Merge tag 'for-linus-20190706' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / net / dsa / lantiq_gswip.c
blob4e64835deac2be7ee7d88959e643236d1383d93f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
28 #include <linux/clk.h>
29 #include <linux/etherdevice.h>
30 #include <linux/firmware.h>
31 #include <linux/if_bridge.h>
32 #include <linux/if_vlan.h>
33 #include <linux/iopoll.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/module.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 #include <linux/phy.h>
40 #include <linux/phylink.h>
41 #include <linux/platform_device.h>
42 #include <linux/regmap.h>
43 #include <linux/reset.h>
44 #include <net/dsa.h>
45 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 #include "lantiq_pce.h"
49 /* GSWIP MDIO Registers */
50 #define GSWIP_MDIO_GLOB 0x00
51 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
52 #define GSWIP_MDIO_CTRL 0x08
53 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
54 #define GSWIP_MDIO_CTRL_RD BIT(11)
55 #define GSWIP_MDIO_CTRL_WR BIT(10)
56 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
57 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
58 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
59 #define GSWIP_MDIO_READ 0x09
60 #define GSWIP_MDIO_WRITE 0x0A
61 #define GSWIP_MDIO_MDC_CFG0 0x0B
62 #define GSWIP_MDIO_MDC_CFG1 0x0C
63 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
64 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
65 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
66 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
67 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
68 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
69 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
71 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
72 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
73 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
74 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
75 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
76 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
77 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
78 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
79 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
80 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
81 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
82 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
83 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
84 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
85 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
86 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
87 GSWIP_MDIO_PHY_FCONRX_MASK | \
88 GSWIP_MDIO_PHY_FCONTX_MASK | \
89 GSWIP_MDIO_PHY_LINK_MASK | \
90 GSWIP_MDIO_PHY_SPEED_MASK | \
91 GSWIP_MDIO_PHY_FDUP_MASK)
93 /* GSWIP MII Registers */
94 #define GSWIP_MII_CFG0 0x00
95 #define GSWIP_MII_CFG1 0x02
96 #define GSWIP_MII_CFG5 0x04
97 #define GSWIP_MII_CFG_EN BIT(14)
98 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
99 #define GSWIP_MII_CFG_MODE_MIIP 0x0
100 #define GSWIP_MII_CFG_MODE_MIIM 0x1
101 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
102 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
103 #define GSWIP_MII_CFG_MODE_RGMII 0x4
104 #define GSWIP_MII_CFG_MODE_MASK 0xf
105 #define GSWIP_MII_CFG_RATE_M2P5 0x00
106 #define GSWIP_MII_CFG_RATE_M25 0x10
107 #define GSWIP_MII_CFG_RATE_M125 0x20
108 #define GSWIP_MII_CFG_RATE_M50 0x30
109 #define GSWIP_MII_CFG_RATE_AUTO 0x40
110 #define GSWIP_MII_CFG_RATE_MASK 0x70
111 #define GSWIP_MII_PCDU0 0x01
112 #define GSWIP_MII_PCDU1 0x03
113 #define GSWIP_MII_PCDU5 0x05
114 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
115 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
117 /* GSWIP Core Registers */
118 #define GSWIP_SWRES 0x000
119 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
120 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
121 #define GSWIP_VERSION 0x013
122 #define GSWIP_VERSION_REV_SHIFT 0
123 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
124 #define GSWIP_VERSION_MOD_SHIFT 8
125 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
126 #define GSWIP_VERSION_2_0 0x100
127 #define GSWIP_VERSION_2_1 0x021
128 #define GSWIP_VERSION_2_2 0x122
129 #define GSWIP_VERSION_2_2_ETC 0x022
131 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
132 #define GSWIP_BM_RAM_ADDR 0x044
133 #define GSWIP_BM_RAM_CTRL 0x045
134 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
135 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
136 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
137 #define GSWIP_BM_QUEUE_GCTRL 0x04A
138 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
139 /* buffer management Port Configuration Register */
140 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
141 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
142 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
143 /* buffer management Port Control Register */
144 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
145 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
146 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
148 /* PCE */
149 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
150 #define GSWIP_PCE_TBL_MASK 0x448
151 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
152 #define GSWIP_PCE_TBL_ADDR 0x44E
153 #define GSWIP_PCE_TBL_CTRL 0x44F
154 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
155 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
156 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
157 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
158 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
159 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
160 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
161 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
162 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
163 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
164 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
165 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
166 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
167 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
168 #define GSWIP_PCE_GCTRL_0 0x456
169 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
170 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
171 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
172 #define GSWIP_PCE_GCTRL_1 0x457
173 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
174 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
175 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
176 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
177 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
178 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
179 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
180 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
181 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
182 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
183 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
184 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
185 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
186 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
187 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
188 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
189 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
190 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
191 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
193 #define GSWIP_MAC_FLEN 0x8C5
194 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
195 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
197 /* Ethernet Switch Fetch DMA Port Control Register */
198 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
199 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
200 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
201 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
202 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
203 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
208 /* Ethernet Switch Store DMA Port Control Register */
209 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
210 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
211 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
212 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */
214 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
215 #define GSWIP_TABLE_VLAN_MAPPING 0x02
216 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
217 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
219 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
221 struct gswip_hw_info {
222 int max_ports;
223 int cpu_port;
226 struct xway_gphy_match_data {
227 char *fe_firmware_name;
228 char *ge_firmware_name;
231 struct gswip_gphy_fw {
232 struct clk *clk_gate;
233 struct reset_control *reset;
234 u32 fw_addr_offset;
235 char *fw_name;
238 struct gswip_vlan {
239 struct net_device *bridge;
240 u16 vid;
241 u8 fid;
244 struct gswip_priv {
245 __iomem void *gswip;
246 __iomem void *mdio;
247 __iomem void *mii;
248 const struct gswip_hw_info *hw_info;
249 const struct xway_gphy_match_data *gphy_fw_name_cfg;
250 struct dsa_switch *ds;
251 struct device *dev;
252 struct regmap *rcu_regmap;
253 struct gswip_vlan vlans[64];
254 int num_gphy_fw;
255 struct gswip_gphy_fw *gphy_fw;
256 u32 port_vlan_filter;
259 struct gswip_pce_table_entry {
260 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
261 u16 table; // PCE_TBL_CTRL.ADDR = pData->table
262 u16 key[8];
263 u16 val[5];
264 u16 mask;
265 u8 gmap;
266 bool type;
267 bool valid;
268 bool key_mode;
271 struct gswip_rmon_cnt_desc {
272 unsigned int size;
273 unsigned int offset;
274 const char *name;
277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
280 /** Receive Packet Count (only packets that are accepted and not discarded). */
281 MIB_DESC(1, 0x1F, "RxGoodPkts"),
282 MIB_DESC(1, 0x23, "RxUnicastPkts"),
283 MIB_DESC(1, 0x22, "RxMulticastPkts"),
284 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
285 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
286 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
287 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
288 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
289 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
290 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
291 MIB_DESC(1, 0x12, "Rx64BytePkts"),
292 MIB_DESC(1, 0x13, "Rx127BytePkts"),
293 MIB_DESC(1, 0x14, "Rx255BytePkts"),
294 MIB_DESC(1, 0x15, "Rx511BytePkts"),
295 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
296 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
297 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
298 MIB_DESC(1, 0x18, "RxDroppedPkts"),
299 MIB_DESC(1, 0x19, "RxFilteredPkts"),
300 MIB_DESC(2, 0x24, "RxGoodBytes"),
301 MIB_DESC(2, 0x26, "RxBadBytes"),
302 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
303 MIB_DESC(1, 0x0C, "TxGoodPkts"),
304 MIB_DESC(1, 0x06, "TxUnicastPkts"),
305 MIB_DESC(1, 0x07, "TxMulticastPkts"),
306 MIB_DESC(1, 0x00, "Tx64BytePkts"),
307 MIB_DESC(1, 0x01, "Tx127BytePkts"),
308 MIB_DESC(1, 0x02, "Tx255BytePkts"),
309 MIB_DESC(1, 0x03, "Tx511BytePkts"),
310 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
311 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
312 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
313 MIB_DESC(1, 0x08, "TxSingleCollCount"),
314 MIB_DESC(1, 0x09, "TxMultCollCount"),
315 MIB_DESC(1, 0x0A, "TxLateCollCount"),
316 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
317 MIB_DESC(1, 0x0D, "TxPauseCount"),
318 MIB_DESC(1, 0x10, "TxDroppedPkts"),
319 MIB_DESC(2, 0x0E, "TxGoodBytes"),
322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
324 return __raw_readl(priv->gswip + (offset * 4));
327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
329 __raw_writel(val, priv->gswip + (offset * 4));
332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
333 u32 offset)
335 u32 val = gswip_switch_r(priv, offset);
337 val &= ~(clear);
338 val |= set;
339 gswip_switch_w(priv, val, offset);
342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
343 u32 cleared)
345 u32 val;
347 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
348 (val & cleared) == 0, 20, 50000);
351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
353 return __raw_readl(priv->mdio + (offset * 4));
356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
358 __raw_writel(val, priv->mdio + (offset * 4));
361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
362 u32 offset)
364 u32 val = gswip_mdio_r(priv, offset);
366 val &= ~(clear);
367 val |= set;
368 gswip_mdio_w(priv, val, offset);
371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
373 return __raw_readl(priv->mii + (offset * 4));
376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
378 __raw_writel(val, priv->mii + (offset * 4));
381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
382 u32 offset)
384 u32 val = gswip_mii_r(priv, offset);
386 val &= ~(clear);
387 val |= set;
388 gswip_mii_w(priv, val, offset);
391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
392 int port)
394 switch (port) {
395 case 0:
396 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
397 break;
398 case 1:
399 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
400 break;
401 case 5:
402 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
403 break;
407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
408 int port)
410 switch (port) {
411 case 0:
412 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
413 break;
414 case 1:
415 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
416 break;
417 case 5:
418 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
419 break;
423 static int gswip_mdio_poll(struct gswip_priv *priv)
425 int cnt = 100;
427 while (likely(cnt--)) {
428 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
430 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
431 return 0;
432 usleep_range(20, 40);
435 return -ETIMEDOUT;
438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
440 struct gswip_priv *priv = bus->priv;
441 int err;
443 err = gswip_mdio_poll(priv);
444 if (err) {
445 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
446 return err;
449 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
450 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
451 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
452 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
453 GSWIP_MDIO_CTRL);
455 return 0;
458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
460 struct gswip_priv *priv = bus->priv;
461 int err;
463 err = gswip_mdio_poll(priv);
464 if (err) {
465 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
466 return err;
469 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
470 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
471 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
472 GSWIP_MDIO_CTRL);
474 err = gswip_mdio_poll(priv);
475 if (err) {
476 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
477 return err;
480 return gswip_mdio_r(priv, GSWIP_MDIO_READ);
483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
485 struct dsa_switch *ds = priv->ds;
487 ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
488 if (!ds->slave_mii_bus)
489 return -ENOMEM;
491 ds->slave_mii_bus->priv = priv;
492 ds->slave_mii_bus->read = gswip_mdio_rd;
493 ds->slave_mii_bus->write = gswip_mdio_wr;
494 ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
495 snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
496 dev_name(priv->dev));
497 ds->slave_mii_bus->parent = priv->dev;
498 ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
500 return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
503 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
504 struct gswip_pce_table_entry *tbl)
506 int i;
507 int err;
508 u16 crtl;
509 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
510 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
512 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
513 GSWIP_PCE_TBL_CTRL_BAS);
514 if (err)
515 return err;
517 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
518 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
519 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
520 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
521 GSWIP_PCE_TBL_CTRL);
523 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
524 GSWIP_PCE_TBL_CTRL_BAS);
525 if (err)
526 return err;
528 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
529 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
531 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
532 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
534 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
536 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
538 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
539 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
540 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
542 return 0;
545 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
546 struct gswip_pce_table_entry *tbl)
548 int i;
549 int err;
550 u16 crtl;
551 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
552 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
554 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
555 GSWIP_PCE_TBL_CTRL_BAS);
556 if (err)
557 return err;
559 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
560 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
561 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
562 tbl->table | addr_mode,
563 GSWIP_PCE_TBL_CTRL);
565 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
566 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
568 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
569 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
571 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
572 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
573 tbl->table | addr_mode,
574 GSWIP_PCE_TBL_CTRL);
576 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
578 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
579 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
580 GSWIP_PCE_TBL_CTRL_GMAP_MASK);
581 if (tbl->type)
582 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
583 if (tbl->valid)
584 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
585 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
586 crtl |= GSWIP_PCE_TBL_CTRL_BAS;
587 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
589 return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
590 GSWIP_PCE_TBL_CTRL_BAS);
593 /* Add the LAN port into a bridge with the CPU port by
594 * default. This prevents automatic forwarding of
595 * packages between the LAN ports when no explicit
596 * bridge is configured.
598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
600 struct gswip_pce_table_entry vlan_active = {0,};
601 struct gswip_pce_table_entry vlan_mapping = {0,};
602 unsigned int cpu_port = priv->hw_info->cpu_port;
603 unsigned int max_ports = priv->hw_info->max_ports;
604 int err;
606 if (port >= max_ports) {
607 dev_err(priv->dev, "single port for %i supported\n", port);
608 return -EIO;
611 vlan_active.index = port + 1;
612 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
613 vlan_active.key[0] = 0; /* vid */
614 vlan_active.val[0] = port + 1 /* fid */;
615 vlan_active.valid = add;
616 err = gswip_pce_table_entry_write(priv, &vlan_active);
617 if (err) {
618 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
619 return err;
622 if (!add)
623 return 0;
625 vlan_mapping.index = port + 1;
626 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
627 vlan_mapping.val[0] = 0 /* vid */;
628 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
629 vlan_mapping.val[2] = 0;
630 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
631 if (err) {
632 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
633 return err;
636 return 0;
639 static int gswip_port_enable(struct dsa_switch *ds, int port,
640 struct phy_device *phydev)
642 struct gswip_priv *priv = ds->priv;
643 int err;
645 if (!dsa_is_cpu_port(ds, port)) {
646 err = gswip_add_single_port_br(priv, port, true);
647 if (err)
648 return err;
651 /* RMON Counter Enable for port */
652 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
654 /* enable port fetch/store dma & VLAN Modification */
655 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
656 GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
657 GSWIP_FDMA_PCTRLp(port));
658 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
659 GSWIP_SDMA_PCTRLp(port));
661 if (!dsa_is_cpu_port(ds, port)) {
662 u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
663 GSWIP_MDIO_PHY_SPEED_AUTO |
664 GSWIP_MDIO_PHY_FDUP_AUTO |
665 GSWIP_MDIO_PHY_FCONTX_AUTO |
666 GSWIP_MDIO_PHY_FCONRX_AUTO |
667 (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
669 gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
670 /* Activate MDIO auto polling */
671 gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
674 return 0;
677 static void gswip_port_disable(struct dsa_switch *ds, int port)
679 struct gswip_priv *priv = ds->priv;
681 if (!dsa_is_cpu_port(ds, port)) {
682 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
683 GSWIP_MDIO_PHY_LINK_MASK,
684 GSWIP_MDIO_PHYp(port));
685 /* Deactivate MDIO auto polling */
686 gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
689 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
690 GSWIP_FDMA_PCTRLp(port));
691 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
692 GSWIP_SDMA_PCTRLp(port));
695 static int gswip_pce_load_microcode(struct gswip_priv *priv)
697 int i;
698 int err;
700 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
701 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
702 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
703 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
705 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
706 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
707 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
708 GSWIP_PCE_TBL_VAL(0));
709 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
710 GSWIP_PCE_TBL_VAL(1));
711 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
712 GSWIP_PCE_TBL_VAL(2));
713 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
714 GSWIP_PCE_TBL_VAL(3));
716 /* start the table access: */
717 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
718 GSWIP_PCE_TBL_CTRL);
719 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
720 GSWIP_PCE_TBL_CTRL_BAS);
721 if (err)
722 return err;
725 /* tell the switch that the microcode is loaded */
726 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
727 GSWIP_PCE_GCTRL_0);
729 return 0;
732 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
733 bool vlan_filtering)
735 struct gswip_priv *priv = ds->priv;
736 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
738 /* Do not allow changing the VLAN filtering options while in bridge */
739 if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
740 return -EIO;
742 if (vlan_filtering) {
743 /* Use port based VLAN tag */
744 gswip_switch_mask(priv,
745 GSWIP_PCE_VCTRL_VSR,
746 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
747 GSWIP_PCE_VCTRL_VEMR,
748 GSWIP_PCE_VCTRL(port));
749 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
750 GSWIP_PCE_PCTRL_0p(port));
751 } else {
752 /* Use port based VLAN tag */
753 gswip_switch_mask(priv,
754 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
755 GSWIP_PCE_VCTRL_VEMR,
756 GSWIP_PCE_VCTRL_VSR,
757 GSWIP_PCE_VCTRL(port));
758 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
759 GSWIP_PCE_PCTRL_0p(port));
762 return 0;
765 static int gswip_setup(struct dsa_switch *ds)
767 struct gswip_priv *priv = ds->priv;
768 unsigned int cpu_port = priv->hw_info->cpu_port;
769 int i;
770 int err;
772 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
773 usleep_range(5000, 10000);
774 gswip_switch_w(priv, 0, GSWIP_SWRES);
776 /* disable port fetch/store dma on all ports */
777 for (i = 0; i < priv->hw_info->max_ports; i++) {
778 gswip_port_disable(ds, i);
779 gswip_port_vlan_filtering(ds, i, false);
782 /* enable Switch */
783 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
785 err = gswip_pce_load_microcode(priv);
786 if (err) {
787 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
788 return err;
791 /* Default unknown Broadcast/Multicast/Unicast port maps */
792 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
793 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
794 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
796 /* disable PHY auto polling */
797 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
798 /* Configure the MDIO Clock 2.5 MHz */
799 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
801 /* Disable the xMII link */
802 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
803 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
804 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
806 /* enable special tag insertion on cpu port */
807 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
808 GSWIP_FDMA_PCTRLp(cpu_port));
810 /* accept special tag in ingress direction */
811 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
812 GSWIP_PCE_PCTRL_0p(cpu_port));
814 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
815 GSWIP_MAC_CTRL_2p(cpu_port));
816 gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
817 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
818 GSWIP_BM_QUEUE_GCTRL);
820 /* VLAN aware Switching */
821 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
823 /* Flush MAC Table */
824 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
826 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
827 GSWIP_PCE_GCTRL_0_MTFL);
828 if (err) {
829 dev_err(priv->dev, "MAC flushing didn't finish\n");
830 return err;
833 gswip_port_enable(ds, cpu_port, NULL);
834 return 0;
837 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
838 int port)
840 return DSA_TAG_PROTO_GSWIP;
843 static int gswip_vlan_active_create(struct gswip_priv *priv,
844 struct net_device *bridge,
845 int fid, u16 vid)
847 struct gswip_pce_table_entry vlan_active = {0,};
848 unsigned int max_ports = priv->hw_info->max_ports;
849 int idx = -1;
850 int err;
851 int i;
853 /* Look for a free slot */
854 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
855 if (!priv->vlans[i].bridge) {
856 idx = i;
857 break;
861 if (idx == -1)
862 return -ENOSPC;
864 if (fid == -1)
865 fid = idx;
867 vlan_active.index = idx;
868 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
869 vlan_active.key[0] = vid;
870 vlan_active.val[0] = fid;
871 vlan_active.valid = true;
873 err = gswip_pce_table_entry_write(priv, &vlan_active);
874 if (err) {
875 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
876 return err;
879 priv->vlans[idx].bridge = bridge;
880 priv->vlans[idx].vid = vid;
881 priv->vlans[idx].fid = fid;
883 return idx;
886 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
888 struct gswip_pce_table_entry vlan_active = {0,};
889 int err;
891 vlan_active.index = idx;
892 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
893 vlan_active.valid = false;
894 err = gswip_pce_table_entry_write(priv, &vlan_active);
895 if (err)
896 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
897 priv->vlans[idx].bridge = NULL;
899 return err;
902 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
903 struct net_device *bridge, int port)
905 struct gswip_pce_table_entry vlan_mapping = {0,};
906 unsigned int max_ports = priv->hw_info->max_ports;
907 unsigned int cpu_port = priv->hw_info->cpu_port;
908 bool active_vlan_created = false;
909 int idx = -1;
910 int i;
911 int err;
913 /* Check if there is already a page for this bridge */
914 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
915 if (priv->vlans[i].bridge == bridge) {
916 idx = i;
917 break;
921 /* If this bridge is not programmed yet, add a Active VLAN table
922 * entry in a free slot and prepare the VLAN mapping table entry.
924 if (idx == -1) {
925 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
926 if (idx < 0)
927 return idx;
928 active_vlan_created = true;
930 vlan_mapping.index = idx;
931 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
932 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
933 vlan_mapping.val[0] = 0;
934 } else {
935 /* Read the existing VLAN mapping entry from the switch */
936 vlan_mapping.index = idx;
937 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
938 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
939 if (err) {
940 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
941 err);
942 return err;
946 /* Update the VLAN mapping entry and write it to the switch */
947 vlan_mapping.val[1] |= BIT(cpu_port);
948 vlan_mapping.val[1] |= BIT(port);
949 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
950 if (err) {
951 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
952 /* In case an Active VLAN was creaetd delete it again */
953 if (active_vlan_created)
954 gswip_vlan_active_remove(priv, idx);
955 return err;
958 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
959 return 0;
962 static int gswip_vlan_add_aware(struct gswip_priv *priv,
963 struct net_device *bridge, int port,
964 u16 vid, bool untagged,
965 bool pvid)
967 struct gswip_pce_table_entry vlan_mapping = {0,};
968 unsigned int max_ports = priv->hw_info->max_ports;
969 unsigned int cpu_port = priv->hw_info->cpu_port;
970 bool active_vlan_created = false;
971 int idx = -1;
972 int fid = -1;
973 int i;
974 int err;
976 /* Check if there is already a page for this bridge */
977 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
978 if (priv->vlans[i].bridge == bridge) {
979 if (fid != -1 && fid != priv->vlans[i].fid)
980 dev_err(priv->dev, "one bridge with multiple flow ids\n");
981 fid = priv->vlans[i].fid;
982 if (priv->vlans[i].vid == vid) {
983 idx = i;
984 break;
989 /* If this bridge is not programmed yet, add a Active VLAN table
990 * entry in a free slot and prepare the VLAN mapping table entry.
992 if (idx == -1) {
993 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
994 if (idx < 0)
995 return idx;
996 active_vlan_created = true;
998 vlan_mapping.index = idx;
999 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1000 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1001 vlan_mapping.val[0] = vid;
1002 } else {
1003 /* Read the existing VLAN mapping entry from the switch */
1004 vlan_mapping.index = idx;
1005 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1006 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1007 if (err) {
1008 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1009 err);
1010 return err;
1014 vlan_mapping.val[0] = vid;
1015 /* Update the VLAN mapping entry and write it to the switch */
1016 vlan_mapping.val[1] |= BIT(cpu_port);
1017 vlan_mapping.val[2] |= BIT(cpu_port);
1018 vlan_mapping.val[1] |= BIT(port);
1019 if (untagged)
1020 vlan_mapping.val[2] &= ~BIT(port);
1021 else
1022 vlan_mapping.val[2] |= BIT(port);
1023 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1024 if (err) {
1025 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1026 /* In case an Active VLAN was creaetd delete it again */
1027 if (active_vlan_created)
1028 gswip_vlan_active_remove(priv, idx);
1029 return err;
1032 if (pvid)
1033 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1035 return 0;
1038 static int gswip_vlan_remove(struct gswip_priv *priv,
1039 struct net_device *bridge, int port,
1040 u16 vid, bool pvid, bool vlan_aware)
1042 struct gswip_pce_table_entry vlan_mapping = {0,};
1043 unsigned int max_ports = priv->hw_info->max_ports;
1044 unsigned int cpu_port = priv->hw_info->cpu_port;
1045 int idx = -1;
1046 int i;
1047 int err;
1049 /* Check if there is already a page for this bridge */
1050 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1051 if (priv->vlans[i].bridge == bridge &&
1052 (!vlan_aware || priv->vlans[i].vid == vid)) {
1053 idx = i;
1054 break;
1058 if (idx == -1) {
1059 dev_err(priv->dev, "bridge to leave does not exists\n");
1060 return -ENOENT;
1063 vlan_mapping.index = idx;
1064 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1065 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1066 if (err) {
1067 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1068 return err;
1071 vlan_mapping.val[1] &= ~BIT(port);
1072 vlan_mapping.val[2] &= ~BIT(port);
1073 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1074 if (err) {
1075 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1076 return err;
1079 /* In case all ports are removed from the bridge, remove the VLAN */
1080 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1081 err = gswip_vlan_active_remove(priv, idx);
1082 if (err) {
1083 dev_err(priv->dev, "failed to write active VLAN: %d\n",
1084 err);
1085 return err;
1089 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1090 if (pvid)
1091 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1093 return 0;
1096 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1097 struct net_device *bridge)
1099 struct gswip_priv *priv = ds->priv;
1100 int err;
1102 /* When the bridge uses VLAN filtering we have to configure VLAN
1103 * specific bridges. No bridge is configured here.
1105 if (!br_vlan_enabled(bridge)) {
1106 err = gswip_vlan_add_unaware(priv, bridge, port);
1107 if (err)
1108 return err;
1109 priv->port_vlan_filter &= ~BIT(port);
1110 } else {
1111 priv->port_vlan_filter |= BIT(port);
1113 return gswip_add_single_port_br(priv, port, false);
1116 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1117 struct net_device *bridge)
1119 struct gswip_priv *priv = ds->priv;
1121 gswip_add_single_port_br(priv, port, true);
1123 /* When the bridge uses VLAN filtering we have to configure VLAN
1124 * specific bridges. No bridge is configured here.
1126 if (!br_vlan_enabled(bridge))
1127 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1130 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1131 const struct switchdev_obj_port_vlan *vlan)
1133 struct gswip_priv *priv = ds->priv;
1134 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1135 unsigned int max_ports = priv->hw_info->max_ports;
1136 u16 vid;
1137 int i;
1138 int pos = max_ports;
1140 /* We only support VLAN filtering on bridges */
1141 if (!dsa_is_cpu_port(ds, port) && !bridge)
1142 return -EOPNOTSUPP;
1144 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1145 int idx = -1;
1147 /* Check if there is already a page for this VLAN */
1148 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1149 if (priv->vlans[i].bridge == bridge &&
1150 priv->vlans[i].vid == vid) {
1151 idx = i;
1152 break;
1156 /* If this VLAN is not programmed yet, we have to reserve
1157 * one entry in the VLAN table. Make sure we start at the
1158 * next position round.
1160 if (idx == -1) {
1161 /* Look for a free slot */
1162 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1163 if (!priv->vlans[pos].bridge) {
1164 idx = pos;
1165 pos++;
1166 break;
1170 if (idx == -1)
1171 return -ENOSPC;
1175 return 0;
1178 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1179 const struct switchdev_obj_port_vlan *vlan)
1181 struct gswip_priv *priv = ds->priv;
1182 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1183 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1184 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1185 u16 vid;
1187 /* We have to receive all packets on the CPU port and should not
1188 * do any VLAN filtering here. This is also called with bridge
1189 * NULL and then we do not know for which bridge to configure
1190 * this.
1192 if (dsa_is_cpu_port(ds, port))
1193 return;
1195 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1196 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1199 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1200 const struct switchdev_obj_port_vlan *vlan)
1202 struct gswip_priv *priv = ds->priv;
1203 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1204 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1205 u16 vid;
1206 int err;
1208 /* We have to receive all packets on the CPU port and should not
1209 * do any VLAN filtering here. This is also called with bridge
1210 * NULL and then we do not know for which bridge to configure
1211 * this.
1213 if (dsa_is_cpu_port(ds, port))
1214 return 0;
1216 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1217 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1218 if (err)
1219 return err;
1222 return 0;
1225 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1227 struct gswip_priv *priv = ds->priv;
1228 struct gswip_pce_table_entry mac_bridge = {0,};
1229 int i;
1230 int err;
1232 for (i = 0; i < 2048; i++) {
1233 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1234 mac_bridge.index = i;
1236 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1237 if (err) {
1238 dev_err(priv->dev, "failed to read mac bridge: %d\n",
1239 err);
1240 return;
1243 if (!mac_bridge.valid)
1244 continue;
1246 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1247 continue;
1249 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1250 continue;
1252 mac_bridge.valid = false;
1253 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1254 if (err) {
1255 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1256 err);
1257 return;
1262 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1264 struct gswip_priv *priv = ds->priv;
1265 u32 stp_state;
1267 switch (state) {
1268 case BR_STATE_DISABLED:
1269 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1270 GSWIP_SDMA_PCTRLp(port));
1271 return;
1272 case BR_STATE_BLOCKING:
1273 case BR_STATE_LISTENING:
1274 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1275 break;
1276 case BR_STATE_LEARNING:
1277 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1278 break;
1279 case BR_STATE_FORWARDING:
1280 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1281 break;
1282 default:
1283 dev_err(priv->dev, "invalid STP state: %d\n", state);
1284 return;
1287 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1288 GSWIP_SDMA_PCTRLp(port));
1289 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1290 GSWIP_PCE_PCTRL_0p(port));
1293 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1294 const unsigned char *addr, u16 vid, bool add)
1296 struct gswip_priv *priv = ds->priv;
1297 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1298 struct gswip_pce_table_entry mac_bridge = {0,};
1299 unsigned int cpu_port = priv->hw_info->cpu_port;
1300 int fid = -1;
1301 int i;
1302 int err;
1304 if (!bridge)
1305 return -EINVAL;
1307 for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1308 if (priv->vlans[i].bridge == bridge) {
1309 fid = priv->vlans[i].fid;
1310 break;
1314 if (fid == -1) {
1315 dev_err(priv->dev, "Port not part of a bridge\n");
1316 return -EINVAL;
1319 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1320 mac_bridge.key_mode = true;
1321 mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1322 mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1323 mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1324 mac_bridge.key[3] = fid;
1325 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1326 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1327 mac_bridge.valid = add;
1329 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1330 if (err)
1331 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1333 return err;
1336 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1337 const unsigned char *addr, u16 vid)
1339 return gswip_port_fdb(ds, port, addr, vid, true);
1342 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1343 const unsigned char *addr, u16 vid)
1345 return gswip_port_fdb(ds, port, addr, vid, false);
1348 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1349 dsa_fdb_dump_cb_t *cb, void *data)
1351 struct gswip_priv *priv = ds->priv;
1352 struct gswip_pce_table_entry mac_bridge = {0,};
1353 unsigned char addr[6];
1354 int i;
1355 int err;
1357 for (i = 0; i < 2048; i++) {
1358 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1359 mac_bridge.index = i;
1361 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1362 if (err) {
1363 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1364 err);
1365 return err;
1368 if (!mac_bridge.valid)
1369 continue;
1371 addr[5] = mac_bridge.key[0] & 0xff;
1372 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1373 addr[3] = mac_bridge.key[1] & 0xff;
1374 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1375 addr[1] = mac_bridge.key[2] & 0xff;
1376 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1377 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1378 if (mac_bridge.val[0] & BIT(port))
1379 cb(addr, 0, true, data);
1380 } else {
1381 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1382 cb(addr, 0, false, data);
1385 return 0;
1388 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1389 unsigned long *supported,
1390 struct phylink_link_state *state)
1392 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1394 switch (port) {
1395 case 0:
1396 case 1:
1397 if (!phy_interface_mode_is_rgmii(state->interface) &&
1398 state->interface != PHY_INTERFACE_MODE_MII &&
1399 state->interface != PHY_INTERFACE_MODE_REVMII &&
1400 state->interface != PHY_INTERFACE_MODE_RMII)
1401 goto unsupported;
1402 break;
1403 case 2:
1404 case 3:
1405 case 4:
1406 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1407 goto unsupported;
1408 break;
1409 case 5:
1410 if (!phy_interface_mode_is_rgmii(state->interface) &&
1411 state->interface != PHY_INTERFACE_MODE_INTERNAL)
1412 goto unsupported;
1413 break;
1414 default:
1415 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1416 dev_err(ds->dev, "Unsupported port: %i\n", port);
1417 return;
1420 /* Allow all the expected bits */
1421 phylink_set(mask, Autoneg);
1422 phylink_set_port_modes(mask);
1423 phylink_set(mask, Pause);
1424 phylink_set(mask, Asym_Pause);
1426 /* With the exclusion of MII and Reverse MII, we support Gigabit,
1427 * including Half duplex
1429 if (state->interface != PHY_INTERFACE_MODE_MII &&
1430 state->interface != PHY_INTERFACE_MODE_REVMII) {
1431 phylink_set(mask, 1000baseT_Full);
1432 phylink_set(mask, 1000baseT_Half);
1435 phylink_set(mask, 10baseT_Half);
1436 phylink_set(mask, 10baseT_Full);
1437 phylink_set(mask, 100baseT_Half);
1438 phylink_set(mask, 100baseT_Full);
1440 bitmap_and(supported, supported, mask,
1441 __ETHTOOL_LINK_MODE_MASK_NBITS);
1442 bitmap_and(state->advertising, state->advertising, mask,
1443 __ETHTOOL_LINK_MODE_MASK_NBITS);
1444 return;
1446 unsupported:
1447 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1448 dev_err(ds->dev, "Unsupported interface: %d\n", state->interface);
1449 return;
1452 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1453 unsigned int mode,
1454 const struct phylink_link_state *state)
1456 struct gswip_priv *priv = ds->priv;
1457 u32 miicfg = 0;
1459 miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1461 switch (state->interface) {
1462 case PHY_INTERFACE_MODE_MII:
1463 case PHY_INTERFACE_MODE_INTERNAL:
1464 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1465 break;
1466 case PHY_INTERFACE_MODE_REVMII:
1467 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1468 break;
1469 case PHY_INTERFACE_MODE_RMII:
1470 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1471 break;
1472 case PHY_INTERFACE_MODE_RGMII:
1473 case PHY_INTERFACE_MODE_RGMII_ID:
1474 case PHY_INTERFACE_MODE_RGMII_RXID:
1475 case PHY_INTERFACE_MODE_RGMII_TXID:
1476 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1477 break;
1478 default:
1479 dev_err(ds->dev,
1480 "Unsupported interface: %d\n", state->interface);
1481 return;
1483 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1485 switch (state->interface) {
1486 case PHY_INTERFACE_MODE_RGMII_ID:
1487 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1488 GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1489 break;
1490 case PHY_INTERFACE_MODE_RGMII_RXID:
1491 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1492 break;
1493 case PHY_INTERFACE_MODE_RGMII_TXID:
1494 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1495 break;
1496 default:
1497 break;
1501 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1502 unsigned int mode,
1503 phy_interface_t interface)
1505 struct gswip_priv *priv = ds->priv;
1507 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1510 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1511 unsigned int mode,
1512 phy_interface_t interface,
1513 struct phy_device *phydev)
1515 struct gswip_priv *priv = ds->priv;
1517 /* Enable the xMII interface only for the external PHY */
1518 if (interface != PHY_INTERFACE_MODE_INTERNAL)
1519 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1522 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1523 uint8_t *data)
1525 int i;
1527 if (stringset != ETH_SS_STATS)
1528 return;
1530 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1531 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1532 ETH_GSTRING_LEN);
1535 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1536 u32 index)
1538 u32 result;
1539 int err;
1541 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1542 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1543 GSWIP_BM_RAM_CTRL_OPMOD,
1544 table | GSWIP_BM_RAM_CTRL_BAS,
1545 GSWIP_BM_RAM_CTRL);
1547 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1548 GSWIP_BM_RAM_CTRL_BAS);
1549 if (err) {
1550 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1551 table, index);
1552 return 0;
1555 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1556 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1558 return result;
1561 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1562 uint64_t *data)
1564 struct gswip_priv *priv = ds->priv;
1565 const struct gswip_rmon_cnt_desc *rmon_cnt;
1566 int i;
1567 u64 high;
1569 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1570 rmon_cnt = &gswip_rmon_cnt[i];
1572 data[i] = gswip_bcm_ram_entry_read(priv, port,
1573 rmon_cnt->offset);
1574 if (rmon_cnt->size == 2) {
1575 high = gswip_bcm_ram_entry_read(priv, port,
1576 rmon_cnt->offset + 1);
1577 data[i] |= high << 32;
1582 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1584 if (sset != ETH_SS_STATS)
1585 return 0;
1587 return ARRAY_SIZE(gswip_rmon_cnt);
1590 static const struct dsa_switch_ops gswip_switch_ops = {
1591 .get_tag_protocol = gswip_get_tag_protocol,
1592 .setup = gswip_setup,
1593 .port_enable = gswip_port_enable,
1594 .port_disable = gswip_port_disable,
1595 .port_bridge_join = gswip_port_bridge_join,
1596 .port_bridge_leave = gswip_port_bridge_leave,
1597 .port_fast_age = gswip_port_fast_age,
1598 .port_vlan_filtering = gswip_port_vlan_filtering,
1599 .port_vlan_prepare = gswip_port_vlan_prepare,
1600 .port_vlan_add = gswip_port_vlan_add,
1601 .port_vlan_del = gswip_port_vlan_del,
1602 .port_stp_state_set = gswip_port_stp_state_set,
1603 .port_fdb_add = gswip_port_fdb_add,
1604 .port_fdb_del = gswip_port_fdb_del,
1605 .port_fdb_dump = gswip_port_fdb_dump,
1606 .phylink_validate = gswip_phylink_validate,
1607 .phylink_mac_config = gswip_phylink_mac_config,
1608 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1609 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1610 .get_strings = gswip_get_strings,
1611 .get_ethtool_stats = gswip_get_ethtool_stats,
1612 .get_sset_count = gswip_get_sset_count,
1615 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1616 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1617 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1620 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1621 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1622 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1625 static const struct xway_gphy_match_data xrx300_gphy_data = {
1626 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1627 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1630 static const struct of_device_id xway_gphy_match[] = {
1631 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1632 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1633 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1634 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1635 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1639 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1641 struct device *dev = priv->dev;
1642 const struct firmware *fw;
1643 void *fw_addr;
1644 dma_addr_t dma_addr;
1645 dma_addr_t dev_addr;
1646 size_t size;
1647 int ret;
1649 ret = clk_prepare_enable(gphy_fw->clk_gate);
1650 if (ret)
1651 return ret;
1653 reset_control_assert(gphy_fw->reset);
1655 ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1656 if (ret) {
1657 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1658 gphy_fw->fw_name, ret);
1659 return ret;
1662 /* GPHY cores need the firmware code in a persistent and contiguous
1663 * memory area with a 16 kB boundary aligned start address.
1665 size = fw->size + XRX200_GPHY_FW_ALIGN;
1667 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1668 if (fw_addr) {
1669 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1670 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1671 memcpy(fw_addr, fw->data, fw->size);
1672 } else {
1673 dev_err(dev, "failed to alloc firmware memory\n");
1674 release_firmware(fw);
1675 return -ENOMEM;
1678 release_firmware(fw);
1680 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1681 if (ret)
1682 return ret;
1684 reset_control_deassert(gphy_fw->reset);
1686 return ret;
1689 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1690 struct gswip_gphy_fw *gphy_fw,
1691 struct device_node *gphy_fw_np, int i)
1693 struct device *dev = priv->dev;
1694 u32 gphy_mode;
1695 int ret;
1696 char gphyname[10];
1698 snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1700 gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1701 if (IS_ERR(gphy_fw->clk_gate)) {
1702 dev_err(dev, "Failed to lookup gate clock\n");
1703 return PTR_ERR(gphy_fw->clk_gate);
1706 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1707 if (ret)
1708 return ret;
1710 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1711 /* Default to GE mode */
1712 if (ret)
1713 gphy_mode = GPHY_MODE_GE;
1715 switch (gphy_mode) {
1716 case GPHY_MODE_FE:
1717 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1718 break;
1719 case GPHY_MODE_GE:
1720 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1721 break;
1722 default:
1723 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1724 return -EINVAL;
1727 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1728 if (IS_ERR(gphy_fw->reset)) {
1729 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1730 dev_err(dev, "Failed to lookup gphy reset\n");
1731 return PTR_ERR(gphy_fw->reset);
1734 return gswip_gphy_fw_load(priv, gphy_fw);
1737 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1738 struct gswip_gphy_fw *gphy_fw)
1740 int ret;
1742 /* check if the device was fully probed */
1743 if (!gphy_fw->fw_name)
1744 return;
1746 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1747 if (ret)
1748 dev_err(priv->dev, "can not reset GPHY FW pointer");
1750 clk_disable_unprepare(gphy_fw->clk_gate);
1752 reset_control_put(gphy_fw->reset);
1755 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1756 struct device_node *gphy_fw_list_np, u32 version)
1758 struct device *dev = priv->dev;
1759 struct device_node *gphy_fw_np;
1760 const struct of_device_id *match;
1761 int err;
1762 int i = 0;
1764 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1765 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1766 * needs a different GPHY firmware.
1768 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1769 switch (version) {
1770 case GSWIP_VERSION_2_0:
1771 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1772 break;
1773 case GSWIP_VERSION_2_1:
1774 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1775 break;
1776 default:
1777 dev_err(dev, "unknown GSWIP version: 0x%x", version);
1778 return -ENOENT;
1782 match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1783 if (match && match->data)
1784 priv->gphy_fw_name_cfg = match->data;
1786 if (!priv->gphy_fw_name_cfg) {
1787 dev_err(dev, "GPHY compatible type not supported");
1788 return -ENOENT;
1791 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1792 if (!priv->num_gphy_fw)
1793 return -ENOENT;
1795 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1796 "lantiq,rcu");
1797 if (IS_ERR(priv->rcu_regmap))
1798 return PTR_ERR(priv->rcu_regmap);
1800 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1801 sizeof(*priv->gphy_fw),
1802 GFP_KERNEL | __GFP_ZERO);
1803 if (!priv->gphy_fw)
1804 return -ENOMEM;
1806 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1807 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1808 gphy_fw_np, i);
1809 if (err)
1810 goto remove_gphy;
1811 i++;
1814 return 0;
1816 remove_gphy:
1817 for (i = 0; i < priv->num_gphy_fw; i++)
1818 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1819 return err;
1822 static int gswip_probe(struct platform_device *pdev)
1824 struct gswip_priv *priv;
1825 struct resource *gswip_res, *mdio_res, *mii_res;
1826 struct device_node *mdio_np, *gphy_fw_np;
1827 struct device *dev = &pdev->dev;
1828 int err;
1829 int i;
1830 u32 version;
1832 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1833 if (!priv)
1834 return -ENOMEM;
1836 gswip_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1837 priv->gswip = devm_ioremap_resource(dev, gswip_res);
1838 if (IS_ERR(priv->gswip))
1839 return PTR_ERR(priv->gswip);
1841 mdio_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1842 priv->mdio = devm_ioremap_resource(dev, mdio_res);
1843 if (IS_ERR(priv->mdio))
1844 return PTR_ERR(priv->mdio);
1846 mii_res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1847 priv->mii = devm_ioremap_resource(dev, mii_res);
1848 if (IS_ERR(priv->mii))
1849 return PTR_ERR(priv->mii);
1851 priv->hw_info = of_device_get_match_data(dev);
1852 if (!priv->hw_info)
1853 return -EINVAL;
1855 priv->ds = dsa_switch_alloc(dev, priv->hw_info->max_ports);
1856 if (!priv->ds)
1857 return -ENOMEM;
1859 priv->ds->priv = priv;
1860 priv->ds->ops = &gswip_switch_ops;
1861 priv->dev = dev;
1862 version = gswip_switch_r(priv, GSWIP_VERSION);
1864 /* bring up the mdio bus */
1865 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1866 if (gphy_fw_np) {
1867 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1868 of_node_put(gphy_fw_np);
1869 if (err) {
1870 dev_err(dev, "gphy fw probe failed\n");
1871 return err;
1875 /* bring up the mdio bus */
1876 mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1877 if (mdio_np) {
1878 err = gswip_mdio(priv, mdio_np);
1879 if (err) {
1880 dev_err(dev, "mdio probe failed\n");
1881 goto put_mdio_node;
1885 err = dsa_register_switch(priv->ds);
1886 if (err) {
1887 dev_err(dev, "dsa switch register failed: %i\n", err);
1888 goto mdio_bus;
1890 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1891 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1892 priv->hw_info->cpu_port);
1893 err = -EINVAL;
1894 goto disable_switch;
1897 platform_set_drvdata(pdev, priv);
1899 dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1900 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1901 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1902 return 0;
1904 disable_switch:
1905 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1906 dsa_unregister_switch(priv->ds);
1907 mdio_bus:
1908 if (mdio_np)
1909 mdiobus_unregister(priv->ds->slave_mii_bus);
1910 put_mdio_node:
1911 of_node_put(mdio_np);
1912 for (i = 0; i < priv->num_gphy_fw; i++)
1913 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1914 return err;
1917 static int gswip_remove(struct platform_device *pdev)
1919 struct gswip_priv *priv = platform_get_drvdata(pdev);
1920 int i;
1922 /* disable the switch */
1923 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1925 dsa_unregister_switch(priv->ds);
1927 if (priv->ds->slave_mii_bus) {
1928 mdiobus_unregister(priv->ds->slave_mii_bus);
1929 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1932 for (i = 0; i < priv->num_gphy_fw; i++)
1933 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1935 return 0;
1938 static const struct gswip_hw_info gswip_xrx200 = {
1939 .max_ports = 7,
1940 .cpu_port = 6,
1943 static const struct of_device_id gswip_of_match[] = {
1944 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1947 MODULE_DEVICE_TABLE(of, gswip_of_match);
1949 static struct platform_driver gswip_driver = {
1950 .probe = gswip_probe,
1951 .remove = gswip_remove,
1952 .driver = {
1953 .name = "gswip",
1954 .of_match_table = gswip_of_match,
1958 module_platform_driver(gswip_driver);
1960 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1961 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1962 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1963 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1964 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1965 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1966 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1967 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1968 MODULE_LICENSE("GPL v2");