2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
25 #include <asm/byteorder.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/reboot.h>
32 #include <linux/bitmap.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/cfi.h>
38 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
39 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41 // debugging, turns off buffer write mode if set to 1
42 #define FORCE_WORD_WRITE 0
45 #define I82802AB 0x00ad
46 #define I82802AC 0x00ac
47 #define PF38F4476 0x881c
48 #define M28F00AP30 0x8963
49 /* STMicroelectronics chips */
50 #define M50LPW080 0x002F
51 #define M50FLW080A 0x0080
52 #define M50FLW080B 0x0081
54 #define AT49BV640D 0x02de
55 #define AT49BV640DT 0x02db
57 #define LH28F640BFHE_PTTL90 0x00b0
58 #define LH28F640BFHE_PBTL90 0x00b1
59 #define LH28F640BFHE_PTTL70A 0x00b2
60 #define LH28F640BFHE_PBTL70A 0x00b3
62 static int cfi_intelext_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
63 static int cfi_intelext_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
64 static int cfi_intelext_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
65 static int cfi_intelext_writev(struct mtd_info
*, const struct kvec
*, unsigned long, loff_t
, size_t *);
66 static int cfi_intelext_erase_varsize(struct mtd_info
*, struct erase_info
*);
67 static void cfi_intelext_sync (struct mtd_info
*);
68 static int cfi_intelext_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
69 static int cfi_intelext_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
70 static int cfi_intelext_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
73 static int cfi_intelext_read_fact_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
74 static int cfi_intelext_read_user_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
75 static int cfi_intelext_write_user_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
76 static int cfi_intelext_lock_user_prot_reg (struct mtd_info
*, loff_t
, size_t);
77 static int cfi_intelext_get_fact_prot_info(struct mtd_info
*, size_t,
78 size_t *, struct otp_info
*);
79 static int cfi_intelext_get_user_prot_info(struct mtd_info
*, size_t,
80 size_t *, struct otp_info
*);
82 static int cfi_intelext_suspend (struct mtd_info
*);
83 static void cfi_intelext_resume (struct mtd_info
*);
84 static int cfi_intelext_reboot (struct notifier_block
*, unsigned long, void *);
86 static void cfi_intelext_destroy(struct mtd_info
*);
88 struct mtd_info
*cfi_cmdset_0001(struct map_info
*, int);
90 static struct mtd_info
*cfi_intelext_setup (struct mtd_info
*);
91 static int cfi_intelext_partition_fixup(struct mtd_info
*, struct cfi_private
**);
93 static int cfi_intelext_point (struct mtd_info
*mtd
, loff_t from
, size_t len
,
94 size_t *retlen
, void **virt
, resource_size_t
*phys
);
95 static int cfi_intelext_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
);
97 static int chip_ready (struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
98 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
99 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
100 #include "fwh_lock.h"
105 * *********** SETUP AND PROBE BITS ***********
108 static struct mtd_chip_driver cfi_intelext_chipdrv
= {
109 .probe
= NULL
, /* Not usable directly */
110 .destroy
= cfi_intelext_destroy
,
111 .name
= "cfi_cmdset_0001",
112 .module
= THIS_MODULE
115 /* #define DEBUG_LOCK_BITS */
116 /* #define DEBUG_CFI_FEATURES */
118 #ifdef DEBUG_CFI_FEATURES
119 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
122 printk(" Extended Query version %c.%c\n", extp
->MajorVersion
, extp
->MinorVersion
);
123 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
124 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
125 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
126 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
127 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
128 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
129 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
130 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
131 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
132 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
133 printk(" - Simultaneous operations: %s\n", extp
->FeatureSupport
&512?"supported":"unsupported");
134 printk(" - Extended Flash Array: %s\n", extp
->FeatureSupport
&1024?"supported":"unsupported");
135 for (i
=11; i
<32; i
++) {
136 if (extp
->FeatureSupport
& (1<<i
))
137 printk(" - Unknown Bit %X: supported\n", i
);
140 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
141 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
142 for (i
=1; i
<8; i
++) {
143 if (extp
->SuspendCmdSupport
& (1<<i
))
144 printk(" - Unknown Bit %X: supported\n", i
);
147 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
148 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
149 printk(" - Lock-Down Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
150 for (i
=2; i
<3; i
++) {
151 if (extp
->BlkStatusRegMask
& (1<<i
))
152 printk(" - Unknown Bit %X Active: yes\n",i
);
154 printk(" - EFA Lock Bit: %s\n", extp
->BlkStatusRegMask
&16?"yes":"no");
155 printk(" - EFA Lock-Down Bit: %s\n", extp
->BlkStatusRegMask
&32?"yes":"no");
156 for (i
=6; i
<16; i
++) {
157 if (extp
->BlkStatusRegMask
& (1<<i
))
158 printk(" - Unknown Bit %X Active: yes\n",i
);
161 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
162 extp
->VccOptimal
>> 4, extp
->VccOptimal
& 0xf);
163 if (extp
->VppOptimal
)
164 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
165 extp
->VppOptimal
>> 4, extp
->VppOptimal
& 0xf);
169 /* Atmel chips don't use the same PRI format as Intel chips */
170 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
172 struct map_info
*map
= mtd
->priv
;
173 struct cfi_private
*cfi
= map
->fldrv_priv
;
174 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
175 struct cfi_pri_atmel atmel_pri
;
176 uint32_t features
= 0;
178 /* Reverse byteswapping */
179 extp
->FeatureSupport
= cpu_to_le32(extp
->FeatureSupport
);
180 extp
->BlkStatusRegMask
= cpu_to_le16(extp
->BlkStatusRegMask
);
181 extp
->ProtRegAddr
= cpu_to_le16(extp
->ProtRegAddr
);
183 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
184 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
186 printk(KERN_ERR
"atmel Features: %02x\n", atmel_pri
.Features
);
188 if (atmel_pri
.Features
& 0x01) /* chip erase supported */
190 if (atmel_pri
.Features
& 0x02) /* erase suspend supported */
192 if (atmel_pri
.Features
& 0x04) /* program suspend supported */
194 if (atmel_pri
.Features
& 0x08) /* simultaneous operations supported */
196 if (atmel_pri
.Features
& 0x20) /* page mode read supported */
198 if (atmel_pri
.Features
& 0x40) /* queued erase supported */
200 if (atmel_pri
.Features
& 0x80) /* Protection bits supported */
203 extp
->FeatureSupport
= features
;
205 /* burst write mode not supported */
206 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
207 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
210 static void fixup_at49bv640dx_lock(struct mtd_info
*mtd
)
212 struct map_info
*map
= mtd
->priv
;
213 struct cfi_private
*cfi
= map
->fldrv_priv
;
214 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
216 cfip
->FeatureSupport
|= (1 << 5);
217 mtd
->flags
|= MTD_POWERUP_LOCK
;
220 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
221 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
222 static void fixup_intel_strataflash(struct mtd_info
*mtd
)
224 struct map_info
*map
= mtd
->priv
;
225 struct cfi_private
*cfi
= map
->fldrv_priv
;
226 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
228 printk(KERN_WARNING
"cfi_cmdset_0001: Suspend "
229 "erase on write disabled.\n");
230 extp
->SuspendCmdSupport
&= ~1;
234 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
235 static void fixup_no_write_suspend(struct mtd_info
*mtd
)
237 struct map_info
*map
= mtd
->priv
;
238 struct cfi_private
*cfi
= map
->fldrv_priv
;
239 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
241 if (cfip
&& (cfip
->FeatureSupport
&4)) {
242 cfip
->FeatureSupport
&= ~4;
243 printk(KERN_WARNING
"cfi_cmdset_0001: write suspend disabled\n");
248 static void fixup_st_m28w320ct(struct mtd_info
*mtd
)
250 struct map_info
*map
= mtd
->priv
;
251 struct cfi_private
*cfi
= map
->fldrv_priv
;
253 cfi
->cfiq
->BufWriteTimeoutTyp
= 0; /* Not supported */
254 cfi
->cfiq
->BufWriteTimeoutMax
= 0; /* Not supported */
257 static void fixup_st_m28w320cb(struct mtd_info
*mtd
)
259 struct map_info
*map
= mtd
->priv
;
260 struct cfi_private
*cfi
= map
->fldrv_priv
;
262 /* Note this is done after the region info is endian swapped */
263 cfi
->cfiq
->EraseRegionInfo
[1] =
264 (cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff0000) | 0x3e;
267 static int is_LH28F640BF(struct cfi_private
*cfi
)
269 /* Sharp LH28F640BF Family */
270 if (cfi
->mfr
== CFI_MFR_SHARP
&& (
271 cfi
->id
== LH28F640BFHE_PTTL90
|| cfi
->id
== LH28F640BFHE_PBTL90
||
272 cfi
->id
== LH28F640BFHE_PTTL70A
|| cfi
->id
== LH28F640BFHE_PBTL70A
))
277 static void fixup_LH28F640BF(struct mtd_info
*mtd
)
279 struct map_info
*map
= mtd
->priv
;
280 struct cfi_private
*cfi
= map
->fldrv_priv
;
281 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
283 /* Reset the Partition Configuration Register on LH28F640BF
284 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
285 if (is_LH28F640BF(cfi
)) {
286 printk(KERN_INFO
"Reset Partition Config. Register: 1 Partition of 4 planes\n");
287 map_write(map
, CMD(0x60), 0);
288 map_write(map
, CMD(0x04), 0);
290 /* We have set one single partition thus
291 * Simultaneous Operations are not allowed */
292 printk(KERN_INFO
"cfi_cmdset_0001: Simultaneous Operations disabled\n");
293 extp
->FeatureSupport
&= ~512;
297 static void fixup_use_point(struct mtd_info
*mtd
)
299 struct map_info
*map
= mtd
->priv
;
300 if (!mtd
->_point
&& map_is_linear(map
)) {
301 mtd
->_point
= cfi_intelext_point
;
302 mtd
->_unpoint
= cfi_intelext_unpoint
;
306 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
308 struct map_info
*map
= mtd
->priv
;
309 struct cfi_private
*cfi
= map
->fldrv_priv
;
310 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
311 printk(KERN_INFO
"Using buffer write method\n" );
312 mtd
->_write
= cfi_intelext_write_buffers
;
313 mtd
->_writev
= cfi_intelext_writev
;
318 * Some chips power-up with all sectors locked by default.
320 static void fixup_unlock_powerup_lock(struct mtd_info
*mtd
)
322 struct map_info
*map
= mtd
->priv
;
323 struct cfi_private
*cfi
= map
->fldrv_priv
;
324 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
326 if (cfip
->FeatureSupport
&32) {
327 printk(KERN_INFO
"Using auto-unlock on power-up/resume\n" );
328 mtd
->flags
|= MTD_POWERUP_LOCK
;
332 static struct cfi_fixup cfi_fixup_table
[] = {
333 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
334 { CFI_MFR_ATMEL
, AT49BV640D
, fixup_at49bv640dx_lock
},
335 { CFI_MFR_ATMEL
, AT49BV640DT
, fixup_at49bv640dx_lock
},
336 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
337 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_intel_strataflash
},
339 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
340 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_no_write_suspend
},
342 #if !FORCE_WORD_WRITE
343 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
345 { CFI_MFR_ST
, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct
},
346 { CFI_MFR_ST
, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb
},
347 { CFI_MFR_INTEL
, CFI_ID_ANY
, fixup_unlock_powerup_lock
},
348 { CFI_MFR_SHARP
, CFI_ID_ANY
, fixup_unlock_powerup_lock
},
349 { CFI_MFR_SHARP
, CFI_ID_ANY
, fixup_LH28F640BF
},
353 static struct cfi_fixup jedec_fixup_table
[] = {
354 { CFI_MFR_INTEL
, I82802AB
, fixup_use_fwh_lock
},
355 { CFI_MFR_INTEL
, I82802AC
, fixup_use_fwh_lock
},
356 { CFI_MFR_ST
, M50LPW080
, fixup_use_fwh_lock
},
357 { CFI_MFR_ST
, M50FLW080A
, fixup_use_fwh_lock
},
358 { CFI_MFR_ST
, M50FLW080B
, fixup_use_fwh_lock
},
361 static struct cfi_fixup fixup_table
[] = {
362 /* The CFI vendor ids and the JEDEC vendor IDs appear
363 * to be common. It is like the devices id's are as
364 * well. This table is to pick all cases where
365 * we know that is the case.
367 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_point
},
371 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
372 struct cfi_pri_intelext
*extp
)
374 if (cfi
->mfr
== CFI_MFR_INTEL
&&
375 cfi
->id
== PF38F4476
&& extp
->MinorVersion
== '3')
376 extp
->MinorVersion
= '1';
379 static int cfi_is_micron_28F00AP30(struct cfi_private
*cfi
, struct flchip
*chip
)
382 * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
383 * Erase Supend for their small Erase Blocks(0x8000)
385 if (cfi
->mfr
== CFI_MFR_INTEL
&& cfi
->id
== M28F00AP30
)
390 static inline struct cfi_pri_intelext
*
391 read_pri_intelext(struct map_info
*map
, __u16 adr
)
393 struct cfi_private
*cfi
= map
->fldrv_priv
;
394 struct cfi_pri_intelext
*extp
;
395 unsigned int extra_size
= 0;
396 unsigned int extp_size
= sizeof(*extp
);
399 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, extp_size
, "Intel/Sharp");
403 cfi_fixup_major_minor(cfi
, extp
);
405 if (extp
->MajorVersion
!= '1' ||
406 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '5')) {
407 printk(KERN_ERR
" Unknown Intel/Sharp Extended Query "
408 "version %c.%c.\n", extp
->MajorVersion
,
414 /* Do some byteswapping if necessary */
415 extp
->FeatureSupport
= le32_to_cpu(extp
->FeatureSupport
);
416 extp
->BlkStatusRegMask
= le16_to_cpu(extp
->BlkStatusRegMask
);
417 extp
->ProtRegAddr
= le16_to_cpu(extp
->ProtRegAddr
);
419 if (extp
->MinorVersion
>= '0') {
422 /* Protection Register info */
423 extra_size
+= (extp
->NumProtectionFields
- 1) *
424 sizeof(struct cfi_intelext_otpinfo
);
427 if (extp
->MinorVersion
>= '1') {
428 /* Burst Read info */
430 if (extp_size
< sizeof(*extp
) + extra_size
)
432 extra_size
+= extp
->extra
[extra_size
- 1];
435 if (extp
->MinorVersion
>= '3') {
438 /* Number of hardware-partitions */
440 if (extp_size
< sizeof(*extp
) + extra_size
)
442 nb_parts
= extp
->extra
[extra_size
- 1];
444 /* skip the sizeof(partregion) field in CFI 1.4 */
445 if (extp
->MinorVersion
>= '4')
448 for (i
= 0; i
< nb_parts
; i
++) {
449 struct cfi_intelext_regioninfo
*rinfo
;
450 rinfo
= (struct cfi_intelext_regioninfo
*)&extp
->extra
[extra_size
];
451 extra_size
+= sizeof(*rinfo
);
452 if (extp_size
< sizeof(*extp
) + extra_size
)
454 rinfo
->NumIdentPartitions
=le16_to_cpu(rinfo
->NumIdentPartitions
);
455 extra_size
+= (rinfo
->NumBlockTypes
- 1)
456 * sizeof(struct cfi_intelext_blockinfo
);
459 if (extp
->MinorVersion
>= '4')
460 extra_size
+= sizeof(struct cfi_intelext_programming_regioninfo
);
462 if (extp_size
< sizeof(*extp
) + extra_size
) {
464 extp_size
= sizeof(*extp
) + extra_size
;
466 if (extp_size
> 4096) {
468 "%s: cfi_pri_intelext is too fat\n",
479 struct mtd_info
*cfi_cmdset_0001(struct map_info
*map
, int primary
)
481 struct cfi_private
*cfi
= map
->fldrv_priv
;
482 struct mtd_info
*mtd
;
485 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
489 mtd
->type
= MTD_NORFLASH
;
491 /* Fill in the default mtd operations */
492 mtd
->_erase
= cfi_intelext_erase_varsize
;
493 mtd
->_read
= cfi_intelext_read
;
494 mtd
->_write
= cfi_intelext_write_words
;
495 mtd
->_sync
= cfi_intelext_sync
;
496 mtd
->_lock
= cfi_intelext_lock
;
497 mtd
->_unlock
= cfi_intelext_unlock
;
498 mtd
->_is_locked
= cfi_intelext_is_locked
;
499 mtd
->_suspend
= cfi_intelext_suspend
;
500 mtd
->_resume
= cfi_intelext_resume
;
501 mtd
->flags
= MTD_CAP_NORFLASH
;
502 mtd
->name
= map
->name
;
504 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
506 mtd
->reboot_notifier
.notifier_call
= cfi_intelext_reboot
;
508 if (cfi
->cfi_mode
== CFI_MODE_CFI
) {
510 * It's a real CFI chip, not one for which the probe
511 * routine faked a CFI structure. So we read the feature
514 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
515 struct cfi_pri_intelext
*extp
;
517 extp
= read_pri_intelext(map
, adr
);
523 /* Install our own private info structure */
524 cfi
->cmdset_priv
= extp
;
526 cfi_fixup(mtd
, cfi_fixup_table
);
528 #ifdef DEBUG_CFI_FEATURES
529 /* Tell the user about it in lots of lovely detail */
530 cfi_tell_features(extp
);
533 if(extp
->SuspendCmdSupport
& 1) {
534 printk(KERN_NOTICE
"cfi_cmdset_0001: Erase suspend on write enabled\n");
537 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
538 /* Apply jedec specific fixups */
539 cfi_fixup(mtd
, jedec_fixup_table
);
541 /* Apply generic fixups */
542 cfi_fixup(mtd
, fixup_table
);
544 for (i
=0; i
< cfi
->numchips
; i
++) {
545 if (cfi
->cfiq
->WordWriteTimeoutTyp
)
546 cfi
->chips
[i
].word_write_time
=
547 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
549 cfi
->chips
[i
].word_write_time
= 50000;
551 if (cfi
->cfiq
->BufWriteTimeoutTyp
)
552 cfi
->chips
[i
].buffer_write_time
=
553 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
554 /* No default; if it isn't specified, we won't use it */
556 if (cfi
->cfiq
->BlockEraseTimeoutTyp
)
557 cfi
->chips
[i
].erase_time
=
558 1000<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
560 cfi
->chips
[i
].erase_time
= 2000000;
562 if (cfi
->cfiq
->WordWriteTimeoutTyp
&&
563 cfi
->cfiq
->WordWriteTimeoutMax
)
564 cfi
->chips
[i
].word_write_time_max
=
565 1<<(cfi
->cfiq
->WordWriteTimeoutTyp
+
566 cfi
->cfiq
->WordWriteTimeoutMax
);
568 cfi
->chips
[i
].word_write_time_max
= 50000 * 8;
570 if (cfi
->cfiq
->BufWriteTimeoutTyp
&&
571 cfi
->cfiq
->BufWriteTimeoutMax
)
572 cfi
->chips
[i
].buffer_write_time_max
=
573 1<<(cfi
->cfiq
->BufWriteTimeoutTyp
+
574 cfi
->cfiq
->BufWriteTimeoutMax
);
576 if (cfi
->cfiq
->BlockEraseTimeoutTyp
&&
577 cfi
->cfiq
->BlockEraseTimeoutMax
)
578 cfi
->chips
[i
].erase_time_max
=
579 1000<<(cfi
->cfiq
->BlockEraseTimeoutTyp
+
580 cfi
->cfiq
->BlockEraseTimeoutMax
);
582 cfi
->chips
[i
].erase_time_max
= 2000000 * 8;
584 cfi
->chips
[i
].ref_point_counter
= 0;
585 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
588 map
->fldrv
= &cfi_intelext_chipdrv
;
590 return cfi_intelext_setup(mtd
);
592 struct mtd_info
*cfi_cmdset_0003(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0001")));
593 struct mtd_info
*cfi_cmdset_0200(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0001")));
594 EXPORT_SYMBOL_GPL(cfi_cmdset_0001
);
595 EXPORT_SYMBOL_GPL(cfi_cmdset_0003
);
596 EXPORT_SYMBOL_GPL(cfi_cmdset_0200
);
598 static struct mtd_info
*cfi_intelext_setup(struct mtd_info
*mtd
)
600 struct map_info
*map
= mtd
->priv
;
601 struct cfi_private
*cfi
= map
->fldrv_priv
;
602 unsigned long offset
= 0;
604 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
606 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
608 mtd
->size
= devsize
* cfi
->numchips
;
610 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
611 mtd
->eraseregions
= kcalloc(mtd
->numeraseregions
,
612 sizeof(struct mtd_erase_region_info
),
614 if (!mtd
->eraseregions
)
617 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
618 unsigned long ernum
, ersize
;
619 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
620 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
622 if (mtd
->erasesize
< ersize
) {
623 mtd
->erasesize
= ersize
;
625 for (j
=0; j
<cfi
->numchips
; j
++) {
626 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
627 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
628 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
629 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
= kmalloc(ernum
/ 8 + 1, GFP_KERNEL
);
630 if (!mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
)
633 offset
+= (ersize
* ernum
);
636 if (offset
!= devsize
) {
638 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
642 for (i
=0; i
<mtd
->numeraseregions
;i
++){
643 printk(KERN_DEBUG
"erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
644 i
,(unsigned long long)mtd
->eraseregions
[i
].offset
,
645 mtd
->eraseregions
[i
].erasesize
,
646 mtd
->eraseregions
[i
].numblocks
);
649 #ifdef CONFIG_MTD_OTP
650 mtd
->_read_fact_prot_reg
= cfi_intelext_read_fact_prot_reg
;
651 mtd
->_read_user_prot_reg
= cfi_intelext_read_user_prot_reg
;
652 mtd
->_write_user_prot_reg
= cfi_intelext_write_user_prot_reg
;
653 mtd
->_lock_user_prot_reg
= cfi_intelext_lock_user_prot_reg
;
654 mtd
->_get_fact_prot_info
= cfi_intelext_get_fact_prot_info
;
655 mtd
->_get_user_prot_info
= cfi_intelext_get_user_prot_info
;
658 /* This function has the potential to distort the reality
659 a bit and therefore should be called last. */
660 if (cfi_intelext_partition_fixup(mtd
, &cfi
) != 0)
663 __module_get(THIS_MODULE
);
664 register_reboot_notifier(&mtd
->reboot_notifier
);
668 if (mtd
->eraseregions
)
669 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++)
670 for (j
=0; j
<cfi
->numchips
; j
++)
671 kfree(mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
);
672 kfree(mtd
->eraseregions
);
674 kfree(cfi
->cmdset_priv
);
678 static int cfi_intelext_partition_fixup(struct mtd_info
*mtd
,
679 struct cfi_private
**pcfi
)
681 struct map_info
*map
= mtd
->priv
;
682 struct cfi_private
*cfi
= *pcfi
;
683 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
686 * Probing of multi-partition flash chips.
688 * To support multiple partitions when available, we simply arrange
689 * for each of them to have their own flchip structure even if they
690 * are on the same physical chip. This means completely recreating
691 * a new cfi_private structure right here which is a blatent code
692 * layering violation, but this is still the least intrusive
693 * arrangement at this point. This can be rearranged in the future
694 * if someone feels motivated enough. --nico
696 if (extp
&& extp
->MajorVersion
== '1' && extp
->MinorVersion
>= '3'
697 && extp
->FeatureSupport
& (1 << 9)) {
698 struct cfi_private
*newcfi
;
700 struct flchip_shared
*shared
;
701 int offs
, numregions
, numparts
, partshift
, numvirtchips
, i
, j
;
703 /* Protection Register info */
704 offs
= (extp
->NumProtectionFields
- 1) *
705 sizeof(struct cfi_intelext_otpinfo
);
707 /* Burst Read info */
708 offs
+= extp
->extra
[offs
+1]+2;
710 /* Number of partition regions */
711 numregions
= extp
->extra
[offs
];
714 /* skip the sizeof(partregion) field in CFI 1.4 */
715 if (extp
->MinorVersion
>= '4')
718 /* Number of hardware partitions */
720 for (i
= 0; i
< numregions
; i
++) {
721 struct cfi_intelext_regioninfo
*rinfo
;
722 rinfo
= (struct cfi_intelext_regioninfo
*)&extp
->extra
[offs
];
723 numparts
+= rinfo
->NumIdentPartitions
;
724 offs
+= sizeof(*rinfo
)
725 + (rinfo
->NumBlockTypes
- 1) *
726 sizeof(struct cfi_intelext_blockinfo
);
732 /* Programming Region info */
733 if (extp
->MinorVersion
>= '4') {
734 struct cfi_intelext_programming_regioninfo
*prinfo
;
735 prinfo
= (struct cfi_intelext_programming_regioninfo
*)&extp
->extra
[offs
];
736 mtd
->writesize
= cfi
->interleave
<< prinfo
->ProgRegShift
;
737 mtd
->flags
&= ~MTD_BIT_WRITEABLE
;
738 printk(KERN_DEBUG
"%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
739 map
->name
, mtd
->writesize
,
740 cfi
->interleave
* prinfo
->ControlValid
,
741 cfi
->interleave
* prinfo
->ControlInvalid
);
745 * All functions below currently rely on all chips having
746 * the same geometry so we'll just assume that all hardware
747 * partitions are of the same size too.
749 partshift
= cfi
->chipshift
- __ffs(numparts
);
751 if ((1 << partshift
) < mtd
->erasesize
) {
753 "%s: bad number of hw partitions (%d)\n",
758 numvirtchips
= cfi
->numchips
* numparts
;
759 newcfi
= kmalloc(sizeof(struct cfi_private
) + numvirtchips
* sizeof(struct flchip
), GFP_KERNEL
);
762 shared
= kmalloc_array(cfi
->numchips
,
763 sizeof(struct flchip_shared
),
769 memcpy(newcfi
, cfi
, sizeof(struct cfi_private
));
770 newcfi
->numchips
= numvirtchips
;
771 newcfi
->chipshift
= partshift
;
773 chip
= &newcfi
->chips
[0];
774 for (i
= 0; i
< cfi
->numchips
; i
++) {
775 shared
[i
].writing
= shared
[i
].erasing
= NULL
;
776 mutex_init(&shared
[i
].lock
);
777 for (j
= 0; j
< numparts
; j
++) {
778 *chip
= cfi
->chips
[i
];
779 chip
->start
+= j
<< partshift
;
780 chip
->priv
= &shared
[i
];
781 /* those should be reset too since
782 they create memory references. */
783 init_waitqueue_head(&chip
->wq
);
784 mutex_init(&chip
->mutex
);
789 printk(KERN_DEBUG
"%s: %d set(s) of %d interleaved chips "
790 "--> %d partitions of %d KiB\n",
791 map
->name
, cfi
->numchips
, cfi
->interleave
,
792 newcfi
->numchips
, 1<<(newcfi
->chipshift
-10));
794 map
->fldrv_priv
= newcfi
;
803 * *********** CHIP ACCESS FUNCTIONS ***********
805 static int chip_ready (struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
807 DECLARE_WAITQUEUE(wait
, current
);
808 struct cfi_private
*cfi
= map
->fldrv_priv
;
809 map_word status
, status_OK
= CMD(0x80), status_PWS
= CMD(0x01);
810 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
811 unsigned long timeo
= jiffies
+ HZ
;
813 /* Prevent setting state FL_SYNCING for chip in suspended state. */
814 if (mode
== FL_SYNCING
&& chip
->oldstate
!= FL_READY
)
817 switch (chip
->state
) {
821 status
= map_read(map
, adr
);
822 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
825 /* At this point we're fine with write operations
826 in other partitions as they don't conflict. */
827 if (chip
->priv
&& map_word_andequal(map
, status
, status_PWS
, status_PWS
))
830 mutex_unlock(&chip
->mutex
);
832 mutex_lock(&chip
->mutex
);
833 /* Someone else might have been playing with it. */
844 !(cfip
->FeatureSupport
& 2) ||
845 !(mode
== FL_READY
|| mode
== FL_POINT
||
846 (mode
== FL_WRITING
&& (cfip
->SuspendCmdSupport
& 1))))
849 /* Do not allow suspend iff read/write to EB address */
850 if ((adr
& chip
->in_progress_block_mask
) ==
851 chip
->in_progress_block_addr
)
854 /* do not suspend small EBs, buggy Micron Chips */
855 if (cfi_is_micron_28F00AP30(cfi
, chip
) &&
856 (chip
->in_progress_block_mask
== ~(0x8000-1)))
860 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
862 /* If the flash has finished erasing, then 'erase suspend'
863 * appears to make some (28F320) flash devices switch to
864 * 'read' mode. Make sure that we switch to 'read status'
865 * mode so we get the right data. --rmk
867 map_write(map
, CMD(0x70), chip
->in_progress_block_addr
);
868 chip
->oldstate
= FL_ERASING
;
869 chip
->state
= FL_ERASE_SUSPENDING
;
870 chip
->erase_suspended
= 1;
872 status
= map_read(map
, chip
->in_progress_block_addr
);
873 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
876 if (time_after(jiffies
, timeo
)) {
877 /* Urgh. Resume and pretend we weren't here.
878 * Make sure we're in 'read status' mode if it had finished */
879 put_chip(map
, chip
, adr
);
880 printk(KERN_ERR
"%s: Chip not ready after erase "
881 "suspended: status = 0x%lx\n", map
->name
, status
.x
[0]);
885 mutex_unlock(&chip
->mutex
);
887 mutex_lock(&chip
->mutex
);
888 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
889 So we can just loop here. */
891 chip
->state
= FL_STATUS
;
894 case FL_XIP_WHILE_ERASING
:
895 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
896 (mode
!= FL_WRITING
|| !cfip
|| !(cfip
->SuspendCmdSupport
&1)))
898 chip
->oldstate
= chip
->state
;
899 chip
->state
= FL_READY
;
903 /* The machine is rebooting now,so no one can get chip anymore */
906 /* Only if there's no operation suspended... */
907 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
912 set_current_state(TASK_UNINTERRUPTIBLE
);
913 add_wait_queue(&chip
->wq
, &wait
);
914 mutex_unlock(&chip
->mutex
);
916 remove_wait_queue(&chip
->wq
, &wait
);
917 mutex_lock(&chip
->mutex
);
922 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
925 DECLARE_WAITQUEUE(wait
, current
);
929 (mode
== FL_WRITING
|| mode
== FL_ERASING
|| mode
== FL_OTP_WRITE
930 || mode
== FL_SHUTDOWN
) && chip
->state
!= FL_SYNCING
) {
932 * OK. We have possibility for contention on the write/erase
933 * operations which are global to the real chip and not per
934 * partition. So let's fight it over in the partition which
935 * currently has authority on the operation.
937 * The rules are as follows:
939 * - any write operation must own shared->writing.
941 * - any erase operation must own _both_ shared->writing and
944 * - contention arbitration is handled in the owner's context.
946 * The 'shared' struct can be read and/or written only when
949 struct flchip_shared
*shared
= chip
->priv
;
950 struct flchip
*contender
;
951 mutex_lock(&shared
->lock
);
952 contender
= shared
->writing
;
953 if (contender
&& contender
!= chip
) {
955 * The engine to perform desired operation on this
956 * partition is already in use by someone else.
957 * Let's fight over it in the context of the chip
958 * currently using it. If it is possible to suspend,
959 * that other partition will do just that, otherwise
960 * it'll happily send us to sleep. In any case, when
961 * get_chip returns success we're clear to go ahead.
963 ret
= mutex_trylock(&contender
->mutex
);
964 mutex_unlock(&shared
->lock
);
967 mutex_unlock(&chip
->mutex
);
968 ret
= chip_ready(map
, contender
, contender
->start
, mode
);
969 mutex_lock(&chip
->mutex
);
971 if (ret
== -EAGAIN
) {
972 mutex_unlock(&contender
->mutex
);
976 mutex_unlock(&contender
->mutex
);
979 mutex_lock(&shared
->lock
);
981 /* We should not own chip if it is already
982 * in FL_SYNCING state. Put contender and retry. */
983 if (chip
->state
== FL_SYNCING
) {
984 put_chip(map
, contender
, contender
->start
);
985 mutex_unlock(&contender
->mutex
);
988 mutex_unlock(&contender
->mutex
);
991 /* Check if we already have suspended erase
992 * on this chip. Sleep. */
993 if (mode
== FL_ERASING
&& shared
->erasing
994 && shared
->erasing
->oldstate
== FL_ERASING
) {
995 mutex_unlock(&shared
->lock
);
996 set_current_state(TASK_UNINTERRUPTIBLE
);
997 add_wait_queue(&chip
->wq
, &wait
);
998 mutex_unlock(&chip
->mutex
);
1000 remove_wait_queue(&chip
->wq
, &wait
);
1001 mutex_lock(&chip
->mutex
);
1006 shared
->writing
= chip
;
1007 if (mode
== FL_ERASING
)
1008 shared
->erasing
= chip
;
1009 mutex_unlock(&shared
->lock
);
1011 ret
= chip_ready(map
, chip
, adr
, mode
);
1018 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1020 struct cfi_private
*cfi
= map
->fldrv_priv
;
1023 struct flchip_shared
*shared
= chip
->priv
;
1024 mutex_lock(&shared
->lock
);
1025 if (shared
->writing
== chip
&& chip
->oldstate
== FL_READY
) {
1026 /* We own the ability to write, but we're done */
1027 shared
->writing
= shared
->erasing
;
1028 if (shared
->writing
&& shared
->writing
!= chip
) {
1029 /* give back ownership to who we loaned it from */
1030 struct flchip
*loaner
= shared
->writing
;
1031 mutex_lock(&loaner
->mutex
);
1032 mutex_unlock(&shared
->lock
);
1033 mutex_unlock(&chip
->mutex
);
1034 put_chip(map
, loaner
, loaner
->start
);
1035 mutex_lock(&chip
->mutex
);
1036 mutex_unlock(&loaner
->mutex
);
1040 shared
->erasing
= NULL
;
1041 shared
->writing
= NULL
;
1042 } else if (shared
->erasing
== chip
&& shared
->writing
!= chip
) {
1044 * We own the ability to erase without the ability
1045 * to write, which means the erase was suspended
1046 * and some other partition is currently writing.
1047 * Don't let the switch below mess things up since
1048 * we don't have ownership to resume anything.
1050 mutex_unlock(&shared
->lock
);
1054 mutex_unlock(&shared
->lock
);
1057 switch(chip
->oldstate
) {
1059 /* What if one interleaved chip has finished and the
1060 other hasn't? The old code would leave the finished
1061 one in READY mode. That's bad, and caused -EROFS
1062 errors to be returned from do_erase_oneblock because
1063 that's the only bit it checked for at the time.
1064 As the state machine appears to explicitly allow
1065 sending the 0x70 (Read Status) command to an erasing
1066 chip and expecting it to be ignored, that's what we
1068 map_write(map
, CMD(0xd0), chip
->in_progress_block_addr
);
1069 map_write(map
, CMD(0x70), chip
->in_progress_block_addr
);
1070 chip
->oldstate
= FL_READY
;
1071 chip
->state
= FL_ERASING
;
1074 case FL_XIP_WHILE_ERASING
:
1075 chip
->state
= chip
->oldstate
;
1076 chip
->oldstate
= FL_READY
;
1081 case FL_JEDEC_QUERY
:
1084 printk(KERN_ERR
"%s: put_chip() called with oldstate %d!!\n", map
->name
, chip
->oldstate
);
1089 #ifdef CONFIG_MTD_XIP
1092 * No interrupt what so ever can be serviced while the flash isn't in array
1093 * mode. This is ensured by the xip_disable() and xip_enable() functions
1094 * enclosing any code path where the flash is known not to be in array mode.
1095 * And within a XIP disabled code path, only functions marked with __xipram
1096 * may be called and nothing else (it's a good thing to inspect generated
1097 * assembly to make sure inline functions were actually inlined and that gcc
1098 * didn't emit calls to its own support functions). Also configuring MTD CFI
1099 * support to a single buswidth and a single interleave is also recommended.
1102 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
1105 /* TODO: chips with no XIP use should ignore and return */
1106 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
1107 local_irq_disable();
1110 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
1113 struct cfi_private
*cfi
= map
->fldrv_priv
;
1114 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1115 map_write(map
, CMD(0xff), adr
);
1116 chip
->state
= FL_READY
;
1118 (void) map_read(map
, adr
);
1124 * When a delay is required for the flash operation to complete, the
1125 * xip_wait_for_operation() function is polling for both the given timeout
1126 * and pending (but still masked) hardware interrupts. Whenever there is an
1127 * interrupt pending then the flash erase or write operation is suspended,
1128 * array mode restored and interrupts unmasked. Task scheduling might also
1129 * happen at that point. The CPU eventually returns from the interrupt or
1130 * the call to schedule() and the suspended flash operation is resumed for
1131 * the remaining of the delay period.
1133 * Warning: this function _will_ fool interrupt latency tracing tools.
1136 static int __xipram
xip_wait_for_operation(
1137 struct map_info
*map
, struct flchip
*chip
,
1138 unsigned long adr
, unsigned int chip_op_time_max
)
1140 struct cfi_private
*cfi
= map
->fldrv_priv
;
1141 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
1142 map_word status
, OK
= CMD(0x80);
1143 unsigned long usec
, suspended
, start
, done
;
1144 flstate_t oldstate
, newstate
;
1146 start
= xip_currtime();
1147 usec
= chip_op_time_max
;
1154 if (xip_irqpending() && cfip
&&
1155 ((chip
->state
== FL_ERASING
&& (cfip
->FeatureSupport
&2)) ||
1156 (chip
->state
== FL_WRITING
&& (cfip
->FeatureSupport
&4))) &&
1157 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
1159 * Let's suspend the erase or write operation when
1160 * supported. Note that we currently don't try to
1161 * suspend interleaved chips if there is already
1162 * another operation suspended (imagine what happens
1163 * when one chip was already done with the current
1164 * operation while another chip suspended it, then
1165 * we resume the whole thing at once). Yes, it
1169 map_write(map
, CMD(0xb0), adr
);
1170 map_write(map
, CMD(0x70), adr
);
1171 suspended
= xip_currtime();
1173 if (xip_elapsed_since(suspended
) > 100000) {
1175 * The chip doesn't want to suspend
1176 * after waiting for 100 msecs.
1177 * This is a critical error but there
1178 * is not much we can do here.
1182 status
= map_read(map
, adr
);
1183 } while (!map_word_andequal(map
, status
, OK
, OK
));
1185 /* Suspend succeeded */
1186 oldstate
= chip
->state
;
1187 if (oldstate
== FL_ERASING
) {
1188 if (!map_word_bitsset(map
, status
, CMD(0x40)))
1190 newstate
= FL_XIP_WHILE_ERASING
;
1191 chip
->erase_suspended
= 1;
1193 if (!map_word_bitsset(map
, status
, CMD(0x04)))
1195 newstate
= FL_XIP_WHILE_WRITING
;
1196 chip
->write_suspended
= 1;
1198 chip
->state
= newstate
;
1199 map_write(map
, CMD(0xff), adr
);
1200 (void) map_read(map
, adr
);
1203 mutex_unlock(&chip
->mutex
);
1208 * We're back. However someone else might have
1209 * decided to go write to the chip if we are in
1210 * a suspended erase state. If so let's wait
1213 mutex_lock(&chip
->mutex
);
1214 while (chip
->state
!= newstate
) {
1215 DECLARE_WAITQUEUE(wait
, current
);
1216 set_current_state(TASK_UNINTERRUPTIBLE
);
1217 add_wait_queue(&chip
->wq
, &wait
);
1218 mutex_unlock(&chip
->mutex
);
1220 remove_wait_queue(&chip
->wq
, &wait
);
1221 mutex_lock(&chip
->mutex
);
1223 /* Disallow XIP again */
1224 local_irq_disable();
1226 /* Resume the write or erase operation */
1227 map_write(map
, CMD(0xd0), adr
);
1228 map_write(map
, CMD(0x70), adr
);
1229 chip
->state
= oldstate
;
1230 start
= xip_currtime();
1231 } else if (usec
>= 1000000/HZ
) {
1233 * Try to save on CPU power when waiting delay
1234 * is at least a system timer tick period.
1235 * No need to be extremely accurate here.
1239 status
= map_read(map
, adr
);
1240 done
= xip_elapsed_since(start
);
1241 } while (!map_word_andequal(map
, status
, OK
, OK
)
1244 return (done
>= usec
) ? -ETIME
: 0;
1248 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1249 * the flash is actively programming or erasing since we have to poll for
1250 * the operation to complete anyway. We can't do that in a generic way with
1251 * a XIP setup so do it before the actual flash operation in this case
1252 * and stub it out from INVAL_CACHE_AND_WAIT.
1254 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1255 INVALIDATE_CACHED_RANGE(map, from, size)
1257 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1258 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1262 #define xip_disable(map, chip, adr)
1263 #define xip_enable(map, chip, adr)
1264 #define XIP_INVAL_CACHED_RANGE(x...)
1265 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1267 static int inval_cache_and_wait_for_operation(
1268 struct map_info
*map
, struct flchip
*chip
,
1269 unsigned long cmd_adr
, unsigned long inval_adr
, int inval_len
,
1270 unsigned int chip_op_time
, unsigned int chip_op_time_max
)
1272 struct cfi_private
*cfi
= map
->fldrv_priv
;
1273 map_word status
, status_OK
= CMD(0x80);
1274 int chip_state
= chip
->state
;
1275 unsigned int timeo
, sleep_time
, reset_timeo
;
1277 mutex_unlock(&chip
->mutex
);
1279 INVALIDATE_CACHED_RANGE(map
, inval_adr
, inval_len
);
1280 mutex_lock(&chip
->mutex
);
1282 timeo
= chip_op_time_max
;
1285 reset_timeo
= timeo
;
1286 sleep_time
= chip_op_time
/ 2;
1289 if (chip
->state
!= chip_state
) {
1290 /* Someone's suspended the operation: sleep */
1291 DECLARE_WAITQUEUE(wait
, current
);
1292 set_current_state(TASK_UNINTERRUPTIBLE
);
1293 add_wait_queue(&chip
->wq
, &wait
);
1294 mutex_unlock(&chip
->mutex
);
1296 remove_wait_queue(&chip
->wq
, &wait
);
1297 mutex_lock(&chip
->mutex
);
1301 status
= map_read(map
, cmd_adr
);
1302 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1305 if (chip
->erase_suspended
&& chip_state
== FL_ERASING
) {
1306 /* Erase suspend occurred while sleep: reset timeout */
1307 timeo
= reset_timeo
;
1308 chip
->erase_suspended
= 0;
1310 if (chip
->write_suspended
&& chip_state
== FL_WRITING
) {
1311 /* Write suspend occurred while sleep: reset timeout */
1312 timeo
= reset_timeo
;
1313 chip
->write_suspended
= 0;
1316 map_write(map
, CMD(0x70), cmd_adr
);
1317 chip
->state
= FL_STATUS
;
1321 /* OK Still waiting. Drop the lock, wait a while and retry. */
1322 mutex_unlock(&chip
->mutex
);
1323 if (sleep_time
>= 1000000/HZ
) {
1325 * Half of the normal delay still remaining
1326 * can be performed with a sleeping delay instead
1329 msleep(sleep_time
/1000);
1330 timeo
-= sleep_time
;
1331 sleep_time
= 1000000/HZ
;
1337 mutex_lock(&chip
->mutex
);
1340 /* Done and happy. */
1341 chip
->state
= FL_STATUS
;
1347 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1348 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1351 static int do_point_onechip (struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
)
1353 unsigned long cmd_addr
;
1354 struct cfi_private
*cfi
= map
->fldrv_priv
;
1359 /* Ensure cmd read/writes are aligned. */
1360 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1362 mutex_lock(&chip
->mutex
);
1364 ret
= get_chip(map
, chip
, cmd_addr
, FL_POINT
);
1367 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
)
1368 map_write(map
, CMD(0xff), cmd_addr
);
1370 chip
->state
= FL_POINT
;
1371 chip
->ref_point_counter
++;
1373 mutex_unlock(&chip
->mutex
);
1378 static int cfi_intelext_point(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1379 size_t *retlen
, void **virt
, resource_size_t
*phys
)
1381 struct map_info
*map
= mtd
->priv
;
1382 struct cfi_private
*cfi
= map
->fldrv_priv
;
1383 unsigned long ofs
, last_end
= 0;
1390 /* Now lock the chip(s) to POINT state */
1392 /* ofs: offset within the first chip that the first read should start */
1393 chipnum
= (from
>> cfi
->chipshift
);
1394 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1396 *virt
= map
->virt
+ cfi
->chips
[chipnum
].start
+ ofs
;
1398 *phys
= map
->phys
+ cfi
->chips
[chipnum
].start
+ ofs
;
1401 unsigned long thislen
;
1403 if (chipnum
>= cfi
->numchips
)
1406 /* We cannot point across chips that are virtually disjoint */
1408 last_end
= cfi
->chips
[chipnum
].start
;
1409 else if (cfi
->chips
[chipnum
].start
!= last_end
)
1412 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1413 thislen
= (1<<cfi
->chipshift
) - ofs
;
1417 ret
= do_point_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
);
1425 last_end
+= 1 << cfi
->chipshift
;
1431 static int cfi_intelext_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1433 struct map_info
*map
= mtd
->priv
;
1434 struct cfi_private
*cfi
= map
->fldrv_priv
;
1436 int chipnum
, err
= 0;
1438 /* Now unlock the chip(s) POINT state */
1440 /* ofs: offset within the first chip that the first read should start */
1441 chipnum
= (from
>> cfi
->chipshift
);
1442 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1444 while (len
&& !err
) {
1445 unsigned long thislen
;
1446 struct flchip
*chip
;
1448 chip
= &cfi
->chips
[chipnum
];
1449 if (chipnum
>= cfi
->numchips
)
1452 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1453 thislen
= (1<<cfi
->chipshift
) - ofs
;
1457 mutex_lock(&chip
->mutex
);
1458 if (chip
->state
== FL_POINT
) {
1459 chip
->ref_point_counter
--;
1460 if(chip
->ref_point_counter
== 0)
1461 chip
->state
= FL_READY
;
1463 printk(KERN_ERR
"%s: Error: unpoint called on non pointed region\n", map
->name
);
1467 put_chip(map
, chip
, chip
->start
);
1468 mutex_unlock(&chip
->mutex
);
1478 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1480 unsigned long cmd_addr
;
1481 struct cfi_private
*cfi
= map
->fldrv_priv
;
1486 /* Ensure cmd read/writes are aligned. */
1487 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1489 mutex_lock(&chip
->mutex
);
1490 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
1492 mutex_unlock(&chip
->mutex
);
1496 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1497 map_write(map
, CMD(0xff), cmd_addr
);
1499 chip
->state
= FL_READY
;
1502 map_copy_from(map
, buf
, adr
, len
);
1504 put_chip(map
, chip
, cmd_addr
);
1506 mutex_unlock(&chip
->mutex
);
1510 static int cfi_intelext_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1512 struct map_info
*map
= mtd
->priv
;
1513 struct cfi_private
*cfi
= map
->fldrv_priv
;
1518 /* ofs: offset within the first chip that the first read should start */
1519 chipnum
= (from
>> cfi
->chipshift
);
1520 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1523 unsigned long thislen
;
1525 if (chipnum
>= cfi
->numchips
)
1528 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1529 thislen
= (1<<cfi
->chipshift
) - ofs
;
1533 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1547 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1548 unsigned long adr
, map_word datum
, int mode
)
1550 struct cfi_private
*cfi
= map
->fldrv_priv
;
1551 map_word status
, write_cmd
;
1558 write_cmd
= (cfi
->cfiq
->P_ID
!= P_ID_INTEL_PERFORMANCE
) ? CMD(0x40) : CMD(0x41);
1561 write_cmd
= CMD(0xc0);
1567 mutex_lock(&chip
->mutex
);
1568 ret
= get_chip(map
, chip
, adr
, mode
);
1570 mutex_unlock(&chip
->mutex
);
1574 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1576 xip_disable(map
, chip
, adr
);
1577 map_write(map
, write_cmd
, adr
);
1578 map_write(map
, datum
, adr
);
1581 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, adr
,
1582 adr
, map_bankwidth(map
),
1583 chip
->word_write_time
,
1584 chip
->word_write_time_max
);
1586 xip_enable(map
, chip
, adr
);
1587 printk(KERN_ERR
"%s: word write error (status timeout)\n", map
->name
);
1591 /* check for errors */
1592 status
= map_read(map
, adr
);
1593 if (map_word_bitsset(map
, status
, CMD(0x1a))) {
1594 unsigned long chipstatus
= MERGESTATUS(status
);
1597 map_write(map
, CMD(0x50), adr
);
1598 map_write(map
, CMD(0x70), adr
);
1599 xip_enable(map
, chip
, adr
);
1601 if (chipstatus
& 0x02) {
1603 } else if (chipstatus
& 0x08) {
1604 printk(KERN_ERR
"%s: word write error (bad VPP)\n", map
->name
);
1607 printk(KERN_ERR
"%s: word write error (status 0x%lx)\n", map
->name
, chipstatus
);
1614 xip_enable(map
, chip
, adr
);
1615 out
: DISABLE_VPP(map
);
1616 put_chip(map
, chip
, adr
);
1617 mutex_unlock(&chip
->mutex
);
1622 static int cfi_intelext_write_words (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
)
1624 struct map_info
*map
= mtd
->priv
;
1625 struct cfi_private
*cfi
= map
->fldrv_priv
;
1630 chipnum
= to
>> cfi
->chipshift
;
1631 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1633 /* If it's not bus-aligned, do the first byte write */
1634 if (ofs
& (map_bankwidth(map
)-1)) {
1635 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1636 int gap
= ofs
- bus_ofs
;
1640 n
= min_t(int, len
, map_bankwidth(map
)-gap
);
1641 datum
= map_word_ff(map
);
1642 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
1644 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1645 bus_ofs
, datum
, FL_WRITING
);
1654 if (ofs
>> cfi
->chipshift
) {
1657 if (chipnum
== cfi
->numchips
)
1662 while(len
>= map_bankwidth(map
)) {
1663 map_word datum
= map_word_load(map
, buf
);
1665 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1666 ofs
, datum
, FL_WRITING
);
1670 ofs
+= map_bankwidth(map
);
1671 buf
+= map_bankwidth(map
);
1672 (*retlen
) += map_bankwidth(map
);
1673 len
-= map_bankwidth(map
);
1675 if (ofs
>> cfi
->chipshift
) {
1678 if (chipnum
== cfi
->numchips
)
1683 if (len
& (map_bankwidth(map
)-1)) {
1686 datum
= map_word_ff(map
);
1687 datum
= map_word_load_partial(map
, datum
, buf
, 0, len
);
1689 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1690 ofs
, datum
, FL_WRITING
);
1701 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1702 unsigned long adr
, const struct kvec
**pvec
,
1703 unsigned long *pvec_seek
, int len
)
1705 struct cfi_private
*cfi
= map
->fldrv_priv
;
1706 map_word status
, write_cmd
, datum
;
1707 unsigned long cmd_adr
;
1708 int ret
, wbufsize
, word_gap
, words
;
1709 const struct kvec
*vec
;
1710 unsigned long vec_seek
;
1711 unsigned long initial_adr
;
1712 int initial_len
= len
;
1714 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1717 cmd_adr
= adr
& ~(wbufsize
-1);
1719 /* Sharp LH28F640BF chips need the first address for the
1720 * Page Buffer Program command. See Table 5 of
1721 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1722 if (is_LH28F640BF(cfi
))
1725 /* Let's determine this according to the interleave only once */
1726 write_cmd
= (cfi
->cfiq
->P_ID
!= P_ID_INTEL_PERFORMANCE
) ? CMD(0xe8) : CMD(0xe9);
1728 mutex_lock(&chip
->mutex
);
1729 ret
= get_chip(map
, chip
, cmd_adr
, FL_WRITING
);
1731 mutex_unlock(&chip
->mutex
);
1735 XIP_INVAL_CACHED_RANGE(map
, initial_adr
, initial_len
);
1737 xip_disable(map
, chip
, cmd_adr
);
1739 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1740 [...], the device will not accept any more Write to Buffer commands".
1741 So we must check here and reset those bits if they're set. Otherwise
1742 we're just pissing in the wind */
1743 if (chip
->state
!= FL_STATUS
) {
1744 map_write(map
, CMD(0x70), cmd_adr
);
1745 chip
->state
= FL_STATUS
;
1747 status
= map_read(map
, cmd_adr
);
1748 if (map_word_bitsset(map
, status
, CMD(0x30))) {
1749 xip_enable(map
, chip
, cmd_adr
);
1750 printk(KERN_WARNING
"SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status
.x
[0]);
1751 xip_disable(map
, chip
, cmd_adr
);
1752 map_write(map
, CMD(0x50), cmd_adr
);
1753 map_write(map
, CMD(0x70), cmd_adr
);
1756 chip
->state
= FL_WRITING_TO_BUFFER
;
1757 map_write(map
, write_cmd
, cmd_adr
);
1758 ret
= WAIT_TIMEOUT(map
, chip
, cmd_adr
, 0, 0);
1760 /* Argh. Not ready for write to buffer */
1761 map_word Xstatus
= map_read(map
, cmd_adr
);
1762 map_write(map
, CMD(0x70), cmd_adr
);
1763 chip
->state
= FL_STATUS
;
1764 status
= map_read(map
, cmd_adr
);
1765 map_write(map
, CMD(0x50), cmd_adr
);
1766 map_write(map
, CMD(0x70), cmd_adr
);
1767 xip_enable(map
, chip
, cmd_adr
);
1768 printk(KERN_ERR
"%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1769 map
->name
, Xstatus
.x
[0], status
.x
[0]);
1773 /* Figure out the number of words to write */
1774 word_gap
= (-adr
& (map_bankwidth(map
)-1));
1775 words
= DIV_ROUND_UP(len
- word_gap
, map_bankwidth(map
));
1779 word_gap
= map_bankwidth(map
) - word_gap
;
1781 datum
= map_word_ff(map
);
1784 /* Write length of data to come */
1785 map_write(map
, CMD(words
), cmd_adr
);
1789 vec_seek
= *pvec_seek
;
1791 int n
= map_bankwidth(map
) - word_gap
;
1792 if (n
> vec
->iov_len
- vec_seek
)
1793 n
= vec
->iov_len
- vec_seek
;
1797 if (!word_gap
&& len
< map_bankwidth(map
))
1798 datum
= map_word_ff(map
);
1800 datum
= map_word_load_partial(map
, datum
,
1801 vec
->iov_base
+ vec_seek
,
1806 if (!len
|| word_gap
== map_bankwidth(map
)) {
1807 map_write(map
, datum
, adr
);
1808 adr
+= map_bankwidth(map
);
1813 if (vec_seek
== vec
->iov_len
) {
1819 *pvec_seek
= vec_seek
;
1822 map_write(map
, CMD(0xd0), cmd_adr
);
1823 chip
->state
= FL_WRITING
;
1825 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, cmd_adr
,
1826 initial_adr
, initial_len
,
1827 chip
->buffer_write_time
,
1828 chip
->buffer_write_time_max
);
1830 map_write(map
, CMD(0x70), cmd_adr
);
1831 chip
->state
= FL_STATUS
;
1832 xip_enable(map
, chip
, cmd_adr
);
1833 printk(KERN_ERR
"%s: buffer write error (status timeout)\n", map
->name
);
1837 /* check for errors */
1838 status
= map_read(map
, cmd_adr
);
1839 if (map_word_bitsset(map
, status
, CMD(0x1a))) {
1840 unsigned long chipstatus
= MERGESTATUS(status
);
1843 map_write(map
, CMD(0x50), cmd_adr
);
1844 map_write(map
, CMD(0x70), cmd_adr
);
1845 xip_enable(map
, chip
, cmd_adr
);
1847 if (chipstatus
& 0x02) {
1849 } else if (chipstatus
& 0x08) {
1850 printk(KERN_ERR
"%s: buffer write error (bad VPP)\n", map
->name
);
1853 printk(KERN_ERR
"%s: buffer write error (status 0x%lx)\n", map
->name
, chipstatus
);
1860 xip_enable(map
, chip
, cmd_adr
);
1861 out
: DISABLE_VPP(map
);
1862 put_chip(map
, chip
, cmd_adr
);
1863 mutex_unlock(&chip
->mutex
);
1867 static int cfi_intelext_writev (struct mtd_info
*mtd
, const struct kvec
*vecs
,
1868 unsigned long count
, loff_t to
, size_t *retlen
)
1870 struct map_info
*map
= mtd
->priv
;
1871 struct cfi_private
*cfi
= map
->fldrv_priv
;
1872 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1875 unsigned long ofs
, vec_seek
, i
;
1878 for (i
= 0; i
< count
; i
++)
1879 len
+= vecs
[i
].iov_len
;
1884 chipnum
= to
>> cfi
->chipshift
;
1885 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1889 /* We must not cross write block boundaries */
1890 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1894 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1895 ofs
, &vecs
, &vec_seek
, size
);
1903 if (ofs
>> cfi
->chipshift
) {
1906 if (chipnum
== cfi
->numchips
)
1910 /* Be nice and reschedule with the chip in a usable state for other
1919 static int cfi_intelext_write_buffers (struct mtd_info
*mtd
, loff_t to
,
1920 size_t len
, size_t *retlen
, const u_char
*buf
)
1924 vec
.iov_base
= (void *) buf
;
1927 return cfi_intelext_writev(mtd
, &vec
, 1, to
, retlen
);
1930 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
,
1931 unsigned long adr
, int len
, void *thunk
)
1933 struct cfi_private
*cfi
= map
->fldrv_priv
;
1941 mutex_lock(&chip
->mutex
);
1942 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
1944 mutex_unlock(&chip
->mutex
);
1948 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1950 xip_disable(map
, chip
, adr
);
1952 /* Clear the status register first */
1953 map_write(map
, CMD(0x50), adr
);
1956 map_write(map
, CMD(0x20), adr
);
1957 map_write(map
, CMD(0xD0), adr
);
1958 chip
->state
= FL_ERASING
;
1959 chip
->erase_suspended
= 0;
1960 chip
->in_progress_block_addr
= adr
;
1961 chip
->in_progress_block_mask
= ~(len
- 1);
1963 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, adr
,
1966 chip
->erase_time_max
);
1968 map_write(map
, CMD(0x70), adr
);
1969 chip
->state
= FL_STATUS
;
1970 xip_enable(map
, chip
, adr
);
1971 printk(KERN_ERR
"%s: block erase error: (status timeout)\n", map
->name
);
1975 /* We've broken this before. It doesn't hurt to be safe */
1976 map_write(map
, CMD(0x70), adr
);
1977 chip
->state
= FL_STATUS
;
1978 status
= map_read(map
, adr
);
1980 /* check for errors */
1981 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
1982 unsigned long chipstatus
= MERGESTATUS(status
);
1984 /* Reset the error bits */
1985 map_write(map
, CMD(0x50), adr
);
1986 map_write(map
, CMD(0x70), adr
);
1987 xip_enable(map
, chip
, adr
);
1989 if ((chipstatus
& 0x30) == 0x30) {
1990 printk(KERN_ERR
"%s: block erase error: (bad command sequence, status 0x%lx)\n", map
->name
, chipstatus
);
1992 } else if (chipstatus
& 0x02) {
1993 /* Protection bit set */
1995 } else if (chipstatus
& 0x8) {
1997 printk(KERN_ERR
"%s: block erase error: (bad VPP)\n", map
->name
);
1999 } else if (chipstatus
& 0x20 && retries
--) {
2000 printk(KERN_DEBUG
"block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr
, chipstatus
);
2002 put_chip(map
, chip
, adr
);
2003 mutex_unlock(&chip
->mutex
);
2006 printk(KERN_ERR
"%s: block erase failed at 0x%08lx (status 0x%lx)\n", map
->name
, adr
, chipstatus
);
2013 xip_enable(map
, chip
, adr
);
2014 out
: DISABLE_VPP(map
);
2015 put_chip(map
, chip
, adr
);
2016 mutex_unlock(&chip
->mutex
);
2020 static int cfi_intelext_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
2022 return cfi_varsize_frob(mtd
, do_erase_oneblock
, instr
->addr
,
2026 static void cfi_intelext_sync (struct mtd_info
*mtd
)
2028 struct map_info
*map
= mtd
->priv
;
2029 struct cfi_private
*cfi
= map
->fldrv_priv
;
2031 struct flchip
*chip
;
2034 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2035 chip
= &cfi
->chips
[i
];
2037 mutex_lock(&chip
->mutex
);
2038 ret
= get_chip(map
, chip
, chip
->start
, FL_SYNCING
);
2041 chip
->oldstate
= chip
->state
;
2042 chip
->state
= FL_SYNCING
;
2043 /* No need to wake_up() on this state change -
2044 * as the whole point is that nobody can do anything
2045 * with the chip now anyway.
2048 mutex_unlock(&chip
->mutex
);
2051 /* Unlock the chips again */
2053 for (i
--; i
>=0; i
--) {
2054 chip
= &cfi
->chips
[i
];
2056 mutex_lock(&chip
->mutex
);
2058 if (chip
->state
== FL_SYNCING
) {
2059 chip
->state
= chip
->oldstate
;
2060 chip
->oldstate
= FL_READY
;
2063 mutex_unlock(&chip
->mutex
);
2067 static int __xipram
do_getlockstatus_oneblock(struct map_info
*map
,
2068 struct flchip
*chip
,
2070 int len
, void *thunk
)
2072 struct cfi_private
*cfi
= map
->fldrv_priv
;
2073 int status
, ofs_factor
= cfi
->interleave
* cfi
->device_type
;
2076 xip_disable(map
, chip
, adr
+(2*ofs_factor
));
2077 map_write(map
, CMD(0x90), adr
+(2*ofs_factor
));
2078 chip
->state
= FL_JEDEC_QUERY
;
2079 status
= cfi_read_query(map
, adr
+(2*ofs_factor
));
2080 xip_enable(map
, chip
, 0);
2084 #ifdef DEBUG_LOCK_BITS
2085 static int __xipram
do_printlockstatus_oneblock(struct map_info
*map
,
2086 struct flchip
*chip
,
2088 int len
, void *thunk
)
2090 printk(KERN_DEBUG
"block status register for 0x%08lx is %x\n",
2091 adr
, do_getlockstatus_oneblock(map
, chip
, adr
, len
, thunk
));
2096 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2097 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2099 static int __xipram
do_xxlock_oneblock(struct map_info
*map
, struct flchip
*chip
,
2100 unsigned long adr
, int len
, void *thunk
)
2102 struct cfi_private
*cfi
= map
->fldrv_priv
;
2103 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2109 mutex_lock(&chip
->mutex
);
2110 ret
= get_chip(map
, chip
, adr
, FL_LOCKING
);
2112 mutex_unlock(&chip
->mutex
);
2117 xip_disable(map
, chip
, adr
);
2119 map_write(map
, CMD(0x60), adr
);
2120 if (thunk
== DO_XXLOCK_ONEBLOCK_LOCK
) {
2121 map_write(map
, CMD(0x01), adr
);
2122 chip
->state
= FL_LOCKING
;
2123 } else if (thunk
== DO_XXLOCK_ONEBLOCK_UNLOCK
) {
2124 map_write(map
, CMD(0xD0), adr
);
2125 chip
->state
= FL_UNLOCKING
;
2130 * If Instant Individual Block Locking supported then no need
2134 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2135 * lets use a max of 1.5 seconds (1500ms) as timeout.
2137 * See "Clear Block Lock-Bits Time" on page 40 in
2138 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2139 * from February 2003
2141 mdelay
= (!extp
|| !(extp
->FeatureSupport
& (1 << 5))) ? 1500 : 0;
2143 ret
= WAIT_TIMEOUT(map
, chip
, adr
, mdelay
, mdelay
* 1000);
2145 map_write(map
, CMD(0x70), adr
);
2146 chip
->state
= FL_STATUS
;
2147 xip_enable(map
, chip
, adr
);
2148 printk(KERN_ERR
"%s: block unlock error: (status timeout)\n", map
->name
);
2152 xip_enable(map
, chip
, adr
);
2153 out
: DISABLE_VPP(map
);
2154 put_chip(map
, chip
, adr
);
2155 mutex_unlock(&chip
->mutex
);
2159 static int cfi_intelext_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2163 #ifdef DEBUG_LOCK_BITS
2164 printk(KERN_DEBUG
"%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2165 __func__
, ofs
, len
);
2166 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2170 ret
= cfi_varsize_frob(mtd
, do_xxlock_oneblock
,
2171 ofs
, len
, DO_XXLOCK_ONEBLOCK_LOCK
);
2173 #ifdef DEBUG_LOCK_BITS
2174 printk(KERN_DEBUG
"%s: lock status after, ret=%d\n",
2176 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2183 static int cfi_intelext_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2187 #ifdef DEBUG_LOCK_BITS
2188 printk(KERN_DEBUG
"%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2189 __func__
, ofs
, len
);
2190 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2194 ret
= cfi_varsize_frob(mtd
, do_xxlock_oneblock
,
2195 ofs
, len
, DO_XXLOCK_ONEBLOCK_UNLOCK
);
2197 #ifdef DEBUG_LOCK_BITS
2198 printk(KERN_DEBUG
"%s: lock status after, ret=%d\n",
2200 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2207 static int cfi_intelext_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
2210 return cfi_varsize_frob(mtd
, do_getlockstatus_oneblock
,
2211 ofs
, len
, NULL
) ? 1 : 0;
2214 #ifdef CONFIG_MTD_OTP
2216 typedef int (*otp_op_t
)(struct map_info
*map
, struct flchip
*chip
,
2217 u_long data_offset
, u_char
*buf
, u_int size
,
2218 u_long prot_offset
, u_int groupno
, u_int groupsize
);
2221 do_otp_read(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2222 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2224 struct cfi_private
*cfi
= map
->fldrv_priv
;
2227 mutex_lock(&chip
->mutex
);
2228 ret
= get_chip(map
, chip
, chip
->start
, FL_JEDEC_QUERY
);
2230 mutex_unlock(&chip
->mutex
);
2234 /* let's ensure we're not reading back cached data from array mode */
2235 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ offset
, size
);
2237 xip_disable(map
, chip
, chip
->start
);
2238 if (chip
->state
!= FL_JEDEC_QUERY
) {
2239 map_write(map
, CMD(0x90), chip
->start
);
2240 chip
->state
= FL_JEDEC_QUERY
;
2242 map_copy_from(map
, buf
, chip
->start
+ offset
, size
);
2243 xip_enable(map
, chip
, chip
->start
);
2245 /* then ensure we don't keep OTP data in the cache */
2246 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ offset
, size
);
2248 put_chip(map
, chip
, chip
->start
);
2249 mutex_unlock(&chip
->mutex
);
2254 do_otp_write(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2255 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2260 unsigned long bus_ofs
= offset
& ~(map_bankwidth(map
)-1);
2261 int gap
= offset
- bus_ofs
;
2262 int n
= min_t(int, size
, map_bankwidth(map
)-gap
);
2263 map_word datum
= map_word_ff(map
);
2265 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
2266 ret
= do_write_oneword(map
, chip
, bus_ofs
, datum
, FL_OTP_WRITE
);
2279 do_otp_lock(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2280 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2282 struct cfi_private
*cfi
= map
->fldrv_priv
;
2285 /* make sure area matches group boundaries */
2289 datum
= map_word_ff(map
);
2290 datum
= map_word_clr(map
, datum
, CMD(1 << grpno
));
2291 return do_write_oneword(map
, chip
, prot
, datum
, FL_OTP_WRITE
);
2294 static int cfi_intelext_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2295 size_t *retlen
, u_char
*buf
,
2296 otp_op_t action
, int user_regs
)
2298 struct map_info
*map
= mtd
->priv
;
2299 struct cfi_private
*cfi
= map
->fldrv_priv
;
2300 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2301 struct flchip
*chip
;
2302 struct cfi_intelext_otpinfo
*otp
;
2303 u_long devsize
, reg_prot_offset
, data_offset
;
2304 u_int chip_num
, chip_step
, field
, reg_fact_size
, reg_user_size
;
2305 u_int groups
, groupno
, groupsize
, reg_fact_groups
, reg_user_groups
;
2310 /* Check that we actually have some OTP registers */
2311 if (!extp
|| !(extp
->FeatureSupport
& 64) || !extp
->NumProtectionFields
)
2314 /* we need real chips here not virtual ones */
2315 devsize
= (1 << cfi
->cfiq
->DevSize
) * cfi
->interleave
;
2316 chip_step
= devsize
>> cfi
->chipshift
;
2319 /* Some chips have OTP located in the _top_ partition only.
2320 For example: Intel 28F256L18T (T means top-parameter device) */
2321 if (cfi
->mfr
== CFI_MFR_INTEL
) {
2326 chip_num
= chip_step
- 1;
2330 for ( ; chip_num
< cfi
->numchips
; chip_num
+= chip_step
) {
2331 chip
= &cfi
->chips
[chip_num
];
2332 otp
= (struct cfi_intelext_otpinfo
*)&extp
->extra
[0];
2334 /* first OTP region */
2336 reg_prot_offset
= extp
->ProtRegAddr
;
2337 reg_fact_groups
= 1;
2338 reg_fact_size
= 1 << extp
->FactProtRegSize
;
2339 reg_user_groups
= 1;
2340 reg_user_size
= 1 << extp
->UserProtRegSize
;
2343 /* flash geometry fixup */
2344 data_offset
= reg_prot_offset
+ 1;
2345 data_offset
*= cfi
->interleave
* cfi
->device_type
;
2346 reg_prot_offset
*= cfi
->interleave
* cfi
->device_type
;
2347 reg_fact_size
*= cfi
->interleave
;
2348 reg_user_size
*= cfi
->interleave
;
2351 groups
= reg_user_groups
;
2352 groupsize
= reg_user_size
;
2353 /* skip over factory reg area */
2354 groupno
= reg_fact_groups
;
2355 data_offset
+= reg_fact_groups
* reg_fact_size
;
2357 groups
= reg_fact_groups
;
2358 groupsize
= reg_fact_size
;
2362 while (len
> 0 && groups
> 0) {
2365 * Special case: if action is NULL
2366 * we fill buf with otp_info records.
2368 struct otp_info
*otpinfo
;
2370 len
-= sizeof(struct otp_info
);
2373 ret
= do_otp_read(map
, chip
,
2375 (u_char
*)&lockword
,
2380 otpinfo
= (struct otp_info
*)buf
;
2381 otpinfo
->start
= from
;
2382 otpinfo
->length
= groupsize
;
2384 !map_word_bitsset(map
, lockword
,
2387 buf
+= sizeof(*otpinfo
);
2388 *retlen
+= sizeof(*otpinfo
);
2389 } else if (from
>= groupsize
) {
2391 data_offset
+= groupsize
;
2393 int size
= groupsize
;
2394 data_offset
+= from
;
2399 ret
= action(map
, chip
, data_offset
,
2400 buf
, size
, reg_prot_offset
,
2401 groupno
, groupsize
);
2407 data_offset
+= size
;
2413 /* next OTP region */
2414 if (++field
== extp
->NumProtectionFields
)
2416 reg_prot_offset
= otp
->ProtRegAddr
;
2417 reg_fact_groups
= otp
->FactGroups
;
2418 reg_fact_size
= 1 << otp
->FactProtRegSize
;
2419 reg_user_groups
= otp
->UserGroups
;
2420 reg_user_size
= 1 << otp
->UserProtRegSize
;
2428 static int cfi_intelext_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2429 size_t len
, size_t *retlen
,
2432 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2433 buf
, do_otp_read
, 0);
2436 static int cfi_intelext_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2437 size_t len
, size_t *retlen
,
2440 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2441 buf
, do_otp_read
, 1);
2444 static int cfi_intelext_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2445 size_t len
, size_t *retlen
,
2448 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2449 buf
, do_otp_write
, 1);
2452 static int cfi_intelext_lock_user_prot_reg(struct mtd_info
*mtd
,
2453 loff_t from
, size_t len
)
2456 return cfi_intelext_otp_walk(mtd
, from
, len
, &retlen
,
2457 NULL
, do_otp_lock
, 1);
2460 static int cfi_intelext_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
2461 size_t *retlen
, struct otp_info
*buf
)
2464 return cfi_intelext_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
2468 static int cfi_intelext_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
2469 size_t *retlen
, struct otp_info
*buf
)
2471 return cfi_intelext_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
2477 static void cfi_intelext_save_locks(struct mtd_info
*mtd
)
2479 struct mtd_erase_region_info
*region
;
2480 int block
, status
, i
;
2484 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2485 region
= &mtd
->eraseregions
[i
];
2486 if (!region
->lockmap
)
2489 for (block
= 0; block
< region
->numblocks
; block
++){
2490 len
= region
->erasesize
;
2491 adr
= region
->offset
+ block
* len
;
2493 status
= cfi_varsize_frob(mtd
,
2494 do_getlockstatus_oneblock
, adr
, len
, NULL
);
2496 set_bit(block
, region
->lockmap
);
2498 clear_bit(block
, region
->lockmap
);
2503 static int cfi_intelext_suspend(struct mtd_info
*mtd
)
2505 struct map_info
*map
= mtd
->priv
;
2506 struct cfi_private
*cfi
= map
->fldrv_priv
;
2507 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2509 struct flchip
*chip
;
2512 if ((mtd
->flags
& MTD_POWERUP_LOCK
)
2513 && extp
&& (extp
->FeatureSupport
& (1 << 5)))
2514 cfi_intelext_save_locks(mtd
);
2516 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2517 chip
= &cfi
->chips
[i
];
2519 mutex_lock(&chip
->mutex
);
2521 switch (chip
->state
) {
2525 case FL_JEDEC_QUERY
:
2526 if (chip
->oldstate
== FL_READY
) {
2527 /* place the chip in a known state before suspend */
2528 map_write(map
, CMD(0xFF), cfi
->chips
[i
].start
);
2529 chip
->oldstate
= chip
->state
;
2530 chip
->state
= FL_PM_SUSPENDED
;
2531 /* No need to wake_up() on this state change -
2532 * as the whole point is that nobody can do anything
2533 * with the chip now anyway.
2536 /* There seems to be an operation pending. We must wait for it. */
2537 printk(KERN_NOTICE
"Flash device refused suspend due to pending operation (oldstate %d)\n", chip
->oldstate
);
2542 /* Should we actually wait? Once upon a time these routines weren't
2543 allowed to. Or should we return -EAGAIN, because the upper layers
2544 ought to have already shut down anything which was using the device
2545 anyway? The latter for now. */
2546 printk(KERN_NOTICE
"Flash device refused suspend due to active operation (state %d)\n", chip
->state
);
2548 case FL_PM_SUSPENDED
:
2551 mutex_unlock(&chip
->mutex
);
2554 /* Unlock the chips again */
2557 for (i
--; i
>=0; i
--) {
2558 chip
= &cfi
->chips
[i
];
2560 mutex_lock(&chip
->mutex
);
2562 if (chip
->state
== FL_PM_SUSPENDED
) {
2563 /* No need to force it into a known state here,
2564 because we're returning failure, and it didn't
2566 chip
->state
= chip
->oldstate
;
2567 chip
->oldstate
= FL_READY
;
2570 mutex_unlock(&chip
->mutex
);
2577 static void cfi_intelext_restore_locks(struct mtd_info
*mtd
)
2579 struct mtd_erase_region_info
*region
;
2584 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2585 region
= &mtd
->eraseregions
[i
];
2586 if (!region
->lockmap
)
2589 for_each_clear_bit(block
, region
->lockmap
, region
->numblocks
) {
2590 len
= region
->erasesize
;
2591 adr
= region
->offset
+ block
* len
;
2592 cfi_intelext_unlock(mtd
, adr
, len
);
2597 static void cfi_intelext_resume(struct mtd_info
*mtd
)
2599 struct map_info
*map
= mtd
->priv
;
2600 struct cfi_private
*cfi
= map
->fldrv_priv
;
2601 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2603 struct flchip
*chip
;
2605 for (i
=0; i
<cfi
->numchips
; i
++) {
2607 chip
= &cfi
->chips
[i
];
2609 mutex_lock(&chip
->mutex
);
2611 /* Go to known state. Chip may have been power cycled */
2612 if (chip
->state
== FL_PM_SUSPENDED
) {
2613 /* Refresh LH28F640BF Partition Config. Register */
2614 fixup_LH28F640BF(mtd
);
2615 map_write(map
, CMD(0xFF), cfi
->chips
[i
].start
);
2616 chip
->oldstate
= chip
->state
= FL_READY
;
2620 mutex_unlock(&chip
->mutex
);
2623 if ((mtd
->flags
& MTD_POWERUP_LOCK
)
2624 && extp
&& (extp
->FeatureSupport
& (1 << 5)))
2625 cfi_intelext_restore_locks(mtd
);
2628 static int cfi_intelext_reset(struct mtd_info
*mtd
)
2630 struct map_info
*map
= mtd
->priv
;
2631 struct cfi_private
*cfi
= map
->fldrv_priv
;
2634 for (i
=0; i
< cfi
->numchips
; i
++) {
2635 struct flchip
*chip
= &cfi
->chips
[i
];
2637 /* force the completion of any ongoing operation
2638 and switch to array mode so any bootloader in
2639 flash is accessible for soft reboot. */
2640 mutex_lock(&chip
->mutex
);
2641 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
2643 map_write(map
, CMD(0xff), chip
->start
);
2644 chip
->state
= FL_SHUTDOWN
;
2645 put_chip(map
, chip
, chip
->start
);
2647 mutex_unlock(&chip
->mutex
);
2653 static int cfi_intelext_reboot(struct notifier_block
*nb
, unsigned long val
,
2656 struct mtd_info
*mtd
;
2658 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
2659 cfi_intelext_reset(mtd
);
2663 static void cfi_intelext_destroy(struct mtd_info
*mtd
)
2665 struct map_info
*map
= mtd
->priv
;
2666 struct cfi_private
*cfi
= map
->fldrv_priv
;
2667 struct mtd_erase_region_info
*region
;
2669 cfi_intelext_reset(mtd
);
2670 unregister_reboot_notifier(&mtd
->reboot_notifier
);
2671 kfree(cfi
->cmdset_priv
);
2673 kfree(cfi
->chips
[0].priv
);
2675 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2676 region
= &mtd
->eraseregions
[i
];
2677 kfree(region
->lockmap
);
2679 kfree(mtd
->eraseregions
);
2682 MODULE_LICENSE("GPL");
2683 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2684 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2685 MODULE_ALIAS("cfi_cmdset_0003");
2686 MODULE_ALIAS("cfi_cmdset_0200");