2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
54 struct cpuhp_cpu_state
{
55 enum cpuhp_state state
;
56 enum cpuhp_state target
;
57 enum cpuhp_state fail
;
59 struct task_struct
*thread
;
65 struct hlist_node
*node
;
66 struct hlist_node
*last
;
67 enum cpuhp_state cb_state
;
69 struct completion done_up
;
70 struct completion done_down
;
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
75 .fail
= CPUHP_INVALID
,
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map
=
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
81 static struct lockdep_map cpuhp_state_down_map
=
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
85 static inline void cpuhp_lock_acquire(bool bringup
)
87 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
90 static inline void cpuhp_lock_release(bool bringup
)
92 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
96 static inline void cpuhp_lock_acquire(bool bringup
) { }
97 static inline void cpuhp_lock_release(bool bringup
) { }
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @cant_stop: Bringup/teardown can't be stopped at this step
111 int (*single
)(unsigned int cpu
);
112 int (*multi
)(unsigned int cpu
,
113 struct hlist_node
*node
);
116 int (*single
)(unsigned int cpu
);
117 int (*multi
)(unsigned int cpu
,
118 struct hlist_node
*node
);
120 struct hlist_head list
;
125 static DEFINE_MUTEX(cpuhp_state_mutex
);
126 static struct cpuhp_step cpuhp_hp_states
[];
128 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
130 return cpuhp_hp_states
+ state
;
134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135 * @cpu: The cpu for which the callback should be invoked
136 * @state: The state to do callbacks for
137 * @bringup: True if the bringup callback should be invoked
138 * @node: For multi-instance, do a single entry callback for install/remove
139 * @lastp: For multi-instance rollback, remember how far we got
141 * Called from cpu hotplug and from the state register machinery.
143 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
144 bool bringup
, struct hlist_node
*node
,
145 struct hlist_node
**lastp
)
147 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
148 struct cpuhp_step
*step
= cpuhp_get_step(state
);
149 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
150 int (*cb
)(unsigned int cpu
);
153 if (st
->fail
== state
) {
154 st
->fail
= CPUHP_INVALID
;
156 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
162 if (!step
->multi_instance
) {
163 WARN_ON_ONCE(lastp
&& *lastp
);
164 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
167 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
169 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
172 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
176 /* Single invocation for instance add/remove */
178 WARN_ON_ONCE(lastp
&& *lastp
);
179 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
180 ret
= cbm(cpu
, node
);
181 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
185 /* State transition. Invoke on all instances */
187 hlist_for_each(node
, &step
->list
) {
188 if (lastp
&& node
== *lastp
)
191 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
192 ret
= cbm(cpu
, node
);
193 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
207 /* Rollback the instances if one failed */
208 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
212 hlist_for_each(node
, &step
->list
) {
216 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
217 ret
= cbm(cpu
, node
);
218 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
220 * Rollback must not fail,
228 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 * purposes as that state is handled explicitly in cpu_down.
234 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
239 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
240 wait_for_completion(done
);
243 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
245 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
254 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock
);
259 bool cpuhp_tasks_frozen
;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
263 * The following two APIs (cpu_maps_update_begin/done) must be used when
264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266 void cpu_maps_update_begin(void)
268 mutex_lock(&cpu_add_remove_lock
);
271 void cpu_maps_update_done(void)
273 mutex_unlock(&cpu_add_remove_lock
);
277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 * Should always be manipulated under cpu_add_remove_lock
280 static int cpu_hotplug_disabled
;
282 #ifdef CONFIG_HOTPLUG_CPU
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
286 void cpus_read_lock(void)
288 percpu_down_read(&cpu_hotplug_lock
);
290 EXPORT_SYMBOL_GPL(cpus_read_lock
);
292 int cpus_read_trylock(void)
294 return percpu_down_read_trylock(&cpu_hotplug_lock
);
296 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
298 void cpus_read_unlock(void)
300 percpu_up_read(&cpu_hotplug_lock
);
302 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
304 void cpus_write_lock(void)
306 percpu_down_write(&cpu_hotplug_lock
);
309 void cpus_write_unlock(void)
311 percpu_up_write(&cpu_hotplug_lock
);
314 void lockdep_assert_cpus_held(void)
316 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
319 static void lockdep_acquire_cpus_lock(void)
321 rwsem_acquire(&cpu_hotplug_lock
.rw_sem
.dep_map
, 0, 0, _THIS_IP_
);
324 static void lockdep_release_cpus_lock(void)
326 rwsem_release(&cpu_hotplug_lock
.rw_sem
.dep_map
, 1, _THIS_IP_
);
330 * Wait for currently running CPU hotplug operations to complete (if any) and
331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333 * hotplug path before performing hotplug operations. So acquiring that lock
334 * guarantees mutual exclusion from any currently running hotplug operations.
336 void cpu_hotplug_disable(void)
338 cpu_maps_update_begin();
339 cpu_hotplug_disabled
++;
340 cpu_maps_update_done();
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
344 static void __cpu_hotplug_enable(void)
346 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
348 cpu_hotplug_disabled
--;
351 void cpu_hotplug_enable(void)
353 cpu_maps_update_begin();
354 __cpu_hotplug_enable();
355 cpu_maps_update_done();
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
361 static void lockdep_acquire_cpus_lock(void)
365 static void lockdep_release_cpus_lock(void)
369 #endif /* CONFIG_HOTPLUG_CPU */
372 * Architectures that need SMT-specific errata handling during SMT hotplug
373 * should override this.
375 void __weak
arch_smt_update(void) { }
377 #ifdef CONFIG_HOTPLUG_SMT
378 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
379 EXPORT_SYMBOL_GPL(cpu_smt_control
);
381 static bool cpu_smt_available __read_mostly
;
383 void __init
cpu_smt_disable(bool force
)
385 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
||
386 cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
390 pr_info("SMT: Force disabled\n");
391 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
393 pr_info("SMT: disabled\n");
394 cpu_smt_control
= CPU_SMT_DISABLED
;
399 * The decision whether SMT is supported can only be done after the full
400 * CPU identification. Called from architecture code before non boot CPUs
403 void __init
cpu_smt_check_topology_early(void)
405 if (!topology_smt_supported())
406 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
410 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
411 * brought online. This ensures the smt/l1tf sysfs entries are consistent
412 * with reality. cpu_smt_available is set to true during the bringup of non
413 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
414 * cpu_smt_control's previous setting.
416 void __init
cpu_smt_check_topology(void)
418 if (!cpu_smt_available
)
419 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
422 static int __init
smt_cmdline_disable(char *str
)
424 cpu_smt_disable(str
&& !strcmp(str
, "force"));
427 early_param("nosmt", smt_cmdline_disable
);
429 static inline bool cpu_smt_allowed(unsigned int cpu
)
431 if (topology_is_primary_thread(cpu
))
435 * If the CPU is not a 'primary' thread and the booted_once bit is
436 * set then the processor has SMT support. Store this information
437 * for the late check of SMT support in cpu_smt_check_topology().
439 if (per_cpu(cpuhp_state
, cpu
).booted_once
)
440 cpu_smt_available
= true;
442 if (cpu_smt_control
== CPU_SMT_ENABLED
)
446 * On x86 it's required to boot all logical CPUs at least once so
447 * that the init code can get a chance to set CR4.MCE on each
448 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
449 * core will shutdown the machine.
451 return !per_cpu(cpuhp_state
, cpu
).booted_once
;
454 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
457 static inline enum cpuhp_state
458 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
460 enum cpuhp_state prev_state
= st
->state
;
462 st
->rollback
= false;
467 st
->bringup
= st
->state
< target
;
473 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
478 * If we have st->last we need to undo partial multi_instance of this
479 * state first. Otherwise start undo at the previous state.
488 st
->target
= prev_state
;
489 st
->bringup
= !st
->bringup
;
492 /* Regular hotplug invocation of the AP hotplug thread */
493 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
495 if (!st
->single
&& st
->state
== st
->target
)
500 * Make sure the above stores are visible before should_run becomes
501 * true. Paired with the mb() above in cpuhp_thread_fun()
504 st
->should_run
= true;
505 wake_up_process(st
->thread
);
506 wait_for_ap_thread(st
, st
->bringup
);
509 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
511 enum cpuhp_state prev_state
;
514 prev_state
= cpuhp_set_state(st
, target
);
516 if ((ret
= st
->result
)) {
517 cpuhp_reset_state(st
, prev_state
);
524 static int bringup_wait_for_ap(unsigned int cpu
)
526 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
528 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
529 wait_for_ap_thread(st
, true);
530 if (WARN_ON_ONCE((!cpu_online(cpu
))))
533 /* Unpark the stopper thread and the hotplug thread of the target cpu */
534 stop_machine_unpark(cpu
);
535 kthread_unpark(st
->thread
);
538 * SMT soft disabling on X86 requires to bring the CPU out of the
539 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
540 * CPU marked itself as booted_once in cpu_notify_starting() so the
541 * cpu_smt_allowed() check will now return false if this is not the
544 if (!cpu_smt_allowed(cpu
))
547 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
550 return cpuhp_kick_ap(st
, st
->target
);
553 static int bringup_cpu(unsigned int cpu
)
555 struct task_struct
*idle
= idle_thread_get(cpu
);
559 * Some architectures have to walk the irq descriptors to
560 * setup the vector space for the cpu which comes online.
561 * Prevent irq alloc/free across the bringup.
565 /* Arch-specific enabling code. */
566 ret
= __cpu_up(cpu
, idle
);
570 return bringup_wait_for_ap(cpu
);
574 * Hotplug state machine related functions
577 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
579 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
580 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
583 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
584 enum cpuhp_state target
)
586 enum cpuhp_state prev_state
= st
->state
;
589 while (st
->state
< target
) {
591 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
593 st
->target
= prev_state
;
594 undo_cpu_up(cpu
, st
);
602 * The cpu hotplug threads manage the bringup and teardown of the cpus
604 static void cpuhp_create(unsigned int cpu
)
606 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
608 init_completion(&st
->done_up
);
609 init_completion(&st
->done_down
);
612 static int cpuhp_should_run(unsigned int cpu
)
614 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
616 return st
->should_run
;
620 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
621 * callbacks when a state gets [un]installed at runtime.
623 * Each invocation of this function by the smpboot thread does a single AP
626 * It has 3 modes of operation:
627 * - single: runs st->cb_state
628 * - up: runs ++st->state, while st->state < st->target
629 * - down: runs st->state--, while st->state > st->target
631 * When complete or on error, should_run is cleared and the completion is fired.
633 static void cpuhp_thread_fun(unsigned int cpu
)
635 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
636 bool bringup
= st
->bringup
;
637 enum cpuhp_state state
;
639 if (WARN_ON_ONCE(!st
->should_run
))
643 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
644 * that if we see ->should_run we also see the rest of the state.
649 * The BP holds the hotplug lock, but we're now running on the AP,
650 * ensure that anybody asserting the lock is held, will actually find
653 lockdep_acquire_cpus_lock();
654 cpuhp_lock_acquire(bringup
);
657 state
= st
->cb_state
;
658 st
->should_run
= false;
663 st
->should_run
= (st
->state
< st
->target
);
664 WARN_ON_ONCE(st
->state
> st
->target
);
668 st
->should_run
= (st
->state
> st
->target
);
669 WARN_ON_ONCE(st
->state
< st
->target
);
673 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
675 if (cpuhp_is_atomic_state(state
)) {
677 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
681 * STARTING/DYING must not fail!
683 WARN_ON_ONCE(st
->result
);
685 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
690 * If we fail on a rollback, we're up a creek without no
691 * paddle, no way forward, no way back. We loose, thanks for
694 WARN_ON_ONCE(st
->rollback
);
695 st
->should_run
= false;
698 cpuhp_lock_release(bringup
);
699 lockdep_release_cpus_lock();
702 complete_ap_thread(st
, bringup
);
705 /* Invoke a single callback on a remote cpu */
707 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
708 struct hlist_node
*node
)
710 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
713 if (!cpu_online(cpu
))
716 cpuhp_lock_acquire(false);
717 cpuhp_lock_release(false);
719 cpuhp_lock_acquire(true);
720 cpuhp_lock_release(true);
723 * If we are up and running, use the hotplug thread. For early calls
724 * we invoke the thread function directly.
727 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
729 st
->rollback
= false;
733 st
->bringup
= bringup
;
734 st
->cb_state
= state
;
740 * If we failed and did a partial, do a rollback.
742 if ((ret
= st
->result
) && st
->last
) {
744 st
->bringup
= !bringup
;
750 * Clean up the leftovers so the next hotplug operation wont use stale
753 st
->node
= st
->last
= NULL
;
757 static int cpuhp_kick_ap_work(unsigned int cpu
)
759 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
760 enum cpuhp_state prev_state
= st
->state
;
763 cpuhp_lock_acquire(false);
764 cpuhp_lock_release(false);
766 cpuhp_lock_acquire(true);
767 cpuhp_lock_release(true);
769 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
770 ret
= cpuhp_kick_ap(st
, st
->target
);
771 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
776 static struct smp_hotplug_thread cpuhp_threads
= {
777 .store
= &cpuhp_state
.thread
,
778 .create
= &cpuhp_create
,
779 .thread_should_run
= cpuhp_should_run
,
780 .thread_fn
= cpuhp_thread_fun
,
781 .thread_comm
= "cpuhp/%u",
785 void __init
cpuhp_threads_init(void)
787 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
788 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
791 #ifdef CONFIG_HOTPLUG_CPU
793 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
796 * This function walks all processes, finds a valid mm struct for each one and
797 * then clears a corresponding bit in mm's cpumask. While this all sounds
798 * trivial, there are various non-obvious corner cases, which this function
799 * tries to solve in a safe manner.
801 * Also note that the function uses a somewhat relaxed locking scheme, so it may
802 * be called only for an already offlined CPU.
804 void clear_tasks_mm_cpumask(int cpu
)
806 struct task_struct
*p
;
809 * This function is called after the cpu is taken down and marked
810 * offline, so its not like new tasks will ever get this cpu set in
811 * their mm mask. -- Peter Zijlstra
812 * Thus, we may use rcu_read_lock() here, instead of grabbing
813 * full-fledged tasklist_lock.
815 WARN_ON(cpu_online(cpu
));
817 for_each_process(p
) {
818 struct task_struct
*t
;
821 * Main thread might exit, but other threads may still have
822 * a valid mm. Find one.
824 t
= find_lock_task_mm(p
);
827 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
833 /* Take this CPU down. */
834 static int take_cpu_down(void *_param
)
836 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
837 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
838 int err
, cpu
= smp_processor_id();
841 /* Ensure this CPU doesn't handle any more interrupts. */
842 err
= __cpu_disable();
847 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
848 * do this step again.
850 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
852 /* Invoke the former CPU_DYING callbacks */
853 for (; st
->state
> target
; st
->state
--) {
854 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
856 * DYING must not fail!
861 /* Give up timekeeping duties */
862 tick_handover_do_timer();
863 /* Park the stopper thread */
864 stop_machine_park(cpu
);
868 static int takedown_cpu(unsigned int cpu
)
870 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
873 /* Park the smpboot threads */
874 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
877 * Prevent irq alloc/free while the dying cpu reorganizes the
878 * interrupt affinities.
883 * So now all preempt/rcu users must observe !cpu_active().
885 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
887 /* CPU refused to die */
889 /* Unpark the hotplug thread so we can rollback there */
890 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
893 BUG_ON(cpu_online(cpu
));
896 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
897 * all runnable tasks from the CPU, there's only the idle task left now
898 * that the migration thread is done doing the stop_machine thing.
900 * Wait for the stop thread to go away.
902 wait_for_ap_thread(st
, false);
903 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
905 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
908 hotplug_cpu__broadcast_tick_pull(cpu
);
909 /* This actually kills the CPU. */
912 tick_cleanup_dead_cpu(cpu
);
913 rcutree_migrate_callbacks(cpu
);
917 static void cpuhp_complete_idle_dead(void *arg
)
919 struct cpuhp_cpu_state
*st
= arg
;
921 complete_ap_thread(st
, false);
924 void cpuhp_report_idle_dead(void)
926 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
928 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
929 rcu_report_dead(smp_processor_id());
930 st
->state
= CPUHP_AP_IDLE_DEAD
;
932 * We cannot call complete after rcu_report_dead() so we delegate it
935 smp_call_function_single(cpumask_first(cpu_online_mask
),
936 cpuhp_complete_idle_dead
, st
, 0);
939 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
941 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
942 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
945 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
946 enum cpuhp_state target
)
948 enum cpuhp_state prev_state
= st
->state
;
951 for (; st
->state
> target
; st
->state
--) {
952 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
954 st
->target
= prev_state
;
955 if (st
->state
< prev_state
)
956 undo_cpu_down(cpu
, st
);
963 /* Requires cpu_add_remove_lock to be held */
964 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
965 enum cpuhp_state target
)
967 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
968 int prev_state
, ret
= 0;
970 if (num_online_cpus() == 1)
973 if (!cpu_present(cpu
))
978 cpuhp_tasks_frozen
= tasks_frozen
;
980 prev_state
= cpuhp_set_state(st
, target
);
982 * If the current CPU state is in the range of the AP hotplug thread,
983 * then we need to kick the thread.
985 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
986 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
987 ret
= cpuhp_kick_ap_work(cpu
);
989 * The AP side has done the error rollback already. Just
990 * return the error code..
996 * We might have stopped still in the range of the AP hotplug
997 * thread. Nothing to do anymore.
999 if (st
->state
> CPUHP_TEARDOWN_CPU
)
1002 st
->target
= target
;
1005 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1006 * to do the further cleanups.
1008 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1009 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
1010 cpuhp_reset_state(st
, prev_state
);
1011 __cpuhp_kick_ap(st
);
1015 cpus_write_unlock();
1017 * Do post unplug cleanup. This is still protected against
1018 * concurrent CPU hotplug via cpu_add_remove_lock.
1020 lockup_detector_cleanup();
1025 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1027 if (cpu_hotplug_disabled
)
1029 return _cpu_down(cpu
, 0, target
);
1032 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1036 cpu_maps_update_begin();
1037 err
= cpu_down_maps_locked(cpu
, target
);
1038 cpu_maps_update_done();
1042 int cpu_down(unsigned int cpu
)
1044 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1046 EXPORT_SYMBOL(cpu_down
);
1049 #define takedown_cpu NULL
1050 #endif /*CONFIG_HOTPLUG_CPU*/
1053 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1054 * @cpu: cpu that just started
1056 * It must be called by the arch code on the new cpu, before the new cpu
1057 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1059 void notify_cpu_starting(unsigned int cpu
)
1061 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1062 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1065 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1066 st
->booted_once
= true;
1067 while (st
->state
< target
) {
1069 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1071 * STARTING must not fail!
1078 * Called from the idle task. Wake up the controlling task which brings the
1079 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1080 * the rest of the online bringup to the hotplug thread.
1082 void cpuhp_online_idle(enum cpuhp_state state
)
1084 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1086 /* Happens for the boot cpu */
1087 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1090 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1091 complete_ap_thread(st
, true);
1094 /* Requires cpu_add_remove_lock to be held */
1095 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1097 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1098 struct task_struct
*idle
;
1103 if (!cpu_present(cpu
)) {
1109 * The caller of do_cpu_up might have raced with another
1110 * caller. Ignore it for now.
1112 if (st
->state
>= target
)
1115 if (st
->state
== CPUHP_OFFLINE
) {
1116 /* Let it fail before we try to bring the cpu up */
1117 idle
= idle_thread_get(cpu
);
1119 ret
= PTR_ERR(idle
);
1124 cpuhp_tasks_frozen
= tasks_frozen
;
1126 cpuhp_set_state(st
, target
);
1128 * If the current CPU state is in the range of the AP hotplug thread,
1129 * then we need to kick the thread once more.
1131 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1132 ret
= cpuhp_kick_ap_work(cpu
);
1134 * The AP side has done the error rollback already. Just
1135 * return the error code..
1142 * Try to reach the target state. We max out on the BP at
1143 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1144 * responsible for bringing it up to the target state.
1146 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1147 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1149 cpus_write_unlock();
1154 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1158 if (!cpu_possible(cpu
)) {
1159 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1161 #if defined(CONFIG_IA64)
1162 pr_err("please check additional_cpus= boot parameter\n");
1167 err
= try_online_node(cpu_to_node(cpu
));
1171 cpu_maps_update_begin();
1173 if (cpu_hotplug_disabled
) {
1177 if (!cpu_smt_allowed(cpu
)) {
1182 err
= _cpu_up(cpu
, 0, target
);
1184 cpu_maps_update_done();
1188 int cpu_up(unsigned int cpu
)
1190 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1192 EXPORT_SYMBOL_GPL(cpu_up
);
1194 #ifdef CONFIG_PM_SLEEP_SMP
1195 static cpumask_var_t frozen_cpus
;
1197 int freeze_secondary_cpus(int primary
)
1201 cpu_maps_update_begin();
1202 if (!cpu_online(primary
))
1203 primary
= cpumask_first(cpu_online_mask
);
1205 * We take down all of the non-boot CPUs in one shot to avoid races
1206 * with the userspace trying to use the CPU hotplug at the same time
1208 cpumask_clear(frozen_cpus
);
1210 pr_info("Disabling non-boot CPUs ...\n");
1211 for_each_online_cpu(cpu
) {
1214 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1215 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1216 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1218 cpumask_set_cpu(cpu
, frozen_cpus
);
1220 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1226 BUG_ON(num_online_cpus() > 1);
1228 pr_err("Non-boot CPUs are not disabled\n");
1231 * Make sure the CPUs won't be enabled by someone else. We need to do
1232 * this even in case of failure as all disable_nonboot_cpus() users are
1233 * supposed to do enable_nonboot_cpus() on the failure path.
1235 cpu_hotplug_disabled
++;
1237 cpu_maps_update_done();
1241 void __weak
arch_enable_nonboot_cpus_begin(void)
1245 void __weak
arch_enable_nonboot_cpus_end(void)
1249 void enable_nonboot_cpus(void)
1253 /* Allow everyone to use the CPU hotplug again */
1254 cpu_maps_update_begin();
1255 __cpu_hotplug_enable();
1256 if (cpumask_empty(frozen_cpus
))
1259 pr_info("Enabling non-boot CPUs ...\n");
1261 arch_enable_nonboot_cpus_begin();
1263 for_each_cpu(cpu
, frozen_cpus
) {
1264 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1265 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1266 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1268 pr_info("CPU%d is up\n", cpu
);
1271 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1274 arch_enable_nonboot_cpus_end();
1276 cpumask_clear(frozen_cpus
);
1278 cpu_maps_update_done();
1281 static int __init
alloc_frozen_cpus(void)
1283 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1287 core_initcall(alloc_frozen_cpus
);
1290 * When callbacks for CPU hotplug notifications are being executed, we must
1291 * ensure that the state of the system with respect to the tasks being frozen
1292 * or not, as reported by the notification, remains unchanged *throughout the
1293 * duration* of the execution of the callbacks.
1294 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1296 * This synchronization is implemented by mutually excluding regular CPU
1297 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1298 * Hibernate notifications.
1301 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1302 unsigned long action
, void *ptr
)
1306 case PM_SUSPEND_PREPARE
:
1307 case PM_HIBERNATION_PREPARE
:
1308 cpu_hotplug_disable();
1311 case PM_POST_SUSPEND
:
1312 case PM_POST_HIBERNATION
:
1313 cpu_hotplug_enable();
1324 static int __init
cpu_hotplug_pm_sync_init(void)
1327 * cpu_hotplug_pm_callback has higher priority than x86
1328 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1329 * to disable cpu hotplug to avoid cpu hotplug race.
1331 pm_notifier(cpu_hotplug_pm_callback
, 0);
1334 core_initcall(cpu_hotplug_pm_sync_init
);
1336 #endif /* CONFIG_PM_SLEEP_SMP */
1340 #endif /* CONFIG_SMP */
1342 /* Boot processor state steps */
1343 static struct cpuhp_step cpuhp_hp_states
[] = {
1346 .startup
.single
= NULL
,
1347 .teardown
.single
= NULL
,
1350 [CPUHP_CREATE_THREADS
]= {
1351 .name
= "threads:prepare",
1352 .startup
.single
= smpboot_create_threads
,
1353 .teardown
.single
= NULL
,
1356 [CPUHP_PERF_PREPARE
] = {
1357 .name
= "perf:prepare",
1358 .startup
.single
= perf_event_init_cpu
,
1359 .teardown
.single
= perf_event_exit_cpu
,
1361 [CPUHP_WORKQUEUE_PREP
] = {
1362 .name
= "workqueue:prepare",
1363 .startup
.single
= workqueue_prepare_cpu
,
1364 .teardown
.single
= NULL
,
1366 [CPUHP_HRTIMERS_PREPARE
] = {
1367 .name
= "hrtimers:prepare",
1368 .startup
.single
= hrtimers_prepare_cpu
,
1369 .teardown
.single
= hrtimers_dead_cpu
,
1371 [CPUHP_SMPCFD_PREPARE
] = {
1372 .name
= "smpcfd:prepare",
1373 .startup
.single
= smpcfd_prepare_cpu
,
1374 .teardown
.single
= smpcfd_dead_cpu
,
1376 [CPUHP_RELAY_PREPARE
] = {
1377 .name
= "relay:prepare",
1378 .startup
.single
= relay_prepare_cpu
,
1379 .teardown
.single
= NULL
,
1381 [CPUHP_SLAB_PREPARE
] = {
1382 .name
= "slab:prepare",
1383 .startup
.single
= slab_prepare_cpu
,
1384 .teardown
.single
= slab_dead_cpu
,
1386 [CPUHP_RCUTREE_PREP
] = {
1387 .name
= "RCU/tree:prepare",
1388 .startup
.single
= rcutree_prepare_cpu
,
1389 .teardown
.single
= rcutree_dead_cpu
,
1392 * On the tear-down path, timers_dead_cpu() must be invoked
1393 * before blk_mq_queue_reinit_notify() from notify_dead(),
1394 * otherwise a RCU stall occurs.
1396 [CPUHP_TIMERS_PREPARE
] = {
1397 .name
= "timers:prepare",
1398 .startup
.single
= timers_prepare_cpu
,
1399 .teardown
.single
= timers_dead_cpu
,
1401 /* Kicks the plugged cpu into life */
1402 [CPUHP_BRINGUP_CPU
] = {
1403 .name
= "cpu:bringup",
1404 .startup
.single
= bringup_cpu
,
1405 .teardown
.single
= NULL
,
1408 /* Final state before CPU kills itself */
1409 [CPUHP_AP_IDLE_DEAD
] = {
1410 .name
= "idle:dead",
1413 * Last state before CPU enters the idle loop to die. Transient state
1414 * for synchronization.
1416 [CPUHP_AP_OFFLINE
] = {
1417 .name
= "ap:offline",
1420 /* First state is scheduler control. Interrupts are disabled */
1421 [CPUHP_AP_SCHED_STARTING
] = {
1422 .name
= "sched:starting",
1423 .startup
.single
= sched_cpu_starting
,
1424 .teardown
.single
= sched_cpu_dying
,
1426 [CPUHP_AP_RCUTREE_DYING
] = {
1427 .name
= "RCU/tree:dying",
1428 .startup
.single
= NULL
,
1429 .teardown
.single
= rcutree_dying_cpu
,
1431 [CPUHP_AP_SMPCFD_DYING
] = {
1432 .name
= "smpcfd:dying",
1433 .startup
.single
= NULL
,
1434 .teardown
.single
= smpcfd_dying_cpu
,
1436 /* Entry state on starting. Interrupts enabled from here on. Transient
1437 * state for synchronsization */
1438 [CPUHP_AP_ONLINE
] = {
1439 .name
= "ap:online",
1442 * Handled on controll processor until the plugged processor manages
1445 [CPUHP_TEARDOWN_CPU
] = {
1446 .name
= "cpu:teardown",
1447 .startup
.single
= NULL
,
1448 .teardown
.single
= takedown_cpu
,
1451 /* Handle smpboot threads park/unpark */
1452 [CPUHP_AP_SMPBOOT_THREADS
] = {
1453 .name
= "smpboot/threads:online",
1454 .startup
.single
= smpboot_unpark_threads
,
1455 .teardown
.single
= smpboot_park_threads
,
1457 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1458 .name
= "irq/affinity:online",
1459 .startup
.single
= irq_affinity_online_cpu
,
1460 .teardown
.single
= NULL
,
1462 [CPUHP_AP_PERF_ONLINE
] = {
1463 .name
= "perf:online",
1464 .startup
.single
= perf_event_init_cpu
,
1465 .teardown
.single
= perf_event_exit_cpu
,
1467 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1468 .name
= "lockup_detector:online",
1469 .startup
.single
= lockup_detector_online_cpu
,
1470 .teardown
.single
= lockup_detector_offline_cpu
,
1472 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1473 .name
= "workqueue:online",
1474 .startup
.single
= workqueue_online_cpu
,
1475 .teardown
.single
= workqueue_offline_cpu
,
1477 [CPUHP_AP_RCUTREE_ONLINE
] = {
1478 .name
= "RCU/tree:online",
1479 .startup
.single
= rcutree_online_cpu
,
1480 .teardown
.single
= rcutree_offline_cpu
,
1484 * The dynamically registered state space is here
1488 /* Last state is scheduler control setting the cpu active */
1489 [CPUHP_AP_ACTIVE
] = {
1490 .name
= "sched:active",
1491 .startup
.single
= sched_cpu_activate
,
1492 .teardown
.single
= sched_cpu_deactivate
,
1496 /* CPU is fully up and running. */
1499 .startup
.single
= NULL
,
1500 .teardown
.single
= NULL
,
1504 /* Sanity check for callbacks */
1505 static int cpuhp_cb_check(enum cpuhp_state state
)
1507 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1513 * Returns a free for dynamic slot assignment of the Online state. The states
1514 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515 * by having no name assigned.
1517 static int cpuhp_reserve_state(enum cpuhp_state state
)
1519 enum cpuhp_state i
, end
;
1520 struct cpuhp_step
*step
;
1523 case CPUHP_AP_ONLINE_DYN
:
1524 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1525 end
= CPUHP_AP_ONLINE_DYN_END
;
1527 case CPUHP_BP_PREPARE_DYN
:
1528 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1529 end
= CPUHP_BP_PREPARE_DYN_END
;
1535 for (i
= state
; i
<= end
; i
++, step
++) {
1539 WARN(1, "No more dynamic states available for CPU hotplug\n");
1543 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1544 int (*startup
)(unsigned int cpu
),
1545 int (*teardown
)(unsigned int cpu
),
1546 bool multi_instance
)
1548 /* (Un)Install the callbacks for further cpu hotplug operations */
1549 struct cpuhp_step
*sp
;
1553 * If name is NULL, then the state gets removed.
1555 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1556 * the first allocation from these dynamic ranges, so the removal
1557 * would trigger a new allocation and clear the wrong (already
1558 * empty) state, leaving the callbacks of the to be cleared state
1559 * dangling, which causes wreckage on the next hotplug operation.
1561 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1562 state
== CPUHP_BP_PREPARE_DYN
)) {
1563 ret
= cpuhp_reserve_state(state
);
1568 sp
= cpuhp_get_step(state
);
1569 if (name
&& sp
->name
)
1572 sp
->startup
.single
= startup
;
1573 sp
->teardown
.single
= teardown
;
1575 sp
->multi_instance
= multi_instance
;
1576 INIT_HLIST_HEAD(&sp
->list
);
1580 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1582 return cpuhp_get_step(state
)->teardown
.single
;
1586 * Call the startup/teardown function for a step either on the AP or
1587 * on the current CPU.
1589 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1590 struct hlist_node
*node
)
1592 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1596 * If there's nothing to do, we done.
1597 * Relies on the union for multi_instance.
1599 if ((bringup
&& !sp
->startup
.single
) ||
1600 (!bringup
&& !sp
->teardown
.single
))
1603 * The non AP bound callbacks can fail on bringup. On teardown
1604 * e.g. module removal we crash for now.
1607 if (cpuhp_is_ap_state(state
))
1608 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1610 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1612 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1614 BUG_ON(ret
&& !bringup
);
1619 * Called from __cpuhp_setup_state on a recoverable failure.
1621 * Note: The teardown callbacks for rollback are not allowed to fail!
1623 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1624 struct hlist_node
*node
)
1628 /* Roll back the already executed steps on the other cpus */
1629 for_each_present_cpu(cpu
) {
1630 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1631 int cpustate
= st
->state
;
1633 if (cpu
>= failedcpu
)
1636 /* Did we invoke the startup call on that cpu ? */
1637 if (cpustate
>= state
)
1638 cpuhp_issue_call(cpu
, state
, false, node
);
1642 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1643 struct hlist_node
*node
,
1646 struct cpuhp_step
*sp
;
1650 lockdep_assert_cpus_held();
1652 sp
= cpuhp_get_step(state
);
1653 if (sp
->multi_instance
== false)
1656 mutex_lock(&cpuhp_state_mutex
);
1658 if (!invoke
|| !sp
->startup
.multi
)
1662 * Try to call the startup callback for each present cpu
1663 * depending on the hotplug state of the cpu.
1665 for_each_present_cpu(cpu
) {
1666 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1667 int cpustate
= st
->state
;
1669 if (cpustate
< state
)
1672 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1674 if (sp
->teardown
.multi
)
1675 cpuhp_rollback_install(cpu
, state
, node
);
1681 hlist_add_head(node
, &sp
->list
);
1683 mutex_unlock(&cpuhp_state_mutex
);
1687 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1693 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1697 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1700 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1701 * @state: The state to setup
1702 * @invoke: If true, the startup function is invoked for cpus where
1703 * cpu state >= @state
1704 * @startup: startup callback function
1705 * @teardown: teardown callback function
1706 * @multi_instance: State is set up for multiple instances which get
1709 * The caller needs to hold cpus read locked while calling this function.
1712 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1713 * 0 for all other states
1714 * On failure: proper (negative) error code
1716 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1717 const char *name
, bool invoke
,
1718 int (*startup
)(unsigned int cpu
),
1719 int (*teardown
)(unsigned int cpu
),
1720 bool multi_instance
)
1725 lockdep_assert_cpus_held();
1727 if (cpuhp_cb_check(state
) || !name
)
1730 mutex_lock(&cpuhp_state_mutex
);
1732 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1735 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1736 if (ret
> 0 && dynstate
) {
1741 if (ret
|| !invoke
|| !startup
)
1745 * Try to call the startup callback for each present cpu
1746 * depending on the hotplug state of the cpu.
1748 for_each_present_cpu(cpu
) {
1749 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1750 int cpustate
= st
->state
;
1752 if (cpustate
< state
)
1755 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1758 cpuhp_rollback_install(cpu
, state
, NULL
);
1759 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1764 mutex_unlock(&cpuhp_state_mutex
);
1766 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1767 * dynamically allocated state in case of success.
1769 if (!ret
&& dynstate
)
1773 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1775 int __cpuhp_setup_state(enum cpuhp_state state
,
1776 const char *name
, bool invoke
,
1777 int (*startup
)(unsigned int cpu
),
1778 int (*teardown
)(unsigned int cpu
),
1779 bool multi_instance
)
1784 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1785 teardown
, multi_instance
);
1789 EXPORT_SYMBOL(__cpuhp_setup_state
);
1791 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1792 struct hlist_node
*node
, bool invoke
)
1794 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1797 BUG_ON(cpuhp_cb_check(state
));
1799 if (!sp
->multi_instance
)
1803 mutex_lock(&cpuhp_state_mutex
);
1805 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1808 * Call the teardown callback for each present cpu depending
1809 * on the hotplug state of the cpu. This function is not
1810 * allowed to fail currently!
1812 for_each_present_cpu(cpu
) {
1813 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1814 int cpustate
= st
->state
;
1816 if (cpustate
>= state
)
1817 cpuhp_issue_call(cpu
, state
, false, node
);
1822 mutex_unlock(&cpuhp_state_mutex
);
1827 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1830 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1831 * @state: The state to remove
1832 * @invoke: If true, the teardown function is invoked for cpus where
1833 * cpu state >= @state
1835 * The caller needs to hold cpus read locked while calling this function.
1836 * The teardown callback is currently not allowed to fail. Think
1837 * about module removal!
1839 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
1841 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1844 BUG_ON(cpuhp_cb_check(state
));
1846 lockdep_assert_cpus_held();
1848 mutex_lock(&cpuhp_state_mutex
);
1849 if (sp
->multi_instance
) {
1850 WARN(!hlist_empty(&sp
->list
),
1851 "Error: Removing state %d which has instances left.\n",
1856 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1860 * Call the teardown callback for each present cpu depending
1861 * on the hotplug state of the cpu. This function is not
1862 * allowed to fail currently!
1864 for_each_present_cpu(cpu
) {
1865 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1866 int cpustate
= st
->state
;
1868 if (cpustate
>= state
)
1869 cpuhp_issue_call(cpu
, state
, false, NULL
);
1872 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1873 mutex_unlock(&cpuhp_state_mutex
);
1875 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
1877 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1880 __cpuhp_remove_state_cpuslocked(state
, invoke
);
1883 EXPORT_SYMBOL(__cpuhp_remove_state
);
1885 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1886 static ssize_t
show_cpuhp_state(struct device
*dev
,
1887 struct device_attribute
*attr
, char *buf
)
1889 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1891 return sprintf(buf
, "%d\n", st
->state
);
1893 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1895 static ssize_t
write_cpuhp_target(struct device
*dev
,
1896 struct device_attribute
*attr
,
1897 const char *buf
, size_t count
)
1899 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1900 struct cpuhp_step
*sp
;
1903 ret
= kstrtoint(buf
, 10, &target
);
1907 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1908 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1911 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1915 ret
= lock_device_hotplug_sysfs();
1919 mutex_lock(&cpuhp_state_mutex
);
1920 sp
= cpuhp_get_step(target
);
1921 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1922 mutex_unlock(&cpuhp_state_mutex
);
1926 if (st
->state
< target
)
1927 ret
= do_cpu_up(dev
->id
, target
);
1929 ret
= do_cpu_down(dev
->id
, target
);
1931 unlock_device_hotplug();
1932 return ret
? ret
: count
;
1935 static ssize_t
show_cpuhp_target(struct device
*dev
,
1936 struct device_attribute
*attr
, char *buf
)
1938 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1940 return sprintf(buf
, "%d\n", st
->target
);
1942 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1945 static ssize_t
write_cpuhp_fail(struct device
*dev
,
1946 struct device_attribute
*attr
,
1947 const char *buf
, size_t count
)
1949 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1950 struct cpuhp_step
*sp
;
1953 ret
= kstrtoint(buf
, 10, &fail
);
1958 * Cannot fail STARTING/DYING callbacks.
1960 if (cpuhp_is_atomic_state(fail
))
1964 * Cannot fail anything that doesn't have callbacks.
1966 mutex_lock(&cpuhp_state_mutex
);
1967 sp
= cpuhp_get_step(fail
);
1968 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
1970 mutex_unlock(&cpuhp_state_mutex
);
1979 static ssize_t
show_cpuhp_fail(struct device
*dev
,
1980 struct device_attribute
*attr
, char *buf
)
1982 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1984 return sprintf(buf
, "%d\n", st
->fail
);
1987 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
1989 static struct attribute
*cpuhp_cpu_attrs
[] = {
1990 &dev_attr_state
.attr
,
1991 &dev_attr_target
.attr
,
1992 &dev_attr_fail
.attr
,
1996 static const struct attribute_group cpuhp_cpu_attr_group
= {
1997 .attrs
= cpuhp_cpu_attrs
,
2002 static ssize_t
show_cpuhp_states(struct device
*dev
,
2003 struct device_attribute
*attr
, char *buf
)
2005 ssize_t cur
, res
= 0;
2008 mutex_lock(&cpuhp_state_mutex
);
2009 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
2010 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
2013 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
2018 mutex_unlock(&cpuhp_state_mutex
);
2021 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
2023 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
2024 &dev_attr_states
.attr
,
2028 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2029 .attrs
= cpuhp_cpu_root_attrs
,
2034 #ifdef CONFIG_HOTPLUG_SMT
2036 static const char *smt_states
[] = {
2037 [CPU_SMT_ENABLED
] = "on",
2038 [CPU_SMT_DISABLED
] = "off",
2039 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2040 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2044 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2046 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", smt_states
[cpu_smt_control
]);
2049 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2051 struct device
*dev
= get_cpu_device(cpu
);
2053 dev
->offline
= true;
2054 /* Tell user space about the state change */
2055 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2058 static void cpuhp_online_cpu_device(unsigned int cpu
)
2060 struct device
*dev
= get_cpu_device(cpu
);
2062 dev
->offline
= false;
2063 /* Tell user space about the state change */
2064 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2067 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2071 cpu_maps_update_begin();
2072 for_each_online_cpu(cpu
) {
2073 if (topology_is_primary_thread(cpu
))
2075 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2079 * As this needs to hold the cpu maps lock it's impossible
2080 * to call device_offline() because that ends up calling
2081 * cpu_down() which takes cpu maps lock. cpu maps lock
2082 * needs to be held as this might race against in kernel
2083 * abusers of the hotplug machinery (thermal management).
2085 * So nothing would update device:offline state. That would
2086 * leave the sysfs entry stale and prevent onlining after
2087 * smt control has been changed to 'off' again. This is
2088 * called under the sysfs hotplug lock, so it is properly
2089 * serialized against the regular offline usage.
2091 cpuhp_offline_cpu_device(cpu
);
2094 cpu_smt_control
= ctrlval
;
2097 cpu_maps_update_done();
2101 static int cpuhp_smt_enable(void)
2105 cpu_maps_update_begin();
2106 cpu_smt_control
= CPU_SMT_ENABLED
;
2108 for_each_present_cpu(cpu
) {
2109 /* Skip online CPUs and CPUs on offline nodes */
2110 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2112 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2115 /* See comment in cpuhp_smt_disable() */
2116 cpuhp_online_cpu_device(cpu
);
2118 cpu_maps_update_done();
2123 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2124 const char *buf
, size_t count
)
2128 if (sysfs_streq(buf
, "on"))
2129 ctrlval
= CPU_SMT_ENABLED
;
2130 else if (sysfs_streq(buf
, "off"))
2131 ctrlval
= CPU_SMT_DISABLED
;
2132 else if (sysfs_streq(buf
, "forceoff"))
2133 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2137 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2140 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2143 ret
= lock_device_hotplug_sysfs();
2147 if (ctrlval
!= cpu_smt_control
) {
2149 case CPU_SMT_ENABLED
:
2150 ret
= cpuhp_smt_enable();
2152 case CPU_SMT_DISABLED
:
2153 case CPU_SMT_FORCE_DISABLED
:
2154 ret
= cpuhp_smt_disable(ctrlval
);
2159 unlock_device_hotplug();
2160 return ret
? ret
: count
;
2162 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2165 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2167 bool active
= topology_max_smt_threads() > 1;
2169 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", active
);
2171 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2173 static struct attribute
*cpuhp_smt_attrs
[] = {
2174 &dev_attr_control
.attr
,
2175 &dev_attr_active
.attr
,
2179 static const struct attribute_group cpuhp_smt_attr_group
= {
2180 .attrs
= cpuhp_smt_attrs
,
2185 static int __init
cpu_smt_state_init(void)
2187 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2188 &cpuhp_smt_attr_group
);
2192 static inline int cpu_smt_state_init(void) { return 0; }
2195 static int __init
cpuhp_sysfs_init(void)
2199 ret
= cpu_smt_state_init();
2203 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2204 &cpuhp_cpu_root_attr_group
);
2208 for_each_possible_cpu(cpu
) {
2209 struct device
*dev
= get_cpu_device(cpu
);
2213 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2219 device_initcall(cpuhp_sysfs_init
);
2223 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2224 * represents all NR_CPUS bits binary values of 1<<nr.
2226 * It is used by cpumask_of() to get a constant address to a CPU
2227 * mask value that has a single bit set only.
2230 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2231 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2232 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2233 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2234 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2236 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2238 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2239 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2240 #if BITS_PER_LONG > 32
2241 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2242 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2245 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2247 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2248 EXPORT_SYMBOL(cpu_all_bits
);
2250 #ifdef CONFIG_INIT_ALL_POSSIBLE
2251 struct cpumask __cpu_possible_mask __read_mostly
2254 struct cpumask __cpu_possible_mask __read_mostly
;
2256 EXPORT_SYMBOL(__cpu_possible_mask
);
2258 struct cpumask __cpu_online_mask __read_mostly
;
2259 EXPORT_SYMBOL(__cpu_online_mask
);
2261 struct cpumask __cpu_present_mask __read_mostly
;
2262 EXPORT_SYMBOL(__cpu_present_mask
);
2264 struct cpumask __cpu_active_mask __read_mostly
;
2265 EXPORT_SYMBOL(__cpu_active_mask
);
2267 void init_cpu_present(const struct cpumask
*src
)
2269 cpumask_copy(&__cpu_present_mask
, src
);
2272 void init_cpu_possible(const struct cpumask
*src
)
2274 cpumask_copy(&__cpu_possible_mask
, src
);
2277 void init_cpu_online(const struct cpumask
*src
)
2279 cpumask_copy(&__cpu_online_mask
, src
);
2283 * Activate the first processor.
2285 void __init
boot_cpu_init(void)
2287 int cpu
= smp_processor_id();
2289 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2290 set_cpu_online(cpu
, true);
2291 set_cpu_active(cpu
, true);
2292 set_cpu_present(cpu
, true);
2293 set_cpu_possible(cpu
, true);
2296 __boot_cpu_id
= cpu
;
2301 * Must be called _AFTER_ setting up the per_cpu areas
2303 void __init
boot_cpu_hotplug_init(void)
2306 this_cpu_write(cpuhp_state
.booted_once
, true);
2308 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);