1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
4 Copyright (c) 2001, 2002 by D-Link Corporation
5 Written by Edward Peng.<edward_peng@dlink.com.tw>
6 Created 03-May-2001, base on Linux' sundance.c.
10 #define DRV_NAME "DL2000/TC902x-based linux driver"
11 #define DRV_VERSION "v1.19"
12 #define DRV_RELDATE "2007/08/12"
14 #include <linux/dma-mapping.h>
16 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
17 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
18 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
19 #define dr32(reg) ioread32(ioaddr + (reg))
20 #define dr16(reg) ioread16(ioaddr + (reg))
21 #define dr8(reg) ioread8(ioaddr + (reg))
23 static char version
[] =
24 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
26 static int mtu
[MAX_UNITS
];
27 static int vlan
[MAX_UNITS
];
28 static int jumbo
[MAX_UNITS
];
29 static char *media
[MAX_UNITS
];
30 static int tx_flow
=-1;
31 static int rx_flow
=-1;
32 static int copy_thresh
;
33 static int rx_coalesce
=10; /* Rx frame count each interrupt */
34 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
35 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
38 MODULE_AUTHOR ("Edward Peng");
39 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
40 MODULE_LICENSE("GPL");
41 module_param_array(mtu
, int, NULL
, 0);
42 module_param_array(media
, charp
, NULL
, 0);
43 module_param_array(vlan
, int, NULL
, 0);
44 module_param_array(jumbo
, int, NULL
, 0);
45 module_param(tx_flow
, int, 0);
46 module_param(rx_flow
, int, 0);
47 module_param(copy_thresh
, int, 0);
48 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
49 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
50 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
53 /* Enable the default interrupts */
54 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
55 UpdateStats | LinkEvent)
57 static void dl2k_enable_int(struct netdev_private
*np
)
59 void __iomem
*ioaddr
= np
->ioaddr
;
61 dw16(IntEnable
, DEFAULT_INTR
);
64 static const int max_intrloop
= 50;
65 static const int multicast_filter_limit
= 0x40;
67 static int rio_open (struct net_device
*dev
);
68 static void rio_timer (struct timer_list
*t
);
69 static void rio_tx_timeout (struct net_device
*dev
);
70 static netdev_tx_t
start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
71 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
72 static void rio_free_tx (struct net_device
*dev
, int irq
);
73 static void tx_error (struct net_device
*dev
, int tx_status
);
74 static int receive_packet (struct net_device
*dev
);
75 static void rio_error (struct net_device
*dev
, int int_status
);
76 static void set_multicast (struct net_device
*dev
);
77 static struct net_device_stats
*get_stats (struct net_device
*dev
);
78 static int clear_stats (struct net_device
*dev
);
79 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
80 static int rio_close (struct net_device
*dev
);
81 static int find_miiphy (struct net_device
*dev
);
82 static int parse_eeprom (struct net_device
*dev
);
83 static int read_eeprom (struct netdev_private
*, int eep_addr
);
84 static int mii_wait_link (struct net_device
*dev
, int wait
);
85 static int mii_set_media (struct net_device
*dev
);
86 static int mii_get_media (struct net_device
*dev
);
87 static int mii_set_media_pcs (struct net_device
*dev
);
88 static int mii_get_media_pcs (struct net_device
*dev
);
89 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
90 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
93 static const struct ethtool_ops ethtool_ops
;
95 static const struct net_device_ops netdev_ops
= {
97 .ndo_start_xmit
= start_xmit
,
98 .ndo_stop
= rio_close
,
99 .ndo_get_stats
= get_stats
,
100 .ndo_validate_addr
= eth_validate_addr
,
101 .ndo_set_mac_address
= eth_mac_addr
,
102 .ndo_set_rx_mode
= set_multicast
,
103 .ndo_do_ioctl
= rio_ioctl
,
104 .ndo_tx_timeout
= rio_tx_timeout
,
108 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
110 struct net_device
*dev
;
111 struct netdev_private
*np
;
113 int chip_idx
= ent
->driver_data
;
115 void __iomem
*ioaddr
;
116 static int version_printed
;
120 if (!version_printed
++)
121 printk ("%s", version
);
123 err
= pci_enable_device (pdev
);
128 err
= pci_request_regions (pdev
, "dl2k");
130 goto err_out_disable
;
132 pci_set_master (pdev
);
136 dev
= alloc_etherdev (sizeof (*np
));
139 SET_NETDEV_DEV(dev
, &pdev
->dev
);
141 np
= netdev_priv(dev
);
143 /* IO registers range. */
144 ioaddr
= pci_iomap(pdev
, 0, 0);
147 np
->eeprom_addr
= ioaddr
;
150 /* MM registers range. */
151 ioaddr
= pci_iomap(pdev
, 1, 0);
153 goto err_out_iounmap
;
156 np
->chip_id
= chip_idx
;
158 spin_lock_init (&np
->tx_lock
);
159 spin_lock_init (&np
->rx_lock
);
161 /* Parse manual configuration */
164 if (card_idx
< MAX_UNITS
) {
165 if (media
[card_idx
] != NULL
) {
167 if (strcmp (media
[card_idx
], "auto") == 0 ||
168 strcmp (media
[card_idx
], "autosense") == 0 ||
169 strcmp (media
[card_idx
], "0") == 0 ) {
171 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
172 strcmp (media
[card_idx
], "4") == 0) {
175 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0 ||
176 strcmp (media
[card_idx
], "3") == 0) {
179 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
180 strcmp (media
[card_idx
], "2") == 0) {
183 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
184 strcmp (media
[card_idx
], "1") == 0) {
187 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
188 strcmp (media
[card_idx
], "6") == 0) {
191 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
192 strcmp (media
[card_idx
], "5") == 0) {
199 if (jumbo
[card_idx
] != 0) {
201 dev
->mtu
= MAX_JUMBO
;
204 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
205 dev
->mtu
= mtu
[card_idx
];
207 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
209 if (rx_coalesce
> 0 && rx_timeout
> 0) {
210 np
->rx_coalesce
= rx_coalesce
;
211 np
->rx_timeout
= rx_timeout
;
214 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
215 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
219 else if (tx_coalesce
> TX_RING_SIZE
-1)
220 tx_coalesce
= TX_RING_SIZE
- 1;
222 dev
->netdev_ops
= &netdev_ops
;
223 dev
->watchdog_timeo
= TX_TIMEOUT
;
224 dev
->ethtool_ops
= ðtool_ops
;
226 dev
->features
= NETIF_F_IP_CSUM
;
228 /* MTU range: 68 - 1536 or 8000 */
229 dev
->min_mtu
= ETH_MIN_MTU
;
230 dev
->max_mtu
= np
->jumbo
? MAX_JUMBO
: PACKET_SIZE
;
232 pci_set_drvdata (pdev
, dev
);
234 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
236 goto err_out_iounmap
;
237 np
->tx_ring
= ring_space
;
238 np
->tx_ring_dma
= ring_dma
;
240 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
242 goto err_out_unmap_tx
;
243 np
->rx_ring
= ring_space
;
244 np
->rx_ring_dma
= ring_dma
;
246 /* Parse eeprom data */
249 /* Find PHY address */
250 err
= find_miiphy (dev
);
252 goto err_out_unmap_rx
;
255 np
->phy_media
= (dr16(ASICCtrl
) & PhyMedia
) ? 1 : 0;
257 /* Set media and reset PHY */
259 /* default Auto-Negotiation for fiber deivices */
260 if (np
->an_enable
== 2) {
264 /* Auto-Negotiation is mandatory for 1000BASE-T,
265 IEEE 802.3ab Annex 28D page 14 */
266 if (np
->speed
== 1000)
270 err
= register_netdev (dev
);
272 goto err_out_unmap_rx
;
276 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
277 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
279 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
283 "rx_coalesce:\t%d packets\n"
284 "rx_timeout: \t%d ns\n",
285 np
->rx_coalesce
, np
->rx_timeout
*640);
287 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
291 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
293 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
296 pci_iounmap(pdev
, np
->ioaddr
);
298 pci_iounmap(pdev
, np
->eeprom_addr
);
302 pci_release_regions (pdev
);
304 pci_disable_device (pdev
);
309 find_miiphy (struct net_device
*dev
)
311 struct netdev_private
*np
= netdev_priv(dev
);
312 int i
, phy_found
= 0;
316 for (i
= 31; i
>= 0; i
--) {
317 int mii_status
= mii_read (dev
, i
, 1);
318 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
324 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
331 parse_eeprom (struct net_device
*dev
)
333 struct netdev_private
*np
= netdev_priv(dev
);
334 void __iomem
*ioaddr
= np
->ioaddr
;
339 PSROM_t psrom
= (PSROM_t
) sromdata
;
343 for (i
= 0; i
< 128; i
++)
344 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom(np
, i
));
346 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
348 crc
= ~ether_crc_le (256 - 4, sromdata
);
349 if (psrom
->crc
!= cpu_to_le32(crc
)) {
350 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
356 /* Set MAC address */
357 for (i
= 0; i
< 6; i
++)
358 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
360 if (np
->chip_id
== CHIP_IP1000A
) {
361 np
->led_mode
= psrom
->led_mode
;
365 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
369 /* Parse Software Information Block */
371 psib
= (u8
*) sromdata
;
375 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
376 printk (KERN_ERR
"Cell data error\n");
380 case 0: /* Format version */
382 case 1: /* End of cell */
384 case 2: /* Duplex Polarity */
385 np
->duplex_polarity
= psib
[i
];
386 dw8(PhyCtrl
, dr8(PhyCtrl
) | psib
[i
]);
388 case 3: /* Wake Polarity */
389 np
->wake_polarity
= psib
[i
];
391 case 9: /* Adapter description */
392 j
= (next
- i
> 255) ? 255 : next
- i
;
393 memcpy (np
->name
, &(psib
[i
]), j
);
399 case 8: /* Reversed */
401 default: /* Unknown cell */
410 static void rio_set_led_mode(struct net_device
*dev
)
412 struct netdev_private
*np
= netdev_priv(dev
);
413 void __iomem
*ioaddr
= np
->ioaddr
;
416 if (np
->chip_id
!= CHIP_IP1000A
)
419 mode
= dr32(ASICCtrl
);
420 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
422 if (np
->led_mode
& 0x01)
423 mode
|= IPG_AC_LED_MODE
;
424 if (np
->led_mode
& 0x02)
425 mode
|= IPG_AC_LED_MODE_BIT_1
;
426 if (np
->led_mode
& 0x08)
427 mode
|= IPG_AC_LED_SPEED
;
429 dw32(ASICCtrl
, mode
);
432 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
434 return le64_to_cpu(desc
->fraginfo
) & DMA_BIT_MASK(48);
437 static void free_list(struct net_device
*dev
)
439 struct netdev_private
*np
= netdev_priv(dev
);
443 /* Free all the skbuffs in the queue. */
444 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
445 skb
= np
->rx_skbuff
[i
];
447 pci_unmap_single(np
->pdev
, desc_to_dma(&np
->rx_ring
[i
]),
448 skb
->len
, PCI_DMA_FROMDEVICE
);
450 np
->rx_skbuff
[i
] = NULL
;
452 np
->rx_ring
[i
].status
= 0;
453 np
->rx_ring
[i
].fraginfo
= 0;
455 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
456 skb
= np
->tx_skbuff
[i
];
458 pci_unmap_single(np
->pdev
, desc_to_dma(&np
->tx_ring
[i
]),
459 skb
->len
, PCI_DMA_TODEVICE
);
461 np
->tx_skbuff
[i
] = NULL
;
466 static void rio_reset_ring(struct netdev_private
*np
)
475 for (i
= 0; i
< TX_RING_SIZE
; i
++)
476 np
->tx_ring
[i
].status
= cpu_to_le64(TFDDone
);
478 for (i
= 0; i
< RX_RING_SIZE
; i
++)
479 np
->rx_ring
[i
].status
= 0;
482 /* allocate and initialize Tx and Rx descriptors */
483 static int alloc_list(struct net_device
*dev
)
485 struct netdev_private
*np
= netdev_priv(dev
);
489 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
491 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
492 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
493 np
->tx_skbuff
[i
] = NULL
;
494 np
->tx_ring
[i
].next_desc
= cpu_to_le64(np
->tx_ring_dma
+
495 ((i
+ 1) % TX_RING_SIZE
) *
496 sizeof(struct netdev_desc
));
499 /* Initialize Rx descriptors & allocate buffers */
500 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
501 /* Allocated fixed size of skbuff */
504 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
505 np
->rx_skbuff
[i
] = skb
;
511 np
->rx_ring
[i
].next_desc
= cpu_to_le64(np
->rx_ring_dma
+
512 ((i
+ 1) % RX_RING_SIZE
) *
513 sizeof(struct netdev_desc
));
514 /* Rubicon now supports 40 bits of addressing space. */
515 np
->rx_ring
[i
].fraginfo
=
516 cpu_to_le64(pci_map_single(
517 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
518 PCI_DMA_FROMDEVICE
));
519 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
525 static void rio_hw_init(struct net_device
*dev
)
527 struct netdev_private
*np
= netdev_priv(dev
);
528 void __iomem
*ioaddr
= np
->ioaddr
;
532 /* Reset all logic functions */
534 GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
);
537 rio_set_led_mode(dev
);
539 /* DebugCtrl bit 4, 5, 9 must set */
540 dw32(DebugCtrl
, dr32(DebugCtrl
) | 0x0230);
542 if (np
->chip_id
== CHIP_IP1000A
&&
543 (np
->pdev
->revision
== 0x40 || np
->pdev
->revision
== 0x41)) {
544 /* PHY magic taken from ipg driver, undocumented registers */
545 mii_write(dev
, np
->phy_addr
, 31, 0x0001);
546 mii_write(dev
, np
->phy_addr
, 27, 0x01e0);
547 mii_write(dev
, np
->phy_addr
, 31, 0x0002);
548 mii_write(dev
, np
->phy_addr
, 27, 0xeb8e);
549 mii_write(dev
, np
->phy_addr
, 31, 0x0000);
550 mii_write(dev
, np
->phy_addr
, 30, 0x005e);
551 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
552 mii_write(dev
, np
->phy_addr
, MII_CTRL1000
, 0x0700);
556 mii_set_media_pcs(dev
);
562 dw16(MaxFrameSize
, MAX_JUMBO
+14);
565 dw32(RFDListPtr0
, np
->rx_ring_dma
);
566 dw32(RFDListPtr1
, 0);
568 /* Set station address */
569 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
570 * too. However, it doesn't work on IP1000A so we use 16-bit access.
572 for (i
= 0; i
< 3; i
++)
573 dw16(StationAddr0
+ 2 * i
,
574 cpu_to_le16(((u16
*)dev
->dev_addr
)[i
]));
578 dw32(RxDMAIntCtrl
, np
->rx_coalesce
| np
->rx_timeout
<< 16);
580 /* Set RIO to poll every N*320nsec. */
581 dw8(RxDMAPollPeriod
, 0x20);
582 dw8(TxDMAPollPeriod
, 0xff);
583 dw8(RxDMABurstThresh
, 0x30);
584 dw8(RxDMAUrgentThresh
, 0x30);
585 dw32(RmonStatMask
, 0x0007ffff);
586 /* clear statistics */
591 /* priority field in RxDMAIntCtrl */
592 dw32(RxDMAIntCtrl
, dr32(RxDMAIntCtrl
) | 0x7 << 10);
594 dw16(VLANId
, np
->vlan
);
595 /* Length/Type should be 0x8100 */
596 dw32(VLANTag
, 0x8100 << 16 | np
->vlan
);
597 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
598 VLAN information tagged by TFC' VID, CFI fields. */
599 dw32(MACCtrl
, dr32(MACCtrl
) | AutoVLANuntagging
);
603 dw32(MACCtrl
, dr32(MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
);
606 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
607 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
608 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
609 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
610 dw16(MACCtrl
, macctrl
);
613 static void rio_hw_stop(struct net_device
*dev
)
615 struct netdev_private
*np
= netdev_priv(dev
);
616 void __iomem
*ioaddr
= np
->ioaddr
;
618 /* Disable interrupts */
621 /* Stop Tx and Rx logics */
622 dw32(MACCtrl
, TxDisable
| RxDisable
| StatsDisable
);
625 static int rio_open(struct net_device
*dev
)
627 struct netdev_private
*np
= netdev_priv(dev
);
628 const int irq
= np
->pdev
->irq
;
637 i
= request_irq(irq
, rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
644 timer_setup(&np
->timer
, rio_timer
, 0);
645 np
->timer
.expires
= jiffies
+ 1 * HZ
;
646 add_timer(&np
->timer
);
648 netif_start_queue (dev
);
655 rio_timer (struct timer_list
*t
)
657 struct netdev_private
*np
= from_timer(np
, t
, timer
);
658 struct net_device
*dev
= pci_get_drvdata(np
->pdev
);
660 int next_tick
= 1*HZ
;
663 spin_lock_irqsave(&np
->rx_lock
, flags
);
664 /* Recover rx ring exhausted error */
665 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
666 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
667 /* Re-allocate skbuffs to fill the descriptor ring */
668 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
670 entry
= np
->old_rx
% RX_RING_SIZE
;
671 /* Dropped packets don't need to re-allocate */
672 if (np
->rx_skbuff
[entry
] == NULL
) {
673 skb
= netdev_alloc_skb_ip_align(dev
,
676 np
->rx_ring
[entry
].fraginfo
= 0;
678 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
682 np
->rx_skbuff
[entry
] = skb
;
683 np
->rx_ring
[entry
].fraginfo
=
684 cpu_to_le64 (pci_map_single
685 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
686 PCI_DMA_FROMDEVICE
));
688 np
->rx_ring
[entry
].fraginfo
|=
689 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
690 np
->rx_ring
[entry
].status
= 0;
693 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
694 np
->timer
.expires
= jiffies
+ next_tick
;
695 add_timer(&np
->timer
);
699 rio_tx_timeout (struct net_device
*dev
)
701 struct netdev_private
*np
= netdev_priv(dev
);
702 void __iomem
*ioaddr
= np
->ioaddr
;
704 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
705 dev
->name
, dr32(TxStatus
));
708 netif_trans_update(dev
); /* prevent tx timeout */
712 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
714 struct netdev_private
*np
= netdev_priv(dev
);
715 void __iomem
*ioaddr
= np
->ioaddr
;
716 struct netdev_desc
*txdesc
;
718 u64 tfc_vlan_tag
= 0;
720 if (np
->link_status
== 0) { /* Link Down */
724 entry
= np
->cur_tx
% TX_RING_SIZE
;
725 np
->tx_skbuff
[entry
] = skb
;
726 txdesc
= &np
->tx_ring
[entry
];
729 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
731 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
736 tfc_vlan_tag
= VLANTagInsert
|
737 ((u64
)np
->vlan
<< 32) |
738 ((u64
)skb
->priority
<< 45);
740 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
743 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
745 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
746 * Work around: Always use 1 descriptor in 10Mbps mode */
747 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
748 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
751 (1 << FragCountShift
));
753 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
755 (1 << FragCountShift
));
758 dw32(DMACtrl
, dr32(DMACtrl
) | 0x00001000);
760 dw32(CountDown
, 10000);
761 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
762 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
763 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
765 } else if (!netif_queue_stopped(dev
)) {
766 netif_stop_queue (dev
);
769 /* The first TFDListPtr */
770 if (!dr32(TFDListPtr0
)) {
771 dw32(TFDListPtr0
, np
->tx_ring_dma
+
772 entry
* sizeof (struct netdev_desc
));
773 dw32(TFDListPtr1
, 0);
780 rio_interrupt (int irq
, void *dev_instance
)
782 struct net_device
*dev
= dev_instance
;
783 struct netdev_private
*np
= netdev_priv(dev
);
784 void __iomem
*ioaddr
= np
->ioaddr
;
786 int cnt
= max_intrloop
;
790 int_status
= dr16(IntStatus
);
791 dw16(IntStatus
, int_status
);
792 int_status
&= DEFAULT_INTR
;
793 if (int_status
== 0 || --cnt
< 0)
796 /* Processing received packets */
797 if (int_status
& RxDMAComplete
)
798 receive_packet (dev
);
799 /* TxDMAComplete interrupt */
800 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
802 tx_status
= dr32(TxStatus
);
803 if (tx_status
& 0x01)
804 tx_error (dev
, tx_status
);
805 /* Free used tx skbuffs */
806 rio_free_tx (dev
, 1);
809 /* Handle uncommon events */
811 (HostError
| LinkEvent
| UpdateStats
))
812 rio_error (dev
, int_status
);
814 if (np
->cur_tx
!= np
->old_tx
)
815 dw32(CountDown
, 100);
816 return IRQ_RETVAL(handled
);
820 rio_free_tx (struct net_device
*dev
, int irq
)
822 struct netdev_private
*np
= netdev_priv(dev
);
823 int entry
= np
->old_tx
% TX_RING_SIZE
;
825 unsigned long flag
= 0;
828 spin_lock(&np
->tx_lock
);
830 spin_lock_irqsave(&np
->tx_lock
, flag
);
832 /* Free used tx skbuffs */
833 while (entry
!= np
->cur_tx
) {
836 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
838 skb
= np
->tx_skbuff
[entry
];
839 pci_unmap_single (np
->pdev
,
840 desc_to_dma(&np
->tx_ring
[entry
]),
841 skb
->len
, PCI_DMA_TODEVICE
);
843 dev_consume_skb_irq(skb
);
847 np
->tx_skbuff
[entry
] = NULL
;
848 entry
= (entry
+ 1) % TX_RING_SIZE
;
852 spin_unlock(&np
->tx_lock
);
854 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
857 /* If the ring is no longer full, clear tx_full and
858 call netif_wake_queue() */
860 if (netif_queue_stopped(dev
) &&
861 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
862 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
863 netif_wake_queue (dev
);
868 tx_error (struct net_device
*dev
, int tx_status
)
870 struct netdev_private
*np
= netdev_priv(dev
);
871 void __iomem
*ioaddr
= np
->ioaddr
;
875 frame_id
= (tx_status
& 0xffff0000);
876 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
877 dev
->name
, tx_status
, frame_id
);
878 dev
->stats
.tx_errors
++;
879 /* Ttransmit Underrun */
880 if (tx_status
& 0x10) {
881 dev
->stats
.tx_fifo_errors
++;
882 dw16(TxStartThresh
, dr16(TxStartThresh
) + 0x10);
883 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
885 TxReset
| DMAReset
| FIFOReset
| NetworkReset
);
886 /* Wait for ResetBusy bit clear */
887 for (i
= 50; i
> 0; i
--) {
888 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
892 rio_set_led_mode(dev
);
893 rio_free_tx (dev
, 1);
894 /* Reset TFDListPtr */
895 dw32(TFDListPtr0
, np
->tx_ring_dma
+
896 np
->old_tx
* sizeof (struct netdev_desc
));
897 dw32(TFDListPtr1
, 0);
899 /* Let TxStartThresh stay default value */
902 if (tx_status
& 0x04) {
903 dev
->stats
.tx_fifo_errors
++;
904 /* TxReset and clear FIFO */
905 dw16(ASICCtrl
+ 2, TxReset
| FIFOReset
);
906 /* Wait reset done */
907 for (i
= 50; i
> 0; i
--) {
908 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
912 rio_set_led_mode(dev
);
913 /* Let TxStartThresh stay default value */
915 /* Maximum Collisions */
916 if (tx_status
& 0x08)
917 dev
->stats
.collisions
++;
919 dw32(MACCtrl
, dr16(MACCtrl
) | TxEnable
);
923 receive_packet (struct net_device
*dev
)
925 struct netdev_private
*np
= netdev_priv(dev
);
926 int entry
= np
->cur_rx
% RX_RING_SIZE
;
929 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
931 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
935 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
936 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
937 !(desc
->status
& cpu_to_le64(FrameEnd
)))
940 /* Chip omits the CRC. */
941 frame_status
= le64_to_cpu(desc
->status
);
942 pkt_len
= frame_status
& 0xffff;
945 /* Update rx error statistics, drop packet. */
946 if (frame_status
& RFS_Errors
) {
947 dev
->stats
.rx_errors
++;
948 if (frame_status
& (RxRuntFrame
| RxLengthError
))
949 dev
->stats
.rx_length_errors
++;
950 if (frame_status
& RxFCSError
)
951 dev
->stats
.rx_crc_errors
++;
952 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
953 dev
->stats
.rx_frame_errors
++;
954 if (frame_status
& RxFIFOOverrun
)
955 dev
->stats
.rx_fifo_errors
++;
959 /* Small skbuffs for short packets */
960 if (pkt_len
> copy_thresh
) {
961 pci_unmap_single (np
->pdev
,
965 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
966 np
->rx_skbuff
[entry
] = NULL
;
967 } else if ((skb
= netdev_alloc_skb_ip_align(dev
, pkt_len
))) {
968 pci_dma_sync_single_for_cpu(np
->pdev
,
972 skb_copy_to_linear_data (skb
,
973 np
->rx_skbuff
[entry
]->data
,
975 skb_put (skb
, pkt_len
);
976 pci_dma_sync_single_for_device(np
->pdev
,
981 skb
->protocol
= eth_type_trans (skb
, dev
);
983 /* Checksum done by hw, but csum value unavailable. */
984 if (np
->pdev
->pci_rev_id
>= 0x0c &&
985 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
986 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
991 entry
= (entry
+ 1) % RX_RING_SIZE
;
993 spin_lock(&np
->rx_lock
);
995 /* Re-allocate skbuffs to fill the descriptor ring */
997 while (entry
!= np
->cur_rx
) {
999 /* Dropped packets don't need to re-allocate */
1000 if (np
->rx_skbuff
[entry
] == NULL
) {
1001 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
1003 np
->rx_ring
[entry
].fraginfo
= 0;
1005 "%s: receive_packet: "
1006 "Unable to re-allocate Rx skbuff.#%d\n",
1010 np
->rx_skbuff
[entry
] = skb
;
1011 np
->rx_ring
[entry
].fraginfo
=
1012 cpu_to_le64 (pci_map_single
1013 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
1014 PCI_DMA_FROMDEVICE
));
1016 np
->rx_ring
[entry
].fraginfo
|=
1017 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
1018 np
->rx_ring
[entry
].status
= 0;
1019 entry
= (entry
+ 1) % RX_RING_SIZE
;
1022 spin_unlock(&np
->rx_lock
);
1027 rio_error (struct net_device
*dev
, int int_status
)
1029 struct netdev_private
*np
= netdev_priv(dev
);
1030 void __iomem
*ioaddr
= np
->ioaddr
;
1033 /* Link change event */
1034 if (int_status
& LinkEvent
) {
1035 if (mii_wait_link (dev
, 10) == 0) {
1036 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
1038 mii_get_media_pcs (dev
);
1040 mii_get_media (dev
);
1041 if (np
->speed
== 1000)
1042 np
->tx_coalesce
= tx_coalesce
;
1044 np
->tx_coalesce
= 1;
1046 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
1047 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
1048 macctrl
|= (np
->tx_flow
) ?
1049 TxFlowControlEnable
: 0;
1050 macctrl
|= (np
->rx_flow
) ?
1051 RxFlowControlEnable
: 0;
1052 dw16(MACCtrl
, macctrl
);
1053 np
->link_status
= 1;
1054 netif_carrier_on(dev
);
1056 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
1057 np
->link_status
= 0;
1058 netif_carrier_off(dev
);
1062 /* UpdateStats statistics registers */
1063 if (int_status
& UpdateStats
) {
1067 /* PCI Error, a catastronphic error related to the bus interface
1068 occurs, set GlobalReset and HostReset to reset. */
1069 if (int_status
& HostError
) {
1070 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
1071 dev
->name
, int_status
);
1072 dw16(ASICCtrl
+ 2, GlobalReset
| HostReset
);
1074 rio_set_led_mode(dev
);
1078 static struct net_device_stats
*
1079 get_stats (struct net_device
*dev
)
1081 struct netdev_private
*np
= netdev_priv(dev
);
1082 void __iomem
*ioaddr
= np
->ioaddr
;
1086 unsigned int stat_reg
;
1088 /* All statistics registers need to be acknowledged,
1089 else statistic overflow could cause problems */
1091 dev
->stats
.rx_packets
+= dr32(FramesRcvOk
);
1092 dev
->stats
.tx_packets
+= dr32(FramesXmtOk
);
1093 dev
->stats
.rx_bytes
+= dr32(OctetRcvOk
);
1094 dev
->stats
.tx_bytes
+= dr32(OctetXmtOk
);
1096 dev
->stats
.multicast
= dr32(McstFramesRcvdOk
);
1097 dev
->stats
.collisions
+= dr32(SingleColFrames
)
1098 + dr32(MultiColFrames
);
1100 /* detailed tx errors */
1101 stat_reg
= dr16(FramesAbortXSColls
);
1102 dev
->stats
.tx_aborted_errors
+= stat_reg
;
1103 dev
->stats
.tx_errors
+= stat_reg
;
1105 stat_reg
= dr16(CarrierSenseErrors
);
1106 dev
->stats
.tx_carrier_errors
+= stat_reg
;
1107 dev
->stats
.tx_errors
+= stat_reg
;
1109 /* Clear all other statistic register. */
1110 dr32(McstOctetXmtOk
);
1111 dr16(BcstFramesXmtdOk
);
1112 dr32(McstFramesXmtdOk
);
1113 dr16(BcstFramesRcvdOk
);
1114 dr16(MacControlFramesRcvd
);
1115 dr16(FrameTooLongErrors
);
1116 dr16(InRangeLengthErrors
);
1117 dr16(FramesCheckSeqErrors
);
1118 dr16(FramesLostRxErrors
);
1119 dr32(McstOctetXmtOk
);
1120 dr32(BcstOctetXmtOk
);
1121 dr32(McstFramesXmtdOk
);
1122 dr32(FramesWDeferredXmt
);
1123 dr32(LateCollisions
);
1124 dr16(BcstFramesXmtdOk
);
1125 dr16(MacControlFramesXmtd
);
1126 dr16(FramesWEXDeferal
);
1129 for (i
= 0x100; i
<= 0x150; i
+= 4)
1132 dr16(TxJumboFrames
);
1133 dr16(RxJumboFrames
);
1134 dr16(TCPCheckSumErrors
);
1135 dr16(UDPCheckSumErrors
);
1136 dr16(IPCheckSumErrors
);
1141 clear_stats (struct net_device
*dev
)
1143 struct netdev_private
*np
= netdev_priv(dev
);
1144 void __iomem
*ioaddr
= np
->ioaddr
;
1149 /* All statistics registers need to be acknowledged,
1150 else statistic overflow could cause problems */
1156 dr32(McstFramesRcvdOk
);
1157 dr32(SingleColFrames
);
1158 dr32(MultiColFrames
);
1159 dr32(LateCollisions
);
1160 /* detailed rx errors */
1161 dr16(FrameTooLongErrors
);
1162 dr16(InRangeLengthErrors
);
1163 dr16(FramesCheckSeqErrors
);
1164 dr16(FramesLostRxErrors
);
1166 /* detailed tx errors */
1167 dr16(FramesAbortXSColls
);
1168 dr16(CarrierSenseErrors
);
1170 /* Clear all other statistic register. */
1171 dr32(McstOctetXmtOk
);
1172 dr16(BcstFramesXmtdOk
);
1173 dr32(McstFramesXmtdOk
);
1174 dr16(BcstFramesRcvdOk
);
1175 dr16(MacControlFramesRcvd
);
1176 dr32(McstOctetXmtOk
);
1177 dr32(BcstOctetXmtOk
);
1178 dr32(McstFramesXmtdOk
);
1179 dr32(FramesWDeferredXmt
);
1180 dr16(BcstFramesXmtdOk
);
1181 dr16(MacControlFramesXmtd
);
1182 dr16(FramesWEXDeferal
);
1184 for (i
= 0x100; i
<= 0x150; i
+= 4)
1187 dr16(TxJumboFrames
);
1188 dr16(RxJumboFrames
);
1189 dr16(TCPCheckSumErrors
);
1190 dr16(UDPCheckSumErrors
);
1191 dr16(IPCheckSumErrors
);
1196 set_multicast (struct net_device
*dev
)
1198 struct netdev_private
*np
= netdev_priv(dev
);
1199 void __iomem
*ioaddr
= np
->ioaddr
;
1203 hash_table
[0] = hash_table
[1] = 0;
1204 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1205 hash_table
[1] |= 0x02000000;
1206 if (dev
->flags
& IFF_PROMISC
) {
1207 /* Receive all frames promiscuously. */
1208 rx_mode
= ReceiveAllFrames
;
1209 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1210 (netdev_mc_count(dev
) > multicast_filter_limit
)) {
1211 /* Receive broadcast and multicast frames */
1212 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1213 } else if (!netdev_mc_empty(dev
)) {
1214 struct netdev_hw_addr
*ha
;
1215 /* Receive broadcast frames and multicast frames filtering
1218 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1219 netdev_for_each_mc_addr(ha
, dev
) {
1221 int crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1222 /* The inverted high significant 6 bits of CRC are
1223 used as an index to hashtable */
1224 for (bit
= 0; bit
< 6; bit
++)
1225 if (crc
& (1 << (31 - bit
)))
1226 index
|= (1 << bit
);
1227 hash_table
[index
/ 32] |= (1 << (index
% 32));
1230 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1233 /* ReceiveVLANMatch field in ReceiveMode */
1234 rx_mode
|= ReceiveVLANMatch
;
1237 dw32(HashTable0
, hash_table
[0]);
1238 dw32(HashTable1
, hash_table
[1]);
1239 dw16(ReceiveMode
, rx_mode
);
1242 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1244 struct netdev_private
*np
= netdev_priv(dev
);
1246 strlcpy(info
->driver
, "dl2k", sizeof(info
->driver
));
1247 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1248 strlcpy(info
->bus_info
, pci_name(np
->pdev
), sizeof(info
->bus_info
));
1251 static int rio_get_link_ksettings(struct net_device
*dev
,
1252 struct ethtool_link_ksettings
*cmd
)
1254 struct netdev_private
*np
= netdev_priv(dev
);
1255 u32 supported
, advertising
;
1257 if (np
->phy_media
) {
1259 supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1260 advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1261 cmd
->base
.port
= PORT_FIBRE
;
1264 supported
= SUPPORTED_10baseT_Half
|
1265 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1266 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1267 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1268 advertising
= ADVERTISED_10baseT_Half
|
1269 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1270 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1271 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1272 cmd
->base
.port
= PORT_MII
;
1274 if (np
->link_status
) {
1275 cmd
->base
.speed
= np
->speed
;
1276 cmd
->base
.duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1278 cmd
->base
.speed
= SPEED_UNKNOWN
;
1279 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
1282 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
1284 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
1286 cmd
->base
.phy_address
= np
->phy_addr
;
1288 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
1290 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
1296 static int rio_set_link_ksettings(struct net_device
*dev
,
1297 const struct ethtool_link_ksettings
*cmd
)
1299 struct netdev_private
*np
= netdev_priv(dev
);
1300 u32 speed
= cmd
->base
.speed
;
1301 u8 duplex
= cmd
->base
.duplex
;
1303 netif_carrier_off(dev
);
1304 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
1305 if (np
->an_enable
) {
1314 if (np
->speed
== 1000) {
1316 duplex
= DUPLEX_FULL
;
1317 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1322 np
->full_duplex
= (duplex
== DUPLEX_FULL
);
1326 np
->full_duplex
= (duplex
== DUPLEX_FULL
);
1328 case SPEED_1000
: /* not supported */
1337 static u32
rio_get_link(struct net_device
*dev
)
1339 struct netdev_private
*np
= netdev_priv(dev
);
1340 return np
->link_status
;
1343 static const struct ethtool_ops ethtool_ops
= {
1344 .get_drvinfo
= rio_get_drvinfo
,
1345 .get_link
= rio_get_link
,
1346 .get_link_ksettings
= rio_get_link_ksettings
,
1347 .set_link_ksettings
= rio_set_link_ksettings
,
1351 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1354 struct netdev_private
*np
= netdev_priv(dev
);
1355 struct mii_ioctl_data
*miidata
= if_mii(rq
);
1357 phy_addr
= np
->phy_addr
;
1360 miidata
->phy_id
= phy_addr
;
1363 miidata
->val_out
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1366 if (!capable(CAP_NET_ADMIN
))
1368 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->val_in
);
1376 #define EEP_READ 0x0200
1377 #define EEP_BUSY 0x8000
1378 /* Read the EEPROM word */
1379 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1380 static int read_eeprom(struct netdev_private
*np
, int eep_addr
)
1382 void __iomem
*ioaddr
= np
->eeprom_addr
;
1385 dw16(EepromCtrl
, EEP_READ
| (eep_addr
& 0xff));
1387 if (!(dr16(EepromCtrl
) & EEP_BUSY
))
1388 return dr16(EepromData
);
1393 enum phy_ctrl_bits
{
1394 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1398 #define mii_delay() dr8(PhyCtrl)
1400 mii_sendbit (struct net_device
*dev
, u32 data
)
1402 struct netdev_private
*np
= netdev_priv(dev
);
1403 void __iomem
*ioaddr
= np
->ioaddr
;
1405 data
= ((data
) ? MII_DATA1
: 0) | (dr8(PhyCtrl
) & 0xf8) | MII_WRITE
;
1408 dw8(PhyCtrl
, data
| MII_CLK
);
1413 mii_getbit (struct net_device
*dev
)
1415 struct netdev_private
*np
= netdev_priv(dev
);
1416 void __iomem
*ioaddr
= np
->ioaddr
;
1419 data
= (dr8(PhyCtrl
) & 0xf8) | MII_READ
;
1422 dw8(PhyCtrl
, data
| MII_CLK
);
1424 return (dr8(PhyCtrl
) >> 1) & 1;
1428 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1432 for (i
= len
- 1; i
>= 0; i
--) {
1433 mii_sendbit (dev
, data
& (1 << i
));
1438 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1445 mii_send_bits (dev
, 0xffffffff, 32);
1446 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1447 /* ST,OP = 0110'b for read operation */
1448 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1449 mii_send_bits (dev
, cmd
, 14);
1451 if (mii_getbit (dev
))
1454 for (i
= 0; i
< 16; i
++) {
1455 retval
|= mii_getbit (dev
);
1460 return (retval
>> 1) & 0xffff;
1466 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1471 mii_send_bits (dev
, 0xffffffff, 32);
1472 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1473 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1474 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1475 mii_send_bits (dev
, cmd
, 32);
1481 mii_wait_link (struct net_device
*dev
, int wait
)
1485 struct netdev_private
*np
;
1487 np
= netdev_priv(dev
);
1488 phy_addr
= np
->phy_addr
;
1491 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1492 if (bmsr
& BMSR_LSTATUS
)
1495 } while (--wait
> 0);
1499 mii_get_media (struct net_device
*dev
)
1506 struct netdev_private
*np
;
1508 np
= netdev_priv(dev
);
1509 phy_addr
= np
->phy_addr
;
1511 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1512 if (np
->an_enable
) {
1513 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1514 /* Auto-Negotiation not completed */
1517 negotiate
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1518 mii_read (dev
, phy_addr
, MII_LPA
);
1519 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1520 mssr
= mii_read (dev
, phy_addr
, MII_STAT1000
);
1521 if (mscr
& ADVERTISE_1000FULL
&& mssr
& LPA_1000FULL
) {
1523 np
->full_duplex
= 1;
1524 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1525 } else if (mscr
& ADVERTISE_1000HALF
&& mssr
& LPA_1000HALF
) {
1527 np
->full_duplex
= 0;
1528 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1529 } else if (negotiate
& ADVERTISE_100FULL
) {
1531 np
->full_duplex
= 1;
1532 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1533 } else if (negotiate
& ADVERTISE_100HALF
) {
1535 np
->full_duplex
= 0;
1536 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1537 } else if (negotiate
& ADVERTISE_10FULL
) {
1539 np
->full_duplex
= 1;
1540 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1541 } else if (negotiate
& ADVERTISE_10HALF
) {
1543 np
->full_duplex
= 0;
1544 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1546 if (negotiate
& ADVERTISE_PAUSE_CAP
) {
1549 } else if (negotiate
& ADVERTISE_PAUSE_ASYM
) {
1553 /* else tx_flow, rx_flow = user select */
1555 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1556 switch (bmcr
& (BMCR_SPEED100
| BMCR_SPEED1000
)) {
1557 case BMCR_SPEED1000
:
1558 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1561 printk (KERN_INFO
"Operating at 100 Mbps, ");
1564 printk (KERN_INFO
"Operating at 10 Mbps, ");
1566 if (bmcr
& BMCR_FULLDPLX
) {
1567 printk (KERN_CONT
"Full duplex\n");
1569 printk (KERN_CONT
"Half duplex\n");
1573 printk(KERN_INFO
"Enable Tx Flow Control\n");
1575 printk(KERN_INFO
"Disable Tx Flow Control\n");
1577 printk(KERN_INFO
"Enable Rx Flow Control\n");
1579 printk(KERN_INFO
"Disable Rx Flow Control\n");
1585 mii_set_media (struct net_device
*dev
)
1592 struct netdev_private
*np
;
1593 np
= netdev_priv(dev
);
1594 phy_addr
= np
->phy_addr
;
1596 /* Does user set speed? */
1597 if (np
->an_enable
) {
1598 /* Advertise capabilities */
1599 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1600 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1601 ~(ADVERTISE_100FULL
| ADVERTISE_10FULL
|
1602 ADVERTISE_100HALF
| ADVERTISE_10HALF
|
1603 ADVERTISE_100BASE4
);
1604 if (bmsr
& BMSR_100FULL
)
1605 anar
|= ADVERTISE_100FULL
;
1606 if (bmsr
& BMSR_100HALF
)
1607 anar
|= ADVERTISE_100HALF
;
1608 if (bmsr
& BMSR_100BASE4
)
1609 anar
|= ADVERTISE_100BASE4
;
1610 if (bmsr
& BMSR_10FULL
)
1611 anar
|= ADVERTISE_10FULL
;
1612 if (bmsr
& BMSR_10HALF
)
1613 anar
|= ADVERTISE_10HALF
;
1614 anar
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1615 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1617 /* Enable Auto crossover */
1618 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1619 pscr
|= 3 << 5; /* 11'b */
1620 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1622 /* Soft reset PHY */
1623 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1624 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1625 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1628 /* Force speed setting */
1629 /* 1) Disable Auto crossover */
1630 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1632 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1635 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1637 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1640 bmcr
= 0x1940; /* must be 0x1940 */
1641 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1642 mdelay (100); /* wait a certain time */
1644 /* 4) Advertise nothing */
1645 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1647 /* 5) Set media and Power Up */
1649 if (np
->speed
== 100) {
1650 bmcr
|= BMCR_SPEED100
;
1651 printk (KERN_INFO
"Manual 100 Mbps, ");
1652 } else if (np
->speed
== 10) {
1653 printk (KERN_INFO
"Manual 10 Mbps, ");
1655 if (np
->full_duplex
) {
1656 bmcr
|= BMCR_FULLDPLX
;
1657 printk (KERN_CONT
"Full duplex\n");
1659 printk (KERN_CONT
"Half duplex\n");
1662 /* Set 1000BaseT Master/Slave setting */
1663 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1664 mscr
|= MII_MSCR_CFG_ENABLE
;
1665 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1667 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1674 mii_get_media_pcs (struct net_device
*dev
)
1679 struct netdev_private
*np
;
1681 np
= netdev_priv(dev
);
1682 phy_addr
= np
->phy_addr
;
1684 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1685 if (np
->an_enable
) {
1686 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1687 /* Auto-Negotiation not completed */
1690 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1691 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1693 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1694 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1695 np
->full_duplex
= 1;
1697 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1698 np
->full_duplex
= 0;
1700 if (negotiate
& PCS_ANAR_PAUSE
) {
1703 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1707 /* else tx_flow, rx_flow = user select */
1709 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1710 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1711 if (bmcr
& BMCR_FULLDPLX
) {
1712 printk (KERN_CONT
"Full duplex\n");
1714 printk (KERN_CONT
"Half duplex\n");
1718 printk(KERN_INFO
"Enable Tx Flow Control\n");
1720 printk(KERN_INFO
"Disable Tx Flow Control\n");
1722 printk(KERN_INFO
"Enable Rx Flow Control\n");
1724 printk(KERN_INFO
"Disable Rx Flow Control\n");
1730 mii_set_media_pcs (struct net_device
*dev
)
1736 struct netdev_private
*np
;
1737 np
= netdev_priv(dev
);
1738 phy_addr
= np
->phy_addr
;
1740 /* Auto-Negotiation? */
1741 if (np
->an_enable
) {
1742 /* Advertise capabilities */
1743 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1744 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1745 ~PCS_ANAR_HALF_DUPLEX
&
1746 ~PCS_ANAR_FULL_DUPLEX
;
1747 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1748 anar
|= PCS_ANAR_HALF_DUPLEX
;
1749 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1750 anar
|= PCS_ANAR_FULL_DUPLEX
;
1751 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1752 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1754 /* Soft reset PHY */
1755 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1756 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1757 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1760 /* Force speed setting */
1763 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1765 if (np
->full_duplex
) {
1766 bmcr
= BMCR_FULLDPLX
;
1767 printk (KERN_INFO
"Manual full duplex\n");
1770 printk (KERN_INFO
"Manual half duplex\n");
1772 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1775 /* Advertise nothing */
1776 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1783 rio_close (struct net_device
*dev
)
1785 struct netdev_private
*np
= netdev_priv(dev
);
1786 struct pci_dev
*pdev
= np
->pdev
;
1788 netif_stop_queue (dev
);
1792 free_irq(pdev
->irq
, dev
);
1793 del_timer_sync (&np
->timer
);
1801 rio_remove1 (struct pci_dev
*pdev
)
1803 struct net_device
*dev
= pci_get_drvdata (pdev
);
1806 struct netdev_private
*np
= netdev_priv(dev
);
1808 unregister_netdev (dev
);
1809 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1811 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1814 pci_iounmap(pdev
, np
->ioaddr
);
1816 pci_iounmap(pdev
, np
->eeprom_addr
);
1818 pci_release_regions (pdev
);
1819 pci_disable_device (pdev
);
1823 #ifdef CONFIG_PM_SLEEP
1824 static int rio_suspend(struct device
*device
)
1826 struct net_device
*dev
= dev_get_drvdata(device
);
1827 struct netdev_private
*np
= netdev_priv(dev
);
1829 if (!netif_running(dev
))
1832 netif_device_detach(dev
);
1833 del_timer_sync(&np
->timer
);
1839 static int rio_resume(struct device
*device
)
1841 struct net_device
*dev
= dev_get_drvdata(device
);
1842 struct netdev_private
*np
= netdev_priv(dev
);
1844 if (!netif_running(dev
))
1849 np
->timer
.expires
= jiffies
+ 1 * HZ
;
1850 add_timer(&np
->timer
);
1851 netif_device_attach(dev
);
1852 dl2k_enable_int(np
);
1857 static SIMPLE_DEV_PM_OPS(rio_pm_ops
, rio_suspend
, rio_resume
);
1858 #define RIO_PM_OPS (&rio_pm_ops)
1862 #define RIO_PM_OPS NULL
1864 #endif /* CONFIG_PM_SLEEP */
1866 static struct pci_driver rio_driver
= {
1868 .id_table
= rio_pci_tbl
,
1869 .probe
= rio_probe1
,
1870 .remove
= rio_remove1
,
1871 .driver
.pm
= RIO_PM_OPS
,
1874 module_pci_driver(rio_driver
);
1879 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1881 Read Documentation/networking/device_drivers/dlink/dl2k.txt for details.