2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/sched/smt.h>
12 #include <linux/unistd.h>
13 #include <linux/cpu.h>
14 #include <linux/oom.h>
15 #include <linux/rcupdate.h>
16 #include <linux/export.h>
17 #include <linux/bug.h>
18 #include <linux/kthread.h>
19 #include <linux/stop_machine.h>
20 #include <linux/mutex.h>
21 #include <linux/gfp.h>
22 #include <linux/suspend.h>
23 #include <linux/lockdep.h>
24 #include <linux/tick.h>
25 #include <linux/irq.h>
26 #include <linux/smpboot.h>
27 #include <linux/relay.h>
28 #include <linux/slab.h>
30 #include <trace/events/power.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/cpuhp.h>
37 * cpuhp_cpu_state - Per cpu hotplug state storage
38 * @state: The current cpu state
39 * @target: The target state
40 * @thread: Pointer to the hotplug thread
41 * @should_run: Thread should execute
42 * @rollback: Perform a rollback
43 * @single: Single callback invocation
44 * @bringup: Single callback bringup or teardown selector
45 * @cb_state: The state for a single callback (install/uninstall)
46 * @result: Result of the operation
47 * @done: Signal completion to the issuer of the task
49 struct cpuhp_cpu_state
{
50 enum cpuhp_state state
;
51 enum cpuhp_state target
;
53 struct task_struct
*thread
;
59 struct hlist_node
*node
;
60 enum cpuhp_state cb_state
;
62 struct completion done
;
66 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
);
68 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
69 static struct lock_class_key cpuhp_state_key
;
70 static struct lockdep_map cpuhp_state_lock_map
=
71 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key
);
75 * cpuhp_step - Hotplug state machine step
76 * @name: Name of the step
77 * @startup: Startup function of the step
78 * @teardown: Teardown function of the step
79 * @skip_onerr: Do not invoke the functions on error rollback
80 * Will go away once the notifiers are gone
81 * @cant_stop: Bringup/teardown can't be stopped at this step
86 int (*single
)(unsigned int cpu
);
87 int (*multi
)(unsigned int cpu
,
88 struct hlist_node
*node
);
91 int (*single
)(unsigned int cpu
);
92 int (*multi
)(unsigned int cpu
,
93 struct hlist_node
*node
);
95 struct hlist_head list
;
101 static DEFINE_MUTEX(cpuhp_state_mutex
);
102 static struct cpuhp_step cpuhp_bp_states
[];
103 static struct cpuhp_step cpuhp_ap_states
[];
105 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
108 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
109 * purposes as that state is handled explicitly in cpu_down.
111 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
114 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
116 struct cpuhp_step
*sp
;
118 sp
= cpuhp_is_ap_state(state
) ? cpuhp_ap_states
: cpuhp_bp_states
;
123 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
124 * @cpu: The cpu for which the callback should be invoked
125 * @step: The step in the state machine
126 * @bringup: True if the bringup callback should be invoked
128 * Called from cpu hotplug and from the state register machinery.
130 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
131 bool bringup
, struct hlist_node
*node
)
133 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
134 struct cpuhp_step
*step
= cpuhp_get_step(state
);
135 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
136 int (*cb
)(unsigned int cpu
);
139 if (!step
->multi_instance
) {
140 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
143 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
145 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
148 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
152 /* Single invocation for instance add/remove */
154 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
155 ret
= cbm(cpu
, node
);
156 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
160 /* State transition. Invoke on all instances */
162 hlist_for_each(node
, &step
->list
) {
163 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
164 ret
= cbm(cpu
, node
);
165 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
172 /* Rollback the instances if one failed */
173 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
177 hlist_for_each(node
, &step
->list
) {
186 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
187 static DEFINE_MUTEX(cpu_add_remove_lock
);
188 bool cpuhp_tasks_frozen
;
189 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
192 * The following two APIs (cpu_maps_update_begin/done) must be used when
193 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
194 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
195 * hotplug callback (un)registration performed using __register_cpu_notifier()
196 * or __unregister_cpu_notifier().
198 void cpu_maps_update_begin(void)
200 mutex_lock(&cpu_add_remove_lock
);
202 EXPORT_SYMBOL(cpu_notifier_register_begin
);
204 void cpu_maps_update_done(void)
206 mutex_unlock(&cpu_add_remove_lock
);
208 EXPORT_SYMBOL(cpu_notifier_register_done
);
210 static RAW_NOTIFIER_HEAD(cpu_chain
);
212 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
213 * Should always be manipulated under cpu_add_remove_lock
215 static int cpu_hotplug_disabled
;
217 #ifdef CONFIG_HOTPLUG_CPU
220 struct task_struct
*active_writer
;
221 /* wait queue to wake up the active_writer */
222 wait_queue_head_t wq
;
223 /* verifies that no writer will get active while readers are active */
226 * Also blocks the new readers during
227 * an ongoing cpu hotplug operation.
231 #ifdef CONFIG_DEBUG_LOCK_ALLOC
232 struct lockdep_map dep_map
;
235 .active_writer
= NULL
,
236 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug
.wq
),
237 .lock
= __MUTEX_INITIALIZER(cpu_hotplug
.lock
),
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 .dep_map
= STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug
.dep_map
),
243 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
244 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
245 #define cpuhp_lock_acquire_tryread() \
246 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
247 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
248 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
251 void get_online_cpus(void)
254 if (cpu_hotplug
.active_writer
== current
)
256 cpuhp_lock_acquire_read();
257 mutex_lock(&cpu_hotplug
.lock
);
258 atomic_inc(&cpu_hotplug
.refcount
);
259 mutex_unlock(&cpu_hotplug
.lock
);
261 EXPORT_SYMBOL_GPL(get_online_cpus
);
263 void put_online_cpus(void)
267 if (cpu_hotplug
.active_writer
== current
)
270 refcount
= atomic_dec_return(&cpu_hotplug
.refcount
);
271 if (WARN_ON(refcount
< 0)) /* try to fix things up */
272 atomic_inc(&cpu_hotplug
.refcount
);
274 if (refcount
<= 0 && waitqueue_active(&cpu_hotplug
.wq
))
275 wake_up(&cpu_hotplug
.wq
);
277 cpuhp_lock_release();
280 EXPORT_SYMBOL_GPL(put_online_cpus
);
283 * This ensures that the hotplug operation can begin only when the
284 * refcount goes to zero.
286 * Note that during a cpu-hotplug operation, the new readers, if any,
287 * will be blocked by the cpu_hotplug.lock
289 * Since cpu_hotplug_begin() is always called after invoking
290 * cpu_maps_update_begin(), we can be sure that only one writer is active.
292 * Note that theoretically, there is a possibility of a livelock:
293 * - Refcount goes to zero, last reader wakes up the sleeping
295 * - Last reader unlocks the cpu_hotplug.lock.
296 * - A new reader arrives at this moment, bumps up the refcount.
297 * - The writer acquires the cpu_hotplug.lock finds the refcount
298 * non zero and goes to sleep again.
300 * However, this is very difficult to achieve in practice since
301 * get_online_cpus() not an api which is called all that often.
304 void cpu_hotplug_begin(void)
308 cpu_hotplug
.active_writer
= current
;
309 cpuhp_lock_acquire();
312 mutex_lock(&cpu_hotplug
.lock
);
313 prepare_to_wait(&cpu_hotplug
.wq
, &wait
, TASK_UNINTERRUPTIBLE
);
314 if (likely(!atomic_read(&cpu_hotplug
.refcount
)))
316 mutex_unlock(&cpu_hotplug
.lock
);
319 finish_wait(&cpu_hotplug
.wq
, &wait
);
322 void cpu_hotplug_done(void)
324 cpu_hotplug
.active_writer
= NULL
;
325 mutex_unlock(&cpu_hotplug
.lock
);
326 cpuhp_lock_release();
330 * Wait for currently running CPU hotplug operations to complete (if any) and
331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333 * hotplug path before performing hotplug operations. So acquiring that lock
334 * guarantees mutual exclusion from any currently running hotplug operations.
336 void cpu_hotplug_disable(void)
338 cpu_maps_update_begin();
339 cpu_hotplug_disabled
++;
340 cpu_maps_update_done();
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
344 static void __cpu_hotplug_enable(void)
346 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
348 cpu_hotplug_disabled
--;
351 void cpu_hotplug_enable(void)
353 cpu_maps_update_begin();
354 __cpu_hotplug_enable();
355 cpu_maps_update_done();
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
358 #endif /* CONFIG_HOTPLUG_CPU */
361 * Architectures that need SMT-specific errata handling during SMT hotplug
362 * should override this.
364 void __weak
arch_smt_update(void) { }
366 #ifdef CONFIG_HOTPLUG_SMT
367 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
368 EXPORT_SYMBOL_GPL(cpu_smt_control
);
370 static bool cpu_smt_available __read_mostly
;
372 void __init
cpu_smt_disable(bool force
)
374 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
||
375 cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
379 pr_info("SMT: Force disabled\n");
380 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
382 pr_info("SMT: disabled\n");
383 cpu_smt_control
= CPU_SMT_DISABLED
;
388 * The decision whether SMT is supported can only be done after the full
389 * CPU identification. Called from architecture code before non boot CPUs
392 void __init
cpu_smt_check_topology_early(void)
394 if (!topology_smt_supported())
395 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
399 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
400 * brought online. This ensures the smt/l1tf sysfs entries are consistent
401 * with reality. cpu_smt_available is set to true during the bringup of non
402 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
403 * cpu_smt_control's previous setting.
405 void __init
cpu_smt_check_topology(void)
407 if (!cpu_smt_available
)
408 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
411 static int __init
smt_cmdline_disable(char *str
)
413 cpu_smt_disable(str
&& !strcmp(str
, "force"));
416 early_param("nosmt", smt_cmdline_disable
);
418 static inline bool cpu_smt_allowed(unsigned int cpu
)
420 if (topology_is_primary_thread(cpu
))
424 * If the CPU is not a 'primary' thread and the booted_once bit is
425 * set then the processor has SMT support. Store this information
426 * for the late check of SMT support in cpu_smt_check_topology().
428 if (per_cpu(cpuhp_state
, cpu
).booted_once
)
429 cpu_smt_available
= true;
431 if (cpu_smt_control
== CPU_SMT_ENABLED
)
435 * On x86 it's required to boot all logical CPUs at least once so
436 * that the init code can get a chance to set CR4.MCE on each
437 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
438 * core will shutdown the machine.
440 return !per_cpu(cpuhp_state
, cpu
).booted_once
;
443 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
446 /* Need to know about CPUs going up/down? */
447 int register_cpu_notifier(struct notifier_block
*nb
)
450 cpu_maps_update_begin();
451 ret
= raw_notifier_chain_register(&cpu_chain
, nb
);
452 cpu_maps_update_done();
456 int __register_cpu_notifier(struct notifier_block
*nb
)
458 return raw_notifier_chain_register(&cpu_chain
, nb
);
461 static int __cpu_notify(unsigned long val
, unsigned int cpu
, int nr_to_call
,
464 unsigned long mod
= cpuhp_tasks_frozen
? CPU_TASKS_FROZEN
: 0;
465 void *hcpu
= (void *)(long)cpu
;
469 ret
= __raw_notifier_call_chain(&cpu_chain
, val
| mod
, hcpu
, nr_to_call
,
472 return notifier_to_errno(ret
);
475 static int cpu_notify(unsigned long val
, unsigned int cpu
)
477 return __cpu_notify(val
, cpu
, -1, NULL
);
480 static void cpu_notify_nofail(unsigned long val
, unsigned int cpu
)
482 BUG_ON(cpu_notify(val
, cpu
));
485 /* Notifier wrappers for transitioning to state machine */
486 static int notify_prepare(unsigned int cpu
)
491 ret
= __cpu_notify(CPU_UP_PREPARE
, cpu
, -1, &nr_calls
);
494 printk(KERN_WARNING
"%s: attempt to bring up CPU %u failed\n",
496 __cpu_notify(CPU_UP_CANCELED
, cpu
, nr_calls
, NULL
);
501 static int notify_online(unsigned int cpu
)
503 cpu_notify(CPU_ONLINE
, cpu
);
507 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state
*st
);
509 static int bringup_wait_for_ap(unsigned int cpu
)
511 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
513 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
514 wait_for_completion(&st
->done
);
515 if (WARN_ON_ONCE((!cpu_online(cpu
))))
518 /* Unpark the hotplug thread of the target cpu */
519 kthread_unpark(st
->thread
);
522 * SMT soft disabling on X86 requires to bring the CPU out of the
523 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
524 * CPU marked itself as booted_once in cpu_notify_starting() so the
525 * cpu_smt_allowed() check will now return false if this is not the
528 if (!cpu_smt_allowed(cpu
))
531 /* Should we go further up ? */
532 if (st
->target
> CPUHP_AP_ONLINE_IDLE
) {
533 __cpuhp_kick_ap_work(st
);
534 wait_for_completion(&st
->done
);
539 static int bringup_cpu(unsigned int cpu
)
541 struct task_struct
*idle
= idle_thread_get(cpu
);
545 * Some architectures have to walk the irq descriptors to
546 * setup the vector space for the cpu which comes online.
547 * Prevent irq alloc/free across the bringup.
551 /* Arch-specific enabling code. */
552 ret
= __cpu_up(cpu
, idle
);
555 cpu_notify(CPU_UP_CANCELED
, cpu
);
558 return bringup_wait_for_ap(cpu
);
562 * Hotplug state machine related functions
564 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
566 for (st
->state
++; st
->state
< st
->target
; st
->state
++) {
567 struct cpuhp_step
*step
= cpuhp_get_step(st
->state
);
569 if (!step
->skip_onerr
)
570 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
);
574 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
575 enum cpuhp_state target
)
577 enum cpuhp_state prev_state
= st
->state
;
580 for (; st
->state
> target
; st
->state
--) {
581 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
);
583 st
->target
= prev_state
;
584 undo_cpu_down(cpu
, st
);
591 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
593 for (st
->state
--; st
->state
> st
->target
; st
->state
--) {
594 struct cpuhp_step
*step
= cpuhp_get_step(st
->state
);
596 if (!step
->skip_onerr
)
597 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
);
601 static inline bool can_rollback_cpu(struct cpuhp_cpu_state
*st
)
603 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
))
606 * When CPU hotplug is disabled, then taking the CPU down is not
607 * possible because takedown_cpu() and the architecture and
608 * subsystem specific mechanisms are not available. So the CPU
609 * which would be completely unplugged again needs to stay around
610 * in the current state.
612 return st
->state
<= CPUHP_BRINGUP_CPU
;
615 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
616 enum cpuhp_state target
)
618 enum cpuhp_state prev_state
= st
->state
;
621 while (st
->state
< target
) {
623 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
);
625 if (can_rollback_cpu(st
)) {
626 st
->target
= prev_state
;
627 undo_cpu_up(cpu
, st
);
636 * The cpu hotplug threads manage the bringup and teardown of the cpus
638 static void cpuhp_create(unsigned int cpu
)
640 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
642 init_completion(&st
->done
);
645 static int cpuhp_should_run(unsigned int cpu
)
647 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
649 return st
->should_run
;
652 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
653 static int cpuhp_ap_offline(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
655 enum cpuhp_state target
= max((int)st
->target
, CPUHP_TEARDOWN_CPU
);
657 return cpuhp_down_callbacks(cpu
, st
, target
);
660 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
661 static int cpuhp_ap_online(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
663 return cpuhp_up_callbacks(cpu
, st
, st
->target
);
667 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
668 * callbacks when a state gets [un]installed at runtime.
670 static void cpuhp_thread_fun(unsigned int cpu
)
672 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
676 * Paired with the mb() in cpuhp_kick_ap_work and
677 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
683 st
->should_run
= false;
685 lock_map_acquire(&cpuhp_state_lock_map
);
686 /* Single callback invocation for [un]install ? */
688 if (st
->cb_state
< CPUHP_AP_ONLINE
) {
690 ret
= cpuhp_invoke_callback(cpu
, st
->cb_state
,
691 st
->bringup
, st
->node
);
694 ret
= cpuhp_invoke_callback(cpu
, st
->cb_state
,
695 st
->bringup
, st
->node
);
697 } else if (st
->rollback
) {
698 BUG_ON(st
->state
< CPUHP_AP_ONLINE_IDLE
);
700 undo_cpu_down(cpu
, st
);
702 * This is a momentary workaround to keep the notifier users
703 * happy. Will go away once we got rid of the notifiers.
705 cpu_notify_nofail(CPU_DOWN_FAILED
, cpu
);
706 st
->rollback
= false;
708 /* Cannot happen .... */
709 BUG_ON(st
->state
< CPUHP_AP_ONLINE_IDLE
);
711 /* Regular hotplug work */
712 if (st
->state
< st
->target
)
713 ret
= cpuhp_ap_online(cpu
, st
);
714 else if (st
->state
> st
->target
)
715 ret
= cpuhp_ap_offline(cpu
, st
);
717 lock_map_release(&cpuhp_state_lock_map
);
722 /* Invoke a single callback on a remote cpu */
724 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
725 struct hlist_node
*node
)
727 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
729 if (!cpu_online(cpu
))
732 lock_map_acquire(&cpuhp_state_lock_map
);
733 lock_map_release(&cpuhp_state_lock_map
);
736 * If we are up and running, use the hotplug thread. For early calls
737 * we invoke the thread function directly.
740 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
);
742 st
->cb_state
= state
;
744 st
->bringup
= bringup
;
748 * Make sure the above stores are visible before should_run becomes
749 * true. Paired with the mb() above in cpuhp_thread_fun()
752 st
->should_run
= true;
753 wake_up_process(st
->thread
);
754 wait_for_completion(&st
->done
);
758 /* Regular hotplug invocation of the AP hotplug thread */
759 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state
*st
)
764 * Make sure the above stores are visible before should_run becomes
765 * true. Paired with the mb() above in cpuhp_thread_fun()
768 st
->should_run
= true;
769 wake_up_process(st
->thread
);
772 static int cpuhp_kick_ap_work(unsigned int cpu
)
774 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
775 enum cpuhp_state state
= st
->state
;
777 trace_cpuhp_enter(cpu
, st
->target
, state
, cpuhp_kick_ap_work
);
778 lock_map_acquire(&cpuhp_state_lock_map
);
779 lock_map_release(&cpuhp_state_lock_map
);
780 __cpuhp_kick_ap_work(st
);
781 wait_for_completion(&st
->done
);
782 trace_cpuhp_exit(cpu
, st
->state
, state
, st
->result
);
786 static struct smp_hotplug_thread cpuhp_threads
= {
787 .store
= &cpuhp_state
.thread
,
788 .create
= &cpuhp_create
,
789 .thread_should_run
= cpuhp_should_run
,
790 .thread_fn
= cpuhp_thread_fun
,
791 .thread_comm
= "cpuhp/%u",
795 void __init
cpuhp_threads_init(void)
797 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
798 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
801 EXPORT_SYMBOL(register_cpu_notifier
);
802 EXPORT_SYMBOL(__register_cpu_notifier
);
803 void unregister_cpu_notifier(struct notifier_block
*nb
)
805 cpu_maps_update_begin();
806 raw_notifier_chain_unregister(&cpu_chain
, nb
);
807 cpu_maps_update_done();
809 EXPORT_SYMBOL(unregister_cpu_notifier
);
811 void __unregister_cpu_notifier(struct notifier_block
*nb
)
813 raw_notifier_chain_unregister(&cpu_chain
, nb
);
815 EXPORT_SYMBOL(__unregister_cpu_notifier
);
817 #ifdef CONFIG_HOTPLUG_CPU
819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
822 * This function walks all processes, finds a valid mm struct for each one and
823 * then clears a corresponding bit in mm's cpumask. While this all sounds
824 * trivial, there are various non-obvious corner cases, which this function
825 * tries to solve in a safe manner.
827 * Also note that the function uses a somewhat relaxed locking scheme, so it may
828 * be called only for an already offlined CPU.
830 void clear_tasks_mm_cpumask(int cpu
)
832 struct task_struct
*p
;
835 * This function is called after the cpu is taken down and marked
836 * offline, so its not like new tasks will ever get this cpu set in
837 * their mm mask. -- Peter Zijlstra
838 * Thus, we may use rcu_read_lock() here, instead of grabbing
839 * full-fledged tasklist_lock.
841 WARN_ON(cpu_online(cpu
));
843 for_each_process(p
) {
844 struct task_struct
*t
;
847 * Main thread might exit, but other threads may still have
848 * a valid mm. Find one.
850 t
= find_lock_task_mm(p
);
853 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
859 static inline void check_for_tasks(int dead_cpu
)
861 struct task_struct
*g
, *p
;
863 read_lock(&tasklist_lock
);
864 for_each_process_thread(g
, p
) {
868 * We do the check with unlocked task_rq(p)->lock.
869 * Order the reading to do not warn about a task,
870 * which was running on this cpu in the past, and
871 * it's just been woken on another cpu.
874 if (task_cpu(p
) != dead_cpu
)
877 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
878 p
->comm
, task_pid_nr(p
), dead_cpu
, p
->state
, p
->flags
);
880 read_unlock(&tasklist_lock
);
883 static int notify_down_prepare(unsigned int cpu
)
885 int err
, nr_calls
= 0;
887 err
= __cpu_notify(CPU_DOWN_PREPARE
, cpu
, -1, &nr_calls
);
890 __cpu_notify(CPU_DOWN_FAILED
, cpu
, nr_calls
, NULL
);
891 pr_warn("%s: attempt to take down CPU %u failed\n",
897 /* Take this CPU down. */
898 static int take_cpu_down(void *_param
)
900 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
901 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
902 int err
, cpu
= smp_processor_id();
904 /* Ensure this CPU doesn't handle any more interrupts. */
905 err
= __cpu_disable();
910 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
911 * do this step again.
913 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
915 /* Invoke the former CPU_DYING callbacks */
916 for (; st
->state
> target
; st
->state
--)
917 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
);
919 /* Give up timekeeping duties */
920 tick_handover_do_timer();
921 /* Park the stopper thread */
922 stop_machine_park(cpu
);
926 static int takedown_cpu(unsigned int cpu
)
928 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
931 /* Park the smpboot threads */
932 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
935 * Prevent irq alloc/free while the dying cpu reorganizes the
936 * interrupt affinities.
941 * So now all preempt/rcu users must observe !cpu_active().
943 err
= stop_machine(take_cpu_down
, NULL
, cpumask_of(cpu
));
945 /* CPU refused to die */
947 /* Unpark the hotplug thread so we can rollback there */
948 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
951 BUG_ON(cpu_online(cpu
));
954 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
955 * runnable tasks from the cpu, there's only the idle task left now
956 * that the migration thread is done doing the stop_machine thing.
958 * Wait for the stop thread to go away.
960 wait_for_completion(&st
->done
);
961 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
963 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
966 hotplug_cpu__broadcast_tick_pull(cpu
);
967 /* This actually kills the CPU. */
970 tick_cleanup_dead_cpu(cpu
);
974 static int notify_dead(unsigned int cpu
)
976 cpu_notify_nofail(CPU_DEAD
, cpu
);
977 check_for_tasks(cpu
);
981 static void cpuhp_complete_idle_dead(void *arg
)
983 struct cpuhp_cpu_state
*st
= arg
;
988 void cpuhp_report_idle_dead(void)
990 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
992 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
993 rcu_report_dead(smp_processor_id());
994 st
->state
= CPUHP_AP_IDLE_DEAD
;
996 * We cannot call complete after rcu_report_dead() so we delegate it
999 smp_call_function_single(cpumask_first(cpu_online_mask
),
1000 cpuhp_complete_idle_dead
, st
, 0);
1004 #define notify_down_prepare NULL
1005 #define takedown_cpu NULL
1006 #define notify_dead NULL
1009 #ifdef CONFIG_HOTPLUG_CPU
1011 /* Requires cpu_add_remove_lock to be held */
1012 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
1013 enum cpuhp_state target
)
1015 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1016 int prev_state
, ret
= 0;
1017 bool hasdied
= false;
1019 if (num_online_cpus() == 1)
1022 if (!cpu_present(cpu
))
1025 cpu_hotplug_begin();
1027 cpuhp_tasks_frozen
= tasks_frozen
;
1029 prev_state
= st
->state
;
1030 st
->target
= target
;
1032 * If the current CPU state is in the range of the AP hotplug thread,
1033 * then we need to kick the thread.
1035 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
1036 ret
= cpuhp_kick_ap_work(cpu
);
1038 * The AP side has done the error rollback already. Just
1039 * return the error code..
1045 * We might have stopped still in the range of the AP hotplug
1046 * thread. Nothing to do anymore.
1048 if (st
->state
> CPUHP_TEARDOWN_CPU
)
1052 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1053 * to do the further cleanups.
1055 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1056 if (ret
&& st
->state
> CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
1057 st
->target
= prev_state
;
1058 st
->rollback
= true;
1059 cpuhp_kick_ap_work(cpu
);
1062 hasdied
= prev_state
!= st
->state
&& st
->state
== CPUHP_OFFLINE
;
1065 /* This post dead nonsense must die */
1066 if (!ret
&& hasdied
)
1067 cpu_notify_nofail(CPU_POST_DEAD
, cpu
);
1072 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1074 if (cpu_hotplug_disabled
)
1076 return _cpu_down(cpu
, 0, target
);
1079 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1083 cpu_maps_update_begin();
1084 err
= cpu_down_maps_locked(cpu
, target
);
1085 cpu_maps_update_done();
1088 int cpu_down(unsigned int cpu
)
1090 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1092 EXPORT_SYMBOL(cpu_down
);
1093 #endif /*CONFIG_HOTPLUG_CPU*/
1096 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1097 * @cpu: cpu that just started
1099 * It must be called by the arch code on the new cpu, before the new cpu
1100 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1102 void notify_cpu_starting(unsigned int cpu
)
1104 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1105 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1107 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1108 st
->booted_once
= true;
1109 while (st
->state
< target
) {
1111 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
);
1116 * Called from the idle task. Wake up the controlling task which brings the
1117 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1118 * online bringup to the hotplug thread.
1120 void cpuhp_online_idle(enum cpuhp_state state
)
1122 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1124 /* Happens for the boot cpu */
1125 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1129 * Unpart the stopper thread before we start the idle loop (and start
1130 * scheduling); this ensures the stopper task is always available.
1132 stop_machine_unpark(smp_processor_id());
1134 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1135 complete(&st
->done
);
1138 /* Requires cpu_add_remove_lock to be held */
1139 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1141 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1142 struct task_struct
*idle
;
1145 cpu_hotplug_begin();
1147 if (!cpu_present(cpu
)) {
1153 * The caller of do_cpu_up might have raced with another
1154 * caller. Ignore it for now.
1156 if (st
->state
>= target
)
1159 if (st
->state
== CPUHP_OFFLINE
) {
1160 /* Let it fail before we try to bring the cpu up */
1161 idle
= idle_thread_get(cpu
);
1163 ret
= PTR_ERR(idle
);
1168 cpuhp_tasks_frozen
= tasks_frozen
;
1170 st
->target
= target
;
1172 * If the current CPU state is in the range of the AP hotplug thread,
1173 * then we need to kick the thread once more.
1175 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1176 ret
= cpuhp_kick_ap_work(cpu
);
1178 * The AP side has done the error rollback already. Just
1179 * return the error code..
1186 * Try to reach the target state. We max out on the BP at
1187 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1188 * responsible for bringing it up to the target state.
1190 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1191 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1198 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1202 if (!cpu_possible(cpu
)) {
1203 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1205 #if defined(CONFIG_IA64)
1206 pr_err("please check additional_cpus= boot parameter\n");
1211 err
= try_online_node(cpu_to_node(cpu
));
1215 cpu_maps_update_begin();
1217 if (cpu_hotplug_disabled
) {
1221 if (!cpu_smt_allowed(cpu
)) {
1226 err
= _cpu_up(cpu
, 0, target
);
1228 cpu_maps_update_done();
1232 int cpu_up(unsigned int cpu
)
1234 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1236 EXPORT_SYMBOL_GPL(cpu_up
);
1238 #ifdef CONFIG_PM_SLEEP_SMP
1239 static cpumask_var_t frozen_cpus
;
1241 int freeze_secondary_cpus(int primary
)
1245 cpu_maps_update_begin();
1246 if (!cpu_online(primary
))
1247 primary
= cpumask_first(cpu_online_mask
);
1249 * We take down all of the non-boot CPUs in one shot to avoid races
1250 * with the userspace trying to use the CPU hotplug at the same time
1252 cpumask_clear(frozen_cpus
);
1254 pr_info("Disabling non-boot CPUs ...\n");
1255 for_each_online_cpu(cpu
) {
1258 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1259 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1260 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1262 cpumask_set_cpu(cpu
, frozen_cpus
);
1264 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1270 BUG_ON(num_online_cpus() > 1);
1272 pr_err("Non-boot CPUs are not disabled\n");
1275 * Make sure the CPUs won't be enabled by someone else. We need to do
1276 * this even in case of failure as all disable_nonboot_cpus() users are
1277 * supposed to do enable_nonboot_cpus() on the failure path.
1279 cpu_hotplug_disabled
++;
1281 cpu_maps_update_done();
1285 void __weak
arch_enable_nonboot_cpus_begin(void)
1289 void __weak
arch_enable_nonboot_cpus_end(void)
1293 void enable_nonboot_cpus(void)
1297 /* Allow everyone to use the CPU hotplug again */
1298 cpu_maps_update_begin();
1299 __cpu_hotplug_enable();
1300 if (cpumask_empty(frozen_cpus
))
1303 pr_info("Enabling non-boot CPUs ...\n");
1305 arch_enable_nonboot_cpus_begin();
1307 for_each_cpu(cpu
, frozen_cpus
) {
1308 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1309 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1310 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1312 pr_info("CPU%d is up\n", cpu
);
1315 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1318 arch_enable_nonboot_cpus_end();
1320 cpumask_clear(frozen_cpus
);
1322 cpu_maps_update_done();
1325 static int __init
alloc_frozen_cpus(void)
1327 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1331 core_initcall(alloc_frozen_cpus
);
1334 * When callbacks for CPU hotplug notifications are being executed, we must
1335 * ensure that the state of the system with respect to the tasks being frozen
1336 * or not, as reported by the notification, remains unchanged *throughout the
1337 * duration* of the execution of the callbacks.
1338 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1340 * This synchronization is implemented by mutually excluding regular CPU
1341 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1342 * Hibernate notifications.
1345 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1346 unsigned long action
, void *ptr
)
1350 case PM_SUSPEND_PREPARE
:
1351 case PM_HIBERNATION_PREPARE
:
1352 cpu_hotplug_disable();
1355 case PM_POST_SUSPEND
:
1356 case PM_POST_HIBERNATION
:
1357 cpu_hotplug_enable();
1368 static int __init
cpu_hotplug_pm_sync_init(void)
1371 * cpu_hotplug_pm_callback has higher priority than x86
1372 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1373 * to disable cpu hotplug to avoid cpu hotplug race.
1375 pm_notifier(cpu_hotplug_pm_callback
, 0);
1378 core_initcall(cpu_hotplug_pm_sync_init
);
1380 #endif /* CONFIG_PM_SLEEP_SMP */
1382 #endif /* CONFIG_SMP */
1384 /* Boot processor state steps */
1385 static struct cpuhp_step cpuhp_bp_states
[] = {
1388 .startup
.single
= NULL
,
1389 .teardown
.single
= NULL
,
1392 [CPUHP_CREATE_THREADS
]= {
1393 .name
= "threads:prepare",
1394 .startup
.single
= smpboot_create_threads
,
1395 .teardown
.single
= NULL
,
1398 [CPUHP_PERF_PREPARE
] = {
1399 .name
= "perf:prepare",
1400 .startup
.single
= perf_event_init_cpu
,
1401 .teardown
.single
= perf_event_exit_cpu
,
1403 [CPUHP_WORKQUEUE_PREP
] = {
1404 .name
= "workqueue:prepare",
1405 .startup
.single
= workqueue_prepare_cpu
,
1406 .teardown
.single
= NULL
,
1408 [CPUHP_HRTIMERS_PREPARE
] = {
1409 .name
= "hrtimers:prepare",
1410 .startup
.single
= hrtimers_prepare_cpu
,
1411 .teardown
.single
= hrtimers_dead_cpu
,
1413 [CPUHP_SMPCFD_PREPARE
] = {
1414 .name
= "smpcfd:prepare",
1415 .startup
.single
= smpcfd_prepare_cpu
,
1416 .teardown
.single
= smpcfd_dead_cpu
,
1418 [CPUHP_RELAY_PREPARE
] = {
1419 .name
= "relay:prepare",
1420 .startup
.single
= relay_prepare_cpu
,
1421 .teardown
.single
= NULL
,
1423 [CPUHP_SLAB_PREPARE
] = {
1424 .name
= "slab:prepare",
1425 .startup
.single
= slab_prepare_cpu
,
1426 .teardown
.single
= slab_dead_cpu
,
1428 [CPUHP_RCUTREE_PREP
] = {
1429 .name
= "RCU/tree:prepare",
1430 .startup
.single
= rcutree_prepare_cpu
,
1431 .teardown
.single
= rcutree_dead_cpu
,
1434 * Preparatory and dead notifiers. Will be replaced once the notifiers
1435 * are converted to states.
1437 [CPUHP_NOTIFY_PREPARE
] = {
1438 .name
= "notify:prepare",
1439 .startup
.single
= notify_prepare
,
1440 .teardown
.single
= notify_dead
,
1445 * On the tear-down path, timers_dead_cpu() must be invoked
1446 * before blk_mq_queue_reinit_notify() from notify_dead(),
1447 * otherwise a RCU stall occurs.
1449 [CPUHP_TIMERS_PREPARE
] = {
1450 .name
= "timers:dead",
1451 .startup
.single
= timers_prepare_cpu
,
1452 .teardown
.single
= timers_dead_cpu
,
1454 /* Kicks the plugged cpu into life */
1455 [CPUHP_BRINGUP_CPU
] = {
1456 .name
= "cpu:bringup",
1457 .startup
.single
= bringup_cpu
,
1458 .teardown
.single
= NULL
,
1462 * Handled on controll processor until the plugged processor manages
1465 [CPUHP_TEARDOWN_CPU
] = {
1466 .name
= "cpu:teardown",
1467 .startup
.single
= NULL
,
1468 .teardown
.single
= takedown_cpu
,
1472 [CPUHP_BRINGUP_CPU
] = { },
1476 /* Application processor state steps */
1477 static struct cpuhp_step cpuhp_ap_states
[] = {
1479 /* Final state before CPU kills itself */
1480 [CPUHP_AP_IDLE_DEAD
] = {
1481 .name
= "idle:dead",
1484 * Last state before CPU enters the idle loop to die. Transient state
1485 * for synchronization.
1487 [CPUHP_AP_OFFLINE
] = {
1488 .name
= "ap:offline",
1491 /* First state is scheduler control. Interrupts are disabled */
1492 [CPUHP_AP_SCHED_STARTING
] = {
1493 .name
= "sched:starting",
1494 .startup
.single
= sched_cpu_starting
,
1495 .teardown
.single
= sched_cpu_dying
,
1497 [CPUHP_AP_RCUTREE_DYING
] = {
1498 .name
= "RCU/tree:dying",
1499 .startup
.single
= NULL
,
1500 .teardown
.single
= rcutree_dying_cpu
,
1502 [CPUHP_AP_SMPCFD_DYING
] = {
1503 .name
= "smpcfd:dying",
1504 .startup
.single
= NULL
,
1505 .teardown
.single
= smpcfd_dying_cpu
,
1507 /* Entry state on starting. Interrupts enabled from here on. Transient
1508 * state for synchronsization */
1509 [CPUHP_AP_ONLINE
] = {
1510 .name
= "ap:online",
1512 /* Handle smpboot threads park/unpark */
1513 [CPUHP_AP_SMPBOOT_THREADS
] = {
1514 .name
= "smpboot/threads:online",
1515 .startup
.single
= smpboot_unpark_threads
,
1516 .teardown
.single
= smpboot_park_threads
,
1518 [CPUHP_AP_PERF_ONLINE
] = {
1519 .name
= "perf:online",
1520 .startup
.single
= perf_event_init_cpu
,
1521 .teardown
.single
= perf_event_exit_cpu
,
1523 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1524 .name
= "workqueue:online",
1525 .startup
.single
= workqueue_online_cpu
,
1526 .teardown
.single
= workqueue_offline_cpu
,
1528 [CPUHP_AP_RCUTREE_ONLINE
] = {
1529 .name
= "RCU/tree:online",
1530 .startup
.single
= rcutree_online_cpu
,
1531 .teardown
.single
= rcutree_offline_cpu
,
1535 * Online/down_prepare notifiers. Will be removed once the notifiers
1536 * are converted to states.
1538 [CPUHP_AP_NOTIFY_ONLINE
] = {
1539 .name
= "notify:online",
1540 .startup
.single
= notify_online
,
1541 .teardown
.single
= notify_down_prepare
,
1546 * The dynamically registered state space is here
1550 /* Last state is scheduler control setting the cpu active */
1551 [CPUHP_AP_ACTIVE
] = {
1552 .name
= "sched:active",
1553 .startup
.single
= sched_cpu_activate
,
1554 .teardown
.single
= sched_cpu_deactivate
,
1558 /* CPU is fully up and running. */
1561 .startup
.single
= NULL
,
1562 .teardown
.single
= NULL
,
1566 /* Sanity check for callbacks */
1567 static int cpuhp_cb_check(enum cpuhp_state state
)
1569 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1574 static void cpuhp_store_callbacks(enum cpuhp_state state
,
1576 int (*startup
)(unsigned int cpu
),
1577 int (*teardown
)(unsigned int cpu
),
1578 bool multi_instance
)
1580 /* (Un)Install the callbacks for further cpu hotplug operations */
1581 struct cpuhp_step
*sp
;
1583 sp
= cpuhp_get_step(state
);
1584 sp
->startup
.single
= startup
;
1585 sp
->teardown
.single
= teardown
;
1587 sp
->multi_instance
= multi_instance
;
1588 INIT_HLIST_HEAD(&sp
->list
);
1591 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1593 return cpuhp_get_step(state
)->teardown
.single
;
1597 * Call the startup/teardown function for a step either on the AP or
1598 * on the current CPU.
1600 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1601 struct hlist_node
*node
)
1603 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1606 if ((bringup
&& !sp
->startup
.single
) ||
1607 (!bringup
&& !sp
->teardown
.single
))
1610 * The non AP bound callbacks can fail on bringup. On teardown
1611 * e.g. module removal we crash for now.
1614 if (cpuhp_is_ap_state(state
))
1615 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1617 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
);
1619 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
);
1621 BUG_ON(ret
&& !bringup
);
1626 * Called from __cpuhp_setup_state on a recoverable failure.
1628 * Note: The teardown callbacks for rollback are not allowed to fail!
1630 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1631 struct hlist_node
*node
)
1635 /* Roll back the already executed steps on the other cpus */
1636 for_each_present_cpu(cpu
) {
1637 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1638 int cpustate
= st
->state
;
1640 if (cpu
>= failedcpu
)
1643 /* Did we invoke the startup call on that cpu ? */
1644 if (cpustate
>= state
)
1645 cpuhp_issue_call(cpu
, state
, false, node
);
1650 * Returns a free for dynamic slot assignment of the Online state. The states
1651 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1652 * by having no name assigned.
1654 static int cpuhp_reserve_state(enum cpuhp_state state
)
1658 for (i
= CPUHP_AP_ONLINE_DYN
; i
<= CPUHP_AP_ONLINE_DYN_END
; i
++) {
1659 if (cpuhp_ap_states
[i
].name
)
1662 cpuhp_ap_states
[i
].name
= "Reserved";
1665 WARN(1, "No more dynamic states available for CPU hotplug\n");
1669 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1672 struct cpuhp_step
*sp
;
1676 sp
= cpuhp_get_step(state
);
1677 if (sp
->multi_instance
== false)
1681 mutex_lock(&cpuhp_state_mutex
);
1683 if (!invoke
|| !sp
->startup
.multi
)
1687 * Try to call the startup callback for each present cpu
1688 * depending on the hotplug state of the cpu.
1690 for_each_present_cpu(cpu
) {
1691 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1692 int cpustate
= st
->state
;
1694 if (cpustate
< state
)
1697 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1699 if (sp
->teardown
.multi
)
1700 cpuhp_rollback_install(cpu
, state
, node
);
1706 hlist_add_head(node
, &sp
->list
);
1709 mutex_unlock(&cpuhp_state_mutex
);
1713 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1716 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1717 * @state: The state to setup
1718 * @invoke: If true, the startup function is invoked for cpus where
1719 * cpu state >= @state
1720 * @startup: startup callback function
1721 * @teardown: teardown callback function
1723 * Returns 0 if successful, otherwise a proper error code
1725 int __cpuhp_setup_state(enum cpuhp_state state
,
1726 const char *name
, bool invoke
,
1727 int (*startup
)(unsigned int cpu
),
1728 int (*teardown
)(unsigned int cpu
),
1729 bool multi_instance
)
1734 if (cpuhp_cb_check(state
) || !name
)
1738 mutex_lock(&cpuhp_state_mutex
);
1740 /* currently assignments for the ONLINE state are possible */
1741 if (state
== CPUHP_AP_ONLINE_DYN
) {
1743 ret
= cpuhp_reserve_state(state
);
1749 cpuhp_store_callbacks(state
, name
, startup
, teardown
, multi_instance
);
1751 if (!invoke
|| !startup
)
1755 * Try to call the startup callback for each present cpu
1756 * depending on the hotplug state of the cpu.
1758 for_each_present_cpu(cpu
) {
1759 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1760 int cpustate
= st
->state
;
1762 if (cpustate
< state
)
1765 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1768 cpuhp_rollback_install(cpu
, state
, NULL
);
1769 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1774 mutex_unlock(&cpuhp_state_mutex
);
1777 if (!ret
&& dyn_state
)
1781 EXPORT_SYMBOL(__cpuhp_setup_state
);
1783 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1784 struct hlist_node
*node
, bool invoke
)
1786 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1789 BUG_ON(cpuhp_cb_check(state
));
1791 if (!sp
->multi_instance
)
1795 mutex_lock(&cpuhp_state_mutex
);
1797 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1800 * Call the teardown callback for each present cpu depending
1801 * on the hotplug state of the cpu. This function is not
1802 * allowed to fail currently!
1804 for_each_present_cpu(cpu
) {
1805 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1806 int cpustate
= st
->state
;
1808 if (cpustate
>= state
)
1809 cpuhp_issue_call(cpu
, state
, false, node
);
1814 mutex_unlock(&cpuhp_state_mutex
);
1819 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1821 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1822 * @state: The state to remove
1823 * @invoke: If true, the teardown function is invoked for cpus where
1824 * cpu state >= @state
1826 * The teardown callback is currently not allowed to fail. Think
1827 * about module removal!
1829 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1831 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1834 BUG_ON(cpuhp_cb_check(state
));
1837 mutex_lock(&cpuhp_state_mutex
);
1839 if (sp
->multi_instance
) {
1840 WARN(!hlist_empty(&sp
->list
),
1841 "Error: Removing state %d which has instances left.\n",
1846 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1850 * Call the teardown callback for each present cpu depending
1851 * on the hotplug state of the cpu. This function is not
1852 * allowed to fail currently!
1854 for_each_present_cpu(cpu
) {
1855 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1856 int cpustate
= st
->state
;
1858 if (cpustate
>= state
)
1859 cpuhp_issue_call(cpu
, state
, false, NULL
);
1862 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1863 mutex_unlock(&cpuhp_state_mutex
);
1866 EXPORT_SYMBOL(__cpuhp_remove_state
);
1868 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1869 static ssize_t
show_cpuhp_state(struct device
*dev
,
1870 struct device_attribute
*attr
, char *buf
)
1872 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1874 return sprintf(buf
, "%d\n", st
->state
);
1876 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1878 static ssize_t
write_cpuhp_target(struct device
*dev
,
1879 struct device_attribute
*attr
,
1880 const char *buf
, size_t count
)
1882 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1883 struct cpuhp_step
*sp
;
1886 ret
= kstrtoint(buf
, 10, &target
);
1890 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1891 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1894 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1898 ret
= lock_device_hotplug_sysfs();
1902 mutex_lock(&cpuhp_state_mutex
);
1903 sp
= cpuhp_get_step(target
);
1904 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1905 mutex_unlock(&cpuhp_state_mutex
);
1909 if (st
->state
< target
)
1910 ret
= do_cpu_up(dev
->id
, target
);
1912 ret
= do_cpu_down(dev
->id
, target
);
1914 unlock_device_hotplug();
1915 return ret
? ret
: count
;
1918 static ssize_t
show_cpuhp_target(struct device
*dev
,
1919 struct device_attribute
*attr
, char *buf
)
1921 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1923 return sprintf(buf
, "%d\n", st
->target
);
1925 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1927 static struct attribute
*cpuhp_cpu_attrs
[] = {
1928 &dev_attr_state
.attr
,
1929 &dev_attr_target
.attr
,
1933 static struct attribute_group cpuhp_cpu_attr_group
= {
1934 .attrs
= cpuhp_cpu_attrs
,
1939 static ssize_t
show_cpuhp_states(struct device
*dev
,
1940 struct device_attribute
*attr
, char *buf
)
1942 ssize_t cur
, res
= 0;
1945 mutex_lock(&cpuhp_state_mutex
);
1946 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
1947 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
1950 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
1955 mutex_unlock(&cpuhp_state_mutex
);
1958 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
1960 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
1961 &dev_attr_states
.attr
,
1965 static struct attribute_group cpuhp_cpu_root_attr_group
= {
1966 .attrs
= cpuhp_cpu_root_attrs
,
1971 #ifdef CONFIG_HOTPLUG_SMT
1973 static const char *smt_states
[] = {
1974 [CPU_SMT_ENABLED
] = "on",
1975 [CPU_SMT_DISABLED
] = "off",
1976 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
1977 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
1981 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1983 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", smt_states
[cpu_smt_control
]);
1986 static void cpuhp_offline_cpu_device(unsigned int cpu
)
1988 struct device
*dev
= get_cpu_device(cpu
);
1990 dev
->offline
= true;
1991 /* Tell user space about the state change */
1992 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
1995 static void cpuhp_online_cpu_device(unsigned int cpu
)
1997 struct device
*dev
= get_cpu_device(cpu
);
1999 dev
->offline
= false;
2000 /* Tell user space about the state change */
2001 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2004 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2008 cpu_maps_update_begin();
2009 for_each_online_cpu(cpu
) {
2010 if (topology_is_primary_thread(cpu
))
2012 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2016 * As this needs to hold the cpu maps lock it's impossible
2017 * to call device_offline() because that ends up calling
2018 * cpu_down() which takes cpu maps lock. cpu maps lock
2019 * needs to be held as this might race against in kernel
2020 * abusers of the hotplug machinery (thermal management).
2022 * So nothing would update device:offline state. That would
2023 * leave the sysfs entry stale and prevent onlining after
2024 * smt control has been changed to 'off' again. This is
2025 * called under the sysfs hotplug lock, so it is properly
2026 * serialized against the regular offline usage.
2028 cpuhp_offline_cpu_device(cpu
);
2031 cpu_smt_control
= ctrlval
;
2034 cpu_maps_update_done();
2038 int cpuhp_smt_enable(void)
2042 cpu_maps_update_begin();
2043 cpu_smt_control
= CPU_SMT_ENABLED
;
2045 for_each_present_cpu(cpu
) {
2046 /* Skip online CPUs and CPUs on offline nodes */
2047 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2049 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2052 /* See comment in cpuhp_smt_disable() */
2053 cpuhp_online_cpu_device(cpu
);
2055 cpu_maps_update_done();
2060 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2061 const char *buf
, size_t count
)
2065 if (sysfs_streq(buf
, "on"))
2066 ctrlval
= CPU_SMT_ENABLED
;
2067 else if (sysfs_streq(buf
, "off"))
2068 ctrlval
= CPU_SMT_DISABLED
;
2069 else if (sysfs_streq(buf
, "forceoff"))
2070 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2074 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2077 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2080 ret
= lock_device_hotplug_sysfs();
2084 if (ctrlval
!= cpu_smt_control
) {
2086 case CPU_SMT_ENABLED
:
2087 ret
= cpuhp_smt_enable();
2089 case CPU_SMT_DISABLED
:
2090 case CPU_SMT_FORCE_DISABLED
:
2091 ret
= cpuhp_smt_disable(ctrlval
);
2096 unlock_device_hotplug();
2097 return ret
? ret
: count
;
2099 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2102 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2104 bool active
= topology_max_smt_threads() > 1;
2106 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", active
);
2108 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2110 static struct attribute
*cpuhp_smt_attrs
[] = {
2111 &dev_attr_control
.attr
,
2112 &dev_attr_active
.attr
,
2116 static const struct attribute_group cpuhp_smt_attr_group
= {
2117 .attrs
= cpuhp_smt_attrs
,
2122 static int __init
cpu_smt_state_init(void)
2124 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2125 &cpuhp_smt_attr_group
);
2129 static inline int cpu_smt_state_init(void) { return 0; }
2132 static int __init
cpuhp_sysfs_init(void)
2136 ret
= cpu_smt_state_init();
2140 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2141 &cpuhp_cpu_root_attr_group
);
2145 for_each_possible_cpu(cpu
) {
2146 struct device
*dev
= get_cpu_device(cpu
);
2150 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2156 device_initcall(cpuhp_sysfs_init
);
2160 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2161 * represents all NR_CPUS bits binary values of 1<<nr.
2163 * It is used by cpumask_of() to get a constant address to a CPU
2164 * mask value that has a single bit set only.
2167 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2168 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2169 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2170 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2171 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2173 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2175 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2176 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2177 #if BITS_PER_LONG > 32
2178 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2179 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2182 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2184 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2185 EXPORT_SYMBOL(cpu_all_bits
);
2187 #ifdef CONFIG_INIT_ALL_POSSIBLE
2188 struct cpumask __cpu_possible_mask __read_mostly
2191 struct cpumask __cpu_possible_mask __read_mostly
;
2193 EXPORT_SYMBOL(__cpu_possible_mask
);
2195 struct cpumask __cpu_online_mask __read_mostly
;
2196 EXPORT_SYMBOL(__cpu_online_mask
);
2198 struct cpumask __cpu_present_mask __read_mostly
;
2199 EXPORT_SYMBOL(__cpu_present_mask
);
2201 struct cpumask __cpu_active_mask __read_mostly
;
2202 EXPORT_SYMBOL(__cpu_active_mask
);
2204 void init_cpu_present(const struct cpumask
*src
)
2206 cpumask_copy(&__cpu_present_mask
, src
);
2209 void init_cpu_possible(const struct cpumask
*src
)
2211 cpumask_copy(&__cpu_possible_mask
, src
);
2214 void init_cpu_online(const struct cpumask
*src
)
2216 cpumask_copy(&__cpu_online_mask
, src
);
2220 * Activate the first processor.
2222 void __init
boot_cpu_init(void)
2224 int cpu
= smp_processor_id();
2226 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2227 set_cpu_online(cpu
, true);
2228 set_cpu_active(cpu
, true);
2229 set_cpu_present(cpu
, true);
2230 set_cpu_possible(cpu
, true);
2234 * Must be called _AFTER_ setting up the per_cpu areas
2236 void __init
boot_cpu_hotplug_init(void)
2239 this_cpu_write(cpuhp_state
.booted_once
, true);
2241 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);
2245 * These are used for a global "mitigations=" cmdline option for toggling
2246 * optional CPU mitigations.
2248 enum cpu_mitigations
{
2249 CPU_MITIGATIONS_OFF
,
2250 CPU_MITIGATIONS_AUTO
,
2251 CPU_MITIGATIONS_AUTO_NOSMT
,
2254 static enum cpu_mitigations cpu_mitigations __ro_after_init
=
2255 CPU_MITIGATIONS_AUTO
;
2257 static int __init
mitigations_parse_cmdline(char *arg
)
2259 if (!strcmp(arg
, "off"))
2260 cpu_mitigations
= CPU_MITIGATIONS_OFF
;
2261 else if (!strcmp(arg
, "auto"))
2262 cpu_mitigations
= CPU_MITIGATIONS_AUTO
;
2263 else if (!strcmp(arg
, "auto,nosmt"))
2264 cpu_mitigations
= CPU_MITIGATIONS_AUTO_NOSMT
;
2266 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2271 early_param("mitigations", mitigations_parse_cmdline
);
2273 /* mitigations=off */
2274 bool cpu_mitigations_off(void)
2276 return cpu_mitigations
== CPU_MITIGATIONS_OFF
;
2278 EXPORT_SYMBOL_GPL(cpu_mitigations_off
);
2280 /* mitigations=auto,nosmt */
2281 bool cpu_mitigations_auto_nosmt(void)
2283 return cpu_mitigations
== CPU_MITIGATIONS_AUTO_NOSMT
;
2285 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt
);