2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events
{
36 struct perf_event
*event
[MAX_HWEVENTS
];
37 u64 events
[MAX_HWEVENTS
];
38 unsigned int flags
[MAX_HWEVENTS
];
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
44 unsigned long mmcr
[4];
45 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
46 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
47 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
48 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
49 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
51 unsigned int group_flag
;
55 u64 bhrb_filter
; /* BHRB HW branch filter */
58 struct perf_branch_stack bhrb_stack
;
59 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
62 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
64 struct power_pmu
*ppmu
;
67 * Normally, to ignore kernel events we set the FCS (freeze counters
68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69 * hypervisor bit set in the MSR, or if we are running on a processor
70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71 * then we need to use the FCHV bit to ignore kernel events.
73 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
76 * 32-bit doesn't have MMCRA but does have an MMCR2,
77 * and a few other names are different.
82 #define MMCR0_PMCjCE MMCR0_PMCnCE
88 #define MMCR0_PMCC_U6 0
90 #define SPRN_MMCRA SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE 0
93 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
97 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
) { }
98 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
102 static inline void perf_read_regs(struct pt_regs
*regs
)
106 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
111 static inline int siar_valid(struct pt_regs
*regs
)
116 static bool is_ebb_event(struct perf_event
*event
) { return false; }
117 static int ebb_event_check(struct perf_event
*event
) { return 0; }
118 static void ebb_event_add(struct perf_event
*event
) { }
119 static void ebb_switch_out(unsigned long mmcr0
) { }
120 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
122 return cpuhw
->mmcr
[0];
125 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
126 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
127 void power_pmu_flush_branch_stack(void) {}
128 static inline void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
) {}
129 static void pmao_restore_workaround(bool ebb
) { }
130 #endif /* CONFIG_PPC32 */
132 static bool regs_use_siar(struct pt_regs
*regs
)
134 return !!regs
->result
;
138 * Things that are specific to 64-bit implementations.
142 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
144 unsigned long mmcra
= regs
->dsisr
;
146 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
147 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
149 return 4 * (slot
- 1);
156 * The user wants a data address recorded.
157 * If we're not doing instruction sampling, give them the SDAR
158 * (sampled data address). If we are doing instruction sampling, then
159 * only give them the SDAR if it corresponds to the instruction
160 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
161 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
163 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
)
165 unsigned long mmcra
= regs
->dsisr
;
168 if (ppmu
->flags
& PPMU_HAS_SIER
)
169 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
171 unsigned long sdsync
;
173 if (ppmu
->flags
& PPMU_SIAR_VALID
)
174 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
175 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
176 sdsync
= POWER6_MMCRA_SDSYNC
;
178 sdsync
= MMCRA_SDSYNC
;
180 sdar_valid
= mmcra
& sdsync
;
183 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
184 *addrp
= mfspr(SPRN_SDAR
);
187 static bool regs_sihv(struct pt_regs
*regs
)
189 unsigned long sihv
= MMCRA_SIHV
;
191 if (ppmu
->flags
& PPMU_HAS_SIER
)
192 return !!(regs
->dar
& SIER_SIHV
);
194 if (ppmu
->flags
& PPMU_ALT_SIPR
)
195 sihv
= POWER6_MMCRA_SIHV
;
197 return !!(regs
->dsisr
& sihv
);
200 static bool regs_sipr(struct pt_regs
*regs
)
202 unsigned long sipr
= MMCRA_SIPR
;
204 if (ppmu
->flags
& PPMU_HAS_SIER
)
205 return !!(regs
->dar
& SIER_SIPR
);
207 if (ppmu
->flags
& PPMU_ALT_SIPR
)
208 sipr
= POWER6_MMCRA_SIPR
;
210 return !!(regs
->dsisr
& sipr
);
213 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
215 if (regs
->msr
& MSR_PR
)
216 return PERF_RECORD_MISC_USER
;
217 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
218 return PERF_RECORD_MISC_HYPERVISOR
;
219 return PERF_RECORD_MISC_KERNEL
;
222 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
224 bool use_siar
= regs_use_siar(regs
);
227 return perf_flags_from_msr(regs
);
230 * If we don't have flags in MMCRA, rather than using
231 * the MSR, we intuit the flags from the address in
232 * SIAR which should give slightly more reliable
235 if (ppmu
->flags
& PPMU_NO_SIPR
) {
236 unsigned long siar
= mfspr(SPRN_SIAR
);
237 if (siar
>= PAGE_OFFSET
)
238 return PERF_RECORD_MISC_KERNEL
;
239 return PERF_RECORD_MISC_USER
;
242 /* PR has priority over HV, so order below is important */
244 return PERF_RECORD_MISC_USER
;
246 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
247 return PERF_RECORD_MISC_HYPERVISOR
;
249 return PERF_RECORD_MISC_KERNEL
;
253 * Overload regs->dsisr to store MMCRA so we only need to read it once
255 * Overload regs->dar to store SIER if we have it.
256 * Overload regs->result to specify whether we should use the MSR (result
257 * is zero) or the SIAR (result is non zero).
259 static inline void perf_read_regs(struct pt_regs
*regs
)
261 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
262 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
267 if (ppmu
->flags
& PPMU_HAS_SIER
)
268 regs
->dar
= mfspr(SPRN_SIER
);
271 * If this isn't a PMU exception (eg a software event) the SIAR is
272 * not valid. Use pt_regs.
274 * If it is a marked event use the SIAR.
276 * If the PMU doesn't update the SIAR for non marked events use
279 * If the PMU has HV/PR flags then check to see if they
280 * place the exception in userspace. If so, use pt_regs. In
281 * continuous sampling mode the SIAR and the PMU exception are
282 * not synchronised, so they may be many instructions apart.
283 * This can result in confusing backtraces. We still want
284 * hypervisor samples as well as samples in the kernel with
285 * interrupts off hence the userspace check.
287 if (TRAP(regs
) != 0xf00)
291 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
293 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
298 regs
->result
= use_siar
;
302 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
305 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
311 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
312 * must be sampled only if the SIAR-valid bit is set.
314 * For unmarked instructions and for processors that don't have the SIAR-Valid
315 * bit, assume that SIAR is valid.
317 static inline int siar_valid(struct pt_regs
*regs
)
319 unsigned long mmcra
= regs
->dsisr
;
320 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
323 if (ppmu
->flags
& PPMU_HAS_SIER
)
324 return regs
->dar
& SIER_SIAR_VALID
;
326 if (ppmu
->flags
& PPMU_SIAR_VALID
)
327 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
334 /* Reset all possible BHRB entries */
335 static void power_pmu_bhrb_reset(void)
337 asm volatile(PPC_CLRBHRB
);
340 static void power_pmu_bhrb_enable(struct perf_event
*event
)
342 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
347 /* Clear BHRB if we changed task context to avoid data leaks */
348 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
349 power_pmu_bhrb_reset();
350 cpuhw
->bhrb_context
= event
->ctx
;
355 static void power_pmu_bhrb_disable(struct perf_event
*event
)
357 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
363 WARN_ON_ONCE(cpuhw
->bhrb_users
< 0);
365 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
366 /* BHRB cannot be turned off when other
367 * events are active on the PMU.
370 /* avoid stale pointer */
371 cpuhw
->bhrb_context
= NULL
;
375 /* Called from ctxsw to prevent one process's branch entries to
376 * mingle with the other process's entries during context switch.
378 void power_pmu_flush_branch_stack(void)
381 power_pmu_bhrb_reset();
383 /* Calculate the to address for a branch */
384 static __u64
power_pmu_bhrb_to(u64 addr
)
390 if (is_kernel_addr(addr
))
391 return branch_target((unsigned int *)addr
);
393 /* Userspace: need copy instruction here then translate it */
395 ret
= __get_user_inatomic(instr
, (unsigned int __user
*)addr
);
402 target
= branch_target(&instr
);
403 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
406 /* Translate relative branch target from kernel to user address */
407 return target
- (unsigned long)&instr
+ addr
;
410 /* Processing BHRB entries */
411 void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
)
415 int r_index
, u_index
, pred
;
419 while (r_index
< ppmu
->bhrb_nr
) {
420 /* Assembly read function */
421 val
= read_bhrb(r_index
++);
423 /* Terminal marker: End of valid BHRB entries */
426 addr
= val
& BHRB_EA
;
427 pred
= val
& BHRB_PREDICTION
;
433 /* Branches are read most recent first (ie. mfbhrb 0 is
434 * the most recent branch).
435 * There are two types of valid entries:
436 * 1) a target entry which is the to address of a
437 * computed goto like a blr,bctr,btar. The next
438 * entry read from the bhrb will be branch
439 * corresponding to this target (ie. the actual
440 * blr/bctr/btar instruction).
441 * 2) a from address which is an actual branch. If a
442 * target entry proceeds this, then this is the
443 * matching branch for that target. If this is not
444 * following a target entry, then this is a branch
445 * where the target is given as an immediate field
446 * in the instruction (ie. an i or b form branch).
447 * In this case we need to read the instruction from
448 * memory to determine the target/to address.
451 if (val
& BHRB_TARGET
) {
452 /* Target branches use two entries
453 * (ie. computed gotos/XL form)
455 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
456 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
457 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
459 /* Get from address in next entry */
460 val
= read_bhrb(r_index
++);
461 addr
= val
& BHRB_EA
;
462 if (val
& BHRB_TARGET
) {
463 /* Shouldn't have two targets in a
464 row.. Reset index and try again */
468 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
470 /* Branches to immediate field
472 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
473 cpuhw
->bhrb_entries
[u_index
].to
=
474 power_pmu_bhrb_to(addr
);
475 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
476 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
482 cpuhw
->bhrb_stack
.nr
= u_index
;
486 static bool is_ebb_event(struct perf_event
*event
)
489 * This could be a per-PMU callback, but we'd rather avoid the cost. We
490 * check that the PMU supports EBB, meaning those that don't can still
491 * use bit 63 of the event code for something else if they wish.
493 return (ppmu
->flags
& PPMU_ARCH_207S
) &&
494 ((event
->attr
.config
>> PERF_EVENT_CONFIG_EBB_SHIFT
) & 1);
497 static int ebb_event_check(struct perf_event
*event
)
499 struct perf_event
*leader
= event
->group_leader
;
501 /* Event and group leader must agree on EBB */
502 if (is_ebb_event(leader
) != is_ebb_event(event
))
505 if (is_ebb_event(event
)) {
506 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
509 if (!leader
->attr
.pinned
|| !leader
->attr
.exclusive
)
512 if (event
->attr
.freq
||
513 event
->attr
.inherit
||
514 event
->attr
.sample_type
||
515 event
->attr
.sample_period
||
516 event
->attr
.enable_on_exec
)
523 static void ebb_event_add(struct perf_event
*event
)
525 if (!is_ebb_event(event
) || current
->thread
.used_ebb
)
529 * IFF this is the first time we've added an EBB event, set
530 * PMXE in the user MMCR0 so we can detect when it's cleared by
531 * userspace. We need this so that we can context switch while
532 * userspace is in the EBB handler (where PMXE is 0).
534 current
->thread
.used_ebb
= 1;
535 current
->thread
.mmcr0
|= MMCR0_PMXE
;
538 static void ebb_switch_out(unsigned long mmcr0
)
540 if (!(mmcr0
& MMCR0_EBE
))
543 current
->thread
.siar
= mfspr(SPRN_SIAR
);
544 current
->thread
.sier
= mfspr(SPRN_SIER
);
545 current
->thread
.sdar
= mfspr(SPRN_SDAR
);
546 current
->thread
.mmcr0
= mmcr0
& MMCR0_USER_MASK
;
547 current
->thread
.mmcr2
= mfspr(SPRN_MMCR2
) & MMCR2_USER_MASK
;
550 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
552 unsigned long mmcr0
= cpuhw
->mmcr
[0];
557 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
558 mmcr0
|= MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC_U6
;
561 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
562 * with pmao_restore_workaround() because we may add PMAO but we never
565 mmcr0
|= current
->thread
.mmcr0
;
568 * Be careful not to set PMXE if userspace had it cleared. This is also
569 * compatible with pmao_restore_workaround() because it has already
570 * cleared PMXE and we leave PMAO alone.
572 if (!(current
->thread
.mmcr0
& MMCR0_PMXE
))
573 mmcr0
&= ~MMCR0_PMXE
;
575 mtspr(SPRN_SIAR
, current
->thread
.siar
);
576 mtspr(SPRN_SIER
, current
->thread
.sier
);
577 mtspr(SPRN_SDAR
, current
->thread
.sdar
);
580 * Merge the kernel & user values of MMCR2. The semantics we implement
581 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
582 * but not clear bits. If a task wants to be able to clear bits, ie.
583 * unfreeze counters, it should not set exclude_xxx in its events and
584 * instead manage the MMCR2 entirely by itself.
586 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
[3] | current
->thread
.mmcr2
);
591 static void pmao_restore_workaround(bool ebb
)
595 if (!cpu_has_feature(CPU_FTR_PMAO_BUG
))
599 * On POWER8E there is a hardware defect which affects the PMU context
600 * switch logic, ie. power_pmu_disable/enable().
602 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
603 * by the hardware. Sometime later the actual PMU exception is
606 * If we context switch, or simply disable/enable, the PMU prior to the
607 * exception arriving, the exception will be lost when we clear PMAO.
609 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
610 * set, and this _should_ generate an exception. However because of the
611 * defect no exception is generated when we write PMAO, and we get
612 * stuck with no counters counting but no exception delivered.
614 * The workaround is to detect this case and tweak the hardware to
615 * create another pending PMU exception.
617 * We do that by setting up PMC6 (cycles) for an imminent overflow and
618 * enabling the PMU. That causes a new exception to be generated in the
619 * chip, but we don't take it yet because we have interrupts hard
620 * disabled. We then write back the PMU state as we want it to be seen
621 * by the exception handler. When we reenable interrupts the exception
622 * handler will be called and see the correct state.
624 * The logic is the same for EBB, except that the exception is gated by
625 * us having interrupts hard disabled as well as the fact that we are
626 * not in userspace. The exception is finally delivered when we return
630 /* Only if PMAO is set and PMAO_SYNC is clear */
631 if ((current
->thread
.mmcr0
& (MMCR0_PMAO
| MMCR0_PMAO_SYNC
)) != MMCR0_PMAO
)
634 /* If we're doing EBB, only if BESCR[GE] is set */
635 if (ebb
&& !(current
->thread
.bescr
& BESCR_GE
))
639 * We are already soft-disabled in power_pmu_enable(). We need to hard
640 * enable to actually prevent the PMU exception from firing.
645 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
646 * Using read/write_pmc() in a for loop adds 12 function calls and
647 * almost doubles our code size.
649 pmcs
[0] = mfspr(SPRN_PMC1
);
650 pmcs
[1] = mfspr(SPRN_PMC2
);
651 pmcs
[2] = mfspr(SPRN_PMC3
);
652 pmcs
[3] = mfspr(SPRN_PMC4
);
653 pmcs
[4] = mfspr(SPRN_PMC5
);
654 pmcs
[5] = mfspr(SPRN_PMC6
);
656 /* Ensure all freeze bits are unset */
657 mtspr(SPRN_MMCR2
, 0);
659 /* Set up PMC6 to overflow in one cycle */
660 mtspr(SPRN_PMC6
, 0x7FFFFFFE);
662 /* Enable exceptions and unfreeze PMC6 */
663 mtspr(SPRN_MMCR0
, MMCR0_PMXE
| MMCR0_PMCjCE
| MMCR0_PMAO
);
665 /* Now we need to refreeze and restore the PMCs */
666 mtspr(SPRN_MMCR0
, MMCR0_FC
| MMCR0_PMAO
);
668 mtspr(SPRN_PMC1
, pmcs
[0]);
669 mtspr(SPRN_PMC2
, pmcs
[1]);
670 mtspr(SPRN_PMC3
, pmcs
[2]);
671 mtspr(SPRN_PMC4
, pmcs
[3]);
672 mtspr(SPRN_PMC5
, pmcs
[4]);
673 mtspr(SPRN_PMC6
, pmcs
[5]);
675 #endif /* CONFIG_PPC64 */
677 static void perf_event_interrupt(struct pt_regs
*regs
);
680 * Read one performance monitor counter (PMC).
682 static unsigned long read_pmc(int idx
)
688 val
= mfspr(SPRN_PMC1
);
691 val
= mfspr(SPRN_PMC2
);
694 val
= mfspr(SPRN_PMC3
);
697 val
= mfspr(SPRN_PMC4
);
700 val
= mfspr(SPRN_PMC5
);
703 val
= mfspr(SPRN_PMC6
);
707 val
= mfspr(SPRN_PMC7
);
710 val
= mfspr(SPRN_PMC8
);
712 #endif /* CONFIG_PPC64 */
714 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
723 static void write_pmc(int idx
, unsigned long val
)
727 mtspr(SPRN_PMC1
, val
);
730 mtspr(SPRN_PMC2
, val
);
733 mtspr(SPRN_PMC3
, val
);
736 mtspr(SPRN_PMC4
, val
);
739 mtspr(SPRN_PMC5
, val
);
742 mtspr(SPRN_PMC6
, val
);
746 mtspr(SPRN_PMC7
, val
);
749 mtspr(SPRN_PMC8
, val
);
751 #endif /* CONFIG_PPC64 */
753 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
757 /* Called from sysrq_handle_showregs() */
758 void perf_event_print_debug(void)
760 unsigned long sdar
, sier
, flags
;
761 u32 pmcs
[MAX_HWEVENTS
];
764 if (!ppmu
->n_counter
)
767 local_irq_save(flags
);
769 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
770 smp_processor_id(), ppmu
->name
, ppmu
->n_counter
);
772 for (i
= 0; i
< ppmu
->n_counter
; i
++)
773 pmcs
[i
] = read_pmc(i
+ 1);
775 for (; i
< MAX_HWEVENTS
; i
++)
776 pmcs
[i
] = 0xdeadbeef;
778 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
779 pmcs
[0], pmcs
[1], pmcs
[2], pmcs
[3]);
781 if (ppmu
->n_counter
> 4)
782 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
783 pmcs
[4], pmcs
[5], pmcs
[6], pmcs
[7]);
785 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
786 mfspr(SPRN_MMCR0
), mfspr(SPRN_MMCR1
), mfspr(SPRN_MMCRA
));
790 sdar
= mfspr(SPRN_SDAR
);
792 if (ppmu
->flags
& PPMU_HAS_SIER
)
793 sier
= mfspr(SPRN_SIER
);
795 if (ppmu
->flags
& PPMU_ARCH_207S
) {
796 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
797 mfspr(SPRN_MMCR2
), mfspr(SPRN_EBBHR
));
798 pr_info("EBBRR: %016lx BESCR: %016lx\n",
799 mfspr(SPRN_EBBRR
), mfspr(SPRN_BESCR
));
802 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
803 mfspr(SPRN_SIAR
), sdar
, sier
);
805 local_irq_restore(flags
);
809 * Check if a set of events can all go on the PMU at once.
810 * If they can't, this will look at alternative codes for the events
811 * and see if any combination of alternative codes is feasible.
812 * The feasible set is returned in event_id[].
814 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
815 u64 event_id
[], unsigned int cflags
[],
818 unsigned long mask
, value
, nv
;
819 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
820 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
822 unsigned long addf
= ppmu
->add_fields
;
823 unsigned long tadd
= ppmu
->test_adder
;
825 if (n_ev
> ppmu
->n_counter
)
828 /* First see if the events will go on as-is */
829 for (i
= 0; i
< n_ev
; ++i
) {
830 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
831 && !ppmu
->limited_pmc_event(event_id
[i
])) {
832 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
833 cpuhw
->alternatives
[i
]);
834 event_id
[i
] = cpuhw
->alternatives
[i
][0];
836 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
837 &cpuhw
->avalues
[i
][0]))
841 for (i
= 0; i
< n_ev
; ++i
) {
842 nv
= (value
| cpuhw
->avalues
[i
][0]) +
843 (value
& cpuhw
->avalues
[i
][0] & addf
);
844 if ((((nv
+ tadd
) ^ value
) & mask
) != 0 ||
845 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) &
846 cpuhw
->amasks
[i
][0]) != 0)
849 mask
|= cpuhw
->amasks
[i
][0];
852 return 0; /* all OK */
854 /* doesn't work, gather alternatives... */
855 if (!ppmu
->get_alternatives
)
857 for (i
= 0; i
< n_ev
; ++i
) {
859 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
860 cpuhw
->alternatives
[i
]);
861 for (j
= 1; j
< n_alt
[i
]; ++j
)
862 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
863 &cpuhw
->amasks
[i
][j
],
864 &cpuhw
->avalues
[i
][j
]);
867 /* enumerate all possibilities and see if any will work */
870 value
= mask
= nv
= 0;
873 /* we're backtracking, restore context */
879 * See if any alternative k for event_id i,
880 * where k > j, will satisfy the constraints.
882 while (++j
< n_alt
[i
]) {
883 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
884 (value
& cpuhw
->avalues
[i
][j
] & addf
);
885 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
886 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
887 & cpuhw
->amasks
[i
][j
]) == 0)
892 * No feasible alternative, backtrack
893 * to event_id i-1 and continue enumerating its
894 * alternatives from where we got up to.
900 * Found a feasible alternative for event_id i,
901 * remember where we got up to with this event_id,
902 * go on to the next event_id, and start with
903 * the first alternative for it.
909 mask
|= cpuhw
->amasks
[i
][j
];
915 /* OK, we have a feasible combination, tell the caller the solution */
916 for (i
= 0; i
< n_ev
; ++i
)
917 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
922 * Check if newly-added events have consistent settings for
923 * exclude_{user,kernel,hv} with each other and any previously
926 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
927 int n_prev
, int n_new
)
929 int eu
= 0, ek
= 0, eh
= 0;
931 struct perf_event
*event
;
934 * If the PMU we're on supports per event exclude settings then we
935 * don't need to do any of this logic. NB. This assumes no PMU has both
936 * per event exclude and limited PMCs.
938 if (ppmu
->flags
& PPMU_ARCH_207S
)
946 for (i
= 0; i
< n
; ++i
) {
947 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
948 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
953 eu
= event
->attr
.exclude_user
;
954 ek
= event
->attr
.exclude_kernel
;
955 eh
= event
->attr
.exclude_hv
;
957 } else if (event
->attr
.exclude_user
!= eu
||
958 event
->attr
.exclude_kernel
!= ek
||
959 event
->attr
.exclude_hv
!= eh
) {
965 for (i
= 0; i
< n
; ++i
)
966 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
967 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
972 static u64
check_and_compute_delta(u64 prev
, u64 val
)
974 u64 delta
= (val
- prev
) & 0xfffffffful
;
977 * POWER7 can roll back counter values, if the new value is smaller
978 * than the previous value it will cause the delta and the counter to
979 * have bogus values unless we rolled a counter over. If a coutner is
980 * rolled back, it will be smaller, but within 256, which is the maximum
981 * number of events to rollback at once. If we dectect a rollback
982 * return 0. This can lead to a small lack of precision in the
985 if (prev
> val
&& (prev
- val
) < 256)
991 static void power_pmu_read(struct perf_event
*event
)
993 s64 val
, delta
, prev
;
995 if (event
->hw
.state
& PERF_HES_STOPPED
)
1001 if (is_ebb_event(event
)) {
1002 val
= read_pmc(event
->hw
.idx
);
1003 local64_set(&event
->hw
.prev_count
, val
);
1008 * Performance monitor interrupts come even when interrupts
1009 * are soft-disabled, as long as interrupts are hard-enabled.
1010 * Therefore we treat them like NMIs.
1013 prev
= local64_read(&event
->hw
.prev_count
);
1015 val
= read_pmc(event
->hw
.idx
);
1016 delta
= check_and_compute_delta(prev
, val
);
1019 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
1021 local64_add(delta
, &event
->count
);
1024 * A number of places program the PMC with (0x80000000 - period_left).
1025 * We never want period_left to be less than 1 because we will program
1026 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1027 * roll around to 0 before taking an exception. We have seen this
1030 * To fix this, clamp the minimum value of period_left to 1.
1033 prev
= local64_read(&event
->hw
.period_left
);
1037 } while (local64_cmpxchg(&event
->hw
.period_left
, prev
, val
) != prev
);
1041 * On some machines, PMC5 and PMC6 can't be written, don't respect
1042 * the freeze conditions, and don't generate interrupts. This tells
1043 * us if `event' is using such a PMC.
1045 static int is_limited_pmc(int pmcnum
)
1047 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
1048 && (pmcnum
== 5 || pmcnum
== 6);
1051 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
1052 unsigned long pmc5
, unsigned long pmc6
)
1054 struct perf_event
*event
;
1055 u64 val
, prev
, delta
;
1058 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1059 event
= cpuhw
->limited_counter
[i
];
1062 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1063 prev
= local64_read(&event
->hw
.prev_count
);
1065 delta
= check_and_compute_delta(prev
, val
);
1067 local64_add(delta
, &event
->count
);
1071 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
1072 unsigned long pmc5
, unsigned long pmc6
)
1074 struct perf_event
*event
;
1078 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1079 event
= cpuhw
->limited_counter
[i
];
1080 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
1081 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1082 prev
= local64_read(&event
->hw
.prev_count
);
1083 if (check_and_compute_delta(prev
, val
))
1084 local64_set(&event
->hw
.prev_count
, val
);
1085 perf_event_update_userpage(event
);
1090 * Since limited events don't respect the freeze conditions, we
1091 * have to read them immediately after freezing or unfreezing the
1092 * other events. We try to keep the values from the limited
1093 * events as consistent as possible by keeping the delay (in
1094 * cycles and instructions) between freezing/unfreezing and reading
1095 * the limited events as small and consistent as possible.
1096 * Therefore, if any limited events are in use, we read them
1097 * both, and always in the same order, to minimize variability,
1098 * and do it inside the same asm that writes MMCR0.
1100 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
1102 unsigned long pmc5
, pmc6
;
1104 if (!cpuhw
->n_limited
) {
1105 mtspr(SPRN_MMCR0
, mmcr0
);
1110 * Write MMCR0, then read PMC5 and PMC6 immediately.
1111 * To ensure we don't get a performance monitor interrupt
1112 * between writing MMCR0 and freezing/thawing the limited
1113 * events, we first write MMCR0 with the event overflow
1114 * interrupt enable bits turned off.
1116 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1117 : "=&r" (pmc5
), "=&r" (pmc6
)
1118 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
1120 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
1122 if (mmcr0
& MMCR0_FC
)
1123 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
1125 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
1128 * Write the full MMCR0 including the event overflow interrupt
1129 * enable bits, if necessary.
1131 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1132 mtspr(SPRN_MMCR0
, mmcr0
);
1136 * Disable all events to prevent PMU interrupts and to allow
1137 * events to be added or removed.
1139 static void power_pmu_disable(struct pmu
*pmu
)
1141 struct cpu_hw_events
*cpuhw
;
1142 unsigned long flags
, mmcr0
, val
;
1146 local_irq_save(flags
);
1147 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1149 if (!cpuhw
->disabled
) {
1151 * Check if we ever enabled the PMU on this cpu.
1153 if (!cpuhw
->pmcs_enabled
) {
1155 cpuhw
->pmcs_enabled
= 1;
1159 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1161 val
= mmcr0
= mfspr(SPRN_MMCR0
);
1163 val
&= ~(MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC
| MMCR0_PMAO
|
1167 * The barrier is to make sure the mtspr has been
1168 * executed and the PMU has frozen the events etc.
1171 write_mmcr0(cpuhw
, val
);
1175 * Disable instruction sampling if it was enabled
1177 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1179 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1183 cpuhw
->disabled
= 1;
1186 ebb_switch_out(mmcr0
);
1189 local_irq_restore(flags
);
1193 * Re-enable all events if disable == 0.
1194 * If we were previously disabled and events were added, then
1195 * put the new config on the PMU.
1197 static void power_pmu_enable(struct pmu
*pmu
)
1199 struct perf_event
*event
;
1200 struct cpu_hw_events
*cpuhw
;
1201 unsigned long flags
;
1203 unsigned long val
, mmcr0
;
1205 unsigned int hwc_index
[MAX_HWEVENTS
];
1212 local_irq_save(flags
);
1214 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1215 if (!cpuhw
->disabled
)
1218 if (cpuhw
->n_events
== 0) {
1219 ppc_set_pmu_inuse(0);
1223 cpuhw
->disabled
= 0;
1226 * EBB requires an exclusive group and all events must have the EBB
1227 * flag set, or not set, so we can just check a single event. Also we
1228 * know we have at least one event.
1230 ebb
= is_ebb_event(cpuhw
->event
[0]);
1233 * If we didn't change anything, or only removed events,
1234 * no need to recalculate MMCR* settings and reset the PMCs.
1235 * Just reenable the PMU with the current MMCR* settings
1236 * (possibly updated for removal of events).
1238 if (!cpuhw
->n_added
) {
1239 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1240 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1245 * Clear all MMCR settings and recompute them for the new set of events.
1247 memset(cpuhw
->mmcr
, 0, sizeof(cpuhw
->mmcr
));
1249 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
1250 cpuhw
->mmcr
, cpuhw
->event
)) {
1251 /* shouldn't ever get here */
1252 printk(KERN_ERR
"oops compute_mmcr failed\n");
1256 if (!(ppmu
->flags
& PPMU_ARCH_207S
)) {
1258 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1259 * bits for the first event. We have already checked that all
1260 * events have the same value for these bits as the first event.
1262 event
= cpuhw
->event
[0];
1263 if (event
->attr
.exclude_user
)
1264 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
1265 if (event
->attr
.exclude_kernel
)
1266 cpuhw
->mmcr
[0] |= freeze_events_kernel
;
1267 if (event
->attr
.exclude_hv
)
1268 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
1272 * Write the new configuration to MMCR* with the freeze
1273 * bit set and set the hardware events to their initial values.
1274 * Then unfreeze the events.
1276 ppc_set_pmu_inuse(1);
1277 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1278 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1279 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1281 if (ppmu
->flags
& PPMU_ARCH_207S
)
1282 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
[3]);
1285 * Read off any pre-existing events that need to move
1288 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1289 event
= cpuhw
->event
[i
];
1290 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
1291 power_pmu_read(event
);
1292 write_pmc(event
->hw
.idx
, 0);
1298 * Initialize the PMCs for all the new and moved events.
1300 cpuhw
->n_limited
= n_lim
= 0;
1301 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1302 event
= cpuhw
->event
[i
];
1305 idx
= hwc_index
[i
] + 1;
1306 if (is_limited_pmc(idx
)) {
1307 cpuhw
->limited_counter
[n_lim
] = event
;
1308 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1314 val
= local64_read(&event
->hw
.prev_count
);
1317 if (event
->hw
.sample_period
) {
1318 left
= local64_read(&event
->hw
.period_left
);
1319 if (left
< 0x80000000L
)
1320 val
= 0x80000000L
- left
;
1322 local64_set(&event
->hw
.prev_count
, val
);
1325 event
->hw
.idx
= idx
;
1326 if (event
->hw
.state
& PERF_HES_STOPPED
)
1328 write_pmc(idx
, val
);
1330 perf_event_update_userpage(event
);
1332 cpuhw
->n_limited
= n_lim
;
1333 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
1336 pmao_restore_workaround(ebb
);
1338 mmcr0
= ebb_switch_in(ebb
, cpuhw
);
1341 if (cpuhw
->bhrb_users
)
1342 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1344 write_mmcr0(cpuhw
, mmcr0
);
1347 * Enable instruction sampling if necessary
1349 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1351 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
1356 local_irq_restore(flags
);
1359 static int collect_events(struct perf_event
*group
, int max_count
,
1360 struct perf_event
*ctrs
[], u64
*events
,
1361 unsigned int *flags
)
1364 struct perf_event
*event
;
1366 if (!is_software_event(group
)) {
1370 flags
[n
] = group
->hw
.event_base
;
1371 events
[n
++] = group
->hw
.config
;
1373 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1374 if (!is_software_event(event
) &&
1375 event
->state
!= PERF_EVENT_STATE_OFF
) {
1379 flags
[n
] = event
->hw
.event_base
;
1380 events
[n
++] = event
->hw
.config
;
1387 * Add a event to the PMU.
1388 * If all events are not already frozen, then we disable and
1389 * re-enable the PMU in order to get hw_perf_enable to do the
1390 * actual work of reconfiguring the PMU.
1392 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1394 struct cpu_hw_events
*cpuhw
;
1395 unsigned long flags
;
1399 local_irq_save(flags
);
1400 perf_pmu_disable(event
->pmu
);
1403 * Add the event to the list (if there is room)
1404 * and check whether the total set is still feasible.
1406 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1407 n0
= cpuhw
->n_events
;
1408 if (n0
>= ppmu
->n_counter
)
1410 cpuhw
->event
[n0
] = event
;
1411 cpuhw
->events
[n0
] = event
->hw
.config
;
1412 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1415 * This event may have been disabled/stopped in record_and_restart()
1416 * because we exceeded the ->event_limit. If re-starting the event,
1417 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1418 * notification is re-enabled.
1420 if (!(ef_flags
& PERF_EF_START
))
1421 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1423 event
->hw
.state
= 0;
1426 * If group events scheduling transaction was started,
1427 * skip the schedulability test here, it will be performed
1428 * at commit time(->commit_txn) as a whole
1430 if (cpuhw
->group_flag
& PERF_EVENT_TXN
)
1433 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1435 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1437 event
->hw
.config
= cpuhw
->events
[n0
];
1440 ebb_event_add(event
);
1447 if (has_branch_stack(event
)) {
1448 power_pmu_bhrb_enable(event
);
1449 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1450 event
->attr
.branch_sample_type
);
1453 perf_pmu_enable(event
->pmu
);
1454 local_irq_restore(flags
);
1459 * Remove a event from the PMU.
1461 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1463 struct cpu_hw_events
*cpuhw
;
1465 unsigned long flags
;
1467 local_irq_save(flags
);
1468 perf_pmu_disable(event
->pmu
);
1470 power_pmu_read(event
);
1472 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1473 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1474 if (event
== cpuhw
->event
[i
]) {
1475 while (++i
< cpuhw
->n_events
) {
1476 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1477 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1478 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1481 ppmu
->disable_pmc(event
->hw
.idx
- 1, cpuhw
->mmcr
);
1482 if (event
->hw
.idx
) {
1483 write_pmc(event
->hw
.idx
, 0);
1486 perf_event_update_userpage(event
);
1490 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1491 if (event
== cpuhw
->limited_counter
[i
])
1493 if (i
< cpuhw
->n_limited
) {
1494 while (++i
< cpuhw
->n_limited
) {
1495 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1496 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1500 if (cpuhw
->n_events
== 0) {
1501 /* disable exceptions if no events are running */
1502 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1505 if (has_branch_stack(event
))
1506 power_pmu_bhrb_disable(event
);
1508 perf_pmu_enable(event
->pmu
);
1509 local_irq_restore(flags
);
1513 * POWER-PMU does not support disabling individual counters, hence
1514 * program their cycle counter to their max value and ignore the interrupts.
1517 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1519 unsigned long flags
;
1523 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1526 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1529 if (ef_flags
& PERF_EF_RELOAD
)
1530 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1532 local_irq_save(flags
);
1533 perf_pmu_disable(event
->pmu
);
1535 event
->hw
.state
= 0;
1536 left
= local64_read(&event
->hw
.period_left
);
1539 if (left
< 0x80000000L
)
1540 val
= 0x80000000L
- left
;
1542 write_pmc(event
->hw
.idx
, val
);
1544 perf_event_update_userpage(event
);
1545 perf_pmu_enable(event
->pmu
);
1546 local_irq_restore(flags
);
1549 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1551 unsigned long flags
;
1553 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1556 if (event
->hw
.state
& PERF_HES_STOPPED
)
1559 local_irq_save(flags
);
1560 perf_pmu_disable(event
->pmu
);
1562 power_pmu_read(event
);
1563 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1564 write_pmc(event
->hw
.idx
, 0);
1566 perf_event_update_userpage(event
);
1567 perf_pmu_enable(event
->pmu
);
1568 local_irq_restore(flags
);
1572 * Start group events scheduling transaction
1573 * Set the flag to make pmu::enable() not perform the
1574 * schedulability test, it will be performed at commit time
1576 void power_pmu_start_txn(struct pmu
*pmu
)
1578 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1580 perf_pmu_disable(pmu
);
1581 cpuhw
->group_flag
|= PERF_EVENT_TXN
;
1582 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1586 * Stop group events scheduling transaction
1587 * Clear the flag and pmu::enable() will perform the
1588 * schedulability test.
1590 void power_pmu_cancel_txn(struct pmu
*pmu
)
1592 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1594 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1595 perf_pmu_enable(pmu
);
1599 * Commit group events scheduling transaction
1600 * Perform the group schedulability test as a whole
1601 * Return 0 if success
1603 int power_pmu_commit_txn(struct pmu
*pmu
)
1605 struct cpu_hw_events
*cpuhw
;
1610 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1611 n
= cpuhw
->n_events
;
1612 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1614 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1618 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1619 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1621 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1622 perf_pmu_enable(pmu
);
1627 * Return 1 if we might be able to put event on a limited PMC,
1629 * A event can only go on a limited PMC if it counts something
1630 * that a limited PMC can count, doesn't require interrupts, and
1631 * doesn't exclude any processor mode.
1633 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1637 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1639 if (event
->attr
.exclude_user
1640 || event
->attr
.exclude_kernel
1641 || event
->attr
.exclude_hv
1642 || event
->attr
.sample_period
)
1645 if (ppmu
->limited_pmc_event(ev
))
1649 * The requested event_id isn't on a limited PMC already;
1650 * see if any alternative code goes on a limited PMC.
1652 if (!ppmu
->get_alternatives
)
1655 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1656 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1662 * Find an alternative event_id that goes on a normal PMC, if possible,
1663 * and return the event_id code, or 0 if there is no such alternative.
1664 * (Note: event_id code 0 is "don't count" on all machines.)
1666 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1668 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1671 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1672 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1678 /* Number of perf_events counting hardware events */
1679 static atomic_t num_events
;
1680 /* Used to avoid races in calling reserve/release_pmc_hardware */
1681 static DEFINE_MUTEX(pmc_reserve_mutex
);
1684 * Release the PMU if this is the last perf_event.
1686 static void hw_perf_event_destroy(struct perf_event
*event
)
1688 if (!atomic_add_unless(&num_events
, -1, 1)) {
1689 mutex_lock(&pmc_reserve_mutex
);
1690 if (atomic_dec_return(&num_events
) == 0)
1691 release_pmc_hardware();
1692 mutex_unlock(&pmc_reserve_mutex
);
1697 * Translate a generic cache event_id config to a raw event_id code.
1699 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1701 unsigned long type
, op
, result
;
1704 if (!ppmu
->cache_events
)
1708 type
= config
& 0xff;
1709 op
= (config
>> 8) & 0xff;
1710 result
= (config
>> 16) & 0xff;
1712 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1713 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1714 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1717 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1726 static int power_pmu_event_init(struct perf_event
*event
)
1729 unsigned long flags
;
1730 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1731 u64 events
[MAX_HWEVENTS
];
1732 unsigned int cflags
[MAX_HWEVENTS
];
1735 struct cpu_hw_events
*cpuhw
;
1740 if (has_branch_stack(event
)) {
1741 /* PMU has BHRB enabled */
1742 if (!(ppmu
->flags
& PPMU_ARCH_207S
))
1746 switch (event
->attr
.type
) {
1747 case PERF_TYPE_HARDWARE
:
1748 ev
= event
->attr
.config
;
1749 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1751 ev
= ppmu
->generic_events
[ev
];
1753 case PERF_TYPE_HW_CACHE
:
1754 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1759 ev
= event
->attr
.config
;
1765 event
->hw
.config_base
= ev
;
1769 * If we are not running on a hypervisor, force the
1770 * exclude_hv bit to 0 so that we don't care what
1771 * the user set it to.
1773 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1774 event
->attr
.exclude_hv
= 0;
1777 * If this is a per-task event, then we can use
1778 * PM_RUN_* events interchangeably with their non RUN_*
1779 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1780 * XXX we should check if the task is an idle task.
1783 if (event
->attach_state
& PERF_ATTACH_TASK
)
1784 flags
|= PPMU_ONLY_COUNT_RUN
;
1787 * If this machine has limited events, check whether this
1788 * event_id could go on a limited event.
1790 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1791 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1792 flags
|= PPMU_LIMITED_PMC_OK
;
1793 } else if (ppmu
->limited_pmc_event(ev
)) {
1795 * The requested event_id is on a limited PMC,
1796 * but we can't use a limited PMC; see if any
1797 * alternative goes on a normal PMC.
1799 ev
= normal_pmc_alternative(ev
, flags
);
1805 /* Extra checks for EBB */
1806 err
= ebb_event_check(event
);
1811 * If this is in a group, check if it can go on with all the
1812 * other hardware events in the group. We assume the event
1813 * hasn't been linked into its leader's sibling list at this point.
1816 if (event
->group_leader
!= event
) {
1817 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
1818 ctrs
, events
, cflags
);
1825 if (check_excludes(ctrs
, cflags
, n
, 1))
1828 cpuhw
= &get_cpu_var(cpu_hw_events
);
1829 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
1831 if (has_branch_stack(event
)) {
1832 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1833 event
->attr
.branch_sample_type
);
1835 if(cpuhw
->bhrb_filter
== -1)
1839 put_cpu_var(cpu_hw_events
);
1843 event
->hw
.config
= events
[n
];
1844 event
->hw
.event_base
= cflags
[n
];
1845 event
->hw
.last_period
= event
->hw
.sample_period
;
1846 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
1849 * For EBB events we just context switch the PMC value, we don't do any
1850 * of the sample_period logic. We use hw.prev_count for this.
1852 if (is_ebb_event(event
))
1853 local64_set(&event
->hw
.prev_count
, 0);
1856 * See if we need to reserve the PMU.
1857 * If no events are currently in use, then we have to take a
1858 * mutex to ensure that we don't race with another task doing
1859 * reserve_pmc_hardware or release_pmc_hardware.
1862 if (!atomic_inc_not_zero(&num_events
)) {
1863 mutex_lock(&pmc_reserve_mutex
);
1864 if (atomic_read(&num_events
) == 0 &&
1865 reserve_pmc_hardware(perf_event_interrupt
))
1868 atomic_inc(&num_events
);
1869 mutex_unlock(&pmc_reserve_mutex
);
1871 event
->destroy
= hw_perf_event_destroy
;
1876 static int power_pmu_event_idx(struct perf_event
*event
)
1878 return event
->hw
.idx
;
1881 ssize_t
power_events_sysfs_show(struct device
*dev
,
1882 struct device_attribute
*attr
, char *page
)
1884 struct perf_pmu_events_attr
*pmu_attr
;
1886 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
1888 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
1891 struct pmu power_pmu
= {
1892 .pmu_enable
= power_pmu_enable
,
1893 .pmu_disable
= power_pmu_disable
,
1894 .event_init
= power_pmu_event_init
,
1895 .add
= power_pmu_add
,
1896 .del
= power_pmu_del
,
1897 .start
= power_pmu_start
,
1898 .stop
= power_pmu_stop
,
1899 .read
= power_pmu_read
,
1900 .start_txn
= power_pmu_start_txn
,
1901 .cancel_txn
= power_pmu_cancel_txn
,
1902 .commit_txn
= power_pmu_commit_txn
,
1903 .event_idx
= power_pmu_event_idx
,
1904 .flush_branch_stack
= power_pmu_flush_branch_stack
,
1908 * A counter has overflowed; update its count and record
1909 * things if requested. Note that interrupts are hard-disabled
1910 * here so there is no possibility of being interrupted.
1912 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
1913 struct pt_regs
*regs
)
1915 u64 period
= event
->hw
.sample_period
;
1916 s64 prev
, delta
, left
;
1919 if (event
->hw
.state
& PERF_HES_STOPPED
) {
1920 write_pmc(event
->hw
.idx
, 0);
1924 /* we don't have to worry about interrupts here */
1925 prev
= local64_read(&event
->hw
.prev_count
);
1926 delta
= check_and_compute_delta(prev
, val
);
1927 local64_add(delta
, &event
->count
);
1930 * See if the total period for this event has expired,
1931 * and update for the next period.
1934 left
= local64_read(&event
->hw
.period_left
) - delta
;
1942 record
= siar_valid(regs
);
1943 event
->hw
.last_period
= event
->hw
.sample_period
;
1945 if (left
< 0x80000000LL
)
1946 val
= 0x80000000LL
- left
;
1949 write_pmc(event
->hw
.idx
, val
);
1950 local64_set(&event
->hw
.prev_count
, val
);
1951 local64_set(&event
->hw
.period_left
, left
);
1952 perf_event_update_userpage(event
);
1955 * Finally record data if requested.
1958 struct perf_sample_data data
;
1960 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
1962 if (event
->attr
.sample_type
& PERF_SAMPLE_ADDR
)
1963 perf_get_data_addr(regs
, &data
.addr
);
1965 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
1966 struct cpu_hw_events
*cpuhw
;
1967 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1968 power_pmu_bhrb_read(cpuhw
);
1969 data
.br_stack
= &cpuhw
->bhrb_stack
;
1972 if (perf_event_overflow(event
, &data
, regs
))
1973 power_pmu_stop(event
, 0);
1978 * Called from generic code to get the misc flags (i.e. processor mode)
1981 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1983 u32 flags
= perf_get_misc_flags(regs
);
1987 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
1988 PERF_RECORD_MISC_KERNEL
;
1992 * Called from generic code to get the instruction pointer
1995 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1997 bool use_siar
= regs_use_siar(regs
);
1999 if (use_siar
&& siar_valid(regs
))
2000 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
2002 return 0; // no valid instruction pointer
2007 static bool pmc_overflow_power7(unsigned long val
)
2010 * Events on POWER7 can roll back if a speculative event doesn't
2011 * eventually complete. Unfortunately in some rare cases they will
2012 * raise a performance monitor exception. We need to catch this to
2013 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2014 * cycles from overflow.
2016 * We only do this if the first pass fails to find any overflowing
2017 * PMCs because a user might set a period of less than 256 and we
2018 * don't want to mistakenly reset them.
2020 if ((0x80000000 - val
) <= 256)
2026 static bool pmc_overflow(unsigned long val
)
2035 * Performance monitor interrupt stuff
2037 static void perf_event_interrupt(struct pt_regs
*regs
)
2040 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
2041 struct perf_event
*event
;
2042 unsigned long val
[8];
2046 if (cpuhw
->n_limited
)
2047 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
2050 perf_read_regs(regs
);
2052 nmi
= perf_intr_is_nmi(regs
);
2058 /* Read all the PMCs since we'll need them a bunch of times */
2059 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
2060 val
[i
] = read_pmc(i
+ 1);
2062 /* Try to find what caused the IRQ */
2064 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
2065 if (!pmc_overflow(val
[i
]))
2067 if (is_limited_pmc(i
+ 1))
2068 continue; /* these won't generate IRQs */
2070 * We've found one that's overflowed. For active
2071 * counters we need to log this. For inactive
2072 * counters, we need to reset it anyway
2076 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
2077 event
= cpuhw
->event
[j
];
2078 if (event
->hw
.idx
== (i
+ 1)) {
2080 record_and_restart(event
, val
[i
], regs
);
2085 /* reset non active counters that have overflowed */
2086 write_pmc(i
+ 1, 0);
2088 if (!found
&& pvr_version_is(PVR_POWER7
)) {
2089 /* check active counters for special buggy p7 overflow */
2090 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
2091 event
= cpuhw
->event
[i
];
2092 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
2094 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
2095 /* event has overflowed in a buggy way*/
2097 record_and_restart(event
,
2098 val
[event
->hw
.idx
- 1],
2103 if (!found
&& !nmi
&& printk_ratelimit())
2104 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
2107 * Reset MMCR0 to its normal value. This will set PMXE and
2108 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2109 * and thus allow interrupts to occur again.
2110 * XXX might want to use MSR.PM to keep the events frozen until
2111 * we get back out of this interrupt.
2113 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
2121 static void power_pmu_setup(int cpu
)
2123 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
2127 memset(cpuhw
, 0, sizeof(*cpuhw
));
2128 cpuhw
->mmcr
[0] = MMCR0_FC
;
2132 power_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
2134 unsigned int cpu
= (long)hcpu
;
2136 switch (action
& ~CPU_TASKS_FROZEN
) {
2137 case CPU_UP_PREPARE
:
2138 power_pmu_setup(cpu
);
2148 int register_power_pmu(struct power_pmu
*pmu
)
2151 return -EBUSY
; /* something's already registered */
2154 pr_info("%s performance monitor hardware support registered\n",
2157 power_pmu
.attr_groups
= ppmu
->attr_groups
;
2161 * Use FCHV to ignore kernel events if MSR.HV is set.
2163 if (mfmsr() & MSR_HV
)
2164 freeze_events_kernel
= MMCR0_FCHV
;
2165 #endif /* CONFIG_PPC64 */
2167 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
2168 perf_cpu_notifier(power_pmu_notifier
);