drm/bridge: tc358767: fix single lane configuration
[linux/fpc-iii.git] / kernel / cpu.c
blob91d5c38eb7e5b91a5d2cf821414f7cbbaa854c7a
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
38 #include "smpboot.h"
40 /**
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
54 struct cpuhp_cpu_state {
55 enum cpuhp_state state;
56 enum cpuhp_state target;
57 enum cpuhp_state fail;
58 #ifdef CONFIG_SMP
59 struct task_struct *thread;
60 bool should_run;
61 bool rollback;
62 bool single;
63 bool bringup;
64 bool booted_once;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71 #endif
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
85 static inline void cpuhp_lock_acquire(bool bringup)
87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
90 static inline void cpuhp_lock_release(bool bringup)
92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
94 #else
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
99 #endif
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @cant_stop: Bringup/teardown can't be stopped at this step
108 struct cpuhp_step {
109 const char *name;
110 union {
111 int (*single)(unsigned int cpu);
112 int (*multi)(unsigned int cpu,
113 struct hlist_node *node);
114 } startup;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } teardown;
120 struct hlist_head list;
121 bool cant_stop;
122 bool multi_instance;
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
130 return cpuhp_hp_states + state;
134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135 * @cpu: The cpu for which the callback should be invoked
136 * @state: The state to do callbacks for
137 * @bringup: True if the bringup callback should be invoked
138 * @node: For multi-instance, do a single entry callback for install/remove
139 * @lastp: For multi-instance rollback, remember how far we got
141 * Called from cpu hotplug and from the state register machinery.
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 bool bringup, struct hlist_node *node,
145 struct hlist_node **lastp)
147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 struct cpuhp_step *step = cpuhp_get_step(state);
149 int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 int (*cb)(unsigned int cpu);
151 int ret, cnt;
153 if (st->fail == state) {
154 st->fail = CPUHP_INVALID;
156 if (!(bringup ? step->startup.single : step->teardown.single))
157 return 0;
159 return -EAGAIN;
162 if (!step->multi_instance) {
163 WARN_ON_ONCE(lastp && *lastp);
164 cb = bringup ? step->startup.single : step->teardown.single;
165 if (!cb)
166 return 0;
167 trace_cpuhp_enter(cpu, st->target, state, cb);
168 ret = cb(cpu);
169 trace_cpuhp_exit(cpu, st->state, state, ret);
170 return ret;
172 cbm = bringup ? step->startup.multi : step->teardown.multi;
173 if (!cbm)
174 return 0;
176 /* Single invocation for instance add/remove */
177 if (node) {
178 WARN_ON_ONCE(lastp && *lastp);
179 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 ret = cbm(cpu, node);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
182 return ret;
185 /* State transition. Invoke on all instances */
186 cnt = 0;
187 hlist_for_each(node, &step->list) {
188 if (lastp && node == *lastp)
189 break;
191 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 ret = cbm(cpu, node);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 if (ret) {
195 if (!lastp)
196 goto err;
198 *lastp = node;
199 return ret;
201 cnt++;
203 if (lastp)
204 *lastp = NULL;
205 return 0;
206 err:
207 /* Rollback the instances if one failed */
208 cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 if (!cbm)
210 return ret;
212 hlist_for_each(node, &step->list) {
213 if (!cnt--)
214 break;
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
220 * Rollback must not fail,
222 WARN_ON_ONCE(ret);
224 return ret;
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 * purposes as that state is handled explicitly in cpu_down.
234 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
239 struct completion *done = bringup ? &st->done_up : &st->done_down;
240 wait_for_completion(done);
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 struct completion *done = bringup ? &st->done_up : &st->done_down;
246 complete(done);
250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
254 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
263 * The following two APIs (cpu_maps_update_begin/done) must be used when
264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266 void cpu_maps_update_begin(void)
268 mutex_lock(&cpu_add_remove_lock);
271 void cpu_maps_update_done(void)
273 mutex_unlock(&cpu_add_remove_lock);
277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 * Should always be manipulated under cpu_add_remove_lock
280 static int cpu_hotplug_disabled;
282 #ifdef CONFIG_HOTPLUG_CPU
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
286 void cpus_read_lock(void)
288 percpu_down_read(&cpu_hotplug_lock);
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
292 int cpus_read_trylock(void)
294 return percpu_down_read_trylock(&cpu_hotplug_lock);
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
298 void cpus_read_unlock(void)
300 percpu_up_read(&cpu_hotplug_lock);
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
304 void cpus_write_lock(void)
306 percpu_down_write(&cpu_hotplug_lock);
309 void cpus_write_unlock(void)
311 percpu_up_write(&cpu_hotplug_lock);
314 void lockdep_assert_cpus_held(void)
316 percpu_rwsem_assert_held(&cpu_hotplug_lock);
319 static void lockdep_acquire_cpus_lock(void)
321 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
324 static void lockdep_release_cpus_lock(void)
326 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
330 * Wait for currently running CPU hotplug operations to complete (if any) and
331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333 * hotplug path before performing hotplug operations. So acquiring that lock
334 * guarantees mutual exclusion from any currently running hotplug operations.
336 void cpu_hotplug_disable(void)
338 cpu_maps_update_begin();
339 cpu_hotplug_disabled++;
340 cpu_maps_update_done();
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
344 static void __cpu_hotplug_enable(void)
346 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
347 return;
348 cpu_hotplug_disabled--;
351 void cpu_hotplug_enable(void)
353 cpu_maps_update_begin();
354 __cpu_hotplug_enable();
355 cpu_maps_update_done();
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
359 #else
361 static void lockdep_acquire_cpus_lock(void)
365 static void lockdep_release_cpus_lock(void)
369 #endif /* CONFIG_HOTPLUG_CPU */
372 * Architectures that need SMT-specific errata handling during SMT hotplug
373 * should override this.
375 void __weak arch_smt_update(void) { }
377 #ifdef CONFIG_HOTPLUG_SMT
378 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
379 EXPORT_SYMBOL_GPL(cpu_smt_control);
381 static bool cpu_smt_available __read_mostly;
383 void __init cpu_smt_disable(bool force)
385 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
386 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
387 return;
389 if (force) {
390 pr_info("SMT: Force disabled\n");
391 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
392 } else {
393 pr_info("SMT: disabled\n");
394 cpu_smt_control = CPU_SMT_DISABLED;
399 * The decision whether SMT is supported can only be done after the full
400 * CPU identification. Called from architecture code before non boot CPUs
401 * are brought up.
403 void __init cpu_smt_check_topology_early(void)
405 if (!topology_smt_supported())
406 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
410 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
411 * brought online. This ensures the smt/l1tf sysfs entries are consistent
412 * with reality. cpu_smt_available is set to true during the bringup of non
413 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
414 * cpu_smt_control's previous setting.
416 void __init cpu_smt_check_topology(void)
418 if (!cpu_smt_available)
419 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
422 static int __init smt_cmdline_disable(char *str)
424 cpu_smt_disable(str && !strcmp(str, "force"));
425 return 0;
427 early_param("nosmt", smt_cmdline_disable);
429 static inline bool cpu_smt_allowed(unsigned int cpu)
431 if (topology_is_primary_thread(cpu))
432 return true;
435 * If the CPU is not a 'primary' thread and the booted_once bit is
436 * set then the processor has SMT support. Store this information
437 * for the late check of SMT support in cpu_smt_check_topology().
439 if (per_cpu(cpuhp_state, cpu).booted_once)
440 cpu_smt_available = true;
442 if (cpu_smt_control == CPU_SMT_ENABLED)
443 return true;
446 * On x86 it's required to boot all logical CPUs at least once so
447 * that the init code can get a chance to set CR4.MCE on each
448 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
449 * core will shutdown the machine.
451 return !per_cpu(cpuhp_state, cpu).booted_once;
453 #else
454 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
455 #endif
457 static inline enum cpuhp_state
458 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
460 enum cpuhp_state prev_state = st->state;
462 st->rollback = false;
463 st->last = NULL;
465 st->target = target;
466 st->single = false;
467 st->bringup = st->state < target;
469 return prev_state;
472 static inline void
473 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
475 st->rollback = true;
478 * If we have st->last we need to undo partial multi_instance of this
479 * state first. Otherwise start undo at the previous state.
481 if (!st->last) {
482 if (st->bringup)
483 st->state--;
484 else
485 st->state++;
488 st->target = prev_state;
489 st->bringup = !st->bringup;
492 /* Regular hotplug invocation of the AP hotplug thread */
493 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
495 if (!st->single && st->state == st->target)
496 return;
498 st->result = 0;
500 * Make sure the above stores are visible before should_run becomes
501 * true. Paired with the mb() above in cpuhp_thread_fun()
503 smp_mb();
504 st->should_run = true;
505 wake_up_process(st->thread);
506 wait_for_ap_thread(st, st->bringup);
509 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
511 enum cpuhp_state prev_state;
512 int ret;
514 prev_state = cpuhp_set_state(st, target);
515 __cpuhp_kick_ap(st);
516 if ((ret = st->result)) {
517 cpuhp_reset_state(st, prev_state);
518 __cpuhp_kick_ap(st);
521 return ret;
524 static int bringup_wait_for_ap(unsigned int cpu)
526 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
528 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
529 wait_for_ap_thread(st, true);
530 if (WARN_ON_ONCE((!cpu_online(cpu))))
531 return -ECANCELED;
533 /* Unpark the stopper thread and the hotplug thread of the target cpu */
534 stop_machine_unpark(cpu);
535 kthread_unpark(st->thread);
538 * SMT soft disabling on X86 requires to bring the CPU out of the
539 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
540 * CPU marked itself as booted_once in cpu_notify_starting() so the
541 * cpu_smt_allowed() check will now return false if this is not the
542 * primary sibling.
544 if (!cpu_smt_allowed(cpu))
545 return -ECANCELED;
547 if (st->target <= CPUHP_AP_ONLINE_IDLE)
548 return 0;
550 return cpuhp_kick_ap(st, st->target);
553 static int bringup_cpu(unsigned int cpu)
555 struct task_struct *idle = idle_thread_get(cpu);
556 int ret;
559 * Some architectures have to walk the irq descriptors to
560 * setup the vector space for the cpu which comes online.
561 * Prevent irq alloc/free across the bringup.
563 irq_lock_sparse();
565 /* Arch-specific enabling code. */
566 ret = __cpu_up(cpu, idle);
567 irq_unlock_sparse();
568 if (ret)
569 return ret;
570 return bringup_wait_for_ap(cpu);
574 * Hotplug state machine related functions
577 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
579 for (st->state--; st->state > st->target; st->state--)
580 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
583 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
584 enum cpuhp_state target)
586 enum cpuhp_state prev_state = st->state;
587 int ret = 0;
589 while (st->state < target) {
590 st->state++;
591 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
592 if (ret) {
593 st->target = prev_state;
594 undo_cpu_up(cpu, st);
595 break;
598 return ret;
602 * The cpu hotplug threads manage the bringup and teardown of the cpus
604 static void cpuhp_create(unsigned int cpu)
606 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
608 init_completion(&st->done_up);
609 init_completion(&st->done_down);
612 static int cpuhp_should_run(unsigned int cpu)
614 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
616 return st->should_run;
620 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
621 * callbacks when a state gets [un]installed at runtime.
623 * Each invocation of this function by the smpboot thread does a single AP
624 * state callback.
626 * It has 3 modes of operation:
627 * - single: runs st->cb_state
628 * - up: runs ++st->state, while st->state < st->target
629 * - down: runs st->state--, while st->state > st->target
631 * When complete or on error, should_run is cleared and the completion is fired.
633 static void cpuhp_thread_fun(unsigned int cpu)
635 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
636 bool bringup = st->bringup;
637 enum cpuhp_state state;
639 if (WARN_ON_ONCE(!st->should_run))
640 return;
643 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
644 * that if we see ->should_run we also see the rest of the state.
646 smp_mb();
649 * The BP holds the hotplug lock, but we're now running on the AP,
650 * ensure that anybody asserting the lock is held, will actually find
651 * it so.
653 lockdep_acquire_cpus_lock();
654 cpuhp_lock_acquire(bringup);
656 if (st->single) {
657 state = st->cb_state;
658 st->should_run = false;
659 } else {
660 if (bringup) {
661 st->state++;
662 state = st->state;
663 st->should_run = (st->state < st->target);
664 WARN_ON_ONCE(st->state > st->target);
665 } else {
666 state = st->state;
667 st->state--;
668 st->should_run = (st->state > st->target);
669 WARN_ON_ONCE(st->state < st->target);
673 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
675 if (cpuhp_is_atomic_state(state)) {
676 local_irq_disable();
677 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
678 local_irq_enable();
681 * STARTING/DYING must not fail!
683 WARN_ON_ONCE(st->result);
684 } else {
685 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
688 if (st->result) {
690 * If we fail on a rollback, we're up a creek without no
691 * paddle, no way forward, no way back. We loose, thanks for
692 * playing.
694 WARN_ON_ONCE(st->rollback);
695 st->should_run = false;
698 cpuhp_lock_release(bringup);
699 lockdep_release_cpus_lock();
701 if (!st->should_run)
702 complete_ap_thread(st, bringup);
705 /* Invoke a single callback on a remote cpu */
706 static int
707 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
708 struct hlist_node *node)
710 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
711 int ret;
713 if (!cpu_online(cpu))
714 return 0;
716 cpuhp_lock_acquire(false);
717 cpuhp_lock_release(false);
719 cpuhp_lock_acquire(true);
720 cpuhp_lock_release(true);
723 * If we are up and running, use the hotplug thread. For early calls
724 * we invoke the thread function directly.
726 if (!st->thread)
727 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
729 st->rollback = false;
730 st->last = NULL;
732 st->node = node;
733 st->bringup = bringup;
734 st->cb_state = state;
735 st->single = true;
737 __cpuhp_kick_ap(st);
740 * If we failed and did a partial, do a rollback.
742 if ((ret = st->result) && st->last) {
743 st->rollback = true;
744 st->bringup = !bringup;
746 __cpuhp_kick_ap(st);
750 * Clean up the leftovers so the next hotplug operation wont use stale
751 * data.
753 st->node = st->last = NULL;
754 return ret;
757 static int cpuhp_kick_ap_work(unsigned int cpu)
759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
760 enum cpuhp_state prev_state = st->state;
761 int ret;
763 cpuhp_lock_acquire(false);
764 cpuhp_lock_release(false);
766 cpuhp_lock_acquire(true);
767 cpuhp_lock_release(true);
769 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
770 ret = cpuhp_kick_ap(st, st->target);
771 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
773 return ret;
776 static struct smp_hotplug_thread cpuhp_threads = {
777 .store = &cpuhp_state.thread,
778 .create = &cpuhp_create,
779 .thread_should_run = cpuhp_should_run,
780 .thread_fn = cpuhp_thread_fun,
781 .thread_comm = "cpuhp/%u",
782 .selfparking = true,
785 void __init cpuhp_threads_init(void)
787 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
788 kthread_unpark(this_cpu_read(cpuhp_state.thread));
791 #ifdef CONFIG_HOTPLUG_CPU
793 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
794 * @cpu: a CPU id
796 * This function walks all processes, finds a valid mm struct for each one and
797 * then clears a corresponding bit in mm's cpumask. While this all sounds
798 * trivial, there are various non-obvious corner cases, which this function
799 * tries to solve in a safe manner.
801 * Also note that the function uses a somewhat relaxed locking scheme, so it may
802 * be called only for an already offlined CPU.
804 void clear_tasks_mm_cpumask(int cpu)
806 struct task_struct *p;
809 * This function is called after the cpu is taken down and marked
810 * offline, so its not like new tasks will ever get this cpu set in
811 * their mm mask. -- Peter Zijlstra
812 * Thus, we may use rcu_read_lock() here, instead of grabbing
813 * full-fledged tasklist_lock.
815 WARN_ON(cpu_online(cpu));
816 rcu_read_lock();
817 for_each_process(p) {
818 struct task_struct *t;
821 * Main thread might exit, but other threads may still have
822 * a valid mm. Find one.
824 t = find_lock_task_mm(p);
825 if (!t)
826 continue;
827 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
828 task_unlock(t);
830 rcu_read_unlock();
833 /* Take this CPU down. */
834 static int take_cpu_down(void *_param)
836 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
837 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
838 int err, cpu = smp_processor_id();
839 int ret;
841 /* Ensure this CPU doesn't handle any more interrupts. */
842 err = __cpu_disable();
843 if (err < 0)
844 return err;
847 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
848 * do this step again.
850 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
851 st->state--;
852 /* Invoke the former CPU_DYING callbacks */
853 for (; st->state > target; st->state--) {
854 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
856 * DYING must not fail!
858 WARN_ON_ONCE(ret);
861 /* Give up timekeeping duties */
862 tick_handover_do_timer();
863 /* Park the stopper thread */
864 stop_machine_park(cpu);
865 return 0;
868 static int takedown_cpu(unsigned int cpu)
870 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
871 int err;
873 /* Park the smpboot threads */
874 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
877 * Prevent irq alloc/free while the dying cpu reorganizes the
878 * interrupt affinities.
880 irq_lock_sparse();
883 * So now all preempt/rcu users must observe !cpu_active().
885 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
886 if (err) {
887 /* CPU refused to die */
888 irq_unlock_sparse();
889 /* Unpark the hotplug thread so we can rollback there */
890 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
891 return err;
893 BUG_ON(cpu_online(cpu));
896 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
897 * all runnable tasks from the CPU, there's only the idle task left now
898 * that the migration thread is done doing the stop_machine thing.
900 * Wait for the stop thread to go away.
902 wait_for_ap_thread(st, false);
903 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
905 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
906 irq_unlock_sparse();
908 hotplug_cpu__broadcast_tick_pull(cpu);
909 /* This actually kills the CPU. */
910 __cpu_die(cpu);
912 tick_cleanup_dead_cpu(cpu);
913 rcutree_migrate_callbacks(cpu);
914 return 0;
917 static void cpuhp_complete_idle_dead(void *arg)
919 struct cpuhp_cpu_state *st = arg;
921 complete_ap_thread(st, false);
924 void cpuhp_report_idle_dead(void)
926 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
928 BUG_ON(st->state != CPUHP_AP_OFFLINE);
929 rcu_report_dead(smp_processor_id());
930 st->state = CPUHP_AP_IDLE_DEAD;
932 * We cannot call complete after rcu_report_dead() so we delegate it
933 * to an online cpu.
935 smp_call_function_single(cpumask_first(cpu_online_mask),
936 cpuhp_complete_idle_dead, st, 0);
939 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
941 for (st->state++; st->state < st->target; st->state++)
942 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
945 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
946 enum cpuhp_state target)
948 enum cpuhp_state prev_state = st->state;
949 int ret = 0;
951 for (; st->state > target; st->state--) {
952 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
953 if (ret) {
954 st->target = prev_state;
955 if (st->state < prev_state)
956 undo_cpu_down(cpu, st);
957 break;
960 return ret;
963 /* Requires cpu_add_remove_lock to be held */
964 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
965 enum cpuhp_state target)
967 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
968 int prev_state, ret = 0;
970 if (num_online_cpus() == 1)
971 return -EBUSY;
973 if (!cpu_present(cpu))
974 return -EINVAL;
976 cpus_write_lock();
978 cpuhp_tasks_frozen = tasks_frozen;
980 prev_state = cpuhp_set_state(st, target);
982 * If the current CPU state is in the range of the AP hotplug thread,
983 * then we need to kick the thread.
985 if (st->state > CPUHP_TEARDOWN_CPU) {
986 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
987 ret = cpuhp_kick_ap_work(cpu);
989 * The AP side has done the error rollback already. Just
990 * return the error code..
992 if (ret)
993 goto out;
996 * We might have stopped still in the range of the AP hotplug
997 * thread. Nothing to do anymore.
999 if (st->state > CPUHP_TEARDOWN_CPU)
1000 goto out;
1002 st->target = target;
1005 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1006 * to do the further cleanups.
1008 ret = cpuhp_down_callbacks(cpu, st, target);
1009 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1010 cpuhp_reset_state(st, prev_state);
1011 __cpuhp_kick_ap(st);
1014 out:
1015 cpus_write_unlock();
1017 * Do post unplug cleanup. This is still protected against
1018 * concurrent CPU hotplug via cpu_add_remove_lock.
1020 lockup_detector_cleanup();
1021 arch_smt_update();
1022 return ret;
1025 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1027 if (cpu_hotplug_disabled)
1028 return -EBUSY;
1029 return _cpu_down(cpu, 0, target);
1032 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1034 int err;
1036 cpu_maps_update_begin();
1037 err = cpu_down_maps_locked(cpu, target);
1038 cpu_maps_update_done();
1039 return err;
1042 int cpu_down(unsigned int cpu)
1044 return do_cpu_down(cpu, CPUHP_OFFLINE);
1046 EXPORT_SYMBOL(cpu_down);
1048 #else
1049 #define takedown_cpu NULL
1050 #endif /*CONFIG_HOTPLUG_CPU*/
1053 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1054 * @cpu: cpu that just started
1056 * It must be called by the arch code on the new cpu, before the new cpu
1057 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1059 void notify_cpu_starting(unsigned int cpu)
1061 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1062 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1063 int ret;
1065 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1066 st->booted_once = true;
1067 while (st->state < target) {
1068 st->state++;
1069 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1071 * STARTING must not fail!
1073 WARN_ON_ONCE(ret);
1078 * Called from the idle task. Wake up the controlling task which brings the
1079 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1080 * the rest of the online bringup to the hotplug thread.
1082 void cpuhp_online_idle(enum cpuhp_state state)
1084 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1086 /* Happens for the boot cpu */
1087 if (state != CPUHP_AP_ONLINE_IDLE)
1088 return;
1090 st->state = CPUHP_AP_ONLINE_IDLE;
1091 complete_ap_thread(st, true);
1094 /* Requires cpu_add_remove_lock to be held */
1095 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1097 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1098 struct task_struct *idle;
1099 int ret = 0;
1101 cpus_write_lock();
1103 if (!cpu_present(cpu)) {
1104 ret = -EINVAL;
1105 goto out;
1109 * The caller of do_cpu_up might have raced with another
1110 * caller. Ignore it for now.
1112 if (st->state >= target)
1113 goto out;
1115 if (st->state == CPUHP_OFFLINE) {
1116 /* Let it fail before we try to bring the cpu up */
1117 idle = idle_thread_get(cpu);
1118 if (IS_ERR(idle)) {
1119 ret = PTR_ERR(idle);
1120 goto out;
1124 cpuhp_tasks_frozen = tasks_frozen;
1126 cpuhp_set_state(st, target);
1128 * If the current CPU state is in the range of the AP hotplug thread,
1129 * then we need to kick the thread once more.
1131 if (st->state > CPUHP_BRINGUP_CPU) {
1132 ret = cpuhp_kick_ap_work(cpu);
1134 * The AP side has done the error rollback already. Just
1135 * return the error code..
1137 if (ret)
1138 goto out;
1142 * Try to reach the target state. We max out on the BP at
1143 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1144 * responsible for bringing it up to the target state.
1146 target = min((int)target, CPUHP_BRINGUP_CPU);
1147 ret = cpuhp_up_callbacks(cpu, st, target);
1148 out:
1149 cpus_write_unlock();
1150 arch_smt_update();
1151 return ret;
1154 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1156 int err = 0;
1158 if (!cpu_possible(cpu)) {
1159 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1160 cpu);
1161 #if defined(CONFIG_IA64)
1162 pr_err("please check additional_cpus= boot parameter\n");
1163 #endif
1164 return -EINVAL;
1167 err = try_online_node(cpu_to_node(cpu));
1168 if (err)
1169 return err;
1171 cpu_maps_update_begin();
1173 if (cpu_hotplug_disabled) {
1174 err = -EBUSY;
1175 goto out;
1177 if (!cpu_smt_allowed(cpu)) {
1178 err = -EPERM;
1179 goto out;
1182 err = _cpu_up(cpu, 0, target);
1183 out:
1184 cpu_maps_update_done();
1185 return err;
1188 int cpu_up(unsigned int cpu)
1190 return do_cpu_up(cpu, CPUHP_ONLINE);
1192 EXPORT_SYMBOL_GPL(cpu_up);
1194 #ifdef CONFIG_PM_SLEEP_SMP
1195 static cpumask_var_t frozen_cpus;
1197 int freeze_secondary_cpus(int primary)
1199 int cpu, error = 0;
1201 cpu_maps_update_begin();
1202 if (!cpu_online(primary))
1203 primary = cpumask_first(cpu_online_mask);
1205 * We take down all of the non-boot CPUs in one shot to avoid races
1206 * with the userspace trying to use the CPU hotplug at the same time
1208 cpumask_clear(frozen_cpus);
1210 pr_info("Disabling non-boot CPUs ...\n");
1211 for_each_online_cpu(cpu) {
1212 if (cpu == primary)
1213 continue;
1214 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1215 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1216 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1217 if (!error)
1218 cpumask_set_cpu(cpu, frozen_cpus);
1219 else {
1220 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1221 break;
1225 if (!error)
1226 BUG_ON(num_online_cpus() > 1);
1227 else
1228 pr_err("Non-boot CPUs are not disabled\n");
1231 * Make sure the CPUs won't be enabled by someone else. We need to do
1232 * this even in case of failure as all disable_nonboot_cpus() users are
1233 * supposed to do enable_nonboot_cpus() on the failure path.
1235 cpu_hotplug_disabled++;
1237 cpu_maps_update_done();
1238 return error;
1241 void __weak arch_enable_nonboot_cpus_begin(void)
1245 void __weak arch_enable_nonboot_cpus_end(void)
1249 void enable_nonboot_cpus(void)
1251 int cpu, error;
1253 /* Allow everyone to use the CPU hotplug again */
1254 cpu_maps_update_begin();
1255 __cpu_hotplug_enable();
1256 if (cpumask_empty(frozen_cpus))
1257 goto out;
1259 pr_info("Enabling non-boot CPUs ...\n");
1261 arch_enable_nonboot_cpus_begin();
1263 for_each_cpu(cpu, frozen_cpus) {
1264 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1265 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1266 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1267 if (!error) {
1268 pr_info("CPU%d is up\n", cpu);
1269 continue;
1271 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1274 arch_enable_nonboot_cpus_end();
1276 cpumask_clear(frozen_cpus);
1277 out:
1278 cpu_maps_update_done();
1281 static int __init alloc_frozen_cpus(void)
1283 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1284 return -ENOMEM;
1285 return 0;
1287 core_initcall(alloc_frozen_cpus);
1290 * When callbacks for CPU hotplug notifications are being executed, we must
1291 * ensure that the state of the system with respect to the tasks being frozen
1292 * or not, as reported by the notification, remains unchanged *throughout the
1293 * duration* of the execution of the callbacks.
1294 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1296 * This synchronization is implemented by mutually excluding regular CPU
1297 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1298 * Hibernate notifications.
1300 static int
1301 cpu_hotplug_pm_callback(struct notifier_block *nb,
1302 unsigned long action, void *ptr)
1304 switch (action) {
1306 case PM_SUSPEND_PREPARE:
1307 case PM_HIBERNATION_PREPARE:
1308 cpu_hotplug_disable();
1309 break;
1311 case PM_POST_SUSPEND:
1312 case PM_POST_HIBERNATION:
1313 cpu_hotplug_enable();
1314 break;
1316 default:
1317 return NOTIFY_DONE;
1320 return NOTIFY_OK;
1324 static int __init cpu_hotplug_pm_sync_init(void)
1327 * cpu_hotplug_pm_callback has higher priority than x86
1328 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1329 * to disable cpu hotplug to avoid cpu hotplug race.
1331 pm_notifier(cpu_hotplug_pm_callback, 0);
1332 return 0;
1334 core_initcall(cpu_hotplug_pm_sync_init);
1336 #endif /* CONFIG_PM_SLEEP_SMP */
1338 int __boot_cpu_id;
1340 #endif /* CONFIG_SMP */
1342 /* Boot processor state steps */
1343 static struct cpuhp_step cpuhp_hp_states[] = {
1344 [CPUHP_OFFLINE] = {
1345 .name = "offline",
1346 .startup.single = NULL,
1347 .teardown.single = NULL,
1349 #ifdef CONFIG_SMP
1350 [CPUHP_CREATE_THREADS]= {
1351 .name = "threads:prepare",
1352 .startup.single = smpboot_create_threads,
1353 .teardown.single = NULL,
1354 .cant_stop = true,
1356 [CPUHP_PERF_PREPARE] = {
1357 .name = "perf:prepare",
1358 .startup.single = perf_event_init_cpu,
1359 .teardown.single = perf_event_exit_cpu,
1361 [CPUHP_WORKQUEUE_PREP] = {
1362 .name = "workqueue:prepare",
1363 .startup.single = workqueue_prepare_cpu,
1364 .teardown.single = NULL,
1366 [CPUHP_HRTIMERS_PREPARE] = {
1367 .name = "hrtimers:prepare",
1368 .startup.single = hrtimers_prepare_cpu,
1369 .teardown.single = hrtimers_dead_cpu,
1371 [CPUHP_SMPCFD_PREPARE] = {
1372 .name = "smpcfd:prepare",
1373 .startup.single = smpcfd_prepare_cpu,
1374 .teardown.single = smpcfd_dead_cpu,
1376 [CPUHP_RELAY_PREPARE] = {
1377 .name = "relay:prepare",
1378 .startup.single = relay_prepare_cpu,
1379 .teardown.single = NULL,
1381 [CPUHP_SLAB_PREPARE] = {
1382 .name = "slab:prepare",
1383 .startup.single = slab_prepare_cpu,
1384 .teardown.single = slab_dead_cpu,
1386 [CPUHP_RCUTREE_PREP] = {
1387 .name = "RCU/tree:prepare",
1388 .startup.single = rcutree_prepare_cpu,
1389 .teardown.single = rcutree_dead_cpu,
1392 * On the tear-down path, timers_dead_cpu() must be invoked
1393 * before blk_mq_queue_reinit_notify() from notify_dead(),
1394 * otherwise a RCU stall occurs.
1396 [CPUHP_TIMERS_PREPARE] = {
1397 .name = "timers:prepare",
1398 .startup.single = timers_prepare_cpu,
1399 .teardown.single = timers_dead_cpu,
1401 /* Kicks the plugged cpu into life */
1402 [CPUHP_BRINGUP_CPU] = {
1403 .name = "cpu:bringup",
1404 .startup.single = bringup_cpu,
1405 .teardown.single = NULL,
1406 .cant_stop = true,
1408 /* Final state before CPU kills itself */
1409 [CPUHP_AP_IDLE_DEAD] = {
1410 .name = "idle:dead",
1413 * Last state before CPU enters the idle loop to die. Transient state
1414 * for synchronization.
1416 [CPUHP_AP_OFFLINE] = {
1417 .name = "ap:offline",
1418 .cant_stop = true,
1420 /* First state is scheduler control. Interrupts are disabled */
1421 [CPUHP_AP_SCHED_STARTING] = {
1422 .name = "sched:starting",
1423 .startup.single = sched_cpu_starting,
1424 .teardown.single = sched_cpu_dying,
1426 [CPUHP_AP_RCUTREE_DYING] = {
1427 .name = "RCU/tree:dying",
1428 .startup.single = NULL,
1429 .teardown.single = rcutree_dying_cpu,
1431 [CPUHP_AP_SMPCFD_DYING] = {
1432 .name = "smpcfd:dying",
1433 .startup.single = NULL,
1434 .teardown.single = smpcfd_dying_cpu,
1436 /* Entry state on starting. Interrupts enabled from here on. Transient
1437 * state for synchronsization */
1438 [CPUHP_AP_ONLINE] = {
1439 .name = "ap:online",
1442 * Handled on controll processor until the plugged processor manages
1443 * this itself.
1445 [CPUHP_TEARDOWN_CPU] = {
1446 .name = "cpu:teardown",
1447 .startup.single = NULL,
1448 .teardown.single = takedown_cpu,
1449 .cant_stop = true,
1451 /* Handle smpboot threads park/unpark */
1452 [CPUHP_AP_SMPBOOT_THREADS] = {
1453 .name = "smpboot/threads:online",
1454 .startup.single = smpboot_unpark_threads,
1455 .teardown.single = smpboot_park_threads,
1457 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1458 .name = "irq/affinity:online",
1459 .startup.single = irq_affinity_online_cpu,
1460 .teardown.single = NULL,
1462 [CPUHP_AP_PERF_ONLINE] = {
1463 .name = "perf:online",
1464 .startup.single = perf_event_init_cpu,
1465 .teardown.single = perf_event_exit_cpu,
1467 [CPUHP_AP_WATCHDOG_ONLINE] = {
1468 .name = "lockup_detector:online",
1469 .startup.single = lockup_detector_online_cpu,
1470 .teardown.single = lockup_detector_offline_cpu,
1472 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1473 .name = "workqueue:online",
1474 .startup.single = workqueue_online_cpu,
1475 .teardown.single = workqueue_offline_cpu,
1477 [CPUHP_AP_RCUTREE_ONLINE] = {
1478 .name = "RCU/tree:online",
1479 .startup.single = rcutree_online_cpu,
1480 .teardown.single = rcutree_offline_cpu,
1482 #endif
1484 * The dynamically registered state space is here
1487 #ifdef CONFIG_SMP
1488 /* Last state is scheduler control setting the cpu active */
1489 [CPUHP_AP_ACTIVE] = {
1490 .name = "sched:active",
1491 .startup.single = sched_cpu_activate,
1492 .teardown.single = sched_cpu_deactivate,
1494 #endif
1496 /* CPU is fully up and running. */
1497 [CPUHP_ONLINE] = {
1498 .name = "online",
1499 .startup.single = NULL,
1500 .teardown.single = NULL,
1504 /* Sanity check for callbacks */
1505 static int cpuhp_cb_check(enum cpuhp_state state)
1507 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1508 return -EINVAL;
1509 return 0;
1513 * Returns a free for dynamic slot assignment of the Online state. The states
1514 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515 * by having no name assigned.
1517 static int cpuhp_reserve_state(enum cpuhp_state state)
1519 enum cpuhp_state i, end;
1520 struct cpuhp_step *step;
1522 switch (state) {
1523 case CPUHP_AP_ONLINE_DYN:
1524 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1525 end = CPUHP_AP_ONLINE_DYN_END;
1526 break;
1527 case CPUHP_BP_PREPARE_DYN:
1528 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1529 end = CPUHP_BP_PREPARE_DYN_END;
1530 break;
1531 default:
1532 return -EINVAL;
1535 for (i = state; i <= end; i++, step++) {
1536 if (!step->name)
1537 return i;
1539 WARN(1, "No more dynamic states available for CPU hotplug\n");
1540 return -ENOSPC;
1543 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1544 int (*startup)(unsigned int cpu),
1545 int (*teardown)(unsigned int cpu),
1546 bool multi_instance)
1548 /* (Un)Install the callbacks for further cpu hotplug operations */
1549 struct cpuhp_step *sp;
1550 int ret = 0;
1553 * If name is NULL, then the state gets removed.
1555 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1556 * the first allocation from these dynamic ranges, so the removal
1557 * would trigger a new allocation and clear the wrong (already
1558 * empty) state, leaving the callbacks of the to be cleared state
1559 * dangling, which causes wreckage on the next hotplug operation.
1561 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1562 state == CPUHP_BP_PREPARE_DYN)) {
1563 ret = cpuhp_reserve_state(state);
1564 if (ret < 0)
1565 return ret;
1566 state = ret;
1568 sp = cpuhp_get_step(state);
1569 if (name && sp->name)
1570 return -EBUSY;
1572 sp->startup.single = startup;
1573 sp->teardown.single = teardown;
1574 sp->name = name;
1575 sp->multi_instance = multi_instance;
1576 INIT_HLIST_HEAD(&sp->list);
1577 return ret;
1580 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1582 return cpuhp_get_step(state)->teardown.single;
1586 * Call the startup/teardown function for a step either on the AP or
1587 * on the current CPU.
1589 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1590 struct hlist_node *node)
1592 struct cpuhp_step *sp = cpuhp_get_step(state);
1593 int ret;
1596 * If there's nothing to do, we done.
1597 * Relies on the union for multi_instance.
1599 if ((bringup && !sp->startup.single) ||
1600 (!bringup && !sp->teardown.single))
1601 return 0;
1603 * The non AP bound callbacks can fail on bringup. On teardown
1604 * e.g. module removal we crash for now.
1606 #ifdef CONFIG_SMP
1607 if (cpuhp_is_ap_state(state))
1608 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1609 else
1610 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1611 #else
1612 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1613 #endif
1614 BUG_ON(ret && !bringup);
1615 return ret;
1619 * Called from __cpuhp_setup_state on a recoverable failure.
1621 * Note: The teardown callbacks for rollback are not allowed to fail!
1623 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1624 struct hlist_node *node)
1626 int cpu;
1628 /* Roll back the already executed steps on the other cpus */
1629 for_each_present_cpu(cpu) {
1630 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1631 int cpustate = st->state;
1633 if (cpu >= failedcpu)
1634 break;
1636 /* Did we invoke the startup call on that cpu ? */
1637 if (cpustate >= state)
1638 cpuhp_issue_call(cpu, state, false, node);
1642 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1643 struct hlist_node *node,
1644 bool invoke)
1646 struct cpuhp_step *sp;
1647 int cpu;
1648 int ret;
1650 lockdep_assert_cpus_held();
1652 sp = cpuhp_get_step(state);
1653 if (sp->multi_instance == false)
1654 return -EINVAL;
1656 mutex_lock(&cpuhp_state_mutex);
1658 if (!invoke || !sp->startup.multi)
1659 goto add_node;
1662 * Try to call the startup callback for each present cpu
1663 * depending on the hotplug state of the cpu.
1665 for_each_present_cpu(cpu) {
1666 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1667 int cpustate = st->state;
1669 if (cpustate < state)
1670 continue;
1672 ret = cpuhp_issue_call(cpu, state, true, node);
1673 if (ret) {
1674 if (sp->teardown.multi)
1675 cpuhp_rollback_install(cpu, state, node);
1676 goto unlock;
1679 add_node:
1680 ret = 0;
1681 hlist_add_head(node, &sp->list);
1682 unlock:
1683 mutex_unlock(&cpuhp_state_mutex);
1684 return ret;
1687 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1688 bool invoke)
1690 int ret;
1692 cpus_read_lock();
1693 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1694 cpus_read_unlock();
1695 return ret;
1697 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1700 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1701 * @state: The state to setup
1702 * @invoke: If true, the startup function is invoked for cpus where
1703 * cpu state >= @state
1704 * @startup: startup callback function
1705 * @teardown: teardown callback function
1706 * @multi_instance: State is set up for multiple instances which get
1707 * added afterwards.
1709 * The caller needs to hold cpus read locked while calling this function.
1710 * Returns:
1711 * On success:
1712 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1713 * 0 for all other states
1714 * On failure: proper (negative) error code
1716 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1717 const char *name, bool invoke,
1718 int (*startup)(unsigned int cpu),
1719 int (*teardown)(unsigned int cpu),
1720 bool multi_instance)
1722 int cpu, ret = 0;
1723 bool dynstate;
1725 lockdep_assert_cpus_held();
1727 if (cpuhp_cb_check(state) || !name)
1728 return -EINVAL;
1730 mutex_lock(&cpuhp_state_mutex);
1732 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1733 multi_instance);
1735 dynstate = state == CPUHP_AP_ONLINE_DYN;
1736 if (ret > 0 && dynstate) {
1737 state = ret;
1738 ret = 0;
1741 if (ret || !invoke || !startup)
1742 goto out;
1745 * Try to call the startup callback for each present cpu
1746 * depending on the hotplug state of the cpu.
1748 for_each_present_cpu(cpu) {
1749 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1750 int cpustate = st->state;
1752 if (cpustate < state)
1753 continue;
1755 ret = cpuhp_issue_call(cpu, state, true, NULL);
1756 if (ret) {
1757 if (teardown)
1758 cpuhp_rollback_install(cpu, state, NULL);
1759 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1760 goto out;
1763 out:
1764 mutex_unlock(&cpuhp_state_mutex);
1766 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1767 * dynamically allocated state in case of success.
1769 if (!ret && dynstate)
1770 return state;
1771 return ret;
1773 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1775 int __cpuhp_setup_state(enum cpuhp_state state,
1776 const char *name, bool invoke,
1777 int (*startup)(unsigned int cpu),
1778 int (*teardown)(unsigned int cpu),
1779 bool multi_instance)
1781 int ret;
1783 cpus_read_lock();
1784 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1785 teardown, multi_instance);
1786 cpus_read_unlock();
1787 return ret;
1789 EXPORT_SYMBOL(__cpuhp_setup_state);
1791 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1792 struct hlist_node *node, bool invoke)
1794 struct cpuhp_step *sp = cpuhp_get_step(state);
1795 int cpu;
1797 BUG_ON(cpuhp_cb_check(state));
1799 if (!sp->multi_instance)
1800 return -EINVAL;
1802 cpus_read_lock();
1803 mutex_lock(&cpuhp_state_mutex);
1805 if (!invoke || !cpuhp_get_teardown_cb(state))
1806 goto remove;
1808 * Call the teardown callback for each present cpu depending
1809 * on the hotplug state of the cpu. This function is not
1810 * allowed to fail currently!
1812 for_each_present_cpu(cpu) {
1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814 int cpustate = st->state;
1816 if (cpustate >= state)
1817 cpuhp_issue_call(cpu, state, false, node);
1820 remove:
1821 hlist_del(node);
1822 mutex_unlock(&cpuhp_state_mutex);
1823 cpus_read_unlock();
1825 return 0;
1827 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1830 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1831 * @state: The state to remove
1832 * @invoke: If true, the teardown function is invoked for cpus where
1833 * cpu state >= @state
1835 * The caller needs to hold cpus read locked while calling this function.
1836 * The teardown callback is currently not allowed to fail. Think
1837 * about module removal!
1839 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1841 struct cpuhp_step *sp = cpuhp_get_step(state);
1842 int cpu;
1844 BUG_ON(cpuhp_cb_check(state));
1846 lockdep_assert_cpus_held();
1848 mutex_lock(&cpuhp_state_mutex);
1849 if (sp->multi_instance) {
1850 WARN(!hlist_empty(&sp->list),
1851 "Error: Removing state %d which has instances left.\n",
1852 state);
1853 goto remove;
1856 if (!invoke || !cpuhp_get_teardown_cb(state))
1857 goto remove;
1860 * Call the teardown callback for each present cpu depending
1861 * on the hotplug state of the cpu. This function is not
1862 * allowed to fail currently!
1864 for_each_present_cpu(cpu) {
1865 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1866 int cpustate = st->state;
1868 if (cpustate >= state)
1869 cpuhp_issue_call(cpu, state, false, NULL);
1871 remove:
1872 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1873 mutex_unlock(&cpuhp_state_mutex);
1875 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1877 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1879 cpus_read_lock();
1880 __cpuhp_remove_state_cpuslocked(state, invoke);
1881 cpus_read_unlock();
1883 EXPORT_SYMBOL(__cpuhp_remove_state);
1885 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1886 static ssize_t show_cpuhp_state(struct device *dev,
1887 struct device_attribute *attr, char *buf)
1889 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1891 return sprintf(buf, "%d\n", st->state);
1893 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1895 static ssize_t write_cpuhp_target(struct device *dev,
1896 struct device_attribute *attr,
1897 const char *buf, size_t count)
1899 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1900 struct cpuhp_step *sp;
1901 int target, ret;
1903 ret = kstrtoint(buf, 10, &target);
1904 if (ret)
1905 return ret;
1907 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1908 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1909 return -EINVAL;
1910 #else
1911 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1912 return -EINVAL;
1913 #endif
1915 ret = lock_device_hotplug_sysfs();
1916 if (ret)
1917 return ret;
1919 mutex_lock(&cpuhp_state_mutex);
1920 sp = cpuhp_get_step(target);
1921 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1922 mutex_unlock(&cpuhp_state_mutex);
1923 if (ret)
1924 goto out;
1926 if (st->state < target)
1927 ret = do_cpu_up(dev->id, target);
1928 else
1929 ret = do_cpu_down(dev->id, target);
1930 out:
1931 unlock_device_hotplug();
1932 return ret ? ret : count;
1935 static ssize_t show_cpuhp_target(struct device *dev,
1936 struct device_attribute *attr, char *buf)
1938 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1940 return sprintf(buf, "%d\n", st->target);
1942 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1945 static ssize_t write_cpuhp_fail(struct device *dev,
1946 struct device_attribute *attr,
1947 const char *buf, size_t count)
1949 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1950 struct cpuhp_step *sp;
1951 int fail, ret;
1953 ret = kstrtoint(buf, 10, &fail);
1954 if (ret)
1955 return ret;
1958 * Cannot fail STARTING/DYING callbacks.
1960 if (cpuhp_is_atomic_state(fail))
1961 return -EINVAL;
1964 * Cannot fail anything that doesn't have callbacks.
1966 mutex_lock(&cpuhp_state_mutex);
1967 sp = cpuhp_get_step(fail);
1968 if (!sp->startup.single && !sp->teardown.single)
1969 ret = -EINVAL;
1970 mutex_unlock(&cpuhp_state_mutex);
1971 if (ret)
1972 return ret;
1974 st->fail = fail;
1976 return count;
1979 static ssize_t show_cpuhp_fail(struct device *dev,
1980 struct device_attribute *attr, char *buf)
1982 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1984 return sprintf(buf, "%d\n", st->fail);
1987 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1989 static struct attribute *cpuhp_cpu_attrs[] = {
1990 &dev_attr_state.attr,
1991 &dev_attr_target.attr,
1992 &dev_attr_fail.attr,
1993 NULL
1996 static const struct attribute_group cpuhp_cpu_attr_group = {
1997 .attrs = cpuhp_cpu_attrs,
1998 .name = "hotplug",
1999 NULL
2002 static ssize_t show_cpuhp_states(struct device *dev,
2003 struct device_attribute *attr, char *buf)
2005 ssize_t cur, res = 0;
2006 int i;
2008 mutex_lock(&cpuhp_state_mutex);
2009 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2010 struct cpuhp_step *sp = cpuhp_get_step(i);
2012 if (sp->name) {
2013 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2014 buf += cur;
2015 res += cur;
2018 mutex_unlock(&cpuhp_state_mutex);
2019 return res;
2021 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2023 static struct attribute *cpuhp_cpu_root_attrs[] = {
2024 &dev_attr_states.attr,
2025 NULL
2028 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2029 .attrs = cpuhp_cpu_root_attrs,
2030 .name = "hotplug",
2031 NULL
2034 #ifdef CONFIG_HOTPLUG_SMT
2036 static const char *smt_states[] = {
2037 [CPU_SMT_ENABLED] = "on",
2038 [CPU_SMT_DISABLED] = "off",
2039 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2040 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2043 static ssize_t
2044 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2046 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2049 static void cpuhp_offline_cpu_device(unsigned int cpu)
2051 struct device *dev = get_cpu_device(cpu);
2053 dev->offline = true;
2054 /* Tell user space about the state change */
2055 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2058 static void cpuhp_online_cpu_device(unsigned int cpu)
2060 struct device *dev = get_cpu_device(cpu);
2062 dev->offline = false;
2063 /* Tell user space about the state change */
2064 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2067 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2069 int cpu, ret = 0;
2071 cpu_maps_update_begin();
2072 for_each_online_cpu(cpu) {
2073 if (topology_is_primary_thread(cpu))
2074 continue;
2075 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076 if (ret)
2077 break;
2079 * As this needs to hold the cpu maps lock it's impossible
2080 * to call device_offline() because that ends up calling
2081 * cpu_down() which takes cpu maps lock. cpu maps lock
2082 * needs to be held as this might race against in kernel
2083 * abusers of the hotplug machinery (thermal management).
2085 * So nothing would update device:offline state. That would
2086 * leave the sysfs entry stale and prevent onlining after
2087 * smt control has been changed to 'off' again. This is
2088 * called under the sysfs hotplug lock, so it is properly
2089 * serialized against the regular offline usage.
2091 cpuhp_offline_cpu_device(cpu);
2093 if (!ret) {
2094 cpu_smt_control = ctrlval;
2095 arch_smt_update();
2097 cpu_maps_update_done();
2098 return ret;
2101 static int cpuhp_smt_enable(void)
2103 int cpu, ret = 0;
2105 cpu_maps_update_begin();
2106 cpu_smt_control = CPU_SMT_ENABLED;
2107 arch_smt_update();
2108 for_each_present_cpu(cpu) {
2109 /* Skip online CPUs and CPUs on offline nodes */
2110 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2111 continue;
2112 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2113 if (ret)
2114 break;
2115 /* See comment in cpuhp_smt_disable() */
2116 cpuhp_online_cpu_device(cpu);
2118 cpu_maps_update_done();
2119 return ret;
2122 static ssize_t
2123 store_smt_control(struct device *dev, struct device_attribute *attr,
2124 const char *buf, size_t count)
2126 int ctrlval, ret;
2128 if (sysfs_streq(buf, "on"))
2129 ctrlval = CPU_SMT_ENABLED;
2130 else if (sysfs_streq(buf, "off"))
2131 ctrlval = CPU_SMT_DISABLED;
2132 else if (sysfs_streq(buf, "forceoff"))
2133 ctrlval = CPU_SMT_FORCE_DISABLED;
2134 else
2135 return -EINVAL;
2137 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2138 return -EPERM;
2140 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2141 return -ENODEV;
2143 ret = lock_device_hotplug_sysfs();
2144 if (ret)
2145 return ret;
2147 if (ctrlval != cpu_smt_control) {
2148 switch (ctrlval) {
2149 case CPU_SMT_ENABLED:
2150 ret = cpuhp_smt_enable();
2151 break;
2152 case CPU_SMT_DISABLED:
2153 case CPU_SMT_FORCE_DISABLED:
2154 ret = cpuhp_smt_disable(ctrlval);
2155 break;
2159 unlock_device_hotplug();
2160 return ret ? ret : count;
2162 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2164 static ssize_t
2165 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2167 bool active = topology_max_smt_threads() > 1;
2169 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2171 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2173 static struct attribute *cpuhp_smt_attrs[] = {
2174 &dev_attr_control.attr,
2175 &dev_attr_active.attr,
2176 NULL
2179 static const struct attribute_group cpuhp_smt_attr_group = {
2180 .attrs = cpuhp_smt_attrs,
2181 .name = "smt",
2182 NULL
2185 static int __init cpu_smt_state_init(void)
2187 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2188 &cpuhp_smt_attr_group);
2191 #else
2192 static inline int cpu_smt_state_init(void) { return 0; }
2193 #endif
2195 static int __init cpuhp_sysfs_init(void)
2197 int cpu, ret;
2199 ret = cpu_smt_state_init();
2200 if (ret)
2201 return ret;
2203 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2204 &cpuhp_cpu_root_attr_group);
2205 if (ret)
2206 return ret;
2208 for_each_possible_cpu(cpu) {
2209 struct device *dev = get_cpu_device(cpu);
2211 if (!dev)
2212 continue;
2213 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2214 if (ret)
2215 return ret;
2217 return 0;
2219 device_initcall(cpuhp_sysfs_init);
2220 #endif
2223 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2224 * represents all NR_CPUS bits binary values of 1<<nr.
2226 * It is used by cpumask_of() to get a constant address to a CPU
2227 * mask value that has a single bit set only.
2230 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2231 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2232 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2233 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2234 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2236 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2238 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2239 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2240 #if BITS_PER_LONG > 32
2241 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2242 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2243 #endif
2245 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2247 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2248 EXPORT_SYMBOL(cpu_all_bits);
2250 #ifdef CONFIG_INIT_ALL_POSSIBLE
2251 struct cpumask __cpu_possible_mask __read_mostly
2252 = {CPU_BITS_ALL};
2253 #else
2254 struct cpumask __cpu_possible_mask __read_mostly;
2255 #endif
2256 EXPORT_SYMBOL(__cpu_possible_mask);
2258 struct cpumask __cpu_online_mask __read_mostly;
2259 EXPORT_SYMBOL(__cpu_online_mask);
2261 struct cpumask __cpu_present_mask __read_mostly;
2262 EXPORT_SYMBOL(__cpu_present_mask);
2264 struct cpumask __cpu_active_mask __read_mostly;
2265 EXPORT_SYMBOL(__cpu_active_mask);
2267 void init_cpu_present(const struct cpumask *src)
2269 cpumask_copy(&__cpu_present_mask, src);
2272 void init_cpu_possible(const struct cpumask *src)
2274 cpumask_copy(&__cpu_possible_mask, src);
2277 void init_cpu_online(const struct cpumask *src)
2279 cpumask_copy(&__cpu_online_mask, src);
2283 * Activate the first processor.
2285 void __init boot_cpu_init(void)
2287 int cpu = smp_processor_id();
2289 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2290 set_cpu_online(cpu, true);
2291 set_cpu_active(cpu, true);
2292 set_cpu_present(cpu, true);
2293 set_cpu_possible(cpu, true);
2295 #ifdef CONFIG_SMP
2296 __boot_cpu_id = cpu;
2297 #endif
2301 * Must be called _AFTER_ setting up the per_cpu areas
2303 void __init boot_cpu_hotplug_init(void)
2305 #ifdef CONFIG_SMP
2306 this_cpu_write(cpuhp_state.booted_once, true);
2307 #endif
2308 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);