1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
4 Copyright(c) 2006 Tundra Semiconductor Corporation.
7 *******************************************************************************/
9 /* This driver is based on the driver code originally developed
10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
13 * Currently changes from original version are:
14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15 * - modifications to handle two ports independently and support for
16 * additional PHY devices (alexandre.bounine@tundra.com)
17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
41 #include <asm/tsi108.h>
43 #include "tsi108_eth.h"
45 #define MII_READ_DELAY 10000 /* max link wait time in msec */
47 #define TSI108_RXRING_LEN 256
49 /* NOTE: The driver currently does not support receiving packets
50 * larger than the buffer size, so don't decrease this (unless you
51 * want to add such support).
53 #define TSI108_RXBUF_SIZE 1536
55 #define TSI108_TXRING_LEN 256
57 #define TSI108_TX_INT_FREQ 64
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
62 static int tsi108_init_one(struct platform_device
*pdev
);
63 static int tsi108_ether_remove(struct platform_device
*pdev
);
65 struct tsi108_prv_data
{
66 void __iomem
*regs
; /* Base of normal regs */
67 void __iomem
*phyregs
; /* Base of register bank used for PHY access */
69 struct net_device
*dev
;
70 struct napi_struct napi
;
72 unsigned int phy
; /* Index of PHY for this interface */
75 unsigned int phy_type
;
77 struct timer_list timer
;/* Timer that triggers the check phy function */
78 unsigned int rxtail
; /* Next entry in rxring to read */
79 unsigned int rxhead
; /* Next entry in rxring to give a new buffer */
80 unsigned int rxfree
; /* Number of free, allocated RX buffers */
82 unsigned int rxpending
; /* Non-zero if there are still descriptors
83 * to be processed from a previous descriptor
84 * interrupt condition that has been cleared */
86 unsigned int txtail
; /* Next TX descriptor to check status on */
87 unsigned int txhead
; /* Next TX descriptor to use */
89 /* Number of free TX descriptors. This could be calculated from
90 * rxhead and rxtail if one descriptor were left unused to disambiguate
91 * full and empty conditions, but it's simpler to just keep track
96 unsigned int phy_ok
; /* The PHY is currently powered on. */
98 /* PHY status (duplex is 1 for half, 2 for full,
99 * so that the default 0 indicates that neither has
100 * yet been configured). */
102 unsigned int link_up
;
108 struct sk_buff
*txskbs
[TSI108_TXRING_LEN
];
109 struct sk_buff
*rxskbs
[TSI108_RXRING_LEN
];
111 dma_addr_t txdma
, rxdma
;
113 /* txlock nests in misclock and phy_lock */
115 spinlock_t txlock
, misclock
;
117 /* stats is used to hold the upper bits of each hardware counter,
118 * and tmpstats is used to hold the full values for returning
119 * to the caller of get_stats(). They must be separate in case
120 * an overflow interrupt occurs before the stats are consumed.
123 struct net_device_stats stats
;
124 struct net_device_stats tmpstats
;
126 /* These stats are kept separate in hardware, thus require individual
127 * fields for handling carry. They are combined in get_stats.
130 unsigned long rx_fcs
; /* Add to rx_frame_errors */
131 unsigned long rx_short_fcs
; /* Add to rx_frame_errors */
132 unsigned long rx_long_fcs
; /* Add to rx_frame_errors */
133 unsigned long rx_underruns
; /* Add to rx_length_errors */
134 unsigned long rx_overruns
; /* Add to rx_length_errors */
136 unsigned long tx_coll_abort
; /* Add to tx_aborted_errors/collisions */
137 unsigned long tx_pause_drop
; /* Add to tx_aborted_errors */
139 unsigned long mc_hash
[16];
140 u32 msg_enable
; /* debug message level */
141 struct mii_if_info mii_if
;
142 unsigned int init_media
;
144 struct platform_device
*pdev
;
147 /* Structure for a device driver */
149 static struct platform_driver tsi_eth_driver
= {
150 .probe
= tsi108_init_one
,
151 .remove
= tsi108_ether_remove
,
153 .name
= "tsi-ethernet",
157 static void tsi108_timed_checker(struct timer_list
*t
);
160 static void dump_eth_one(struct net_device
*dev
)
162 struct tsi108_prv_data
*data
= netdev_priv(dev
);
164 printk("Dumping %s...\n", dev
->name
);
165 printk("intstat %x intmask %x phy_ok %d"
166 " link %d speed %d duplex %d\n",
167 TSI_READ(TSI108_EC_INTSTAT
),
168 TSI_READ(TSI108_EC_INTMASK
), data
->phy_ok
,
169 data
->link_up
, data
->speed
, data
->duplex
);
171 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
172 data
->txhead
, data
->txtail
, data
->txfree
,
173 TSI_READ(TSI108_EC_TXSTAT
),
174 TSI_READ(TSI108_EC_TXESTAT
),
175 TSI_READ(TSI108_EC_TXERR
));
177 printk("RX: head %d, tail %d, free %d, stat %x,"
178 " estat %x, err %x, pending %d\n\n",
179 data
->rxhead
, data
->rxtail
, data
->rxfree
,
180 TSI_READ(TSI108_EC_RXSTAT
),
181 TSI_READ(TSI108_EC_RXESTAT
),
182 TSI_READ(TSI108_EC_RXERR
), data
->rxpending
);
186 /* Synchronization is needed between the thread and up/down events.
187 * Note that the PHY is accessed through the same registers for both
188 * interfaces, so this can't be made interface-specific.
191 static DEFINE_SPINLOCK(phy_lock
);
193 static int tsi108_read_mii(struct tsi108_prv_data
*data
, int reg
)
197 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
198 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
199 (reg
<< TSI108_MAC_MII_ADDR_REG
));
200 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, 0);
201 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, TSI108_MAC_MII_CMD_READ
);
202 for (i
= 0; i
< 100; i
++) {
203 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
204 (TSI108_MAC_MII_IND_NOTVALID
| TSI108_MAC_MII_IND_BUSY
)))
212 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN
);
215 static void tsi108_write_mii(struct tsi108_prv_data
*data
,
219 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
220 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
221 (reg
<< TSI108_MAC_MII_ADDR_REG
));
222 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT
, val
);
224 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
225 TSI108_MAC_MII_IND_BUSY
))
231 static int tsi108_mdio_read(struct net_device
*dev
, int addr
, int reg
)
233 struct tsi108_prv_data
*data
= netdev_priv(dev
);
234 return tsi108_read_mii(data
, reg
);
237 static void tsi108_mdio_write(struct net_device
*dev
, int addr
, int reg
, int val
)
239 struct tsi108_prv_data
*data
= netdev_priv(dev
);
240 tsi108_write_mii(data
, reg
, val
);
243 static inline void tsi108_write_tbi(struct tsi108_prv_data
*data
,
247 TSI_WRITE(TSI108_MAC_MII_ADDR
,
248 (0x1e << TSI108_MAC_MII_ADDR_PHY
)
249 | (reg
<< TSI108_MAC_MII_ADDR_REG
));
250 TSI_WRITE(TSI108_MAC_MII_DATAOUT
, val
);
252 if(!(TSI_READ(TSI108_MAC_MII_IND
) & TSI108_MAC_MII_IND_BUSY
))
256 printk(KERN_ERR
"%s function time out\n", __func__
);
259 static int mii_speed(struct mii_if_info
*mii
)
261 int advert
, lpa
, val
, media
;
265 if (!mii_link_ok(mii
))
268 val
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_BMSR
);
269 if ((val
& BMSR_ANEGCOMPLETE
) == 0)
272 advert
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_ADVERTISE
);
273 lpa
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_LPA
);
274 media
= mii_nway_result(advert
& lpa
);
276 if (mii
->supports_gmii
)
277 lpa2
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_STAT1000
);
279 speed
= lpa2
& (LPA_1000FULL
| LPA_1000HALF
) ? 1000 :
280 (media
& (ADVERTISE_100FULL
| ADVERTISE_100HALF
) ? 100 : 10);
284 static void tsi108_check_phy(struct net_device
*dev
)
286 struct tsi108_prv_data
*data
= netdev_priv(dev
);
287 u32 mac_cfg2_reg
, portctrl_reg
;
292 spin_lock_irqsave(&phy_lock
, flags
);
297 duplex
= mii_check_media(&data
->mii_if
, netif_msg_link(data
), data
->init_media
);
298 data
->init_media
= 0;
300 if (netif_carrier_ok(dev
)) {
302 speed
= mii_speed(&data
->mii_if
);
304 if ((speed
!= data
->speed
) || duplex
) {
306 mac_cfg2_reg
= TSI_READ(TSI108_MAC_CFG2
);
307 portctrl_reg
= TSI_READ(TSI108_EC_PORTCTRL
);
309 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_IFACE_MASK
;
312 mac_cfg2_reg
|= TSI108_MAC_CFG2_GIG
;
313 portctrl_reg
&= ~TSI108_EC_PORTCTRL_NOGIG
;
315 mac_cfg2_reg
|= TSI108_MAC_CFG2_NOGIG
;
316 portctrl_reg
|= TSI108_EC_PORTCTRL_NOGIG
;
321 if (data
->mii_if
.full_duplex
) {
322 mac_cfg2_reg
|= TSI108_MAC_CFG2_FULLDUPLEX
;
323 portctrl_reg
&= ~TSI108_EC_PORTCTRL_HALFDUPLEX
;
326 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_FULLDUPLEX
;
327 portctrl_reg
|= TSI108_EC_PORTCTRL_HALFDUPLEX
;
331 TSI_WRITE(TSI108_MAC_CFG2
, mac_cfg2_reg
);
332 TSI_WRITE(TSI108_EC_PORTCTRL
, portctrl_reg
);
335 if (data
->link_up
== 0) {
336 /* The manual says it can take 3-4 usecs for the speed change
341 spin_lock(&data
->txlock
);
342 if (is_valid_ether_addr(dev
->dev_addr
) && data
->txfree
)
343 netif_wake_queue(dev
);
346 spin_unlock(&data
->txlock
);
349 if (data
->link_up
== 1) {
350 netif_stop_queue(dev
);
352 printk(KERN_NOTICE
"%s : link is down\n", dev
->name
);
360 spin_unlock_irqrestore(&phy_lock
, flags
);
364 tsi108_stat_carry_one(int carry
, int carry_bit
, int carry_shift
,
365 unsigned long *upper
)
367 if (carry
& carry_bit
)
368 *upper
+= carry_shift
;
371 static void tsi108_stat_carry(struct net_device
*dev
)
373 struct tsi108_prv_data
*data
= netdev_priv(dev
);
376 spin_lock_irq(&data
->misclock
);
378 carry1
= TSI_READ(TSI108_STAT_CARRY1
);
379 carry2
= TSI_READ(TSI108_STAT_CARRY2
);
381 TSI_WRITE(TSI108_STAT_CARRY1
, carry1
);
382 TSI_WRITE(TSI108_STAT_CARRY2
, carry2
);
384 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXBYTES
,
385 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
387 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXPKTS
,
388 TSI108_STAT_RXPKTS_CARRY
,
389 &data
->stats
.rx_packets
);
391 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFCS
,
392 TSI108_STAT_RXFCS_CARRY
, &data
->rx_fcs
);
394 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXMCAST
,
395 TSI108_STAT_RXMCAST_CARRY
,
396 &data
->stats
.multicast
);
398 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXALIGN
,
399 TSI108_STAT_RXALIGN_CARRY
,
400 &data
->stats
.rx_frame_errors
);
402 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXLENGTH
,
403 TSI108_STAT_RXLENGTH_CARRY
,
404 &data
->stats
.rx_length_errors
);
406 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXRUNT
,
407 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
409 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJUMBO
,
410 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
412 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFRAG
,
413 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
415 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJABBER
,
416 TSI108_STAT_RXJABBER_CARRY
, &data
->rx_long_fcs
);
418 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXDROP
,
419 TSI108_STAT_RXDROP_CARRY
,
420 &data
->stats
.rx_missed_errors
);
422 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXBYTES
,
423 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
425 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPKTS
,
426 TSI108_STAT_TXPKTS_CARRY
,
427 &data
->stats
.tx_packets
);
429 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXDEF
,
430 TSI108_STAT_TXEXDEF_CARRY
,
431 &data
->stats
.tx_aborted_errors
);
433 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXCOL
,
434 TSI108_STAT_TXEXCOL_CARRY
, &data
->tx_coll_abort
);
436 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXTCOL
,
437 TSI108_STAT_TXTCOL_CARRY
,
438 &data
->stats
.collisions
);
440 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPAUSE
,
441 TSI108_STAT_TXPAUSEDROP_CARRY
,
442 &data
->tx_pause_drop
);
444 spin_unlock_irq(&data
->misclock
);
447 /* Read a stat counter atomically with respect to carries.
448 * data->misclock must be held.
450 static inline unsigned long
451 tsi108_read_stat(struct tsi108_prv_data
* data
, int reg
, int carry_bit
,
452 int carry_shift
, unsigned long *upper
)
458 carryreg
= TSI108_STAT_CARRY1
;
460 carryreg
= TSI108_STAT_CARRY2
;
463 val
= TSI_READ(reg
) | *upper
;
465 /* Check to see if it overflowed, but the interrupt hasn't
466 * been serviced yet. If so, handle the carry here, and
470 if (unlikely(TSI_READ(carryreg
) & carry_bit
)) {
471 *upper
+= carry_shift
;
472 TSI_WRITE(carryreg
, carry_bit
);
479 static struct net_device_stats
*tsi108_get_stats(struct net_device
*dev
)
483 struct tsi108_prv_data
*data
= netdev_priv(dev
);
484 spin_lock_irq(&data
->misclock
);
486 data
->tmpstats
.rx_packets
=
487 tsi108_read_stat(data
, TSI108_STAT_RXPKTS
,
488 TSI108_STAT_CARRY1_RXPKTS
,
489 TSI108_STAT_RXPKTS_CARRY
, &data
->stats
.rx_packets
);
491 data
->tmpstats
.tx_packets
=
492 tsi108_read_stat(data
, TSI108_STAT_TXPKTS
,
493 TSI108_STAT_CARRY2_TXPKTS
,
494 TSI108_STAT_TXPKTS_CARRY
, &data
->stats
.tx_packets
);
496 data
->tmpstats
.rx_bytes
=
497 tsi108_read_stat(data
, TSI108_STAT_RXBYTES
,
498 TSI108_STAT_CARRY1_RXBYTES
,
499 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
501 data
->tmpstats
.tx_bytes
=
502 tsi108_read_stat(data
, TSI108_STAT_TXBYTES
,
503 TSI108_STAT_CARRY2_TXBYTES
,
504 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
506 data
->tmpstats
.multicast
=
507 tsi108_read_stat(data
, TSI108_STAT_RXMCAST
,
508 TSI108_STAT_CARRY1_RXMCAST
,
509 TSI108_STAT_RXMCAST_CARRY
, &data
->stats
.multicast
);
511 excol
= tsi108_read_stat(data
, TSI108_STAT_TXEXCOL
,
512 TSI108_STAT_CARRY2_TXEXCOL
,
513 TSI108_STAT_TXEXCOL_CARRY
,
514 &data
->tx_coll_abort
);
516 data
->tmpstats
.collisions
=
517 tsi108_read_stat(data
, TSI108_STAT_TXTCOL
,
518 TSI108_STAT_CARRY2_TXTCOL
,
519 TSI108_STAT_TXTCOL_CARRY
, &data
->stats
.collisions
);
521 data
->tmpstats
.collisions
+= excol
;
523 data
->tmpstats
.rx_length_errors
=
524 tsi108_read_stat(data
, TSI108_STAT_RXLENGTH
,
525 TSI108_STAT_CARRY1_RXLENGTH
,
526 TSI108_STAT_RXLENGTH_CARRY
,
527 &data
->stats
.rx_length_errors
);
529 data
->tmpstats
.rx_length_errors
+=
530 tsi108_read_stat(data
, TSI108_STAT_RXRUNT
,
531 TSI108_STAT_CARRY1_RXRUNT
,
532 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
534 data
->tmpstats
.rx_length_errors
+=
535 tsi108_read_stat(data
, TSI108_STAT_RXJUMBO
,
536 TSI108_STAT_CARRY1_RXJUMBO
,
537 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
539 data
->tmpstats
.rx_frame_errors
=
540 tsi108_read_stat(data
, TSI108_STAT_RXALIGN
,
541 TSI108_STAT_CARRY1_RXALIGN
,
542 TSI108_STAT_RXALIGN_CARRY
,
543 &data
->stats
.rx_frame_errors
);
545 data
->tmpstats
.rx_frame_errors
+=
546 tsi108_read_stat(data
, TSI108_STAT_RXFCS
,
547 TSI108_STAT_CARRY1_RXFCS
, TSI108_STAT_RXFCS_CARRY
,
550 data
->tmpstats
.rx_frame_errors
+=
551 tsi108_read_stat(data
, TSI108_STAT_RXFRAG
,
552 TSI108_STAT_CARRY1_RXFRAG
,
553 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
555 data
->tmpstats
.rx_missed_errors
=
556 tsi108_read_stat(data
, TSI108_STAT_RXDROP
,
557 TSI108_STAT_CARRY1_RXDROP
,
558 TSI108_STAT_RXDROP_CARRY
,
559 &data
->stats
.rx_missed_errors
);
561 /* These three are maintained by software. */
562 data
->tmpstats
.rx_fifo_errors
= data
->stats
.rx_fifo_errors
;
563 data
->tmpstats
.rx_crc_errors
= data
->stats
.rx_crc_errors
;
565 data
->tmpstats
.tx_aborted_errors
=
566 tsi108_read_stat(data
, TSI108_STAT_TXEXDEF
,
567 TSI108_STAT_CARRY2_TXEXDEF
,
568 TSI108_STAT_TXEXDEF_CARRY
,
569 &data
->stats
.tx_aborted_errors
);
571 data
->tmpstats
.tx_aborted_errors
+=
572 tsi108_read_stat(data
, TSI108_STAT_TXPAUSEDROP
,
573 TSI108_STAT_CARRY2_TXPAUSE
,
574 TSI108_STAT_TXPAUSEDROP_CARRY
,
575 &data
->tx_pause_drop
);
577 data
->tmpstats
.tx_aborted_errors
+= excol
;
579 data
->tmpstats
.tx_errors
= data
->tmpstats
.tx_aborted_errors
;
580 data
->tmpstats
.rx_errors
= data
->tmpstats
.rx_length_errors
+
581 data
->tmpstats
.rx_crc_errors
+
582 data
->tmpstats
.rx_frame_errors
+
583 data
->tmpstats
.rx_fifo_errors
+ data
->tmpstats
.rx_missed_errors
;
585 spin_unlock_irq(&data
->misclock
);
586 return &data
->tmpstats
;
589 static void tsi108_restart_rx(struct tsi108_prv_data
* data
, struct net_device
*dev
)
591 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH
,
592 TSI108_EC_RXQ_PTRHIGH_VALID
);
594 TSI_WRITE(TSI108_EC_RXCTRL
, TSI108_EC_RXCTRL_GO
595 | TSI108_EC_RXCTRL_QUEUE0
);
598 static void tsi108_restart_tx(struct tsi108_prv_data
* data
)
600 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH
,
601 TSI108_EC_TXQ_PTRHIGH_VALID
);
603 TSI_WRITE(TSI108_EC_TXCTRL
, TSI108_EC_TXCTRL_IDLEINT
|
604 TSI108_EC_TXCTRL_GO
| TSI108_EC_TXCTRL_QUEUE0
);
607 /* txlock must be held by caller, with IRQs disabled, and
608 * with permission to re-enable them when the lock is dropped.
610 static void tsi108_complete_tx(struct net_device
*dev
)
612 struct tsi108_prv_data
*data
= netdev_priv(dev
);
617 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
620 if (data
->txring
[tx
].misc
& TSI108_TX_OWN
)
623 skb
= data
->txskbs
[tx
];
625 if (!(data
->txring
[tx
].misc
& TSI108_TX_OK
))
626 printk("%s: bad tx packet, misc %x\n",
627 dev
->name
, data
->txring
[tx
].misc
);
629 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
632 if (data
->txring
[tx
].misc
& TSI108_TX_EOF
) {
633 dev_kfree_skb_any(skb
);
639 if (is_valid_ether_addr(dev
->dev_addr
) && data
->link_up
)
640 netif_wake_queue(dev
);
644 static int tsi108_send_packet(struct sk_buff
* skb
, struct net_device
*dev
)
646 struct tsi108_prv_data
*data
= netdev_priv(dev
);
647 int frags
= skb_shinfo(skb
)->nr_frags
+ 1;
650 if (!data
->phy_ok
&& net_ratelimit())
651 printk(KERN_ERR
"%s: Transmit while PHY is down!\n", dev
->name
);
653 if (!data
->link_up
) {
654 printk(KERN_ERR
"%s: Transmit while link is down!\n",
656 netif_stop_queue(dev
);
657 return NETDEV_TX_BUSY
;
660 if (data
->txfree
< MAX_SKB_FRAGS
+ 1) {
661 netif_stop_queue(dev
);
664 printk(KERN_ERR
"%s: Transmit with full tx ring!\n",
666 return NETDEV_TX_BUSY
;
669 if (data
->txfree
- frags
< MAX_SKB_FRAGS
+ 1) {
670 netif_stop_queue(dev
);
673 spin_lock_irq(&data
->txlock
);
675 for (i
= 0; i
< frags
; i
++) {
677 int tx
= data
->txhead
;
679 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
680 * the interrupt bit. TX descriptor-complete interrupts are
681 * enabled when the queue fills up, and masked when there is
682 * still free space. This way, when saturating the outbound
683 * link, the tx interrupts are kept to a reasonable level.
684 * When the queue is not full, reclamation of skbs still occurs
685 * as new packets are transmitted, or on a queue-empty
689 if ((tx
% TSI108_TX_INT_FREQ
== 0) &&
690 ((TSI108_TXRING_LEN
- data
->txfree
) >= TSI108_TX_INT_FREQ
))
691 misc
= TSI108_TX_INT
;
693 data
->txskbs
[tx
] = skb
;
696 data
->txring
[tx
].buf0
= dma_map_single(&data
->pdev
->dev
,
697 skb
->data
, skb_headlen(skb
),
699 data
->txring
[tx
].len
= skb_headlen(skb
);
700 misc
|= TSI108_TX_SOF
;
702 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
704 data
->txring
[tx
].buf0
=
705 skb_frag_dma_map(&data
->pdev
->dev
, frag
,
706 0, skb_frag_size(frag
),
708 data
->txring
[tx
].len
= skb_frag_size(frag
);
712 misc
|= TSI108_TX_EOF
;
714 if (netif_msg_pktdata(data
)) {
716 printk("%s: Tx Frame contents (%d)\n", dev
->name
,
718 for (i
= 0; i
< skb
->len
; i
++)
719 printk(" %2.2x", skb
->data
[i
]);
722 data
->txring
[tx
].misc
= misc
| TSI108_TX_OWN
;
724 data
->txhead
= (data
->txhead
+ 1) % TSI108_TXRING_LEN
;
728 tsi108_complete_tx(dev
);
730 /* This must be done after the check for completed tx descriptors,
731 * so that the tail pointer is correct.
734 if (!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_QUEUE0
))
735 tsi108_restart_tx(data
);
737 spin_unlock_irq(&data
->txlock
);
741 static int tsi108_complete_rx(struct net_device
*dev
, int budget
)
743 struct tsi108_prv_data
*data
= netdev_priv(dev
);
746 while (data
->rxfree
&& done
!= budget
) {
747 int rx
= data
->rxtail
;
750 if (data
->rxring
[rx
].misc
& TSI108_RX_OWN
)
753 skb
= data
->rxskbs
[rx
];
754 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
758 if (data
->rxring
[rx
].misc
& TSI108_RX_BAD
) {
759 spin_lock_irq(&data
->misclock
);
761 if (data
->rxring
[rx
].misc
& TSI108_RX_CRC
)
762 data
->stats
.rx_crc_errors
++;
763 if (data
->rxring
[rx
].misc
& TSI108_RX_OVER
)
764 data
->stats
.rx_fifo_errors
++;
766 spin_unlock_irq(&data
->misclock
);
768 dev_kfree_skb_any(skb
);
771 if (netif_msg_pktdata(data
)) {
773 printk("%s: Rx Frame contents (%d)\n",
774 dev
->name
, data
->rxring
[rx
].len
);
775 for (i
= 0; i
< data
->rxring
[rx
].len
; i
++)
776 printk(" %2.2x", skb
->data
[i
]);
780 skb_put(skb
, data
->rxring
[rx
].len
);
781 skb
->protocol
= eth_type_trans(skb
, dev
);
782 netif_receive_skb(skb
);
788 static int tsi108_refill_rx(struct net_device
*dev
, int budget
)
790 struct tsi108_prv_data
*data
= netdev_priv(dev
);
793 while (data
->rxfree
!= TSI108_RXRING_LEN
&& done
!= budget
) {
794 int rx
= data
->rxhead
;
797 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
798 data
->rxskbs
[rx
] = skb
;
802 data
->rxring
[rx
].buf0
= dma_map_single(&data
->pdev
->dev
,
803 skb
->data
, TSI108_RX_SKB_SIZE
,
806 /* Sometimes the hardware sets blen to zero after packet
807 * reception, even though the manual says that it's only ever
808 * modified by the driver.
811 data
->rxring
[rx
].blen
= TSI108_RX_SKB_SIZE
;
812 data
->rxring
[rx
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
814 data
->rxhead
= (data
->rxhead
+ 1) % TSI108_RXRING_LEN
;
819 if (done
!= 0 && !(TSI_READ(TSI108_EC_RXSTAT
) &
820 TSI108_EC_RXSTAT_QUEUE0
))
821 tsi108_restart_rx(data
, dev
);
826 static int tsi108_poll(struct napi_struct
*napi
, int budget
)
828 struct tsi108_prv_data
*data
= container_of(napi
, struct tsi108_prv_data
, napi
);
829 struct net_device
*dev
= data
->dev
;
830 u32 estat
= TSI_READ(TSI108_EC_RXESTAT
);
831 u32 intstat
= TSI_READ(TSI108_EC_INTSTAT
);
832 int num_received
= 0, num_filled
= 0;
834 intstat
&= TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
835 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
| TSI108_INT_RXWAIT
;
837 TSI_WRITE(TSI108_EC_RXESTAT
, estat
);
838 TSI_WRITE(TSI108_EC_INTSTAT
, intstat
);
840 if (data
->rxpending
|| (estat
& TSI108_EC_RXESTAT_Q0_DESCINT
))
841 num_received
= tsi108_complete_rx(dev
, budget
);
843 /* This should normally fill no more slots than the number of
844 * packets received in tsi108_complete_rx(). The exception
845 * is when we previously ran out of memory for RX SKBs. In that
846 * case, it's helpful to obey the budget, not only so that the
847 * CPU isn't hogged, but so that memory (which may still be low)
848 * is not hogged by one device.
850 * A work unit is considered to be two SKBs to allow us to catch
851 * up when the ring has shrunk due to out-of-memory but we're
852 * still removing the full budget's worth of packets each time.
855 if (data
->rxfree
< TSI108_RXRING_LEN
)
856 num_filled
= tsi108_refill_rx(dev
, budget
* 2);
858 if (intstat
& TSI108_INT_RXERROR
) {
859 u32 err
= TSI_READ(TSI108_EC_RXERR
);
860 TSI_WRITE(TSI108_EC_RXERR
, err
);
864 printk(KERN_DEBUG
"%s: RX error %x\n",
867 if (!(TSI_READ(TSI108_EC_RXSTAT
) &
868 TSI108_EC_RXSTAT_QUEUE0
))
869 tsi108_restart_rx(data
, dev
);
873 if (intstat
& TSI108_INT_RXOVERRUN
) {
874 spin_lock_irq(&data
->misclock
);
875 data
->stats
.rx_fifo_errors
++;
876 spin_unlock_irq(&data
->misclock
);
879 if (num_received
< budget
) {
881 napi_complete_done(napi
, num_received
);
883 TSI_WRITE(TSI108_EC_INTMASK
,
884 TSI_READ(TSI108_EC_INTMASK
)
885 & ~(TSI108_INT_RXQUEUE0
886 | TSI108_INT_RXTHRESH
|
887 TSI108_INT_RXOVERRUN
|
897 static void tsi108_rx_int(struct net_device
*dev
)
899 struct tsi108_prv_data
*data
= netdev_priv(dev
);
901 /* A race could cause dev to already be scheduled, so it's not an
902 * error if that happens (and interrupts shouldn't be re-masked,
903 * because that can cause harmful races, if poll has already
904 * unmasked them but not cleared LINK_STATE_SCHED).
906 * This can happen if this code races with tsi108_poll(), which masks
907 * the interrupts after tsi108_irq_one() read the mask, but before
908 * napi_schedule is called. It could also happen due to calls
909 * from tsi108_check_rxring().
912 if (napi_schedule_prep(&data
->napi
)) {
913 /* Mask, rather than ack, the receive interrupts. The ack
914 * will happen in tsi108_poll().
917 TSI_WRITE(TSI108_EC_INTMASK
,
918 TSI_READ(TSI108_EC_INTMASK
) |
920 | TSI108_INT_RXTHRESH
|
921 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
|
923 __napi_schedule(&data
->napi
);
925 if (!netif_running(dev
)) {
926 /* This can happen if an interrupt occurs while the
927 * interface is being brought down, as the START
928 * bit is cleared before the stop function is called.
930 * In this case, the interrupts must be masked, or
931 * they will continue indefinitely.
933 * There's a race here if the interface is brought down
934 * and then up in rapid succession, as the device could
935 * be made running after the above check and before
936 * the masking below. This will only happen if the IRQ
937 * thread has a lower priority than the task brining
938 * up the interface. Fixing this race would likely
939 * require changes in generic code.
942 TSI_WRITE(TSI108_EC_INTMASK
,
944 (TSI108_EC_INTMASK
) |
945 TSI108_INT_RXQUEUE0
|
946 TSI108_INT_RXTHRESH
|
947 TSI108_INT_RXOVERRUN
|
954 /* If the RX ring has run out of memory, try periodically
955 * to allocate some more, as otherwise poll would never
956 * get called (apart from the initial end-of-queue condition).
958 * This is called once per second (by default) from the thread.
961 static void tsi108_check_rxring(struct net_device
*dev
)
963 struct tsi108_prv_data
*data
= netdev_priv(dev
);
965 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
966 * directly, so as to keep the receive path single-threaded
967 * (and thus not needing a lock).
970 if (netif_running(dev
) && data
->rxfree
< TSI108_RXRING_LEN
/ 4)
974 static void tsi108_tx_int(struct net_device
*dev
)
976 struct tsi108_prv_data
*data
= netdev_priv(dev
);
977 u32 estat
= TSI_READ(TSI108_EC_TXESTAT
);
979 TSI_WRITE(TSI108_EC_TXESTAT
, estat
);
980 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_TXQUEUE0
|
981 TSI108_INT_TXIDLE
| TSI108_INT_TXERROR
);
982 if (estat
& TSI108_EC_TXESTAT_Q0_ERR
) {
983 u32 err
= TSI_READ(TSI108_EC_TXERR
);
984 TSI_WRITE(TSI108_EC_TXERR
, err
);
986 if (err
&& net_ratelimit())
987 printk(KERN_ERR
"%s: TX error %x\n", dev
->name
, err
);
990 if (estat
& (TSI108_EC_TXESTAT_Q0_DESCINT
| TSI108_EC_TXESTAT_Q0_EOQ
)) {
991 spin_lock(&data
->txlock
);
992 tsi108_complete_tx(dev
);
993 spin_unlock(&data
->txlock
);
998 static irqreturn_t
tsi108_irq(int irq
, void *dev_id
)
1000 struct net_device
*dev
= dev_id
;
1001 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1002 u32 stat
= TSI_READ(TSI108_EC_INTSTAT
);
1004 if (!(stat
& TSI108_INT_ANY
))
1005 return IRQ_NONE
; /* Not our interrupt */
1007 stat
&= ~TSI_READ(TSI108_EC_INTMASK
);
1009 if (stat
& (TSI108_INT_TXQUEUE0
| TSI108_INT_TXIDLE
|
1010 TSI108_INT_TXERROR
))
1012 if (stat
& (TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
1013 TSI108_INT_RXWAIT
| TSI108_INT_RXOVERRUN
|
1014 TSI108_INT_RXERROR
))
1017 if (stat
& TSI108_INT_SFN
) {
1018 if (net_ratelimit())
1019 printk(KERN_DEBUG
"%s: SFN error\n", dev
->name
);
1020 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_SFN
);
1023 if (stat
& TSI108_INT_STATCARRY
) {
1024 tsi108_stat_carry(dev
);
1025 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_STATCARRY
);
1031 static void tsi108_stop_ethernet(struct net_device
*dev
)
1033 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1035 /* Disable all TX and RX queues ... */
1036 TSI_WRITE(TSI108_EC_TXCTRL
, 0);
1037 TSI_WRITE(TSI108_EC_RXCTRL
, 0);
1039 /* ...and wait for them to become idle */
1041 if(!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_ACTIVE
))
1047 if(!(TSI_READ(TSI108_EC_RXSTAT
) & TSI108_EC_RXSTAT_ACTIVE
))
1051 printk(KERN_ERR
"%s function time out\n", __func__
);
1054 static void tsi108_reset_ether(struct tsi108_prv_data
* data
)
1056 TSI_WRITE(TSI108_MAC_CFG1
, TSI108_MAC_CFG1_SOFTRST
);
1058 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1060 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATRST
);
1062 TSI_WRITE(TSI108_EC_PORTCTRL
,
1063 TSI_READ(TSI108_EC_PORTCTRL
) &
1064 ~TSI108_EC_PORTCTRL_STATRST
);
1066 TSI_WRITE(TSI108_EC_TXCFG
, TSI108_EC_TXCFG_RST
);
1068 TSI_WRITE(TSI108_EC_TXCFG
,
1069 TSI_READ(TSI108_EC_TXCFG
) &
1070 ~TSI108_EC_TXCFG_RST
);
1072 TSI_WRITE(TSI108_EC_RXCFG
, TSI108_EC_RXCFG_RST
);
1074 TSI_WRITE(TSI108_EC_RXCFG
,
1075 TSI_READ(TSI108_EC_RXCFG
) &
1076 ~TSI108_EC_RXCFG_RST
);
1078 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1079 TSI_READ(TSI108_MAC_MII_MGMT_CFG
) |
1080 TSI108_MAC_MII_MGMT_RST
);
1082 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1083 (TSI_READ(TSI108_MAC_MII_MGMT_CFG
) &
1084 ~(TSI108_MAC_MII_MGMT_RST
|
1085 TSI108_MAC_MII_MGMT_CLK
)) | 0x07);
1088 static int tsi108_get_mac(struct net_device
*dev
)
1090 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1091 u32 word1
= TSI_READ(TSI108_MAC_ADDR1
);
1092 u32 word2
= TSI_READ(TSI108_MAC_ADDR2
);
1094 /* Note that the octets are reversed from what the manual says,
1095 * producing an even weirder ordering...
1097 if (word2
== 0 && word1
== 0) {
1098 dev
->dev_addr
[0] = 0x00;
1099 dev
->dev_addr
[1] = 0x06;
1100 dev
->dev_addr
[2] = 0xd2;
1101 dev
->dev_addr
[3] = 0x00;
1102 dev
->dev_addr
[4] = 0x00;
1103 if (0x8 == data
->phy
)
1104 dev
->dev_addr
[5] = 0x01;
1106 dev
->dev_addr
[5] = 0x02;
1108 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1110 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1111 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1113 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1114 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1116 dev
->dev_addr
[0] = (word2
>> 16) & 0xff;
1117 dev
->dev_addr
[1] = (word2
>> 24) & 0xff;
1118 dev
->dev_addr
[2] = (word1
>> 0) & 0xff;
1119 dev
->dev_addr
[3] = (word1
>> 8) & 0xff;
1120 dev
->dev_addr
[4] = (word1
>> 16) & 0xff;
1121 dev
->dev_addr
[5] = (word1
>> 24) & 0xff;
1124 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1126 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1127 dev
->name
, word1
, word2
);
1134 static int tsi108_set_mac(struct net_device
*dev
, void *addr
)
1136 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1140 if (!is_valid_ether_addr(addr
))
1141 return -EADDRNOTAVAIL
;
1143 for (i
= 0; i
< 6; i
++)
1144 /* +2 is for the offset of the HW addr type */
1145 dev
->dev_addr
[i
] = ((unsigned char *)addr
)[i
+ 2];
1147 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1149 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1150 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1152 spin_lock_irq(&data
->misclock
);
1153 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1154 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1155 spin_lock(&data
->txlock
);
1157 if (data
->txfree
&& data
->link_up
)
1158 netif_wake_queue(dev
);
1160 spin_unlock(&data
->txlock
);
1161 spin_unlock_irq(&data
->misclock
);
1165 /* Protected by dev->xmit_lock. */
1166 static void tsi108_set_rx_mode(struct net_device
*dev
)
1168 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1169 u32 rxcfg
= TSI_READ(TSI108_EC_RXCFG
);
1171 if (dev
->flags
& IFF_PROMISC
) {
1172 rxcfg
&= ~(TSI108_EC_RXCFG_UC_HASH
| TSI108_EC_RXCFG_MC_HASH
);
1173 rxcfg
|= TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
;
1177 rxcfg
&= ~(TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
);
1179 if (dev
->flags
& IFF_ALLMULTI
|| !netdev_mc_empty(dev
)) {
1181 struct netdev_hw_addr
*ha
;
1182 rxcfg
|= TSI108_EC_RXCFG_MFE
| TSI108_EC_RXCFG_MC_HASH
;
1184 memset(data
->mc_hash
, 0, sizeof(data
->mc_hash
));
1186 netdev_for_each_mc_addr(ha
, dev
) {
1189 crc
= ether_crc(6, ha
->addr
);
1191 __set_bit(hash
, &data
->mc_hash
[0]);
1194 TSI_WRITE(TSI108_EC_HASHADDR
,
1195 TSI108_EC_HASHADDR_AUTOINC
|
1196 TSI108_EC_HASHADDR_MCAST
);
1198 for (i
= 0; i
< 16; i
++) {
1199 /* The manual says that the hardware may drop
1200 * back-to-back writes to the data register.
1203 TSI_WRITE(TSI108_EC_HASHDATA
,
1209 TSI_WRITE(TSI108_EC_RXCFG
, rxcfg
);
1212 static void tsi108_init_phy(struct net_device
*dev
)
1214 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1217 unsigned long flags
;
1219 spin_lock_irqsave(&phy_lock
, flags
);
1221 tsi108_write_mii(data
, MII_BMCR
, BMCR_RESET
);
1223 if(!(tsi108_read_mii(data
, MII_BMCR
) & BMCR_RESET
))
1228 printk(KERN_ERR
"%s function time out\n", __func__
);
1230 if (data
->phy_type
== TSI108_PHY_BCM54XX
) {
1231 tsi108_write_mii(data
, 0x09, 0x0300);
1232 tsi108_write_mii(data
, 0x10, 0x1020);
1233 tsi108_write_mii(data
, 0x1c, 0x8c00);
1236 tsi108_write_mii(data
,
1238 BMCR_ANENABLE
| BMCR_ANRESTART
);
1239 while (tsi108_read_mii(data
, MII_BMCR
) & BMCR_ANRESTART
)
1242 /* Set G/MII mode and receive clock select in TBI control #2. The
1243 * second port won't work if this isn't done, even though we don't
1247 tsi108_write_tbi(data
, 0x11, 0x30);
1249 /* FIXME: It seems to take more than 2 back-to-back reads to the
1250 * PHY_STAT register before the link up status bit is set.
1255 while (!((phyval
= tsi108_read_mii(data
, MII_BMSR
)) &
1257 if (i
++ > (MII_READ_DELAY
/ 10)) {
1260 spin_unlock_irqrestore(&phy_lock
, flags
);
1262 spin_lock_irqsave(&phy_lock
, flags
);
1265 data
->mii_if
.supports_gmii
= mii_check_gmii_support(&data
->mii_if
);
1266 printk(KERN_DEBUG
"PHY_STAT reg contains %08x\n", phyval
);
1268 data
->init_media
= 1;
1269 spin_unlock_irqrestore(&phy_lock
, flags
);
1272 static void tsi108_kill_phy(struct net_device
*dev
)
1274 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1275 unsigned long flags
;
1277 spin_lock_irqsave(&phy_lock
, flags
);
1278 tsi108_write_mii(data
, MII_BMCR
, BMCR_PDOWN
);
1280 spin_unlock_irqrestore(&phy_lock
, flags
);
1283 static int tsi108_open(struct net_device
*dev
)
1286 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1287 unsigned int rxring_size
= TSI108_RXRING_LEN
* sizeof(rx_desc
);
1288 unsigned int txring_size
= TSI108_TXRING_LEN
* sizeof(tx_desc
);
1290 i
= request_irq(data
->irq_num
, tsi108_irq
, 0, dev
->name
, dev
);
1292 printk(KERN_ERR
"tsi108_eth%d: Could not allocate IRQ%d.\n",
1293 data
->id
, data
->irq_num
);
1296 dev
->irq
= data
->irq_num
;
1298 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1299 data
->id
, dev
->irq
, dev
->name
);
1302 data
->rxring
= dma_alloc_coherent(&data
->pdev
->dev
, rxring_size
,
1303 &data
->rxdma
, GFP_KERNEL
);
1307 data
->txring
= dma_alloc_coherent(&data
->pdev
->dev
, txring_size
,
1308 &data
->txdma
, GFP_KERNEL
);
1309 if (!data
->txring
) {
1310 dma_free_coherent(&data
->pdev
->dev
, rxring_size
, data
->rxring
,
1315 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1316 data
->rxring
[i
].next0
= data
->rxdma
+ (i
+ 1) * sizeof(rx_desc
);
1317 data
->rxring
[i
].blen
= TSI108_RXBUF_SIZE
;
1318 data
->rxring
[i
].vlan
= 0;
1321 data
->rxring
[TSI108_RXRING_LEN
- 1].next0
= data
->rxdma
;
1326 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1327 struct sk_buff
*skb
;
1329 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
1331 /* Bah. No memory for now, but maybe we'll get
1333 * For now, we'll live with the smaller ring.
1336 "%s: Could only allocate %d receive skb(s).\n",
1342 data
->rxskbs
[i
] = skb
;
1343 data
->rxring
[i
].buf0
= virt_to_phys(data
->rxskbs
[i
]->data
);
1344 data
->rxring
[i
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
1348 TSI_WRITE(TSI108_EC_RXQ_PTRLOW
, data
->rxdma
);
1350 for (i
= 0; i
< TSI108_TXRING_LEN
; i
++) {
1351 data
->txring
[i
].next0
= data
->txdma
+ (i
+ 1) * sizeof(tx_desc
);
1352 data
->txring
[i
].misc
= 0;
1355 data
->txring
[TSI108_TXRING_LEN
- 1].next0
= data
->txdma
;
1358 data
->txfree
= TSI108_TXRING_LEN
;
1359 TSI_WRITE(TSI108_EC_TXQ_PTRLOW
, data
->txdma
);
1360 tsi108_init_phy(dev
);
1362 napi_enable(&data
->napi
);
1364 timer_setup(&data
->timer
, tsi108_timed_checker
, 0);
1365 mod_timer(&data
->timer
, jiffies
+ 1);
1367 tsi108_restart_rx(data
, dev
);
1369 TSI_WRITE(TSI108_EC_INTSTAT
, ~0);
1371 TSI_WRITE(TSI108_EC_INTMASK
,
1372 ~(TSI108_INT_TXQUEUE0
| TSI108_INT_RXERROR
|
1373 TSI108_INT_RXTHRESH
| TSI108_INT_RXQUEUE0
|
1374 TSI108_INT_RXOVERRUN
| TSI108_INT_RXWAIT
|
1375 TSI108_INT_SFN
| TSI108_INT_STATCARRY
));
1377 TSI_WRITE(TSI108_MAC_CFG1
,
1378 TSI108_MAC_CFG1_RXEN
| TSI108_MAC_CFG1_TXEN
);
1379 netif_start_queue(dev
);
1383 static int tsi108_close(struct net_device
*dev
)
1385 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1387 netif_stop_queue(dev
);
1388 napi_disable(&data
->napi
);
1390 del_timer_sync(&data
->timer
);
1392 tsi108_stop_ethernet(dev
);
1393 tsi108_kill_phy(dev
);
1394 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1395 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1397 /* Check for any pending TX packets, and drop them. */
1399 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
1400 int tx
= data
->txtail
;
1401 struct sk_buff
*skb
;
1402 skb
= data
->txskbs
[tx
];
1403 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
1408 free_irq(data
->irq_num
, dev
);
1410 /* Discard the RX ring. */
1412 while (data
->rxfree
) {
1413 int rx
= data
->rxtail
;
1414 struct sk_buff
*skb
;
1416 skb
= data
->rxskbs
[rx
];
1417 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
1422 dma_free_coherent(&data
->pdev
->dev
,
1423 TSI108_RXRING_LEN
* sizeof(rx_desc
),
1424 data
->rxring
, data
->rxdma
);
1425 dma_free_coherent(&data
->pdev
->dev
,
1426 TSI108_TXRING_LEN
* sizeof(tx_desc
),
1427 data
->txring
, data
->txdma
);
1432 static void tsi108_init_mac(struct net_device
*dev
)
1434 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1436 TSI_WRITE(TSI108_MAC_CFG2
, TSI108_MAC_CFG2_DFLT_PREAMBLE
|
1437 TSI108_MAC_CFG2_PADCRC
);
1439 TSI_WRITE(TSI108_EC_TXTHRESH
,
1440 (192 << TSI108_EC_TXTHRESH_STARTFILL
) |
1441 (192 << TSI108_EC_TXTHRESH_STOPFILL
));
1443 TSI_WRITE(TSI108_STAT_CARRYMASK1
,
1444 ~(TSI108_STAT_CARRY1_RXBYTES
|
1445 TSI108_STAT_CARRY1_RXPKTS
|
1446 TSI108_STAT_CARRY1_RXFCS
|
1447 TSI108_STAT_CARRY1_RXMCAST
|
1448 TSI108_STAT_CARRY1_RXALIGN
|
1449 TSI108_STAT_CARRY1_RXLENGTH
|
1450 TSI108_STAT_CARRY1_RXRUNT
|
1451 TSI108_STAT_CARRY1_RXJUMBO
|
1452 TSI108_STAT_CARRY1_RXFRAG
|
1453 TSI108_STAT_CARRY1_RXJABBER
|
1454 TSI108_STAT_CARRY1_RXDROP
));
1456 TSI_WRITE(TSI108_STAT_CARRYMASK2
,
1457 ~(TSI108_STAT_CARRY2_TXBYTES
|
1458 TSI108_STAT_CARRY2_TXPKTS
|
1459 TSI108_STAT_CARRY2_TXEXDEF
|
1460 TSI108_STAT_CARRY2_TXEXCOL
|
1461 TSI108_STAT_CARRY2_TXTCOL
|
1462 TSI108_STAT_CARRY2_TXPAUSE
));
1464 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATEN
);
1465 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1467 TSI_WRITE(TSI108_EC_RXCFG
,
1468 TSI108_EC_RXCFG_SE
| TSI108_EC_RXCFG_BFE
);
1470 TSI_WRITE(TSI108_EC_TXQ_CFG
, TSI108_EC_TXQ_CFG_DESC_INT
|
1471 TSI108_EC_TXQ_CFG_EOQ_OWN_INT
|
1472 TSI108_EC_TXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1473 TSI108_EC_TXQ_CFG_SFNPORT
));
1475 TSI_WRITE(TSI108_EC_RXQ_CFG
, TSI108_EC_RXQ_CFG_DESC_INT
|
1476 TSI108_EC_RXQ_CFG_EOQ_OWN_INT
|
1477 TSI108_EC_RXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1478 TSI108_EC_RXQ_CFG_SFNPORT
));
1480 TSI_WRITE(TSI108_EC_TXQ_BUFCFG
,
1481 TSI108_EC_TXQ_BUFCFG_BURST256
|
1482 TSI108_EC_TXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1483 TSI108_EC_TXQ_BUFCFG_SFNPORT
));
1485 TSI_WRITE(TSI108_EC_RXQ_BUFCFG
,
1486 TSI108_EC_RXQ_BUFCFG_BURST256
|
1487 TSI108_EC_RXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1488 TSI108_EC_RXQ_BUFCFG_SFNPORT
));
1490 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1493 static int tsi108_get_link_ksettings(struct net_device
*dev
,
1494 struct ethtool_link_ksettings
*cmd
)
1496 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1497 unsigned long flags
;
1499 spin_lock_irqsave(&data
->txlock
, flags
);
1500 mii_ethtool_get_link_ksettings(&data
->mii_if
, cmd
);
1501 spin_unlock_irqrestore(&data
->txlock
, flags
);
1506 static int tsi108_set_link_ksettings(struct net_device
*dev
,
1507 const struct ethtool_link_ksettings
*cmd
)
1509 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1510 unsigned long flags
;
1513 spin_lock_irqsave(&data
->txlock
, flags
);
1514 rc
= mii_ethtool_set_link_ksettings(&data
->mii_if
, cmd
);
1515 spin_unlock_irqrestore(&data
->txlock
, flags
);
1520 static int tsi108_do_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1522 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1523 if (!netif_running(dev
))
1525 return generic_mii_ioctl(&data
->mii_if
, if_mii(rq
), cmd
, NULL
);
1528 static const struct ethtool_ops tsi108_ethtool_ops
= {
1529 .get_link
= ethtool_op_get_link
,
1530 .get_link_ksettings
= tsi108_get_link_ksettings
,
1531 .set_link_ksettings
= tsi108_set_link_ksettings
,
1534 static const struct net_device_ops tsi108_netdev_ops
= {
1535 .ndo_open
= tsi108_open
,
1536 .ndo_stop
= tsi108_close
,
1537 .ndo_start_xmit
= tsi108_send_packet
,
1538 .ndo_set_rx_mode
= tsi108_set_rx_mode
,
1539 .ndo_get_stats
= tsi108_get_stats
,
1540 .ndo_do_ioctl
= tsi108_do_ioctl
,
1541 .ndo_set_mac_address
= tsi108_set_mac
,
1542 .ndo_validate_addr
= eth_validate_addr
,
1546 tsi108_init_one(struct platform_device
*pdev
)
1548 struct net_device
*dev
= NULL
;
1549 struct tsi108_prv_data
*data
= NULL
;
1553 einfo
= dev_get_platdata(&pdev
->dev
);
1555 if (NULL
== einfo
) {
1556 printk(KERN_ERR
"tsi-eth %d: Missing additional data!\n",
1561 /* Create an ethernet device instance */
1563 dev
= alloc_etherdev(sizeof(struct tsi108_prv_data
));
1567 printk("tsi108_eth%d: probe...\n", pdev
->id
);
1568 data
= netdev_priv(dev
);
1572 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1573 pdev
->id
, einfo
->regs
, einfo
->phyregs
,
1574 einfo
->phy
, einfo
->irq_num
);
1576 data
->regs
= ioremap(einfo
->regs
, 0x400);
1577 if (NULL
== data
->regs
) {
1582 data
->phyregs
= ioremap(einfo
->phyregs
, 0x400);
1583 if (NULL
== data
->phyregs
) {
1588 data
->mii_if
.dev
= dev
;
1589 data
->mii_if
.mdio_read
= tsi108_mdio_read
;
1590 data
->mii_if
.mdio_write
= tsi108_mdio_write
;
1591 data
->mii_if
.phy_id
= einfo
->phy
;
1592 data
->mii_if
.phy_id_mask
= 0x1f;
1593 data
->mii_if
.reg_num_mask
= 0x1f;
1595 data
->phy
= einfo
->phy
;
1596 data
->phy_type
= einfo
->phy_type
;
1597 data
->irq_num
= einfo
->irq_num
;
1598 data
->id
= pdev
->id
;
1599 netif_napi_add(dev
, &data
->napi
, tsi108_poll
, 64);
1600 dev
->netdev_ops
= &tsi108_netdev_ops
;
1601 dev
->ethtool_ops
= &tsi108_ethtool_ops
;
1603 /* Apparently, the Linux networking code won't use scatter-gather
1604 * if the hardware doesn't do checksums. However, it's faster
1605 * to checksum in place and use SG, as (among other reasons)
1606 * the cache won't be dirtied (which then has to be flushed
1607 * before DMA). The checksumming is done by the driver (via
1608 * a new function skb_csum_dev() in net/core/skbuff.c).
1611 dev
->features
= NETIF_F_HIGHDMA
;
1613 spin_lock_init(&data
->txlock
);
1614 spin_lock_init(&data
->misclock
);
1616 tsi108_reset_ether(data
);
1617 tsi108_kill_phy(dev
);
1619 if ((err
= tsi108_get_mac(dev
)) != 0) {
1620 printk(KERN_ERR
"%s: Invalid MAC address. Please correct.\n",
1625 tsi108_init_mac(dev
);
1626 err
= register_netdev(dev
);
1628 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1633 platform_set_drvdata(pdev
, dev
);
1634 printk(KERN_INFO
"%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1635 dev
->name
, dev
->dev_addr
);
1637 data
->msg_enable
= DEBUG
;
1644 iounmap(data
->phyregs
);
1647 iounmap(data
->regs
);
1654 /* There's no way to either get interrupts from the PHY when
1655 * something changes, or to have the Tsi108 automatically communicate
1656 * with the PHY to reconfigure itself.
1658 * Thus, we have to do it using a timer.
1661 static void tsi108_timed_checker(struct timer_list
*t
)
1663 struct tsi108_prv_data
*data
= from_timer(data
, t
, timer
);
1664 struct net_device
*dev
= data
->dev
;
1666 tsi108_check_phy(dev
);
1667 tsi108_check_rxring(dev
);
1668 mod_timer(&data
->timer
, jiffies
+ CHECK_PHY_INTERVAL
);
1671 static int tsi108_ether_remove(struct platform_device
*pdev
)
1673 struct net_device
*dev
= platform_get_drvdata(pdev
);
1674 struct tsi108_prv_data
*priv
= netdev_priv(dev
);
1676 unregister_netdev(dev
);
1677 tsi108_stop_ethernet(dev
);
1678 iounmap(priv
->regs
);
1679 iounmap(priv
->phyregs
);
1684 module_platform_driver(tsi_eth_driver
);
1686 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1687 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1688 MODULE_LICENSE("GPL");
1689 MODULE_ALIAS("platform:tsi-ethernet");