Linux 4.14.5
[linux/fpc-iii.git] / fs / afs / rxrpc.c
blob0bf191f0dbafa7d65277f227cabc4578e707eac5
1 /* Maintain an RxRPC server socket to do AFS communications through
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
20 struct socket *afs_socket; /* my RxRPC socket */
21 static struct workqueue_struct *afs_async_calls;
22 static struct afs_call *afs_spare_incoming_call;
23 atomic_t afs_outstanding_calls;
25 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
26 static int afs_wait_for_call_to_complete(struct afs_call *);
27 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static void afs_process_async_call(struct work_struct *);
29 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
30 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
31 static int afs_deliver_cm_op_id(struct afs_call *);
33 /* asynchronous incoming call initial processing */
34 static const struct afs_call_type afs_RXCMxxxx = {
35 .name = "CB.xxxx",
36 .deliver = afs_deliver_cm_op_id,
37 .abort_to_error = afs_abort_to_error,
40 static void afs_charge_preallocation(struct work_struct *);
42 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
44 static int afs_wait_atomic_t(atomic_t *p)
46 schedule();
47 return 0;
51 * open an RxRPC socket and bind it to be a server for callback notifications
52 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
54 int afs_open_socket(void)
56 struct sockaddr_rxrpc srx;
57 struct socket *socket;
58 int ret;
60 _enter("");
62 ret = -ENOMEM;
63 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
64 if (!afs_async_calls)
65 goto error_0;
67 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
68 if (ret < 0)
69 goto error_1;
71 socket->sk->sk_allocation = GFP_NOFS;
73 /* bind the callback manager's address to make this a server socket */
74 srx.srx_family = AF_RXRPC;
75 srx.srx_service = CM_SERVICE;
76 srx.transport_type = SOCK_DGRAM;
77 srx.transport_len = sizeof(srx.transport.sin);
78 srx.transport.sin.sin_family = AF_INET;
79 srx.transport.sin.sin_port = htons(AFS_CM_PORT);
80 memset(&srx.transport.sin.sin_addr, 0,
81 sizeof(srx.transport.sin.sin_addr));
83 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
84 if (ret < 0)
85 goto error_2;
87 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 afs_rx_discard_new_call);
90 ret = kernel_listen(socket, INT_MAX);
91 if (ret < 0)
92 goto error_2;
94 afs_socket = socket;
95 afs_charge_preallocation(NULL);
96 _leave(" = 0");
97 return 0;
99 error_2:
100 sock_release(socket);
101 error_1:
102 destroy_workqueue(afs_async_calls);
103 error_0:
104 _leave(" = %d", ret);
105 return ret;
109 * close the RxRPC socket AFS was using
111 void afs_close_socket(void)
113 _enter("");
115 kernel_listen(afs_socket, 0);
116 flush_workqueue(afs_async_calls);
118 if (afs_spare_incoming_call) {
119 afs_put_call(afs_spare_incoming_call);
120 afs_spare_incoming_call = NULL;
123 _debug("outstanding %u", atomic_read(&afs_outstanding_calls));
124 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
125 TASK_UNINTERRUPTIBLE);
126 _debug("no outstanding calls");
128 kernel_sock_shutdown(afs_socket, SHUT_RDWR);
129 flush_workqueue(afs_async_calls);
130 sock_release(afs_socket);
132 _debug("dework");
133 destroy_workqueue(afs_async_calls);
134 _leave("");
138 * Allocate a call.
140 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
141 gfp_t gfp)
143 struct afs_call *call;
144 int o;
146 call = kzalloc(sizeof(*call), gfp);
147 if (!call)
148 return NULL;
150 call->type = type;
151 atomic_set(&call->usage, 1);
152 INIT_WORK(&call->async_work, afs_process_async_call);
153 init_waitqueue_head(&call->waitq);
155 o = atomic_inc_return(&afs_outstanding_calls);
156 trace_afs_call(call, afs_call_trace_alloc, 1, o,
157 __builtin_return_address(0));
158 return call;
162 * Dispose of a reference on a call.
164 void afs_put_call(struct afs_call *call)
166 int n = atomic_dec_return(&call->usage);
167 int o = atomic_read(&afs_outstanding_calls);
169 trace_afs_call(call, afs_call_trace_put, n + 1, o,
170 __builtin_return_address(0));
172 ASSERTCMP(n, >=, 0);
173 if (n == 0) {
174 ASSERT(!work_pending(&call->async_work));
175 ASSERT(call->type->name != NULL);
177 if (call->rxcall) {
178 rxrpc_kernel_end_call(afs_socket, call->rxcall);
179 call->rxcall = NULL;
181 if (call->type->destructor)
182 call->type->destructor(call);
184 kfree(call->request);
185 kfree(call);
187 o = atomic_dec_return(&afs_outstanding_calls);
188 trace_afs_call(call, afs_call_trace_free, 0, o,
189 __builtin_return_address(0));
190 if (o == 0)
191 wake_up_atomic_t(&afs_outstanding_calls);
196 * Queue the call for actual work. Returns 0 unconditionally for convenience.
198 int afs_queue_call_work(struct afs_call *call)
200 int u = atomic_inc_return(&call->usage);
202 trace_afs_call(call, afs_call_trace_work, u,
203 atomic_read(&afs_outstanding_calls),
204 __builtin_return_address(0));
206 INIT_WORK(&call->work, call->type->work);
208 if (!queue_work(afs_wq, &call->work))
209 afs_put_call(call);
210 return 0;
214 * allocate a call with flat request and reply buffers
216 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
217 size_t request_size, size_t reply_max)
219 struct afs_call *call;
221 call = afs_alloc_call(type, GFP_NOFS);
222 if (!call)
223 goto nomem_call;
225 if (request_size) {
226 call->request_size = request_size;
227 call->request = kmalloc(request_size, GFP_NOFS);
228 if (!call->request)
229 goto nomem_free;
232 if (reply_max) {
233 call->reply_max = reply_max;
234 call->buffer = kmalloc(reply_max, GFP_NOFS);
235 if (!call->buffer)
236 goto nomem_free;
239 init_waitqueue_head(&call->waitq);
240 return call;
242 nomem_free:
243 afs_put_call(call);
244 nomem_call:
245 return NULL;
249 * clean up a call with flat buffer
251 void afs_flat_call_destructor(struct afs_call *call)
253 _enter("");
255 kfree(call->request);
256 call->request = NULL;
257 kfree(call->buffer);
258 call->buffer = NULL;
261 #define AFS_BVEC_MAX 8
264 * Load the given bvec with the next few pages.
266 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
267 struct bio_vec *bv, pgoff_t first, pgoff_t last,
268 unsigned offset)
270 struct page *pages[AFS_BVEC_MAX];
271 unsigned int nr, n, i, to, bytes = 0;
273 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
274 n = find_get_pages_contig(call->mapping, first, nr, pages);
275 ASSERTCMP(n, ==, nr);
277 msg->msg_flags |= MSG_MORE;
278 for (i = 0; i < nr; i++) {
279 to = PAGE_SIZE;
280 if (first + i >= last) {
281 to = call->last_to;
282 msg->msg_flags &= ~MSG_MORE;
284 bv[i].bv_page = pages[i];
285 bv[i].bv_len = to - offset;
286 bv[i].bv_offset = offset;
287 bytes += to - offset;
288 offset = 0;
291 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
295 * Advance the AFS call state when the RxRPC call ends the transmit phase.
297 static void afs_notify_end_request_tx(struct sock *sock,
298 struct rxrpc_call *rxcall,
299 unsigned long call_user_ID)
301 struct afs_call *call = (struct afs_call *)call_user_ID;
303 if (call->state == AFS_CALL_REQUESTING)
304 call->state = AFS_CALL_AWAIT_REPLY;
308 * attach the data from a bunch of pages on an inode to a call
310 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
312 struct bio_vec bv[AFS_BVEC_MAX];
313 unsigned int bytes, nr, loop, offset;
314 pgoff_t first = call->first, last = call->last;
315 int ret;
317 offset = call->first_offset;
318 call->first_offset = 0;
320 do {
321 afs_load_bvec(call, msg, bv, first, last, offset);
322 offset = 0;
323 bytes = msg->msg_iter.count;
324 nr = msg->msg_iter.nr_segs;
326 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, msg,
327 bytes, afs_notify_end_request_tx);
328 for (loop = 0; loop < nr; loop++)
329 put_page(bv[loop].bv_page);
330 if (ret < 0)
331 break;
333 first += nr;
334 } while (first <= last);
336 return ret;
340 * initiate a call
342 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
343 bool async)
345 struct sockaddr_rxrpc srx;
346 struct rxrpc_call *rxcall;
347 struct msghdr msg;
348 struct kvec iov[1];
349 size_t offset;
350 s64 tx_total_len;
351 u32 abort_code;
352 int ret;
354 _enter("%x,{%d},", addr->s_addr, ntohs(call->port));
356 ASSERT(call->type != NULL);
357 ASSERT(call->type->name != NULL);
359 _debug("____MAKE %p{%s,%x} [%d]____",
360 call, call->type->name, key_serial(call->key),
361 atomic_read(&afs_outstanding_calls));
363 call->async = async;
365 memset(&srx, 0, sizeof(srx));
366 srx.srx_family = AF_RXRPC;
367 srx.srx_service = call->service_id;
368 srx.transport_type = SOCK_DGRAM;
369 srx.transport_len = sizeof(srx.transport.sin);
370 srx.transport.sin.sin_family = AF_INET;
371 srx.transport.sin.sin_port = call->port;
372 memcpy(&srx.transport.sin.sin_addr, addr, 4);
374 /* Work out the length we're going to transmit. This is awkward for
375 * calls such as FS.StoreData where there's an extra injection of data
376 * after the initial fixed part.
378 tx_total_len = call->request_size;
379 if (call->send_pages) {
380 tx_total_len += call->last_to - call->first_offset;
381 tx_total_len += (call->last - call->first) * PAGE_SIZE;
384 /* create a call */
385 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
386 (unsigned long)call,
387 tx_total_len, gfp,
388 (async ?
389 afs_wake_up_async_call :
390 afs_wake_up_call_waiter));
391 call->key = NULL;
392 if (IS_ERR(rxcall)) {
393 ret = PTR_ERR(rxcall);
394 goto error_kill_call;
397 call->rxcall = rxcall;
399 /* send the request */
400 iov[0].iov_base = call->request;
401 iov[0].iov_len = call->request_size;
403 msg.msg_name = NULL;
404 msg.msg_namelen = 0;
405 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
406 call->request_size);
407 msg.msg_control = NULL;
408 msg.msg_controllen = 0;
409 msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
411 /* We have to change the state *before* sending the last packet as
412 * rxrpc might give us the reply before it returns from sending the
413 * request. Further, if the send fails, we may already have been given
414 * a notification and may have collected it.
416 if (!call->send_pages)
417 call->state = AFS_CALL_AWAIT_REPLY;
418 ret = rxrpc_kernel_send_data(afs_socket, rxcall,
419 &msg, call->request_size,
420 afs_notify_end_request_tx);
421 if (ret < 0)
422 goto error_do_abort;
424 if (call->send_pages) {
425 ret = afs_send_pages(call, &msg);
426 if (ret < 0)
427 goto error_do_abort;
430 /* at this point, an async call may no longer exist as it may have
431 * already completed */
432 if (call->async)
433 return -EINPROGRESS;
435 return afs_wait_for_call_to_complete(call);
437 error_do_abort:
438 call->state = AFS_CALL_COMPLETE;
439 if (ret != -ECONNABORTED) {
440 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
441 ret, "KSD");
442 } else {
443 abort_code = 0;
444 offset = 0;
445 rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
446 false, &abort_code);
447 ret = call->type->abort_to_error(abort_code);
449 error_kill_call:
450 afs_put_call(call);
451 _leave(" = %d", ret);
452 return ret;
456 * deliver messages to a call
458 static void afs_deliver_to_call(struct afs_call *call)
460 u32 abort_code;
461 int ret;
463 _enter("%s", call->type->name);
465 while (call->state == AFS_CALL_AWAIT_REPLY ||
466 call->state == AFS_CALL_AWAIT_OP_ID ||
467 call->state == AFS_CALL_AWAIT_REQUEST ||
468 call->state == AFS_CALL_AWAIT_ACK
470 if (call->state == AFS_CALL_AWAIT_ACK) {
471 size_t offset = 0;
472 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
473 NULL, 0, &offset, false,
474 &call->abort_code);
475 trace_afs_recv_data(call, 0, offset, false, ret);
477 if (ret == -EINPROGRESS || ret == -EAGAIN)
478 return;
479 if (ret == 1 || ret < 0) {
480 call->state = AFS_CALL_COMPLETE;
481 goto done;
483 return;
486 ret = call->type->deliver(call);
487 switch (ret) {
488 case 0:
489 if (call->state == AFS_CALL_AWAIT_REPLY)
490 call->state = AFS_CALL_COMPLETE;
491 goto done;
492 case -EINPROGRESS:
493 case -EAGAIN:
494 goto out;
495 case -ECONNABORTED:
496 goto call_complete;
497 case -ENOTCONN:
498 abort_code = RX_CALL_DEAD;
499 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
500 abort_code, ret, "KNC");
501 goto save_error;
502 case -ENOTSUPP:
503 abort_code = RXGEN_OPCODE;
504 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
505 abort_code, ret, "KIV");
506 goto save_error;
507 case -ENODATA:
508 case -EBADMSG:
509 case -EMSGSIZE:
510 default:
511 abort_code = RXGEN_CC_UNMARSHAL;
512 if (call->state != AFS_CALL_AWAIT_REPLY)
513 abort_code = RXGEN_SS_UNMARSHAL;
514 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
515 abort_code, -EBADMSG, "KUM");
516 goto save_error;
520 done:
521 if (call->state == AFS_CALL_COMPLETE && call->incoming)
522 afs_put_call(call);
523 out:
524 _leave("");
525 return;
527 save_error:
528 call->error = ret;
529 call_complete:
530 call->state = AFS_CALL_COMPLETE;
531 goto done;
535 * wait synchronously for a call to complete
537 static int afs_wait_for_call_to_complete(struct afs_call *call)
539 int ret;
541 DECLARE_WAITQUEUE(myself, current);
543 _enter("");
545 add_wait_queue(&call->waitq, &myself);
546 for (;;) {
547 set_current_state(TASK_INTERRUPTIBLE);
549 /* deliver any messages that are in the queue */
550 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
551 call->need_attention = false;
552 __set_current_state(TASK_RUNNING);
553 afs_deliver_to_call(call);
554 continue;
557 if (call->state == AFS_CALL_COMPLETE ||
558 signal_pending(current))
559 break;
560 schedule();
563 remove_wait_queue(&call->waitq, &myself);
564 __set_current_state(TASK_RUNNING);
566 /* Kill off the call if it's still live. */
567 if (call->state < AFS_CALL_COMPLETE) {
568 _debug("call interrupted");
569 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
570 RX_USER_ABORT, -EINTR, "KWI");
573 ret = call->error;
574 _debug("call complete");
575 afs_put_call(call);
576 _leave(" = %d", ret);
577 return ret;
581 * wake up a waiting call
583 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
584 unsigned long call_user_ID)
586 struct afs_call *call = (struct afs_call *)call_user_ID;
588 call->need_attention = true;
589 wake_up(&call->waitq);
593 * wake up an asynchronous call
595 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
596 unsigned long call_user_ID)
598 struct afs_call *call = (struct afs_call *)call_user_ID;
599 int u;
601 trace_afs_notify_call(rxcall, call);
602 call->need_attention = true;
604 u = __atomic_add_unless(&call->usage, 1, 0);
605 if (u != 0) {
606 trace_afs_call(call, afs_call_trace_wake, u,
607 atomic_read(&afs_outstanding_calls),
608 __builtin_return_address(0));
610 if (!queue_work(afs_async_calls, &call->async_work))
611 afs_put_call(call);
616 * Delete an asynchronous call. The work item carries a ref to the call struct
617 * that we need to release.
619 static void afs_delete_async_call(struct work_struct *work)
621 struct afs_call *call = container_of(work, struct afs_call, async_work);
623 _enter("");
625 afs_put_call(call);
627 _leave("");
631 * Perform I/O processing on an asynchronous call. The work item carries a ref
632 * to the call struct that we either need to release or to pass on.
634 static void afs_process_async_call(struct work_struct *work)
636 struct afs_call *call = container_of(work, struct afs_call, async_work);
638 _enter("");
640 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
641 call->need_attention = false;
642 afs_deliver_to_call(call);
645 if (call->state == AFS_CALL_COMPLETE) {
646 call->reply = NULL;
648 /* We have two refs to release - one from the alloc and one
649 * queued with the work item - and we can't just deallocate the
650 * call because the work item may be queued again.
652 call->async_work.func = afs_delete_async_call;
653 if (!queue_work(afs_async_calls, &call->async_work))
654 afs_put_call(call);
657 afs_put_call(call);
658 _leave("");
661 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
663 struct afs_call *call = (struct afs_call *)user_call_ID;
665 call->rxcall = rxcall;
669 * Charge the incoming call preallocation.
671 static void afs_charge_preallocation(struct work_struct *work)
673 struct afs_call *call = afs_spare_incoming_call;
675 for (;;) {
676 if (!call) {
677 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
678 if (!call)
679 break;
681 call->async = true;
682 call->state = AFS_CALL_AWAIT_OP_ID;
683 init_waitqueue_head(&call->waitq);
686 if (rxrpc_kernel_charge_accept(afs_socket,
687 afs_wake_up_async_call,
688 afs_rx_attach,
689 (unsigned long)call,
690 GFP_KERNEL) < 0)
691 break;
692 call = NULL;
694 afs_spare_incoming_call = call;
698 * Discard a preallocated call when a socket is shut down.
700 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
701 unsigned long user_call_ID)
703 struct afs_call *call = (struct afs_call *)user_call_ID;
705 call->rxcall = NULL;
706 afs_put_call(call);
710 * Notification of an incoming call.
712 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
713 unsigned long user_call_ID)
715 queue_work(afs_wq, &afs_charge_preallocation_work);
719 * Grab the operation ID from an incoming cache manager call. The socket
720 * buffer is discarded on error or if we don't yet have sufficient data.
722 static int afs_deliver_cm_op_id(struct afs_call *call)
724 int ret;
726 _enter("{%zu}", call->offset);
728 ASSERTCMP(call->offset, <, 4);
730 /* the operation ID forms the first four bytes of the request data */
731 ret = afs_extract_data(call, &call->tmp, 4, true);
732 if (ret < 0)
733 return ret;
735 call->operation_ID = ntohl(call->tmp);
736 call->state = AFS_CALL_AWAIT_REQUEST;
737 call->offset = 0;
739 /* ask the cache manager to route the call (it'll change the call type
740 * if successful) */
741 if (!afs_cm_incoming_call(call))
742 return -ENOTSUPP;
744 trace_afs_cb_call(call);
746 /* pass responsibility for the remainer of this message off to the
747 * cache manager op */
748 return call->type->deliver(call);
752 * Advance the AFS call state when an RxRPC service call ends the transmit
753 * phase.
755 static void afs_notify_end_reply_tx(struct sock *sock,
756 struct rxrpc_call *rxcall,
757 unsigned long call_user_ID)
759 struct afs_call *call = (struct afs_call *)call_user_ID;
761 if (call->state == AFS_CALL_REPLYING)
762 call->state = AFS_CALL_AWAIT_ACK;
766 * send an empty reply
768 void afs_send_empty_reply(struct afs_call *call)
770 struct msghdr msg;
772 _enter("");
774 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0);
776 msg.msg_name = NULL;
777 msg.msg_namelen = 0;
778 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
779 msg.msg_control = NULL;
780 msg.msg_controllen = 0;
781 msg.msg_flags = 0;
783 call->state = AFS_CALL_AWAIT_ACK;
784 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0,
785 afs_notify_end_reply_tx)) {
786 case 0:
787 _leave(" [replied]");
788 return;
790 case -ENOMEM:
791 _debug("oom");
792 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
793 RX_USER_ABORT, -ENOMEM, "KOO");
794 default:
795 _leave(" [error]");
796 return;
801 * send a simple reply
803 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
805 struct msghdr msg;
806 struct kvec iov[1];
807 int n;
809 _enter("");
811 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len);
813 iov[0].iov_base = (void *) buf;
814 iov[0].iov_len = len;
815 msg.msg_name = NULL;
816 msg.msg_namelen = 0;
817 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
818 msg.msg_control = NULL;
819 msg.msg_controllen = 0;
820 msg.msg_flags = 0;
822 call->state = AFS_CALL_AWAIT_ACK;
823 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len,
824 afs_notify_end_reply_tx);
825 if (n >= 0) {
826 /* Success */
827 _leave(" [replied]");
828 return;
831 if (n == -ENOMEM) {
832 _debug("oom");
833 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
834 RX_USER_ABORT, -ENOMEM, "KOO");
836 _leave(" [error]");
840 * Extract a piece of data from the received data socket buffers.
842 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
843 bool want_more)
845 int ret;
847 _enter("{%s,%zu},,%zu,%d",
848 call->type->name, call->offset, count, want_more);
850 ASSERTCMP(call->offset, <=, count);
852 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
853 buf, count, &call->offset,
854 want_more, &call->abort_code);
855 trace_afs_recv_data(call, count, call->offset, want_more, ret);
856 if (ret == 0 || ret == -EAGAIN)
857 return ret;
859 if (ret == 1) {
860 switch (call->state) {
861 case AFS_CALL_AWAIT_REPLY:
862 call->state = AFS_CALL_COMPLETE;
863 break;
864 case AFS_CALL_AWAIT_REQUEST:
865 call->state = AFS_CALL_REPLYING;
866 break;
867 default:
868 break;
870 return 0;
873 if (ret == -ECONNABORTED)
874 call->error = call->type->abort_to_error(call->abort_code);
875 else
876 call->error = ret;
877 call->state = AFS_CALL_COMPLETE;
878 return ret;