2 * sched_clock.c: Generic sched_clock() support, to extend low level
3 * hardware time counters to full 64-bit ns values.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 #include <linux/clocksource.h>
10 #include <linux/init.h>
11 #include <linux/jiffies.h>
12 #include <linux/ktime.h>
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/sched.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/hrtimer.h>
18 #include <linux/sched_clock.h>
19 #include <linux/seqlock.h>
20 #include <linux/bitops.h>
23 * struct clock_read_data - data required to read from sched_clock()
25 * @epoch_ns: sched_clock() value at last update
26 * @epoch_cyc: Clock cycle value at last update.
27 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
29 * @read_sched_clock: Current clock source (or dummy source when suspended).
30 * @mult: Multipler for scaled math conversion.
31 * @shift: Shift value for scaled math conversion.
33 * Care must be taken when updating this structure; it is read by
34 * some very hot code paths. It occupies <=40 bytes and, when combined
35 * with the seqcount used to synchronize access, comfortably fits into
36 * a 64 byte cache line.
38 struct clock_read_data
{
42 u64 (*read_sched_clock
)(void);
48 * struct clock_data - all data needed for sched_clock() (including
49 * registration of a new clock source)
51 * @seq: Sequence counter for protecting updates. The lowest
52 * bit is the index for @read_data.
53 * @read_data: Data required to read from sched_clock.
54 * @wrap_kt: Duration for which clock can run before wrapping.
55 * @rate: Tick rate of the registered clock.
56 * @actual_read_sched_clock: Registered hardware level clock read function.
58 * The ordering of this structure has been chosen to optimize cache
59 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
60 * into a single 64-byte cache line.
64 struct clock_read_data read_data
[2];
68 u64 (*actual_read_sched_clock
)(void);
71 static struct hrtimer sched_clock_timer
;
72 static int irqtime
= -1;
74 core_param(irqtime
, irqtime
, int, 0400);
76 static u64 notrace
jiffy_sched_clock_read(void)
79 * We don't need to use get_jiffies_64 on 32-bit arches here
80 * because we register with BITS_PER_LONG
82 return (u64
)(jiffies
- INITIAL_JIFFIES
);
85 static struct clock_data cd ____cacheline_aligned
= {
86 .read_data
[0] = { .mult
= NSEC_PER_SEC
/ HZ
,
87 .read_sched_clock
= jiffy_sched_clock_read
, },
88 .actual_read_sched_clock
= jiffy_sched_clock_read
,
91 static inline u64 notrace
cyc_to_ns(u64 cyc
, u32 mult
, u32 shift
)
93 return (cyc
* mult
) >> shift
;
96 unsigned long long notrace
sched_clock(void)
100 struct clock_read_data
*rd
;
103 seq
= raw_read_seqcount(&cd
.seq
);
104 rd
= cd
.read_data
+ (seq
& 1);
106 cyc
= (rd
->read_sched_clock() - rd
->epoch_cyc
) &
107 rd
->sched_clock_mask
;
108 res
= rd
->epoch_ns
+ cyc_to_ns(cyc
, rd
->mult
, rd
->shift
);
109 } while (read_seqcount_retry(&cd
.seq
, seq
));
115 * Updating the data required to read the clock.
117 * sched_clock() will never observe mis-matched data even if called from
118 * an NMI. We do this by maintaining an odd/even copy of the data and
119 * steering sched_clock() to one or the other using a sequence counter.
120 * In order to preserve the data cache profile of sched_clock() as much
121 * as possible the system reverts back to the even copy when the update
122 * completes; the odd copy is used *only* during an update.
124 static void update_clock_read_data(struct clock_read_data
*rd
)
126 /* update the backup (odd) copy with the new data */
127 cd
.read_data
[1] = *rd
;
129 /* steer readers towards the odd copy */
130 raw_write_seqcount_latch(&cd
.seq
);
132 /* now its safe for us to update the normal (even) copy */
133 cd
.read_data
[0] = *rd
;
135 /* switch readers back to the even copy */
136 raw_write_seqcount_latch(&cd
.seq
);
140 * Atomically update the sched_clock() epoch.
142 static void update_sched_clock(void)
146 struct clock_read_data rd
;
148 rd
= cd
.read_data
[0];
150 cyc
= cd
.actual_read_sched_clock();
151 ns
= rd
.epoch_ns
+ cyc_to_ns((cyc
- rd
.epoch_cyc
) & rd
.sched_clock_mask
, rd
.mult
, rd
.shift
);
156 update_clock_read_data(&rd
);
159 static enum hrtimer_restart
sched_clock_poll(struct hrtimer
*hrt
)
161 update_sched_clock();
162 hrtimer_forward_now(hrt
, cd
.wrap_kt
);
164 return HRTIMER_RESTART
;
168 sched_clock_register(u64 (*read
)(void), int bits
, unsigned long rate
)
170 u64 res
, wrap
, new_mask
, new_epoch
, cyc
, ns
;
171 u32 new_mult
, new_shift
;
174 struct clock_read_data rd
;
179 WARN_ON(!irqs_disabled());
181 /* Calculate the mult/shift to convert counter ticks to ns. */
182 clocks_calc_mult_shift(&new_mult
, &new_shift
, rate
, NSEC_PER_SEC
, 3600);
184 new_mask
= CLOCKSOURCE_MASK(bits
);
187 /* Calculate how many nanosecs until we risk wrapping */
188 wrap
= clocks_calc_max_nsecs(new_mult
, new_shift
, 0, new_mask
, NULL
);
189 cd
.wrap_kt
= ns_to_ktime(wrap
);
191 rd
= cd
.read_data
[0];
193 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
195 cyc
= cd
.actual_read_sched_clock();
196 ns
= rd
.epoch_ns
+ cyc_to_ns((cyc
- rd
.epoch_cyc
) & rd
.sched_clock_mask
, rd
.mult
, rd
.shift
);
197 cd
.actual_read_sched_clock
= read
;
199 rd
.read_sched_clock
= read
;
200 rd
.sched_clock_mask
= new_mask
;
202 rd
.shift
= new_shift
;
203 rd
.epoch_cyc
= new_epoch
;
206 update_clock_read_data(&rd
);
221 /* Calculate the ns resolution of this counter */
222 res
= cyc_to_ns(1ULL, new_mult
, new_shift
);
224 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
225 bits
, r
, r_unit
, res
, wrap
);
227 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
228 if (irqtime
> 0 || (irqtime
== -1 && rate
>= 1000000))
229 enable_sched_clock_irqtime();
231 pr_debug("Registered %pF as sched_clock source\n", read
);
234 void __init
sched_clock_postinit(void)
237 * If no sched_clock() function has been provided at that point,
238 * make it the final one one.
240 if (cd
.actual_read_sched_clock
== jiffy_sched_clock_read
)
241 sched_clock_register(jiffy_sched_clock_read
, BITS_PER_LONG
, HZ
);
243 update_sched_clock();
246 * Start the timer to keep sched_clock() properly updated and
247 * sets the initial epoch.
249 hrtimer_init(&sched_clock_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
250 sched_clock_timer
.function
= sched_clock_poll
;
251 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL
);
255 * Clock read function for use when the clock is suspended.
257 * This function makes it appear to sched_clock() as if the clock
258 * stopped counting at its last update.
260 * This function must only be called from the critical
261 * section in sched_clock(). It relies on the read_seqcount_retry()
262 * at the end of the critical section to be sure we observe the
263 * correct copy of 'epoch_cyc'.
265 static u64 notrace
suspended_sched_clock_read(void)
267 unsigned long seq
= raw_read_seqcount(&cd
.seq
);
269 return cd
.read_data
[seq
& 1].epoch_cyc
;
272 static int sched_clock_suspend(void)
274 struct clock_read_data
*rd
= &cd
.read_data
[0];
276 update_sched_clock();
277 hrtimer_cancel(&sched_clock_timer
);
278 rd
->read_sched_clock
= suspended_sched_clock_read
;
283 static void sched_clock_resume(void)
285 struct clock_read_data
*rd
= &cd
.read_data
[0];
287 rd
->epoch_cyc
= cd
.actual_read_sched_clock();
288 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL
);
289 rd
->read_sched_clock
= cd
.actual_read_sched_clock
;
292 static struct syscore_ops sched_clock_ops
= {
293 .suspend
= sched_clock_suspend
,
294 .resume
= sched_clock_resume
,
297 static int __init
sched_clock_syscore_init(void)
299 register_syscore_ops(&sched_clock_ops
);
303 device_initcall(sched_clock_syscore_init
);