2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list
;
62 struct reada_control
*rc
;
71 struct list_head extctl
;
74 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
76 struct btrfs_device
*scheduled_for
;
83 struct list_head list
;
86 struct btrfs_device
*device
;
87 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
93 struct reada_machine_work
{
94 struct btrfs_work work
;
95 struct btrfs_fs_info
*fs_info
;
98 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
99 static void reada_control_release(struct kref
*kref
);
100 static void reada_zone_release(struct kref
*kref
);
101 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
102 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
104 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
105 struct btrfs_key
*top
, int level
, u64 generation
);
108 /* in case of err, eb might be NULL */
109 static int __readahead_hook(struct btrfs_root
*root
, struct extent_buffer
*eb
,
117 struct reada_extent
*re
;
118 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
119 struct list_head list
;
120 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
121 struct btrfs_device
*for_dev
;
124 level
= btrfs_header_level(eb
);
127 spin_lock(&fs_info
->reada_lock
);
128 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
131 spin_unlock(&fs_info
->reada_lock
);
136 spin_lock(&re
->lock
);
138 * just take the full list from the extent. afterwards we
139 * don't need the lock anymore
141 list_replace_init(&re
->extctl
, &list
);
142 for_dev
= re
->scheduled_for
;
143 re
->scheduled_for
= NULL
;
144 spin_unlock(&re
->lock
);
147 nritems
= level
? btrfs_header_nritems(eb
) : 0;
148 generation
= btrfs_header_generation(eb
);
150 * FIXME: currently we just set nritems to 0 if this is a leaf,
151 * effectively ignoring the content. In a next step we could
152 * trigger more readahead depending from the content, e.g.
153 * fetch the checksums for the extents in the leaf.
157 * this is the error case, the extent buffer has not been
158 * read correctly. We won't access anything from it and
159 * just cleanup our data structures. Effectively this will
160 * cut the branch below this node from read ahead.
166 for (i
= 0; i
< nritems
; i
++) {
167 struct reada_extctl
*rec
;
169 struct btrfs_key key
;
170 struct btrfs_key next_key
;
172 btrfs_node_key_to_cpu(eb
, &key
, i
);
174 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
177 bytenr
= btrfs_node_blockptr(eb
, i
);
178 n_gen
= btrfs_node_ptr_generation(eb
, i
);
180 list_for_each_entry(rec
, &list
, list
) {
181 struct reada_control
*rc
= rec
->rc
;
184 * if the generation doesn't match, just ignore this
185 * extctl. This will probably cut off a branch from
186 * prefetch. Alternatively one could start a new (sub-)
187 * prefetch for this branch, starting again from root.
188 * FIXME: move the generation check out of this loop
191 if (rec
->generation
!= generation
) {
192 btrfs_debug(root
->fs_info
,
193 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
194 key
.objectid
, key
.type
, key
.offset
,
195 rec
->generation
, generation
);
198 if (rec
->generation
== generation
&&
199 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
200 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
201 reada_add_block(rc
, bytenr
, &next_key
,
206 * free extctl records
208 while (!list_empty(&list
)) {
209 struct reada_control
*rc
;
210 struct reada_extctl
*rec
;
212 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
213 list_del(&rec
->list
);
217 kref_get(&rc
->refcnt
);
218 if (atomic_dec_and_test(&rc
->elems
)) {
219 kref_put(&rc
->refcnt
, reada_control_release
);
222 kref_put(&rc
->refcnt
, reada_control_release
);
224 reada_extent_put(fs_info
, re
); /* one ref for each entry */
226 reada_extent_put(fs_info
, re
); /* our ref */
228 atomic_dec(&for_dev
->reada_in_flight
);
234 * start is passed separately in case eb in NULL, which may be the case with
237 int btree_readahead_hook(struct btrfs_root
*root
, struct extent_buffer
*eb
,
242 ret
= __readahead_hook(root
, eb
, start
, err
);
244 reada_start_machine(root
->fs_info
);
249 static struct reada_zone
*reada_find_zone(struct btrfs_fs_info
*fs_info
,
250 struct btrfs_device
*dev
, u64 logical
,
251 struct btrfs_bio
*bbio
)
254 struct reada_zone
*zone
;
255 struct btrfs_block_group_cache
*cache
= NULL
;
261 spin_lock(&fs_info
->reada_lock
);
262 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
263 logical
>> PAGE_CACHE_SHIFT
, 1);
265 kref_get(&zone
->refcnt
);
266 spin_unlock(&fs_info
->reada_lock
);
269 if (logical
>= zone
->start
&& logical
< zone
->end
)
271 spin_lock(&fs_info
->reada_lock
);
272 kref_put(&zone
->refcnt
, reada_zone_release
);
273 spin_unlock(&fs_info
->reada_lock
);
276 cache
= btrfs_lookup_block_group(fs_info
, logical
);
280 start
= cache
->key
.objectid
;
281 end
= start
+ cache
->key
.offset
- 1;
282 btrfs_put_block_group(cache
);
284 zone
= kzalloc(sizeof(*zone
), GFP_NOFS
);
290 INIT_LIST_HEAD(&zone
->list
);
291 spin_lock_init(&zone
->lock
);
293 kref_init(&zone
->refcnt
);
295 zone
->device
= dev
; /* our device always sits at index 0 */
296 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
297 /* bounds have already been checked */
298 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
300 zone
->ndevs
= bbio
->num_stripes
;
302 spin_lock(&fs_info
->reada_lock
);
303 ret
= radix_tree_insert(&dev
->reada_zones
,
304 (unsigned long)(zone
->end
>> PAGE_CACHE_SHIFT
),
307 if (ret
== -EEXIST
) {
309 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
310 logical
>> PAGE_CACHE_SHIFT
, 1);
312 kref_get(&zone
->refcnt
);
314 spin_unlock(&fs_info
->reada_lock
);
319 static struct reada_extent
*reada_find_extent(struct btrfs_root
*root
,
321 struct btrfs_key
*top
, int level
)
324 struct reada_extent
*re
= NULL
;
325 struct reada_extent
*re_exist
= NULL
;
326 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
327 struct btrfs_bio
*bbio
= NULL
;
328 struct btrfs_device
*dev
;
329 struct btrfs_device
*prev_dev
;
334 unsigned long index
= logical
>> PAGE_CACHE_SHIFT
;
335 int dev_replace_is_ongoing
;
337 spin_lock(&fs_info
->reada_lock
);
338 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
341 spin_unlock(&fs_info
->reada_lock
);
346 re
= kzalloc(sizeof(*re
), GFP_NOFS
);
350 blocksize
= btrfs_level_size(root
, level
);
351 re
->logical
= logical
;
352 re
->blocksize
= blocksize
;
354 INIT_LIST_HEAD(&re
->extctl
);
355 spin_lock_init(&re
->lock
);
362 ret
= btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
, logical
, &length
,
364 if (ret
|| !bbio
|| length
< blocksize
)
367 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
368 btrfs_err(root
->fs_info
,
369 "readahead: more than %d copies not supported",
374 for (nzones
= 0; nzones
< bbio
->num_stripes
; ++nzones
) {
375 struct reada_zone
*zone
;
377 dev
= bbio
->stripes
[nzones
].dev
;
378 zone
= reada_find_zone(fs_info
, dev
, logical
, bbio
);
382 re
->zones
[nzones
] = zone
;
383 spin_lock(&zone
->lock
);
385 kref_get(&zone
->refcnt
);
387 spin_unlock(&zone
->lock
);
388 spin_lock(&fs_info
->reada_lock
);
389 kref_put(&zone
->refcnt
, reada_zone_release
);
390 spin_unlock(&fs_info
->reada_lock
);
394 /* not a single zone found, error and out */
398 /* insert extent in reada_tree + all per-device trees, all or nothing */
399 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
400 spin_lock(&fs_info
->reada_lock
);
401 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
402 if (ret
== -EEXIST
) {
403 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
406 spin_unlock(&fs_info
->reada_lock
);
407 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
411 spin_unlock(&fs_info
->reada_lock
);
412 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
416 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
417 &fs_info
->dev_replace
);
418 for (i
= 0; i
< nzones
; ++i
) {
419 dev
= bbio
->stripes
[i
].dev
;
420 if (dev
== prev_dev
) {
422 * in case of DUP, just add the first zone. As both
423 * are on the same device, there's nothing to gain
425 * Also, it wouldn't work, as the tree is per device
426 * and adding would fail with EEXIST
432 * cannot read ahead on missing device, but for RAID5/6,
433 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
434 * device for such case.
439 if (dev_replace_is_ongoing
&&
440 dev
== fs_info
->dev_replace
.tgtdev
) {
442 * as this device is selected for reading only as
443 * a last resort, skip it for read ahead.
448 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
451 dev
= bbio
->stripes
[i
].dev
;
453 /* ignore whether the entry was inserted */
454 radix_tree_delete(&dev
->reada_extents
, index
);
456 BUG_ON(fs_info
== NULL
);
457 radix_tree_delete(&fs_info
->reada_tree
, index
);
458 spin_unlock(&fs_info
->reada_lock
);
459 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
463 spin_unlock(&fs_info
->reada_lock
);
464 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
471 struct reada_zone
*zone
;
474 zone
= re
->zones
[nzones
];
475 kref_get(&zone
->refcnt
);
476 spin_lock(&zone
->lock
);
478 if (zone
->elems
== 0) {
480 * no fs_info->reada_lock needed, as this can't be
483 kref_put(&zone
->refcnt
, reada_zone_release
);
485 spin_unlock(&zone
->lock
);
487 spin_lock(&fs_info
->reada_lock
);
488 kref_put(&zone
->refcnt
, reada_zone_release
);
489 spin_unlock(&fs_info
->reada_lock
);
496 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
497 struct reada_extent
*re
)
500 unsigned long index
= re
->logical
>> PAGE_CACHE_SHIFT
;
502 spin_lock(&fs_info
->reada_lock
);
504 spin_unlock(&fs_info
->reada_lock
);
508 radix_tree_delete(&fs_info
->reada_tree
, index
);
509 for (i
= 0; i
< re
->nzones
; ++i
) {
510 struct reada_zone
*zone
= re
->zones
[i
];
512 radix_tree_delete(&zone
->device
->reada_extents
, index
);
515 spin_unlock(&fs_info
->reada_lock
);
517 for (i
= 0; i
< re
->nzones
; ++i
) {
518 struct reada_zone
*zone
= re
->zones
[i
];
520 kref_get(&zone
->refcnt
);
521 spin_lock(&zone
->lock
);
523 if (zone
->elems
== 0) {
524 /* no fs_info->reada_lock needed, as this can't be
526 kref_put(&zone
->refcnt
, reada_zone_release
);
528 spin_unlock(&zone
->lock
);
530 spin_lock(&fs_info
->reada_lock
);
531 kref_put(&zone
->refcnt
, reada_zone_release
);
532 spin_unlock(&fs_info
->reada_lock
);
534 if (re
->scheduled_for
)
535 atomic_dec(&re
->scheduled_for
->reada_in_flight
);
540 static void reada_zone_release(struct kref
*kref
)
542 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
544 radix_tree_delete(&zone
->device
->reada_zones
,
545 zone
->end
>> PAGE_CACHE_SHIFT
);
550 static void reada_control_release(struct kref
*kref
)
552 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
558 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
559 struct btrfs_key
*top
, int level
, u64 generation
)
561 struct btrfs_root
*root
= rc
->root
;
562 struct reada_extent
*re
;
563 struct reada_extctl
*rec
;
565 re
= reada_find_extent(root
, logical
, top
, level
); /* takes one ref */
569 rec
= kzalloc(sizeof(*rec
), GFP_NOFS
);
571 reada_extent_put(root
->fs_info
, re
);
576 rec
->generation
= generation
;
577 atomic_inc(&rc
->elems
);
579 spin_lock(&re
->lock
);
580 list_add_tail(&rec
->list
, &re
->extctl
);
581 spin_unlock(&re
->lock
);
583 /* leave the ref on the extent */
589 * called with fs_info->reada_lock held
591 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
594 unsigned long index
= zone
->end
>> PAGE_CACHE_SHIFT
;
596 for (i
= 0; i
< zone
->ndevs
; ++i
) {
597 struct reada_zone
*peer
;
598 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
599 if (peer
&& peer
->device
!= zone
->device
)
605 * called with fs_info->reada_lock held
607 static int reada_pick_zone(struct btrfs_device
*dev
)
609 struct reada_zone
*top_zone
= NULL
;
610 struct reada_zone
*top_locked_zone
= NULL
;
612 u64 top_locked_elems
= 0;
613 unsigned long index
= 0;
616 if (dev
->reada_curr_zone
) {
617 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
618 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
619 dev
->reada_curr_zone
= NULL
;
621 /* pick the zone with the most elements */
623 struct reada_zone
*zone
;
625 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
626 (void **)&zone
, index
, 1);
629 index
= (zone
->end
>> PAGE_CACHE_SHIFT
) + 1;
631 if (zone
->elems
> top_locked_elems
) {
632 top_locked_elems
= zone
->elems
;
633 top_locked_zone
= zone
;
636 if (zone
->elems
> top_elems
) {
637 top_elems
= zone
->elems
;
643 dev
->reada_curr_zone
= top_zone
;
644 else if (top_locked_zone
)
645 dev
->reada_curr_zone
= top_locked_zone
;
649 dev
->reada_next
= dev
->reada_curr_zone
->start
;
650 kref_get(&dev
->reada_curr_zone
->refcnt
);
651 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
656 static int reada_start_machine_dev(struct btrfs_fs_info
*fs_info
,
657 struct btrfs_device
*dev
)
659 struct reada_extent
*re
= NULL
;
661 struct extent_buffer
*eb
= NULL
;
668 spin_lock(&fs_info
->reada_lock
);
669 if (dev
->reada_curr_zone
== NULL
) {
670 ret
= reada_pick_zone(dev
);
672 spin_unlock(&fs_info
->reada_lock
);
677 * FIXME currently we issue the reads one extent at a time. If we have
678 * a contiguous block of extents, we could also coagulate them or use
679 * plugging to speed things up
681 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
682 dev
->reada_next
>> PAGE_CACHE_SHIFT
, 1);
683 if (ret
== 0 || re
->logical
>= dev
->reada_curr_zone
->end
) {
684 ret
= reada_pick_zone(dev
);
686 spin_unlock(&fs_info
->reada_lock
);
690 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
691 dev
->reada_next
>> PAGE_CACHE_SHIFT
, 1);
694 spin_unlock(&fs_info
->reada_lock
);
697 dev
->reada_next
= re
->logical
+ re
->blocksize
;
700 spin_unlock(&fs_info
->reada_lock
);
705 for (i
= 0; i
< re
->nzones
; ++i
) {
706 if (re
->zones
[i
]->device
== dev
) {
711 logical
= re
->logical
;
712 blocksize
= re
->blocksize
;
714 spin_lock(&re
->lock
);
715 if (re
->scheduled_for
== NULL
) {
716 re
->scheduled_for
= dev
;
719 spin_unlock(&re
->lock
);
721 reada_extent_put(fs_info
, re
);
726 atomic_inc(&dev
->reada_in_flight
);
727 ret
= reada_tree_block_flagged(fs_info
->extent_root
, logical
, blocksize
,
730 __readahead_hook(fs_info
->extent_root
, NULL
, logical
, ret
);
732 __readahead_hook(fs_info
->extent_root
, eb
, eb
->start
, ret
);
735 free_extent_buffer(eb
);
741 static void reada_start_machine_worker(struct btrfs_work
*work
)
743 struct reada_machine_work
*rmw
;
744 struct btrfs_fs_info
*fs_info
;
747 rmw
= container_of(work
, struct reada_machine_work
, work
);
748 fs_info
= rmw
->fs_info
;
752 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
753 task_nice_ioprio(current
));
754 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
755 __reada_start_machine(fs_info
);
756 set_task_ioprio(current
, old_ioprio
);
759 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
761 struct btrfs_device
*device
;
762 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
769 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
770 if (atomic_read(&device
->reada_in_flight
) <
772 enqueued
+= reada_start_machine_dev(fs_info
,
776 } while (enqueued
&& total
< 10000);
782 * If everything is already in the cache, this is effectively single
783 * threaded. To a) not hold the caller for too long and b) to utilize
784 * more cores, we broke the loop above after 10000 iterations and now
785 * enqueue to workers to finish it. This will distribute the load to
788 for (i
= 0; i
< 2; ++i
)
789 reada_start_machine(fs_info
);
792 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
794 struct reada_machine_work
*rmw
;
796 rmw
= kzalloc(sizeof(*rmw
), GFP_NOFS
);
798 /* FIXME we cannot handle this properly right now */
801 btrfs_init_work(&rmw
->work
, reada_start_machine_worker
, NULL
, NULL
);
802 rmw
->fs_info
= fs_info
;
804 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
808 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
810 struct btrfs_device
*device
;
811 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
818 spin_lock(&fs_info
->reada_lock
);
819 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
820 printk(KERN_DEBUG
"dev %lld has %d in flight\n", device
->devid
,
821 atomic_read(&device
->reada_in_flight
));
824 struct reada_zone
*zone
;
825 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
826 (void **)&zone
, index
, 1);
829 printk(KERN_DEBUG
" zone %llu-%llu elems %llu locked "
830 "%d devs", zone
->start
, zone
->end
, zone
->elems
,
832 for (j
= 0; j
< zone
->ndevs
; ++j
) {
833 printk(KERN_CONT
" %lld",
834 zone
->devs
[j
]->devid
);
836 if (device
->reada_curr_zone
== zone
)
837 printk(KERN_CONT
" curr off %llu",
838 device
->reada_next
- zone
->start
);
839 printk(KERN_CONT
"\n");
840 index
= (zone
->end
>> PAGE_CACHE_SHIFT
) + 1;
845 struct reada_extent
*re
= NULL
;
847 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
848 (void **)&re
, index
, 1);
852 " re: logical %llu size %u empty %d for %lld",
853 re
->logical
, re
->blocksize
,
854 list_empty(&re
->extctl
), re
->scheduled_for
?
855 re
->scheduled_for
->devid
: -1);
857 for (i
= 0; i
< re
->nzones
; ++i
) {
858 printk(KERN_CONT
" zone %llu-%llu devs",
861 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
862 printk(KERN_CONT
" %lld",
863 re
->zones
[i
]->devs
[j
]->devid
);
866 printk(KERN_CONT
"\n");
867 index
= (re
->logical
>> PAGE_CACHE_SHIFT
) + 1;
876 struct reada_extent
*re
= NULL
;
878 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
882 if (!re
->scheduled_for
) {
883 index
= (re
->logical
>> PAGE_CACHE_SHIFT
) + 1;
887 "re: logical %llu size %u list empty %d for %lld",
888 re
->logical
, re
->blocksize
, list_empty(&re
->extctl
),
889 re
->scheduled_for
? re
->scheduled_for
->devid
: -1);
890 for (i
= 0; i
< re
->nzones
; ++i
) {
891 printk(KERN_CONT
" zone %llu-%llu devs",
894 for (i
= 0; i
< re
->nzones
; ++i
) {
895 printk(KERN_CONT
" zone %llu-%llu devs",
898 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
899 printk(KERN_CONT
" %lld",
900 re
->zones
[i
]->devs
[j
]->devid
);
904 printk(KERN_CONT
"\n");
905 index
= (re
->logical
>> PAGE_CACHE_SHIFT
) + 1;
907 spin_unlock(&fs_info
->reada_lock
);
914 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
915 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
917 struct reada_control
*rc
;
921 struct extent_buffer
*node
;
922 static struct btrfs_key max_key
= {
928 rc
= kzalloc(sizeof(*rc
), GFP_NOFS
);
930 return ERR_PTR(-ENOMEM
);
933 rc
->key_start
= *key_start
;
934 rc
->key_end
= *key_end
;
935 atomic_set(&rc
->elems
, 0);
936 init_waitqueue_head(&rc
->wait
);
937 kref_init(&rc
->refcnt
);
938 kref_get(&rc
->refcnt
); /* one ref for having elements */
940 node
= btrfs_root_node(root
);
942 level
= btrfs_header_level(node
);
943 generation
= btrfs_header_generation(node
);
944 free_extent_buffer(node
);
946 if (reada_add_block(rc
, start
, &max_key
, level
, generation
)) {
948 return ERR_PTR(-ENOMEM
);
951 reada_start_machine(root
->fs_info
);
957 int btrfs_reada_wait(void *handle
)
959 struct reada_control
*rc
= handle
;
961 while (atomic_read(&rc
->elems
)) {
962 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
964 dump_devs(rc
->root
->fs_info
,
965 atomic_read(&rc
->elems
) < 10 ? 1 : 0);
968 dump_devs(rc
->root
->fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
970 kref_put(&rc
->refcnt
, reada_control_release
);
975 int btrfs_reada_wait(void *handle
)
977 struct reada_control
*rc
= handle
;
979 while (atomic_read(&rc
->elems
)) {
980 wait_event(rc
->wait
, atomic_read(&rc
->elems
) == 0);
983 kref_put(&rc
->refcnt
, reada_control_release
);
989 void btrfs_reada_detach(void *handle
)
991 struct reada_control
*rc
= handle
;
993 kref_put(&rc
->refcnt
, reada_control_release
);