1 // SPDX-License-Identifier: GPL-2.0+
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
22 #define pr_fmt(fmt) "ipmi_si: " fmt
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
43 #include <linux/string.h>
44 #include <linux/ctype.h>
46 /* Measure times between events in the driver. */
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC 10000
51 #define SI_USEC_PER_JIFFY (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
64 /* FIXME - add watchdog stuff. */
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG 2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72 static const char * const si_to_str
[] = { "invalid", "kcs", "smic", "bt" };
74 static int initialized
;
77 * Indexes into stats[] in smi_info below.
79 enum si_stat_indexes
{
81 * Number of times the driver requested a timer while an operation
84 SI_STAT_short_timeouts
= 0,
87 * Number of times the driver requested a timer while nothing was in
90 SI_STAT_long_timeouts
,
92 /* Number of times the interface was idle while being polled. */
95 /* Number of interrupts the driver handled. */
98 /* Number of time the driver got an ATTN from the hardware. */
101 /* Number of times the driver requested flags from the hardware. */
102 SI_STAT_flag_fetches
,
104 /* Number of times the hardware didn't follow the state machine. */
107 /* Number of completed messages. */
108 SI_STAT_complete_transactions
,
110 /* Number of IPMI events received from the hardware. */
113 /* Number of watchdog pretimeouts. */
114 SI_STAT_watchdog_pretimeouts
,
116 /* Number of asynchronous messages received. */
117 SI_STAT_incoming_messages
,
120 /* This *must* remain last, add new values above this. */
126 struct ipmi_smi
*intf
;
127 struct si_sm_data
*si_sm
;
128 const struct si_sm_handlers
*handlers
;
130 struct ipmi_smi_msg
*waiting_msg
;
131 struct ipmi_smi_msg
*curr_msg
;
132 enum si_intf_state si_state
;
135 * Used to handle the various types of I/O that can occur with
141 * Per-OEM handler, called from handle_flags(). Returns 1
142 * when handle_flags() needs to be re-run or 0 indicating it
143 * set si_state itself.
145 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 * is set to hold the flags until we are done handling everything
152 #define RECEIVE_MSG_AVAIL 0x01
153 #define EVENT_MSG_BUFFER_FULL 0x02
154 #define WDT_PRE_TIMEOUT_INT 0x08
155 #define OEM0_DATA_AVAIL 0x20
156 #define OEM1_DATA_AVAIL 0x40
157 #define OEM2_DATA_AVAIL 0x80
158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
161 unsigned char msg_flags
;
163 /* Does the BMC have an event buffer? */
164 bool has_event_buffer
;
167 * If set to true, this will request events the next time the
168 * state machine is idle.
173 * If true, run the state machine to completion on every send
174 * call. Generally used after a panic to make sure stuff goes
177 bool run_to_completion
;
179 /* The timer for this si. */
180 struct timer_list si_timer
;
182 /* This flag is set, if the timer can be set */
183 bool timer_can_start
;
185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188 /* The time (in jiffies) the last timeout occurred at. */
189 unsigned long last_timeout_jiffies
;
191 /* Are we waiting for the events, pretimeouts, received msgs? */
195 * The driver will disable interrupts when it gets into a
196 * situation where it cannot handle messages due to lack of
197 * memory. Once that situation clears up, it will re-enable
200 bool interrupt_disabled
;
203 * Does the BMC support events?
205 bool supports_event_msg_buff
;
208 * Can we disable interrupts the global enables receive irq
209 * bit? There are currently two forms of brokenness, some
210 * systems cannot disable the bit (which is technically within
211 * the spec but a bad idea) and some systems have the bit
212 * forced to zero even though interrupts work (which is
213 * clearly outside the spec). The next bool tells which form
214 * of brokenness is present.
216 bool cannot_disable_irq
;
219 * Some systems are broken and cannot set the irq enable
220 * bit, even if they support interrupts.
222 bool irq_enable_broken
;
225 * Did we get an attention that we did not handle?
229 /* From the get device id response... */
230 struct ipmi_device_id device_id
;
232 /* Default driver model device. */
233 struct platform_device
*pdev
;
235 /* Have we added the device group to the device? */
236 bool dev_group_added
;
238 /* Have we added the platform device? */
239 bool pdev_registered
;
241 /* Counters and things for the proc filesystem. */
242 atomic_t stats
[SI_NUM_STATS
];
244 struct task_struct
*thread
;
246 struct list_head link
;
249 #define smi_inc_stat(smi, stat) \
250 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251 #define smi_get_stat(smi, stat) \
252 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
254 #define IPMI_MAX_INTFS 4
255 static int force_kipmid
[IPMI_MAX_INTFS
];
256 static int num_force_kipmid
;
258 static unsigned int kipmid_max_busy_us
[IPMI_MAX_INTFS
];
259 static int num_max_busy_us
;
261 static bool unload_when_empty
= true;
263 static int try_smi_init(struct smi_info
*smi
);
264 static void cleanup_one_si(struct smi_info
*smi_info
);
265 static void cleanup_ipmi_si(void);
268 void debug_timestamp(char *msg
)
273 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
276 #define debug_timestamp(x)
279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
280 static int register_xaction_notifier(struct notifier_block
*nb
)
282 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
285 static void deliver_recv_msg(struct smi_info
*smi_info
,
286 struct ipmi_smi_msg
*msg
)
288 /* Deliver the message to the upper layer. */
289 ipmi_smi_msg_received(smi_info
->intf
, msg
);
292 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
294 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
296 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
297 cCode
= IPMI_ERR_UNSPECIFIED
;
298 /* else use it as is */
300 /* Make it a response */
301 msg
->rsp
[0] = msg
->data
[0] | 4;
302 msg
->rsp
[1] = msg
->data
[1];
306 smi_info
->curr_msg
= NULL
;
307 deliver_recv_msg(smi_info
, msg
);
310 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
314 if (!smi_info
->waiting_msg
) {
315 smi_info
->curr_msg
= NULL
;
320 smi_info
->curr_msg
= smi_info
->waiting_msg
;
321 smi_info
->waiting_msg
= NULL
;
322 debug_timestamp("Start2");
323 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
325 if (err
& NOTIFY_STOP_MASK
) {
326 rv
= SI_SM_CALL_WITHOUT_DELAY
;
329 err
= smi_info
->handlers
->start_transaction(
331 smi_info
->curr_msg
->data
,
332 smi_info
->curr_msg
->data_size
);
334 return_hosed_msg(smi_info
, err
);
336 rv
= SI_SM_CALL_WITHOUT_DELAY
;
342 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
344 if (!smi_info
->timer_can_start
)
346 smi_info
->last_timeout_jiffies
= jiffies
;
347 mod_timer(&smi_info
->si_timer
, new_val
);
348 smi_info
->timer_running
= true;
352 * Start a new message and (re)start the timer and thread.
354 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
357 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
359 if (smi_info
->thread
)
360 wake_up_process(smi_info
->thread
);
362 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
365 static void start_check_enables(struct smi_info
*smi_info
)
367 unsigned char msg
[2];
369 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
370 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
372 start_new_msg(smi_info
, msg
, 2);
373 smi_info
->si_state
= SI_CHECKING_ENABLES
;
376 static void start_clear_flags(struct smi_info
*smi_info
)
378 unsigned char msg
[3];
380 /* Make sure the watchdog pre-timeout flag is not set at startup. */
381 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
382 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
383 msg
[2] = WDT_PRE_TIMEOUT_INT
;
385 start_new_msg(smi_info
, msg
, 3);
386 smi_info
->si_state
= SI_CLEARING_FLAGS
;
389 static void start_getting_msg_queue(struct smi_info
*smi_info
)
391 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
392 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
393 smi_info
->curr_msg
->data_size
= 2;
395 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
396 smi_info
->curr_msg
->data_size
);
397 smi_info
->si_state
= SI_GETTING_MESSAGES
;
400 static void start_getting_events(struct smi_info
*smi_info
)
402 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
403 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
404 smi_info
->curr_msg
->data_size
= 2;
406 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
407 smi_info
->curr_msg
->data_size
);
408 smi_info
->si_state
= SI_GETTING_EVENTS
;
412 * When we have a situtaion where we run out of memory and cannot
413 * allocate messages, we just leave them in the BMC and run the system
414 * polled until we can allocate some memory. Once we have some
415 * memory, we will re-enable the interrupt.
417 * Note that we cannot just use disable_irq(), since the interrupt may
420 static inline bool disable_si_irq(struct smi_info
*smi_info
)
422 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
423 smi_info
->interrupt_disabled
= true;
424 start_check_enables(smi_info
);
430 static inline bool enable_si_irq(struct smi_info
*smi_info
)
432 if ((smi_info
->io
.irq
) && (smi_info
->interrupt_disabled
)) {
433 smi_info
->interrupt_disabled
= false;
434 start_check_enables(smi_info
);
441 * Allocate a message. If unable to allocate, start the interrupt
442 * disable process and return NULL. If able to allocate but
443 * interrupts are disabled, free the message and return NULL after
444 * starting the interrupt enable process.
446 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
448 struct ipmi_smi_msg
*msg
;
450 msg
= ipmi_alloc_smi_msg();
452 if (!disable_si_irq(smi_info
))
453 smi_info
->si_state
= SI_NORMAL
;
454 } else if (enable_si_irq(smi_info
)) {
455 ipmi_free_smi_msg(msg
);
461 static void handle_flags(struct smi_info
*smi_info
)
464 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
465 /* Watchdog pre-timeout */
466 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
468 start_clear_flags(smi_info
);
469 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
470 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
471 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
472 /* Messages available. */
473 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
474 if (!smi_info
->curr_msg
)
477 start_getting_msg_queue(smi_info
);
478 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
479 /* Events available. */
480 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
481 if (!smi_info
->curr_msg
)
484 start_getting_events(smi_info
);
485 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
486 smi_info
->oem_data_avail_handler
) {
487 if (smi_info
->oem_data_avail_handler(smi_info
))
490 smi_info
->si_state
= SI_NORMAL
;
494 * Global enables we care about.
496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
497 IPMI_BMC_EVT_MSG_INTR)
499 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
504 if (smi_info
->supports_event_msg_buff
)
505 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
507 if (((smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
) ||
508 smi_info
->cannot_disable_irq
) &&
509 !smi_info
->irq_enable_broken
)
510 enables
|= IPMI_BMC_RCV_MSG_INTR
;
512 if (smi_info
->supports_event_msg_buff
&&
513 smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
&&
514 !smi_info
->irq_enable_broken
)
515 enables
|= IPMI_BMC_EVT_MSG_INTR
;
517 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
522 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
524 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
526 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
528 if ((bool)irqstate
== irq_on
)
532 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
533 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
535 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
538 static void handle_transaction_done(struct smi_info
*smi_info
)
540 struct ipmi_smi_msg
*msg
;
542 debug_timestamp("Done");
543 switch (smi_info
->si_state
) {
545 if (!smi_info
->curr_msg
)
548 smi_info
->curr_msg
->rsp_size
549 = smi_info
->handlers
->get_result(
551 smi_info
->curr_msg
->rsp
,
552 IPMI_MAX_MSG_LENGTH
);
555 * Do this here becase deliver_recv_msg() releases the
556 * lock, and a new message can be put in during the
557 * time the lock is released.
559 msg
= smi_info
->curr_msg
;
560 smi_info
->curr_msg
= NULL
;
561 deliver_recv_msg(smi_info
, msg
);
564 case SI_GETTING_FLAGS
:
566 unsigned char msg
[4];
569 /* We got the flags from the SMI, now handle them. */
570 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
572 /* Error fetching flags, just give up for now. */
573 smi_info
->si_state
= SI_NORMAL
;
574 } else if (len
< 4) {
576 * Hmm, no flags. That's technically illegal, but
577 * don't use uninitialized data.
579 smi_info
->si_state
= SI_NORMAL
;
581 smi_info
->msg_flags
= msg
[3];
582 handle_flags(smi_info
);
587 case SI_CLEARING_FLAGS
:
589 unsigned char msg
[3];
591 /* We cleared the flags. */
592 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
594 /* Error clearing flags */
595 dev_warn(smi_info
->io
.dev
,
596 "Error clearing flags: %2.2x\n", msg
[2]);
598 smi_info
->si_state
= SI_NORMAL
;
602 case SI_GETTING_EVENTS
:
604 smi_info
->curr_msg
->rsp_size
605 = smi_info
->handlers
->get_result(
607 smi_info
->curr_msg
->rsp
,
608 IPMI_MAX_MSG_LENGTH
);
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
615 msg
= smi_info
->curr_msg
;
616 smi_info
->curr_msg
= NULL
;
617 if (msg
->rsp
[2] != 0) {
618 /* Error getting event, probably done. */
621 /* Take off the event flag. */
622 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
623 handle_flags(smi_info
);
625 smi_inc_stat(smi_info
, events
);
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
633 handle_flags(smi_info
);
635 deliver_recv_msg(smi_info
, msg
);
640 case SI_GETTING_MESSAGES
:
642 smi_info
->curr_msg
->rsp_size
643 = smi_info
->handlers
->get_result(
645 smi_info
->curr_msg
->rsp
,
646 IPMI_MAX_MSG_LENGTH
);
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
653 msg
= smi_info
->curr_msg
;
654 smi_info
->curr_msg
= NULL
;
655 if (msg
->rsp
[2] != 0) {
656 /* Error getting event, probably done. */
659 /* Take off the msg flag. */
660 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
661 handle_flags(smi_info
);
663 smi_inc_stat(smi_info
, incoming_messages
);
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
671 handle_flags(smi_info
);
673 deliver_recv_msg(smi_info
, msg
);
678 case SI_CHECKING_ENABLES
:
680 unsigned char msg
[4];
684 /* We got the flags from the SMI, now handle them. */
685 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
687 dev_warn(smi_info
->io
.dev
,
688 "Couldn't get irq info: %x.\n", msg
[2]);
689 dev_warn(smi_info
->io
.dev
,
690 "Maybe ok, but ipmi might run very slowly.\n");
691 smi_info
->si_state
= SI_NORMAL
;
694 enables
= current_global_enables(smi_info
, 0, &irq_on
);
695 if (smi_info
->io
.si_type
== SI_BT
)
696 /* BT has its own interrupt enable bit. */
697 check_bt_irq(smi_info
, irq_on
);
698 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
699 /* Enables are not correct, fix them. */
700 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
701 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
702 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
703 smi_info
->handlers
->start_transaction(
704 smi_info
->si_sm
, msg
, 3);
705 smi_info
->si_state
= SI_SETTING_ENABLES
;
706 } else if (smi_info
->supports_event_msg_buff
) {
707 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
708 if (!smi_info
->curr_msg
) {
709 smi_info
->si_state
= SI_NORMAL
;
712 start_getting_events(smi_info
);
714 smi_info
->si_state
= SI_NORMAL
;
719 case SI_SETTING_ENABLES
:
721 unsigned char msg
[4];
723 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
725 dev_warn(smi_info
->io
.dev
,
726 "Could not set the global enables: 0x%x.\n",
729 if (smi_info
->supports_event_msg_buff
) {
730 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
731 if (!smi_info
->curr_msg
) {
732 smi_info
->si_state
= SI_NORMAL
;
735 start_getting_events(smi_info
);
737 smi_info
->si_state
= SI_NORMAL
;
745 * Called on timeouts and events. Timeouts should pass the elapsed
746 * time, interrupts should pass in zero. Must be called with
747 * si_lock held and interrupts disabled.
749 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
752 enum si_sm_result si_sm_result
;
756 * There used to be a loop here that waited a little while
757 * (around 25us) before giving up. That turned out to be
758 * pointless, the minimum delays I was seeing were in the 300us
759 * range, which is far too long to wait in an interrupt. So
760 * we just run until the state machine tells us something
761 * happened or it needs a delay.
763 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
765 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
766 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
768 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
769 smi_inc_stat(smi_info
, complete_transactions
);
771 handle_transaction_done(smi_info
);
773 } else if (si_sm_result
== SI_SM_HOSED
) {
774 smi_inc_stat(smi_info
, hosed_count
);
777 * Do the before return_hosed_msg, because that
780 smi_info
->si_state
= SI_NORMAL
;
781 if (smi_info
->curr_msg
!= NULL
) {
783 * If we were handling a user message, format
784 * a response to send to the upper layer to
785 * tell it about the error.
787 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
793 * We prefer handling attn over new messages. But don't do
794 * this if there is not yet an upper layer to handle anything.
796 if (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
) {
797 unsigned char msg
[2];
799 if (smi_info
->si_state
!= SI_NORMAL
) {
801 * We got an ATTN, but we are doing something else.
802 * Handle the ATTN later.
804 smi_info
->got_attn
= true;
806 smi_info
->got_attn
= false;
807 smi_inc_stat(smi_info
, attentions
);
810 * Got a attn, send down a get message flags to see
811 * what's causing it. It would be better to handle
812 * this in the upper layer, but due to the way
813 * interrupts work with the SMI, that's not really
816 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
817 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
819 start_new_msg(smi_info
, msg
, 2);
820 smi_info
->si_state
= SI_GETTING_FLAGS
;
825 /* If we are currently idle, try to start the next message. */
826 if (si_sm_result
== SI_SM_IDLE
) {
827 smi_inc_stat(smi_info
, idles
);
829 si_sm_result
= start_next_msg(smi_info
);
830 if (si_sm_result
!= SI_SM_IDLE
)
834 if ((si_sm_result
== SI_SM_IDLE
)
835 && (atomic_read(&smi_info
->req_events
))) {
837 * We are idle and the upper layer requested that I fetch
840 atomic_set(&smi_info
->req_events
, 0);
843 * Take this opportunity to check the interrupt and
844 * message enable state for the BMC. The BMC can be
845 * asynchronously reset, and may thus get interrupts
846 * disable and messages disabled.
848 if (smi_info
->supports_event_msg_buff
|| smi_info
->io
.irq
) {
849 start_check_enables(smi_info
);
851 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
852 if (!smi_info
->curr_msg
)
855 start_getting_events(smi_info
);
860 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
861 /* Ok it if fails, the timer will just go off. */
862 if (del_timer(&smi_info
->si_timer
))
863 smi_info
->timer_running
= false;
870 static void check_start_timer_thread(struct smi_info
*smi_info
)
872 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
873 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
875 if (smi_info
->thread
)
876 wake_up_process(smi_info
->thread
);
878 start_next_msg(smi_info
);
879 smi_event_handler(smi_info
, 0);
883 static void flush_messages(void *send_info
)
885 struct smi_info
*smi_info
= send_info
;
886 enum si_sm_result result
;
889 * Currently, this function is called only in run-to-completion
890 * mode. This means we are single-threaded, no need for locks.
892 result
= smi_event_handler(smi_info
, 0);
893 while (result
!= SI_SM_IDLE
) {
894 udelay(SI_SHORT_TIMEOUT_USEC
);
895 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
899 static void sender(void *send_info
,
900 struct ipmi_smi_msg
*msg
)
902 struct smi_info
*smi_info
= send_info
;
905 debug_timestamp("Enqueue");
907 if (smi_info
->run_to_completion
) {
909 * If we are running to completion, start it. Upper
910 * layer will call flush_messages to clear it out.
912 smi_info
->waiting_msg
= msg
;
916 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
918 * The following two lines don't need to be under the lock for
919 * the lock's sake, but they do need SMP memory barriers to
920 * avoid getting things out of order. We are already claiming
921 * the lock, anyway, so just do it under the lock to avoid the
924 BUG_ON(smi_info
->waiting_msg
);
925 smi_info
->waiting_msg
= msg
;
926 check_start_timer_thread(smi_info
);
927 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
930 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
932 struct smi_info
*smi_info
= send_info
;
934 smi_info
->run_to_completion
= i_run_to_completion
;
935 if (i_run_to_completion
)
936 flush_messages(smi_info
);
940 * Use -1 in the nsec value of the busy waiting timespec to tell that
941 * we are spinning in kipmid looking for something and not delaying
944 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
948 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
950 return ts
->tv_nsec
!= -1;
953 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
954 const struct smi_info
*smi_info
,
955 struct timespec64
*busy_until
)
957 unsigned int max_busy_us
= 0;
959 if (smi_info
->si_num
< num_max_busy_us
)
960 max_busy_us
= kipmid_max_busy_us
[smi_info
->si_num
];
961 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
962 ipmi_si_set_not_busy(busy_until
);
963 else if (!ipmi_si_is_busy(busy_until
)) {
964 ktime_get_ts64(busy_until
);
965 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
967 struct timespec64 now
;
969 ktime_get_ts64(&now
);
970 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
971 ipmi_si_set_not_busy(busy_until
);
980 * A busy-waiting loop for speeding up IPMI operation.
982 * Lousy hardware makes this hard. This is only enabled for systems
983 * that are not BT and do not have interrupts. It starts spinning
984 * when an operation is complete or until max_busy tells it to stop
985 * (if that is enabled). See the paragraph on kimid_max_busy_us in
986 * Documentation/IPMI.txt for details.
988 static int ipmi_thread(void *data
)
990 struct smi_info
*smi_info
= data
;
992 enum si_sm_result smi_result
;
993 struct timespec64 busy_until
;
995 ipmi_si_set_not_busy(&busy_until
);
996 set_user_nice(current
, MAX_NICE
);
997 while (!kthread_should_stop()) {
1000 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1001 smi_result
= smi_event_handler(smi_info
, 0);
1004 * If the driver is doing something, there is a possible
1005 * race with the timer. If the timer handler see idle,
1006 * and the thread here sees something else, the timer
1007 * handler won't restart the timer even though it is
1008 * required. So start it here if necessary.
1010 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1011 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1013 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1014 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1016 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1018 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1020 else if (smi_result
== SI_SM_IDLE
) {
1021 if (atomic_read(&smi_info
->need_watch
)) {
1022 schedule_timeout_interruptible(100);
1024 /* Wait to be woken up when we are needed. */
1025 __set_current_state(TASK_INTERRUPTIBLE
);
1029 schedule_timeout_interruptible(1);
1035 static void poll(void *send_info
)
1037 struct smi_info
*smi_info
= send_info
;
1038 unsigned long flags
= 0;
1039 bool run_to_completion
= smi_info
->run_to_completion
;
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1046 if (!run_to_completion
)
1047 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1048 smi_event_handler(smi_info
, 10);
1049 if (!run_to_completion
)
1050 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1053 static void request_events(void *send_info
)
1055 struct smi_info
*smi_info
= send_info
;
1057 if (!smi_info
->has_event_buffer
)
1060 atomic_set(&smi_info
->req_events
, 1);
1063 static void set_need_watch(void *send_info
, bool enable
)
1065 struct smi_info
*smi_info
= send_info
;
1066 unsigned long flags
;
1068 atomic_set(&smi_info
->need_watch
, enable
);
1069 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1070 check_start_timer_thread(smi_info
);
1071 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1074 static void smi_timeout(struct timer_list
*t
)
1076 struct smi_info
*smi_info
= from_timer(smi_info
, t
, si_timer
);
1077 enum si_sm_result smi_result
;
1078 unsigned long flags
;
1079 unsigned long jiffies_now
;
1083 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1084 debug_timestamp("Timer");
1086 jiffies_now
= jiffies
;
1087 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1088 * SI_USEC_PER_JIFFY
);
1089 smi_result
= smi_event_handler(smi_info
, time_diff
);
1091 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
1092 /* Running with interrupts, only do long timeouts. */
1093 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1094 smi_inc_stat(smi_info
, long_timeouts
);
1099 * If the state machine asks for a short delay, then shorten
1100 * the timer timeout.
1102 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1103 smi_inc_stat(smi_info
, short_timeouts
);
1104 timeout
= jiffies
+ 1;
1106 smi_inc_stat(smi_info
, long_timeouts
);
1107 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1111 if (smi_result
!= SI_SM_IDLE
)
1112 smi_mod_timer(smi_info
, timeout
);
1114 smi_info
->timer_running
= false;
1115 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1118 irqreturn_t
ipmi_si_irq_handler(int irq
, void *data
)
1120 struct smi_info
*smi_info
= data
;
1121 unsigned long flags
;
1123 if (smi_info
->io
.si_type
== SI_BT
)
1124 /* We need to clear the IRQ flag for the BT interface. */
1125 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1126 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1127 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1129 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1131 smi_inc_stat(smi_info
, interrupts
);
1133 debug_timestamp("Interrupt");
1135 smi_event_handler(smi_info
, 0);
1136 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1140 static int smi_start_processing(void *send_info
,
1141 struct ipmi_smi
*intf
)
1143 struct smi_info
*new_smi
= send_info
;
1146 new_smi
->intf
= intf
;
1148 /* Set up the timer that drives the interface. */
1149 timer_setup(&new_smi
->si_timer
, smi_timeout
, 0);
1150 new_smi
->timer_can_start
= true;
1151 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1153 /* Try to claim any interrupts. */
1154 if (new_smi
->io
.irq_setup
) {
1155 new_smi
->io
.irq_handler_data
= new_smi
;
1156 new_smi
->io
.irq_setup(&new_smi
->io
);
1160 * Check if the user forcefully enabled the daemon.
1162 if (new_smi
->si_num
< num_force_kipmid
)
1163 enable
= force_kipmid
[new_smi
->si_num
];
1165 * The BT interface is efficient enough to not need a thread,
1166 * and there is no need for a thread if we have interrupts.
1168 else if ((new_smi
->io
.si_type
!= SI_BT
) && (!new_smi
->io
.irq
))
1172 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1173 "kipmi%d", new_smi
->si_num
);
1174 if (IS_ERR(new_smi
->thread
)) {
1175 dev_notice(new_smi
->io
.dev
, "Could not start"
1176 " kernel thread due to error %ld, only using"
1177 " timers to drive the interface\n",
1178 PTR_ERR(new_smi
->thread
));
1179 new_smi
->thread
= NULL
;
1186 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1188 struct smi_info
*smi
= send_info
;
1190 data
->addr_src
= smi
->io
.addr_source
;
1191 data
->dev
= smi
->io
.dev
;
1192 data
->addr_info
= smi
->io
.addr_info
;
1193 get_device(smi
->io
.dev
);
1198 static void set_maintenance_mode(void *send_info
, bool enable
)
1200 struct smi_info
*smi_info
= send_info
;
1203 atomic_set(&smi_info
->req_events
, 0);
1206 static void shutdown_smi(void *send_info
);
1207 static const struct ipmi_smi_handlers handlers
= {
1208 .owner
= THIS_MODULE
,
1209 .start_processing
= smi_start_processing
,
1210 .shutdown
= shutdown_smi
,
1211 .get_smi_info
= get_smi_info
,
1213 .request_events
= request_events
,
1214 .set_need_watch
= set_need_watch
,
1215 .set_maintenance_mode
= set_maintenance_mode
,
1216 .set_run_to_completion
= set_run_to_completion
,
1217 .flush_messages
= flush_messages
,
1221 static LIST_HEAD(smi_infos
);
1222 static DEFINE_MUTEX(smi_infos_lock
);
1223 static int smi_num
; /* Used to sequence the SMIs */
1225 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1227 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1228 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1229 " disabled(0). Normally the IPMI driver auto-detects"
1230 " this, but the value may be overridden by this parm.");
1231 module_param(unload_when_empty
, bool, 0);
1232 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1233 " specified or found, default is 1. Setting to 0"
1234 " is useful for hot add of devices using hotmod.");
1235 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1236 MODULE_PARM_DESC(kipmid_max_busy_us
,
1237 "Max time (in microseconds) to busy-wait for IPMI data before"
1238 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1239 " if kipmid is using up a lot of CPU time.");
1241 void ipmi_irq_finish_setup(struct si_sm_io
*io
)
1243 if (io
->si_type
== SI_BT
)
1244 /* Enable the interrupt in the BT interface. */
1245 io
->outputb(io
, IPMI_BT_INTMASK_REG
,
1246 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1249 void ipmi_irq_start_cleanup(struct si_sm_io
*io
)
1251 if (io
->si_type
== SI_BT
)
1252 /* Disable the interrupt in the BT interface. */
1253 io
->outputb(io
, IPMI_BT_INTMASK_REG
, 0);
1256 static void std_irq_cleanup(struct si_sm_io
*io
)
1258 ipmi_irq_start_cleanup(io
);
1259 free_irq(io
->irq
, io
->irq_handler_data
);
1262 int ipmi_std_irq_setup(struct si_sm_io
*io
)
1269 rv
= request_irq(io
->irq
,
1270 ipmi_si_irq_handler
,
1273 io
->irq_handler_data
);
1275 dev_warn(io
->dev
, "%s unable to claim interrupt %d,"
1276 " running polled\n",
1277 DEVICE_NAME
, io
->irq
);
1280 io
->irq_cleanup
= std_irq_cleanup
;
1281 ipmi_irq_finish_setup(io
);
1282 dev_info(io
->dev
, "Using irq %d\n", io
->irq
);
1288 static int wait_for_msg_done(struct smi_info
*smi_info
)
1290 enum si_sm_result smi_result
;
1292 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
1294 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
1295 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
1296 schedule_timeout_uninterruptible(1);
1297 smi_result
= smi_info
->handlers
->event(
1298 smi_info
->si_sm
, jiffies_to_usecs(1));
1299 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1300 smi_result
= smi_info
->handlers
->event(
1301 smi_info
->si_sm
, 0);
1305 if (smi_result
== SI_SM_HOSED
)
1307 * We couldn't get the state machine to run, so whatever's at
1308 * the port is probably not an IPMI SMI interface.
1315 static int try_get_dev_id(struct smi_info
*smi_info
)
1317 unsigned char msg
[2];
1318 unsigned char *resp
;
1319 unsigned long resp_len
;
1322 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1327 * Do a Get Device ID command, since it comes back with some
1330 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1331 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
1332 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1334 rv
= wait_for_msg_done(smi_info
);
1338 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1339 resp
, IPMI_MAX_MSG_LENGTH
);
1341 /* Check and record info from the get device id, in case we need it. */
1342 rv
= ipmi_demangle_device_id(resp
[0] >> 2, resp
[1],
1343 resp
+ 2, resp_len
- 2, &smi_info
->device_id
);
1350 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
1352 unsigned char msg
[3];
1353 unsigned char *resp
;
1354 unsigned long resp_len
;
1357 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1361 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1362 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1363 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1365 rv
= wait_for_msg_done(smi_info
);
1367 dev_warn(smi_info
->io
.dev
,
1368 "Error getting response from get global enables command: %d\n",
1373 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1374 resp
, IPMI_MAX_MSG_LENGTH
);
1377 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1378 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1380 dev_warn(smi_info
->io
.dev
,
1381 "Invalid return from get global enables command: %ld %x %x %x\n",
1382 resp_len
, resp
[0], resp
[1], resp
[2]);
1395 * Returns 1 if it gets an error from the command.
1397 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
1399 unsigned char msg
[3];
1400 unsigned char *resp
;
1401 unsigned long resp_len
;
1404 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1408 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1409 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1411 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1413 rv
= wait_for_msg_done(smi_info
);
1415 dev_warn(smi_info
->io
.dev
,
1416 "Error getting response from set global enables command: %d\n",
1421 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1422 resp
, IPMI_MAX_MSG_LENGTH
);
1425 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1426 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1427 dev_warn(smi_info
->io
.dev
,
1428 "Invalid return from set global enables command: %ld %x %x\n",
1429 resp_len
, resp
[0], resp
[1]);
1443 * Some BMCs do not support clearing the receive irq bit in the global
1444 * enables (even if they don't support interrupts on the BMC). Check
1445 * for this and handle it properly.
1447 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
1452 rv
= get_global_enables(smi_info
, &enables
);
1454 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
1455 /* Already clear, should work ok. */
1458 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
1459 rv
= set_global_enables(smi_info
, enables
);
1463 dev_err(smi_info
->io
.dev
,
1464 "Cannot check clearing the rcv irq: %d\n", rv
);
1470 * An error when setting the event buffer bit means
1471 * clearing the bit is not supported.
1473 dev_warn(smi_info
->io
.dev
,
1474 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1475 smi_info
->cannot_disable_irq
= true;
1480 * Some BMCs do not support setting the interrupt bits in the global
1481 * enables even if they support interrupts. Clearly bad, but we can
1484 static void check_set_rcv_irq(struct smi_info
*smi_info
)
1489 if (!smi_info
->io
.irq
)
1492 rv
= get_global_enables(smi_info
, &enables
);
1494 enables
|= IPMI_BMC_RCV_MSG_INTR
;
1495 rv
= set_global_enables(smi_info
, enables
);
1499 dev_err(smi_info
->io
.dev
,
1500 "Cannot check setting the rcv irq: %d\n", rv
);
1506 * An error when setting the event buffer bit means
1507 * setting the bit is not supported.
1509 dev_warn(smi_info
->io
.dev
,
1510 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1511 smi_info
->cannot_disable_irq
= true;
1512 smi_info
->irq_enable_broken
= true;
1516 static int try_enable_event_buffer(struct smi_info
*smi_info
)
1518 unsigned char msg
[3];
1519 unsigned char *resp
;
1520 unsigned long resp_len
;
1523 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1527 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1528 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1529 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1531 rv
= wait_for_msg_done(smi_info
);
1533 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1537 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1538 resp
, IPMI_MAX_MSG_LENGTH
);
1541 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1542 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1544 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1549 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
1550 /* buffer is already enabled, nothing to do. */
1551 smi_info
->supports_event_msg_buff
= true;
1555 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1556 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1557 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
1558 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1560 rv
= wait_for_msg_done(smi_info
);
1562 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1566 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1567 resp
, IPMI_MAX_MSG_LENGTH
);
1570 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1571 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1572 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1579 * An error when setting the event buffer bit means
1580 * that the event buffer is not supported.
1584 smi_info
->supports_event_msg_buff
= true;
1591 #define IPMI_SI_ATTR(name) \
1592 static ssize_t ipmi_##name##_show(struct device *dev, \
1593 struct device_attribute *attr, \
1596 struct smi_info *smi_info = dev_get_drvdata(dev); \
1598 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1600 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1602 static ssize_t
ipmi_type_show(struct device
*dev
,
1603 struct device_attribute
*attr
,
1606 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1608 return snprintf(buf
, 10, "%s\n", si_to_str
[smi_info
->io
.si_type
]);
1610 static DEVICE_ATTR(type
, S_IRUGO
, ipmi_type_show
, NULL
);
1612 static ssize_t
ipmi_interrupts_enabled_show(struct device
*dev
,
1613 struct device_attribute
*attr
,
1616 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1617 int enabled
= smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
;
1619 return snprintf(buf
, 10, "%d\n", enabled
);
1621 static DEVICE_ATTR(interrupts_enabled
, S_IRUGO
,
1622 ipmi_interrupts_enabled_show
, NULL
);
1624 IPMI_SI_ATTR(short_timeouts
);
1625 IPMI_SI_ATTR(long_timeouts
);
1626 IPMI_SI_ATTR(idles
);
1627 IPMI_SI_ATTR(interrupts
);
1628 IPMI_SI_ATTR(attentions
);
1629 IPMI_SI_ATTR(flag_fetches
);
1630 IPMI_SI_ATTR(hosed_count
);
1631 IPMI_SI_ATTR(complete_transactions
);
1632 IPMI_SI_ATTR(events
);
1633 IPMI_SI_ATTR(watchdog_pretimeouts
);
1634 IPMI_SI_ATTR(incoming_messages
);
1636 static ssize_t
ipmi_params_show(struct device
*dev
,
1637 struct device_attribute
*attr
,
1640 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1642 return snprintf(buf
, 200,
1643 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1644 si_to_str
[smi_info
->io
.si_type
],
1645 addr_space_to_str
[smi_info
->io
.addr_type
],
1646 smi_info
->io
.addr_data
,
1647 smi_info
->io
.regspacing
,
1648 smi_info
->io
.regsize
,
1649 smi_info
->io
.regshift
,
1651 smi_info
->io
.slave_addr
);
1653 static DEVICE_ATTR(params
, S_IRUGO
, ipmi_params_show
, NULL
);
1655 static struct attribute
*ipmi_si_dev_attrs
[] = {
1656 &dev_attr_type
.attr
,
1657 &dev_attr_interrupts_enabled
.attr
,
1658 &dev_attr_short_timeouts
.attr
,
1659 &dev_attr_long_timeouts
.attr
,
1660 &dev_attr_idles
.attr
,
1661 &dev_attr_interrupts
.attr
,
1662 &dev_attr_attentions
.attr
,
1663 &dev_attr_flag_fetches
.attr
,
1664 &dev_attr_hosed_count
.attr
,
1665 &dev_attr_complete_transactions
.attr
,
1666 &dev_attr_events
.attr
,
1667 &dev_attr_watchdog_pretimeouts
.attr
,
1668 &dev_attr_incoming_messages
.attr
,
1669 &dev_attr_params
.attr
,
1673 static const struct attribute_group ipmi_si_dev_attr_group
= {
1674 .attrs
= ipmi_si_dev_attrs
,
1678 * oem_data_avail_to_receive_msg_avail
1679 * @info - smi_info structure with msg_flags set
1681 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1682 * Returns 1 indicating need to re-run handle_flags().
1684 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
1686 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
1692 * setup_dell_poweredge_oem_data_handler
1693 * @info - smi_info.device_id must be populated
1695 * Systems that match, but have firmware version < 1.40 may assert
1696 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1697 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1698 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1699 * as RECEIVE_MSG_AVAIL instead.
1701 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1702 * assert the OEM[012] bits, and if it did, the driver would have to
1703 * change to handle that properly, we don't actually check for the
1705 * Device ID = 0x20 BMC on PowerEdge 8G servers
1706 * Device Revision = 0x80
1707 * Firmware Revision1 = 0x01 BMC version 1.40
1708 * Firmware Revision2 = 0x40 BCD encoded
1709 * IPMI Version = 0x51 IPMI 1.5
1710 * Manufacturer ID = A2 02 00 Dell IANA
1712 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1713 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1716 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1717 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1718 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1719 #define DELL_IANA_MFR_ID 0x0002a2
1720 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
1722 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1723 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
1724 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
1725 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
1726 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
1727 smi_info
->oem_data_avail_handler
=
1728 oem_data_avail_to_receive_msg_avail
;
1729 } else if (ipmi_version_major(id
) < 1 ||
1730 (ipmi_version_major(id
) == 1 &&
1731 ipmi_version_minor(id
) < 5)) {
1732 smi_info
->oem_data_avail_handler
=
1733 oem_data_avail_to_receive_msg_avail
;
1738 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1739 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
1741 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
1743 /* Make it a response */
1744 msg
->rsp
[0] = msg
->data
[0] | 4;
1745 msg
->rsp
[1] = msg
->data
[1];
1746 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
1748 smi_info
->curr_msg
= NULL
;
1749 deliver_recv_msg(smi_info
, msg
);
1753 * dell_poweredge_bt_xaction_handler
1754 * @info - smi_info.device_id must be populated
1756 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1757 * not respond to a Get SDR command if the length of the data
1758 * requested is exactly 0x3A, which leads to command timeouts and no
1759 * data returned. This intercepts such commands, and causes userspace
1760 * callers to try again with a different-sized buffer, which succeeds.
1763 #define STORAGE_NETFN 0x0A
1764 #define STORAGE_CMD_GET_SDR 0x23
1765 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
1766 unsigned long unused
,
1769 struct smi_info
*smi_info
= in
;
1770 unsigned char *data
= smi_info
->curr_msg
->data
;
1771 unsigned int size
= smi_info
->curr_msg
->data_size
;
1773 (data
[0]>>2) == STORAGE_NETFN
&&
1774 data
[1] == STORAGE_CMD_GET_SDR
&&
1776 return_hosed_msg_badsize(smi_info
);
1782 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
1783 .notifier_call
= dell_poweredge_bt_xaction_handler
,
1787 * setup_dell_poweredge_bt_xaction_handler
1788 * @info - smi_info.device_id must be filled in already
1790 * Fills in smi_info.device_id.start_transaction_pre_hook
1791 * when we know what function to use there.
1794 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
1796 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1797 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
1798 smi_info
->io
.si_type
== SI_BT
)
1799 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
1803 * setup_oem_data_handler
1804 * @info - smi_info.device_id must be filled in already
1806 * Fills in smi_info.device_id.oem_data_available_handler
1807 * when we know what function to use there.
1810 static void setup_oem_data_handler(struct smi_info
*smi_info
)
1812 setup_dell_poweredge_oem_data_handler(smi_info
);
1815 static void setup_xaction_handlers(struct smi_info
*smi_info
)
1817 setup_dell_poweredge_bt_xaction_handler(smi_info
);
1820 static void check_for_broken_irqs(struct smi_info
*smi_info
)
1822 check_clr_rcv_irq(smi_info
);
1823 check_set_rcv_irq(smi_info
);
1826 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
1828 if (smi_info
->thread
!= NULL
) {
1829 kthread_stop(smi_info
->thread
);
1830 smi_info
->thread
= NULL
;
1833 smi_info
->timer_can_start
= false;
1834 if (smi_info
->timer_running
)
1835 del_timer_sync(&smi_info
->si_timer
);
1838 static struct smi_info
*find_dup_si(struct smi_info
*info
)
1842 list_for_each_entry(e
, &smi_infos
, link
) {
1843 if (e
->io
.addr_type
!= info
->io
.addr_type
)
1845 if (e
->io
.addr_data
== info
->io
.addr_data
) {
1847 * This is a cheap hack, ACPI doesn't have a defined
1848 * slave address but SMBIOS does. Pick it up from
1849 * any source that has it available.
1851 if (info
->io
.slave_addr
&& !e
->io
.slave_addr
)
1852 e
->io
.slave_addr
= info
->io
.slave_addr
;
1860 int ipmi_si_add_smi(struct si_sm_io
*io
)
1863 struct smi_info
*new_smi
, *dup
;
1865 if (!io
->io_setup
) {
1866 if (io
->addr_type
== IPMI_IO_ADDR_SPACE
) {
1867 io
->io_setup
= ipmi_si_port_setup
;
1868 } else if (io
->addr_type
== IPMI_MEM_ADDR_SPACE
) {
1869 io
->io_setup
= ipmi_si_mem_setup
;
1875 new_smi
= kzalloc(sizeof(*new_smi
), GFP_KERNEL
);
1878 spin_lock_init(&new_smi
->si_lock
);
1882 mutex_lock(&smi_infos_lock
);
1883 dup
= find_dup_si(new_smi
);
1885 if (new_smi
->io
.addr_source
== SI_ACPI
&&
1886 dup
->io
.addr_source
== SI_SMBIOS
) {
1887 /* We prefer ACPI over SMBIOS. */
1888 dev_info(dup
->io
.dev
,
1889 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1890 si_to_str
[new_smi
->io
.si_type
]);
1891 cleanup_one_si(dup
);
1893 dev_info(new_smi
->io
.dev
,
1894 "%s-specified %s state machine: duplicate\n",
1895 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1896 si_to_str
[new_smi
->io
.si_type
]);
1903 pr_info("Adding %s-specified %s state machine\n",
1904 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1905 si_to_str
[new_smi
->io
.si_type
]);
1907 list_add_tail(&new_smi
->link
, &smi_infos
);
1910 rv
= try_smi_init(new_smi
);
1912 mutex_unlock(&smi_infos_lock
);
1917 * Try to start up an interface. Must be called with smi_infos_lock
1918 * held, primarily to keep smi_num consistent, we only one to do these
1921 static int try_smi_init(struct smi_info
*new_smi
)
1925 char *init_name
= NULL
;
1927 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1928 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1929 si_to_str
[new_smi
->io
.si_type
],
1930 addr_space_to_str
[new_smi
->io
.addr_type
],
1931 new_smi
->io
.addr_data
,
1932 new_smi
->io
.slave_addr
, new_smi
->io
.irq
);
1934 switch (new_smi
->io
.si_type
) {
1936 new_smi
->handlers
= &kcs_smi_handlers
;
1940 new_smi
->handlers
= &smic_smi_handlers
;
1944 new_smi
->handlers
= &bt_smi_handlers
;
1948 /* No support for anything else yet. */
1953 new_smi
->si_num
= smi_num
;
1955 /* Do this early so it's available for logs. */
1956 if (!new_smi
->io
.dev
) {
1957 init_name
= kasprintf(GFP_KERNEL
, "ipmi_si.%d",
1961 * If we don't already have a device from something
1962 * else (like PCI), then register a new one.
1964 new_smi
->pdev
= platform_device_alloc("ipmi_si",
1966 if (!new_smi
->pdev
) {
1967 pr_err("Unable to allocate platform device\n");
1971 new_smi
->io
.dev
= &new_smi
->pdev
->dev
;
1972 new_smi
->io
.dev
->driver
= &ipmi_platform_driver
.driver
;
1973 /* Nulled by device_add() */
1974 new_smi
->io
.dev
->init_name
= init_name
;
1977 /* Allocate the state machine's data and initialize it. */
1978 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
1979 if (!new_smi
->si_sm
) {
1983 new_smi
->io
.io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
1986 /* Now that we know the I/O size, we can set up the I/O. */
1987 rv
= new_smi
->io
.io_setup(&new_smi
->io
);
1989 dev_err(new_smi
->io
.dev
, "Could not set up I/O space\n");
1993 /* Do low-level detection first. */
1994 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
1995 if (new_smi
->io
.addr_source
)
1996 dev_err(new_smi
->io
.dev
,
1997 "Interface detection failed\n");
2003 * Attempt a get device id command. If it fails, we probably
2004 * don't have a BMC here.
2006 rv
= try_get_dev_id(new_smi
);
2008 if (new_smi
->io
.addr_source
)
2009 dev_err(new_smi
->io
.dev
,
2010 "There appears to be no BMC at this location\n");
2014 setup_oem_data_handler(new_smi
);
2015 setup_xaction_handlers(new_smi
);
2016 check_for_broken_irqs(new_smi
);
2018 new_smi
->waiting_msg
= NULL
;
2019 new_smi
->curr_msg
= NULL
;
2020 atomic_set(&new_smi
->req_events
, 0);
2021 new_smi
->run_to_completion
= false;
2022 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2023 atomic_set(&new_smi
->stats
[i
], 0);
2025 new_smi
->interrupt_disabled
= true;
2026 atomic_set(&new_smi
->need_watch
, 0);
2028 rv
= try_enable_event_buffer(new_smi
);
2030 new_smi
->has_event_buffer
= true;
2033 * Start clearing the flags before we enable interrupts or the
2034 * timer to avoid racing with the timer.
2036 start_clear_flags(new_smi
);
2039 * IRQ is defined to be set when non-zero. req_events will
2040 * cause a global flags check that will enable interrupts.
2042 if (new_smi
->io
.irq
) {
2043 new_smi
->interrupt_disabled
= false;
2044 atomic_set(&new_smi
->req_events
, 1);
2047 if (new_smi
->pdev
&& !new_smi
->pdev_registered
) {
2048 rv
= platform_device_add(new_smi
->pdev
);
2050 dev_err(new_smi
->io
.dev
,
2051 "Unable to register system interface device: %d\n",
2055 new_smi
->pdev_registered
= true;
2058 dev_set_drvdata(new_smi
->io
.dev
, new_smi
);
2059 rv
= device_add_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2061 dev_err(new_smi
->io
.dev
,
2062 "Unable to add device attributes: error %d\n",
2066 new_smi
->dev_group_added
= true;
2068 rv
= ipmi_register_smi(&handlers
,
2071 new_smi
->io
.slave_addr
);
2073 dev_err(new_smi
->io
.dev
,
2074 "Unable to register device: error %d\n",
2079 /* Don't increment till we know we have succeeded. */
2082 dev_info(new_smi
->io
.dev
, "IPMI %s interface initialized\n",
2083 si_to_str
[new_smi
->io
.si_type
]);
2085 WARN_ON(new_smi
->io
.dev
->init_name
!= NULL
);
2092 static int init_ipmi_si(void)
2095 enum ipmi_addr_src type
= SI_INVALID
;
2100 pr_info("IPMI System Interface driver\n");
2102 /* If the user gave us a device, they presumably want us to use it */
2103 if (!ipmi_si_hardcode_find_bmc())
2106 ipmi_si_platform_init();
2110 ipmi_si_parisc_init();
2112 /* We prefer devices with interrupts, but in the case of a machine
2113 with multiple BMCs we assume that there will be several instances
2114 of a given type so if we succeed in registering a type then also
2115 try to register everything else of the same type */
2117 mutex_lock(&smi_infos_lock
);
2118 list_for_each_entry(e
, &smi_infos
, link
) {
2119 /* Try to register a device if it has an IRQ and we either
2120 haven't successfully registered a device yet or this
2121 device has the same type as one we successfully registered */
2122 if (e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2123 if (!try_smi_init(e
)) {
2124 type
= e
->io
.addr_source
;
2129 /* type will only have been set if we successfully registered an si */
2131 goto skip_fallback_noirq
;
2133 /* Fall back to the preferred device */
2135 list_for_each_entry(e
, &smi_infos
, link
) {
2136 if (!e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2137 if (!try_smi_init(e
)) {
2138 type
= e
->io
.addr_source
;
2143 skip_fallback_noirq
:
2145 mutex_unlock(&smi_infos_lock
);
2150 mutex_lock(&smi_infos_lock
);
2151 if (unload_when_empty
&& list_empty(&smi_infos
)) {
2152 mutex_unlock(&smi_infos_lock
);
2154 pr_warn("Unable to find any System Interface(s)\n");
2157 mutex_unlock(&smi_infos_lock
);
2161 module_init(init_ipmi_si
);
2163 static void shutdown_smi(void *send_info
)
2165 struct smi_info
*smi_info
= send_info
;
2167 if (smi_info
->dev_group_added
) {
2168 device_remove_group(smi_info
->io
.dev
, &ipmi_si_dev_attr_group
);
2169 smi_info
->dev_group_added
= false;
2171 if (smi_info
->io
.dev
)
2172 dev_set_drvdata(smi_info
->io
.dev
, NULL
);
2175 * Make sure that interrupts, the timer and the thread are
2176 * stopped and will not run again.
2178 smi_info
->interrupt_disabled
= true;
2179 if (smi_info
->io
.irq_cleanup
) {
2180 smi_info
->io
.irq_cleanup(&smi_info
->io
);
2181 smi_info
->io
.irq_cleanup
= NULL
;
2183 stop_timer_and_thread(smi_info
);
2186 * Wait until we know that we are out of any interrupt
2187 * handlers might have been running before we freed the
2190 synchronize_sched();
2193 * Timeouts are stopped, now make sure the interrupts are off
2194 * in the BMC. Note that timers and CPU interrupts are off,
2195 * so no need for locks.
2197 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2199 schedule_timeout_uninterruptible(1);
2201 if (smi_info
->handlers
)
2202 disable_si_irq(smi_info
);
2203 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2205 schedule_timeout_uninterruptible(1);
2207 if (smi_info
->handlers
)
2208 smi_info
->handlers
->cleanup(smi_info
->si_sm
);
2210 if (smi_info
->io
.addr_source_cleanup
) {
2211 smi_info
->io
.addr_source_cleanup(&smi_info
->io
);
2212 smi_info
->io
.addr_source_cleanup
= NULL
;
2214 if (smi_info
->io
.io_cleanup
) {
2215 smi_info
->io
.io_cleanup(&smi_info
->io
);
2216 smi_info
->io
.io_cleanup
= NULL
;
2219 kfree(smi_info
->si_sm
);
2220 smi_info
->si_sm
= NULL
;
2222 smi_info
->intf
= NULL
;
2226 * Must be called with smi_infos_lock held, to serialize the
2227 * smi_info->intf check.
2229 static void cleanup_one_si(struct smi_info
*smi_info
)
2234 list_del(&smi_info
->link
);
2237 ipmi_unregister_smi(smi_info
->intf
);
2239 if (smi_info
->pdev
) {
2240 if (smi_info
->pdev_registered
)
2241 platform_device_unregister(smi_info
->pdev
);
2243 platform_device_put(smi_info
->pdev
);
2249 int ipmi_si_remove_by_dev(struct device
*dev
)
2254 mutex_lock(&smi_infos_lock
);
2255 list_for_each_entry(e
, &smi_infos
, link
) {
2256 if (e
->io
.dev
== dev
) {
2262 mutex_unlock(&smi_infos_lock
);
2267 void ipmi_si_remove_by_data(int addr_space
, enum si_type si_type
,
2271 struct smi_info
*e
, *tmp_e
;
2273 mutex_lock(&smi_infos_lock
);
2274 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
2275 if (e
->io
.addr_type
!= addr_space
)
2277 if (e
->io
.si_type
!= si_type
)
2279 if (e
->io
.addr_data
== addr
)
2282 mutex_unlock(&smi_infos_lock
);
2285 static void cleanup_ipmi_si(void)
2287 struct smi_info
*e
, *tmp_e
;
2292 ipmi_si_pci_shutdown();
2294 ipmi_si_parisc_shutdown();
2296 ipmi_si_platform_shutdown();
2298 mutex_lock(&smi_infos_lock
);
2299 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
2301 mutex_unlock(&smi_infos_lock
);
2303 module_exit(cleanup_ipmi_si
);
2305 MODULE_ALIAS("platform:dmi-ipmi-si");
2306 MODULE_LICENSE("GPL");
2307 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2308 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2309 " system interfaces.");