smi
->dev_group_added
= true;
2050 rv
= ipmi_register_smi(&handlers
,
2053 new_smi
->io
.slave_addr
);
2055 dev_err(new_smi
->io
.dev
,
2056 "Unable to register device: error %d\n",
2061 /* Don't increment till we know we have succeeded. */
2064 dev_info(new_smi
->io
.dev
, "IPMI %s interface initialized\n",
2065 si_to_str
[new_smi
->io
.si_type
]);
2067 WARN_ON(new_smi
->io
.dev
->init_name
!= NULL
);
2070 if (rv
&& new_smi
->io
.io_cleanup
) {
2071 new_smi
->io
.io_cleanup(&new_smi
->io
);
2072 new_smi
->io
.io_cleanup
= NULL
;
2078 static int __init
init_ipmi_si(void)
2081 enum ipmi_addr_src type
= SI_INVALID
;
2086 ipmi_hardcode_init();
2088 pr_info("IPMI System Interface driver\n");
2090 ipmi_si_platform_init();
2094 ipmi_si_parisc_init();
2096 /* We prefer devices with interrupts, but in the case of a machine
2097 with multiple BMCs we assume that there will be several instances
2098 of a given type so if we succeed in registering a type then also
2099 try to register everything else of the same type */
2100 mutex_lock(&smi_infos_lock
);
2101 list_for_each_entry(e
, &smi_infos
, link
) {
2102 /* Try to register a device if it has an IRQ and we either
2103 haven't successfully registered a device yet or this
2104 device has the same type as one we successfully registered */
2105 if (e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2106 if (!try_smi_init(e
)) {
2107 type
= e
->io
.addr_source
;
2112 /* type will only have been set if we successfully registered an si */
2114 goto skip_fallback_noirq
;
2116 /* Fall back to the preferred device */
2118 list_for_each_entry(e
, &smi_infos
, link
) {
2119 if (!e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2120 if (!try_smi_init(e
)) {
2121 type
= e
->io
.addr_source
;
2126 skip_fallback_noirq
:
2128 mutex_unlock(&smi_infos_lock
);
2133 mutex_lock(&smi_infos_lock
);
2134 if (unload_when_empty
&& list_empty(&smi_infos
)) {
2135 mutex_unlock(&smi_infos_lock
);
2137 pr_warn("Unable to find any System Interface(s)\n");
2140 mutex_unlock(&smi_infos_lock
);
2144 module_init(init_ipmi_si
);
2146 static void shutdown_smi(void *send_info
)
2148 struct smi_info
*smi_info
= send_info
;
2150 if (smi_info
->dev_group_added
) {
2151 device_remove_group(smi_info
->io
.dev
, &ipmi_si_dev_attr_group
);
2152 smi_info
->dev_group_added
= false;
2154 if (smi_info
->io
.dev
)
2155 dev_set_drvdata(smi_info
->io
.dev
, NULL
);
2158 * Make sure that interrupts, the timer and the thread are
2159 * stopped and will not run again.
2161 smi_info
->interrupt_disabled
= true;
2162 if (smi_info
->io
.irq_cleanup
) {
2163 smi_info
->io
.irq_cleanup(&smi_info
->io
);
2164 smi_info
->io
.irq_cleanup
= NULL
;
2166 stop_timer_and_thread(smi_info
);
2169 * Wait until we know that we are out of any interrupt
2170 * handlers might have been running before we freed the
2176 * Timeouts are stopped, now make sure the interrupts are off
2177 * in the BMC. Note that timers and CPU interrupts are off,
2178 * so no need for locks.
2180 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2182 schedule_timeout_uninterruptible(1);
2184 if (smi_info
->handlers
)
2185 disable_si_irq(smi_info
);
2186 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2188 schedule_timeout_uninterruptible(1);
2190 if (smi_info
->handlers
)
2191 smi_info
->handlers
->cleanup(smi_info
->si_sm
);
2193 if (smi_info
->io
.addr_source_cleanup
) {
2194 smi_info
->io
.addr_source_cleanup(&smi_info
->io
);
2195 smi_info
->io
.addr_source_cleanup
= NULL
;
2197 if (smi_info
->io
.io_cleanup
) {
2198 smi_info
->io
.io_cleanup(&smi_info
->io
);
2199 smi_info
->io
.io_cleanup
= NULL
;
2202 kfree(smi_info
->si_sm
);
2203 smi_info
->si_sm
= NULL
;
2205 smi_info
->intf
= NULL
;
2209 * Must be called with smi_infos_lock held, to serialize the
2210 * smi_info->intf check.
2212 static void cleanup_one_si(struct smi_info
*smi_info
)
2217 list_del(&smi_info
->link
);
2220 ipmi_unregister_smi(smi_info
->intf
);
2225 int ipmi_si_remove_by_dev(struct device
*dev
)
2230 mutex_lock(&smi_infos_lock
);
2231 list_for_each_entry(e
, &smi_infos
, link
) {
2232 if (e
->io
.dev
== dev
) {
2238 mutex_unlock(&smi_infos_lock
);
2243 struct device
*ipmi_si_remove_by_data(int addr_space
, enum si_type si_type
,
2247 struct smi_info
*e
, *tmp_e
;
2248 struct device
*dev
= NULL
;
2250 mutex_lock(&smi_infos_lock
);
2251 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
2252 if (e
->io
.addr_space
!= addr_space
)
2254 if (e
->io
.si_type
!= si_type
)
2256 if (e
->io
.addr_data
== addr
) {
2257 dev
= get_device(e
->io
.dev
);
2261 mutex_unlock(&smi_infos_lock
);
2266 static void cleanup_ipmi_si(void)
2268 struct smi_info
*e
, *tmp_e
;
2273 ipmi_si_pci_shutdown();
2275 ipmi_si_parisc_shutdown();
2277 ipmi_si_platform_shutdown();
2279 mutex_lock(&smi_infos_lock
);
2280 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
2282 mutex_unlock(&smi_infos_lock
);
2284 ipmi_si_hardcode_exit();
2285 ipmi_si_hotmod_exit();
2287 module_exit(cleanup_ipmi_si
);
2289 MODULE_ALIAS("platform:dmi-ipmi-si");
2290 MODULE_LICENSE("GPL");
2291 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2292 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2293 " system interfaces.");