2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
54 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56 * If cleared, ACPI SCI is only used to wake up the system from suspend
58 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
61 static bool use_acpi_alarm
;
62 module_param(use_acpi_alarm
, bool, 0444);
65 struct rtc_device
*rtc
;
68 struct resource
*iomem
;
69 time64_t alarm_expires
;
71 void (*wake_on
)(struct device
*);
72 void (*wake_off
)(struct device
*);
77 /* newer hardware extends the original register set */
82 struct rtc_wkalrm saved_wkalrm
;
85 /* both platform and pnp busses use negative numbers for invalid irqs */
86 #define is_valid_irq(n) ((n) > 0)
88 static const char driver_name
[] = "rtc_cmos";
90 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
91 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
92 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
94 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
96 static inline int is_intr(u8 rtc_intr
)
98 if (!(rtc_intr
& RTC_IRQF
))
100 return rtc_intr
& RTC_IRQMASK
;
103 /*----------------------------------------------------------------*/
105 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
106 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
107 * used in a broken "legacy replacement" mode. The breakage includes
108 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
109 * other (better) use.
111 * When that broken mode is in use, platform glue provides a partial
112 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
113 * want to use HPET for anything except those IRQs though...
115 #ifdef CONFIG_HPET_EMULATE_RTC
116 #include <asm/hpet.h>
119 static inline int is_hpet_enabled(void)
124 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
129 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
135 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
140 static inline int hpet_set_periodic_freq(unsigned long freq
)
145 static inline int hpet_rtc_dropped_irq(void)
150 static inline int hpet_rtc_timer_init(void)
155 extern irq_handler_t hpet_rtc_interrupt
;
157 static inline int hpet_register_irq_handler(irq_handler_t handler
)
162 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
169 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
170 static int use_hpet_alarm(void)
172 return is_hpet_enabled() && !use_acpi_alarm
;
175 /*----------------------------------------------------------------*/
179 /* Most newer x86 systems have two register banks, the first used
180 * for RTC and NVRAM and the second only for NVRAM. Caller must
181 * own rtc_lock ... and we won't worry about access during NMI.
183 #define can_bank2 true
185 static inline unsigned char cmos_read_bank2(unsigned char addr
)
187 outb(addr
, RTC_PORT(2));
188 return inb(RTC_PORT(3));
191 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
193 outb(addr
, RTC_PORT(2));
194 outb(val
, RTC_PORT(3));
199 #define can_bank2 false
201 static inline unsigned char cmos_read_bank2(unsigned char addr
)
206 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
212 /*----------------------------------------------------------------*/
214 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
217 * If pm_trace abused the RTC for storage, set the timespec to 0,
218 * which tells the caller that this RTC value is unusable.
220 if (!pm_trace_rtc_valid())
223 /* REVISIT: if the clock has a "century" register, use
224 * that instead of the heuristic in mc146818_get_time().
225 * That'll make Y3K compatility (year > 2070) easy!
227 mc146818_get_time(t
);
231 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
233 /* REVISIT: set the "century" register if available
235 * NOTE: this ignores the issue whereby updating the seconds
236 * takes effect exactly 500ms after we write the register.
237 * (Also queueing and other delays before we get this far.)
239 return mc146818_set_time(t
);
242 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
244 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
245 unsigned char rtc_control
;
247 if (!is_valid_irq(cmos
->irq
))
250 /* Basic alarms only support hour, minute, and seconds fields.
251 * Some also support day and month, for alarms up to a year in
255 spin_lock_irq(&rtc_lock
);
256 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
257 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
258 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
260 if (cmos
->day_alrm
) {
261 /* ignore upper bits on readback per ACPI spec */
262 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
263 if (!t
->time
.tm_mday
)
264 t
->time
.tm_mday
= -1;
266 if (cmos
->mon_alrm
) {
267 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
273 rtc_control
= CMOS_READ(RTC_CONTROL
);
274 spin_unlock_irq(&rtc_lock
);
276 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
277 if (((unsigned)t
->time
.tm_sec
) < 0x60)
278 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
281 if (((unsigned)t
->time
.tm_min
) < 0x60)
282 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
285 if (((unsigned)t
->time
.tm_hour
) < 0x24)
286 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
288 t
->time
.tm_hour
= -1;
290 if (cmos
->day_alrm
) {
291 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
292 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
294 t
->time
.tm_mday
= -1;
296 if (cmos
->mon_alrm
) {
297 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
298 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
305 t
->enabled
= !!(rtc_control
& RTC_AIE
);
311 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
313 unsigned char rtc_intr
;
315 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
316 * allegedly some older rtcs need that to handle irqs properly
318 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
320 if (use_hpet_alarm())
323 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
324 if (is_intr(rtc_intr
))
325 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
328 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
330 unsigned char rtc_control
;
332 /* flush any pending IRQ status, notably for update irqs,
333 * before we enable new IRQs
335 rtc_control
= CMOS_READ(RTC_CONTROL
);
336 cmos_checkintr(cmos
, rtc_control
);
339 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
340 if (use_hpet_alarm())
341 hpet_set_rtc_irq_bit(mask
);
343 if ((mask
& RTC_AIE
) && use_acpi_alarm
) {
345 cmos
->wake_on(cmos
->dev
);
348 cmos_checkintr(cmos
, rtc_control
);
351 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
353 unsigned char rtc_control
;
355 rtc_control
= CMOS_READ(RTC_CONTROL
);
356 rtc_control
&= ~mask
;
357 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
358 if (use_hpet_alarm())
359 hpet_mask_rtc_irq_bit(mask
);
361 if ((mask
& RTC_AIE
) && use_acpi_alarm
) {
363 cmos
->wake_off(cmos
->dev
);
366 cmos_checkintr(cmos
, rtc_control
);
369 static int cmos_validate_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
371 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
374 cmos_read_time(dev
, &now
);
376 if (!cmos
->day_alrm
) {
380 t_max_date
= rtc_tm_to_time64(&now
);
381 t_max_date
+= 24 * 60 * 60 - 1;
382 t_alrm
= rtc_tm_to_time64(&t
->time
);
383 if (t_alrm
> t_max_date
) {
385 "Alarms can be up to one day in the future\n");
388 } else if (!cmos
->mon_alrm
) {
389 struct rtc_time max_date
= now
;
394 if (max_date
.tm_mon
== 11) {
396 max_date
.tm_year
+= 1;
398 max_date
.tm_mon
+= 1;
400 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
401 if (max_date
.tm_mday
> max_mday
)
402 max_date
.tm_mday
= max_mday
;
404 t_max_date
= rtc_tm_to_time64(&max_date
);
406 t_alrm
= rtc_tm_to_time64(&t
->time
);
407 if (t_alrm
> t_max_date
) {
409 "Alarms can be up to one month in the future\n");
413 struct rtc_time max_date
= now
;
418 max_date
.tm_year
+= 1;
419 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
420 if (max_date
.tm_mday
> max_mday
)
421 max_date
.tm_mday
= max_mday
;
423 t_max_date
= rtc_tm_to_time64(&max_date
);
425 t_alrm
= rtc_tm_to_time64(&t
->time
);
426 if (t_alrm
> t_max_date
) {
428 "Alarms can be up to one year in the future\n");
436 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
438 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
439 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
442 if (!is_valid_irq(cmos
->irq
))
445 ret
= cmos_validate_alarm(dev
, t
);
449 mon
= t
->time
.tm_mon
+ 1;
450 mday
= t
->time
.tm_mday
;
451 hrs
= t
->time
.tm_hour
;
452 min
= t
->time
.tm_min
;
453 sec
= t
->time
.tm_sec
;
455 rtc_control
= CMOS_READ(RTC_CONTROL
);
456 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
457 /* Writing 0xff means "don't care" or "match all". */
458 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
459 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
460 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
461 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
462 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
465 spin_lock_irq(&rtc_lock
);
467 /* next rtc irq must not be from previous alarm setting */
468 cmos_irq_disable(cmos
, RTC_AIE
);
471 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
472 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
473 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
475 /* the system may support an "enhanced" alarm */
476 if (cmos
->day_alrm
) {
477 CMOS_WRITE(mday
, cmos
->day_alrm
);
479 CMOS_WRITE(mon
, cmos
->mon_alrm
);
482 if (use_hpet_alarm()) {
484 * FIXME the HPET alarm glue currently ignores day_alrm
487 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
,
492 cmos_irq_enable(cmos
, RTC_AIE
);
494 spin_unlock_irq(&rtc_lock
);
496 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
501 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
503 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
506 if (!is_valid_irq(cmos
->irq
))
509 spin_lock_irqsave(&rtc_lock
, flags
);
512 cmos_irq_enable(cmos
, RTC_AIE
);
514 cmos_irq_disable(cmos
, RTC_AIE
);
516 spin_unlock_irqrestore(&rtc_lock
, flags
);
520 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
522 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
524 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
525 unsigned char rtc_control
, valid
;
527 spin_lock_irq(&rtc_lock
);
528 rtc_control
= CMOS_READ(RTC_CONTROL
);
529 valid
= CMOS_READ(RTC_VALID
);
530 spin_unlock_irq(&rtc_lock
);
532 /* NOTE: at least ICH6 reports battery status using a different
533 * (non-RTC) bit; and SQWE is ignored on many current systems.
536 "periodic_IRQ\t: %s\n"
538 "HPET_emulated\t: %s\n"
539 // "square_wave\t: %s\n"
542 "periodic_freq\t: %d\n"
543 "batt_status\t: %s\n",
544 (rtc_control
& RTC_PIE
) ? "yes" : "no",
545 (rtc_control
& RTC_UIE
) ? "yes" : "no",
546 use_hpet_alarm() ? "yes" : "no",
547 // (rtc_control & RTC_SQWE) ? "yes" : "no",
548 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
549 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
551 (valid
& RTC_VRT
) ? "okay" : "dead");
557 #define cmos_procfs NULL
560 static const struct rtc_class_ops cmos_rtc_ops
= {
561 .read_time
= cmos_read_time
,
562 .set_time
= cmos_set_time
,
563 .read_alarm
= cmos_read_alarm
,
564 .set_alarm
= cmos_set_alarm
,
566 .alarm_irq_enable
= cmos_alarm_irq_enable
,
569 /*----------------------------------------------------------------*/
572 * All these chips have at least 64 bytes of address space, shared by
573 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
574 * by boot firmware. Modern chips have 128 or 256 bytes.
577 #define NVRAM_OFFSET (RTC_REG_D + 1)
579 static int cmos_nvram_read(void *priv
, unsigned int off
, void *val
,
582 unsigned char *buf
= val
;
586 spin_lock_irq(&rtc_lock
);
587 for (retval
= 0; count
; count
--, off
++, retval
++) {
589 *buf
++ = CMOS_READ(off
);
591 *buf
++ = cmos_read_bank2(off
);
595 spin_unlock_irq(&rtc_lock
);
600 static int cmos_nvram_write(void *priv
, unsigned int off
, void *val
,
603 struct cmos_rtc
*cmos
= priv
;
604 unsigned char *buf
= val
;
607 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
608 * checksum on part of the NVRAM data. That's currently ignored
609 * here. If userspace is smart enough to know what fields of
610 * NVRAM to update, updating checksums is also part of its job.
613 spin_lock_irq(&rtc_lock
);
614 for (retval
= 0; count
; count
--, off
++, retval
++) {
615 /* don't trash RTC registers */
616 if (off
== cmos
->day_alrm
617 || off
== cmos
->mon_alrm
618 || off
== cmos
->century
)
621 CMOS_WRITE(*buf
++, off
);
623 cmos_write_bank2(*buf
++, off
);
627 spin_unlock_irq(&rtc_lock
);
632 /*----------------------------------------------------------------*/
634 static struct cmos_rtc cmos_rtc
;
636 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
641 spin_lock(&rtc_lock
);
643 /* When the HPET interrupt handler calls us, the interrupt
644 * status is passed as arg1 instead of the irq number. But
645 * always clear irq status, even when HPET is in the way.
647 * Note that HPET and RTC are almost certainly out of phase,
648 * giving different IRQ status ...
650 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
651 rtc_control
= CMOS_READ(RTC_CONTROL
);
652 if (use_hpet_alarm())
653 irqstat
= (unsigned long)irq
& 0xF0;
655 /* If we were suspended, RTC_CONTROL may not be accurate since the
656 * bios may have cleared it.
658 if (!cmos_rtc
.suspend_ctrl
)
659 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
661 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
663 /* All Linux RTC alarms should be treated as if they were oneshot.
664 * Similar code may be needed in system wakeup paths, in case the
665 * alarm woke the system.
667 if (irqstat
& RTC_AIE
) {
668 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
669 rtc_control
&= ~RTC_AIE
;
670 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
671 if (use_hpet_alarm())
672 hpet_mask_rtc_irq_bit(RTC_AIE
);
673 CMOS_READ(RTC_INTR_FLAGS
);
675 spin_unlock(&rtc_lock
);
677 if (is_intr(irqstat
)) {
678 rtc_update_irq(p
, 1, irqstat
);
688 #define INITSECTION __init
691 static int INITSECTION
692 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
694 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
696 unsigned char rtc_control
;
697 unsigned address_space
;
699 struct nvmem_config nvmem_cfg
= {
700 .name
= "cmos_nvram",
703 .reg_read
= cmos_nvram_read
,
704 .reg_write
= cmos_nvram_write
,
708 /* there can be only one ... */
715 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
717 * REVISIT non-x86 systems may instead use memory space resources
718 * (needing ioremap etc), not i/o space resources like this ...
721 ports
= request_region(ports
->start
, resource_size(ports
),
724 ports
= request_mem_region(ports
->start
, resource_size(ports
),
727 dev_dbg(dev
, "i/o registers already in use\n");
731 cmos_rtc
.irq
= rtc_irq
;
732 cmos_rtc
.iomem
= ports
;
734 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
735 * driver did, but don't reject unknown configs. Old hardware
736 * won't address 128 bytes. Newer chips have multiple banks,
737 * though they may not be listed in one I/O resource.
739 #if defined(CONFIG_ATARI)
741 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
742 || defined(__sparc__) || defined(__mips__) \
743 || defined(__powerpc__)
746 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
749 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
752 /* For ACPI systems extension info comes from the FADT. On others,
753 * board specific setup provides it as appropriate. Systems where
754 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
755 * some almost-clones) can provide hooks to make that behave.
757 * Note that ACPI doesn't preclude putting these registers into
758 * "extended" areas of the chip, including some that we won't yet
759 * expect CMOS_READ and friends to handle.
764 if (info
->address_space
)
765 address_space
= info
->address_space
;
767 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
768 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
769 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
770 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
771 if (info
->rtc_century
&& info
->rtc_century
< 128)
772 cmos_rtc
.century
= info
->rtc_century
;
774 if (info
->wake_on
&& info
->wake_off
) {
775 cmos_rtc
.wake_on
= info
->wake_on
;
776 cmos_rtc
.wake_off
= info
->wake_off
;
781 dev_set_drvdata(dev
, &cmos_rtc
);
783 cmos_rtc
.rtc
= devm_rtc_allocate_device(dev
);
784 if (IS_ERR(cmos_rtc
.rtc
)) {
785 retval
= PTR_ERR(cmos_rtc
.rtc
);
789 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
791 spin_lock_irq(&rtc_lock
);
793 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
794 /* force periodic irq to CMOS reset default of 1024Hz;
796 * REVISIT it's been reported that at least one x86_64 ALI
797 * mobo doesn't use 32KHz here ... for portability we might
798 * need to do something about other clock frequencies.
800 cmos_rtc
.rtc
->irq_freq
= 1024;
801 if (use_hpet_alarm())
802 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
803 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
807 if (is_valid_irq(rtc_irq
))
808 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
810 rtc_control
= CMOS_READ(RTC_CONTROL
);
812 spin_unlock_irq(&rtc_lock
);
814 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
815 dev_warn(dev
, "only 24-hr supported\n");
820 if (use_hpet_alarm())
821 hpet_rtc_timer_init();
823 if (is_valid_irq(rtc_irq
)) {
824 irq_handler_t rtc_cmos_int_handler
;
826 if (use_hpet_alarm()) {
827 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
828 retval
= hpet_register_irq_handler(cmos_interrupt
);
830 hpet_mask_rtc_irq_bit(RTC_IRQMASK
);
831 dev_warn(dev
, "hpet_register_irq_handler "
832 " failed in rtc_init().");
836 rtc_cmos_int_handler
= cmos_interrupt
;
838 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
839 IRQF_SHARED
, dev_name(&cmos_rtc
.rtc
->dev
),
842 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
847 cmos_rtc
.rtc
->ops
= &cmos_rtc_ops
;
848 cmos_rtc
.rtc
->nvram_old_abi
= true;
849 retval
= rtc_register_device(cmos_rtc
.rtc
);
853 /* export at least the first block of NVRAM */
854 nvmem_cfg
.size
= address_space
- NVRAM_OFFSET
;
855 if (rtc_nvmem_register(cmos_rtc
.rtc
, &nvmem_cfg
))
856 dev_err(dev
, "nvmem registration failed\n");
858 dev_info(dev
, "%s%s, %d bytes nvram%s\n",
859 !is_valid_irq(rtc_irq
) ? "no alarms" :
860 cmos_rtc
.mon_alrm
? "alarms up to one year" :
861 cmos_rtc
.day_alrm
? "alarms up to one month" :
862 "alarms up to one day",
863 cmos_rtc
.century
? ", y3k" : "",
865 use_hpet_alarm() ? ", hpet irqs" : "");
870 if (is_valid_irq(rtc_irq
))
871 free_irq(rtc_irq
, cmos_rtc
.rtc
);
876 release_region(ports
->start
, resource_size(ports
));
878 release_mem_region(ports
->start
, resource_size(ports
));
882 static void cmos_do_shutdown(int rtc_irq
)
884 spin_lock_irq(&rtc_lock
);
885 if (is_valid_irq(rtc_irq
))
886 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
887 spin_unlock_irq(&rtc_lock
);
890 static void cmos_do_remove(struct device
*dev
)
892 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
893 struct resource
*ports
;
895 cmos_do_shutdown(cmos
->irq
);
897 if (is_valid_irq(cmos
->irq
)) {
898 free_irq(cmos
->irq
, cmos
->rtc
);
899 if (use_hpet_alarm())
900 hpet_unregister_irq_handler(cmos_interrupt
);
907 release_region(ports
->start
, resource_size(ports
));
909 release_mem_region(ports
->start
, resource_size(ports
));
915 static int cmos_aie_poweroff(struct device
*dev
)
917 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
921 unsigned char rtc_control
;
923 if (!cmos
->alarm_expires
)
926 spin_lock_irq(&rtc_lock
);
927 rtc_control
= CMOS_READ(RTC_CONTROL
);
928 spin_unlock_irq(&rtc_lock
);
930 /* We only care about the situation where AIE is disabled. */
931 if (rtc_control
& RTC_AIE
)
934 cmos_read_time(dev
, &now
);
935 t_now
= rtc_tm_to_time64(&now
);
938 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
939 * automatically right after shutdown on some buggy boxes.
940 * This automatic rebooting issue won't happen when the alarm
941 * time is larger than now+1 seconds.
943 * If the alarm time is equal to now+1 seconds, the issue can be
944 * prevented by cancelling the alarm.
946 if (cmos
->alarm_expires
== t_now
+ 1) {
947 struct rtc_wkalrm alarm
;
949 /* Cancel the AIE timer by configuring the past time. */
950 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
952 retval
= cmos_set_alarm(dev
, &alarm
);
953 } else if (cmos
->alarm_expires
> t_now
+ 1) {
960 static int cmos_suspend(struct device
*dev
)
962 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
965 /* only the alarm might be a wakeup event source */
966 spin_lock_irq(&rtc_lock
);
967 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
968 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
971 if (device_may_wakeup(dev
))
972 mask
= RTC_IRQMASK
& ~RTC_AIE
;
976 CMOS_WRITE(tmp
, RTC_CONTROL
);
977 if (use_hpet_alarm())
978 hpet_mask_rtc_irq_bit(mask
);
979 cmos_checkintr(cmos
, tmp
);
981 spin_unlock_irq(&rtc_lock
);
983 if ((tmp
& RTC_AIE
) && !use_acpi_alarm
) {
984 cmos
->enabled_wake
= 1;
988 enable_irq_wake(cmos
->irq
);
991 cmos_read_alarm(dev
, &cmos
->saved_wkalrm
);
993 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
994 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
1000 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1001 * after a detour through G3 "mechanical off", although the ACPI spec
1002 * says wakeup should only work from G1/S4 "hibernate". To most users,
1003 * distinctions between S4 and S5 are pointless. So when the hardware
1004 * allows, don't draw that distinction.
1006 static inline int cmos_poweroff(struct device
*dev
)
1008 if (!IS_ENABLED(CONFIG_PM
))
1011 return cmos_suspend(dev
);
1014 static void cmos_check_wkalrm(struct device
*dev
)
1016 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1017 struct rtc_wkalrm current_alarm
;
1019 time64_t t_current_expires
;
1020 time64_t t_saved_expires
;
1021 struct rtc_time now
;
1023 /* Check if we have RTC Alarm armed */
1024 if (!(cmos
->suspend_ctrl
& RTC_AIE
))
1027 cmos_read_time(dev
, &now
);
1028 t_now
= rtc_tm_to_time64(&now
);
1031 * ACPI RTC wake event is cleared after resume from STR,
1032 * ACK the rtc irq here
1034 if (t_now
>= cmos
->alarm_expires
&& use_acpi_alarm
) {
1035 cmos_interrupt(0, (void *)cmos
->rtc
);
1039 cmos_read_alarm(dev
, ¤t_alarm
);
1040 t_current_expires
= rtc_tm_to_time64(¤t_alarm
.time
);
1041 t_saved_expires
= rtc_tm_to_time64(&cmos
->saved_wkalrm
.time
);
1042 if (t_current_expires
!= t_saved_expires
||
1043 cmos
->saved_wkalrm
.enabled
!= current_alarm
.enabled
) {
1044 cmos_set_alarm(dev
, &cmos
->saved_wkalrm
);
1048 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1049 unsigned char *rtc_control
);
1051 static int __maybe_unused
cmos_resume(struct device
*dev
)
1053 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1056 if (cmos
->enabled_wake
&& !use_acpi_alarm
) {
1058 cmos
->wake_off(dev
);
1060 disable_irq_wake(cmos
->irq
);
1061 cmos
->enabled_wake
= 0;
1064 /* The BIOS might have changed the alarm, restore it */
1065 cmos_check_wkalrm(dev
);
1067 spin_lock_irq(&rtc_lock
);
1068 tmp
= cmos
->suspend_ctrl
;
1069 cmos
->suspend_ctrl
= 0;
1070 /* re-enable any irqs previously active */
1071 if (tmp
& RTC_IRQMASK
) {
1074 if (device_may_wakeup(dev
) && use_hpet_alarm())
1075 hpet_rtc_timer_init();
1078 CMOS_WRITE(tmp
, RTC_CONTROL
);
1079 if (use_hpet_alarm())
1080 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
1082 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1083 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
1084 if (!use_hpet_alarm() || !is_intr(mask
))
1087 /* force one-shot behavior if HPET blocked
1088 * the wake alarm's irq
1090 rtc_update_irq(cmos
->rtc
, 1, mask
);
1092 hpet_mask_rtc_irq_bit(RTC_AIE
);
1093 } while (mask
& RTC_AIE
);
1096 cmos_check_acpi_rtc_status(dev
, &tmp
);
1098 spin_unlock_irq(&rtc_lock
);
1100 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
1105 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
1107 /*----------------------------------------------------------------*/
1109 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1110 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1111 * probably list them in similar PNPBIOS tables; so PNP is more common.
1113 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1114 * predate even PNPBIOS should set up platform_bus devices.
1119 #include <linux/acpi.h>
1121 static u32
rtc_handler(void *context
)
1123 struct device
*dev
= context
;
1124 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1125 unsigned char rtc_control
= 0;
1126 unsigned char rtc_intr
;
1127 unsigned long flags
;
1131 * Always update rtc irq when ACPI is used as RTC Alarm.
1132 * Or else, ACPI SCI is enabled during suspend/resume only,
1133 * update rtc irq in that case.
1136 cmos_interrupt(0, (void *)cmos
->rtc
);
1138 /* Fix me: can we use cmos_interrupt() here as well? */
1139 spin_lock_irqsave(&rtc_lock
, flags
);
1140 if (cmos_rtc
.suspend_ctrl
)
1141 rtc_control
= CMOS_READ(RTC_CONTROL
);
1142 if (rtc_control
& RTC_AIE
) {
1143 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
1144 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
1145 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
1146 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
1148 spin_unlock_irqrestore(&rtc_lock
, flags
);
1151 pm_wakeup_hard_event(dev
);
1152 acpi_clear_event(ACPI_EVENT_RTC
);
1153 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1154 return ACPI_INTERRUPT_HANDLED
;
1157 static inline void rtc_wake_setup(struct device
*dev
)
1159 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
1161 * After the RTC handler is installed, the Fixed_RTC event should
1162 * be disabled. Only when the RTC alarm is set will it be enabled.
1164 acpi_clear_event(ACPI_EVENT_RTC
);
1165 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1168 static void rtc_wake_on(struct device
*dev
)
1170 acpi_clear_event(ACPI_EVENT_RTC
);
1171 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1174 static void rtc_wake_off(struct device
*dev
)
1176 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1180 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1181 static void use_acpi_alarm_quirks(void)
1185 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
1188 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_LOW_POWER_S0
))
1191 if (!is_hpet_enabled())
1194 if (dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
) && year
>= 2015)
1195 use_acpi_alarm
= true;
1198 static inline void use_acpi_alarm_quirks(void) { }
1201 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1202 * its device node and pass extra config data. This helps its driver use
1203 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1204 * that this board's RTC is wakeup-capable (per ACPI spec).
1206 static struct cmos_rtc_board_info acpi_rtc_info
;
1208 static void cmos_wake_setup(struct device
*dev
)
1213 use_acpi_alarm_quirks();
1215 rtc_wake_setup(dev
);
1216 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1217 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1219 /* workaround bug in some ACPI tables */
1220 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1221 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1222 acpi_gbl_FADT
.month_alarm
);
1223 acpi_gbl_FADT
.month_alarm
= 0;
1226 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1227 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1228 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1230 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1231 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1232 dev_info(dev
, "RTC can wake from S4\n");
1234 dev
->platform_data
= &acpi_rtc_info
;
1236 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1237 device_init_wakeup(dev
, 1);
1240 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1241 unsigned char *rtc_control
)
1243 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1244 acpi_event_status rtc_status
;
1247 if (acpi_gbl_FADT
.flags
& ACPI_FADT_FIXED_RTC
)
1250 status
= acpi_get_event_status(ACPI_EVENT_RTC
, &rtc_status
);
1251 if (ACPI_FAILURE(status
)) {
1252 dev_err(dev
, "Could not get RTC status\n");
1253 } else if (rtc_status
& ACPI_EVENT_FLAG_SET
) {
1255 *rtc_control
&= ~RTC_AIE
;
1256 CMOS_WRITE(*rtc_control
, RTC_CONTROL
);
1257 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1258 rtc_update_irq(cmos
->rtc
, 1, mask
);
1264 static void cmos_wake_setup(struct device
*dev
)
1268 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1269 unsigned char *rtc_control
)
1277 #include <linux/pnp.h>
1279 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1281 cmos_wake_setup(&pnp
->dev
);
1283 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0)) {
1284 unsigned int irq
= 0;
1286 /* Some machines contain a PNP entry for the RTC, but
1287 * don't define the IRQ. It should always be safe to
1288 * hardcode it on systems with a legacy PIC.
1290 if (nr_legacy_irqs())
1293 return cmos_do_probe(&pnp
->dev
,
1294 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), irq
);
1296 return cmos_do_probe(&pnp
->dev
,
1297 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1302 static void cmos_pnp_remove(struct pnp_dev
*pnp
)
1304 cmos_do_remove(&pnp
->dev
);
1307 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1309 struct device
*dev
= &pnp
->dev
;
1310 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1312 if (system_state
== SYSTEM_POWER_OFF
) {
1313 int retval
= cmos_poweroff(dev
);
1315 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1319 cmos_do_shutdown(cmos
->irq
);
1322 static const struct pnp_device_id rtc_ids
[] = {
1323 { .id
= "PNP0b00", },
1324 { .id
= "PNP0b01", },
1325 { .id
= "PNP0b02", },
1328 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1330 static struct pnp_driver cmos_pnp_driver
= {
1331 .name
= (char *) driver_name
,
1332 .id_table
= rtc_ids
,
1333 .probe
= cmos_pnp_probe
,
1334 .remove
= cmos_pnp_remove
,
1335 .shutdown
= cmos_pnp_shutdown
,
1337 /* flag ensures resume() gets called, and stops syslog spam */
1338 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1344 #endif /* CONFIG_PNP */
1347 static const struct of_device_id of_cmos_match
[] = {
1349 .compatible
= "motorola,mc146818",
1353 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1355 static __init
void cmos_of_init(struct platform_device
*pdev
)
1357 struct device_node
*node
= pdev
->dev
.of_node
;
1363 val
= of_get_property(node
, "ctrl-reg", NULL
);
1365 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1367 val
= of_get_property(node
, "freq-reg", NULL
);
1369 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1372 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1374 /*----------------------------------------------------------------*/
1376 /* Platform setup should have set up an RTC device, when PNP is
1377 * unavailable ... this could happen even on (older) PCs.
1380 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1382 struct resource
*resource
;
1386 cmos_wake_setup(&pdev
->dev
);
1389 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1391 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1392 irq
= platform_get_irq(pdev
, 0);
1396 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1399 static int cmos_platform_remove(struct platform_device
*pdev
)
1401 cmos_do_remove(&pdev
->dev
);
1405 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1407 struct device
*dev
= &pdev
->dev
;
1408 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1410 if (system_state
== SYSTEM_POWER_OFF
) {
1411 int retval
= cmos_poweroff(dev
);
1413 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1417 cmos_do_shutdown(cmos
->irq
);
1420 /* work with hotplug and coldplug */
1421 MODULE_ALIAS("platform:rtc_cmos");
1423 static struct platform_driver cmos_platform_driver
= {
1424 .remove
= cmos_platform_remove
,
1425 .shutdown
= cmos_platform_shutdown
,
1427 .name
= driver_name
,
1429 .of_match_table
= of_match_ptr(of_cmos_match
),
1434 static bool pnp_driver_registered
;
1436 static bool platform_driver_registered
;
1438 static int __init
cmos_init(void)
1443 retval
= pnp_register_driver(&cmos_pnp_driver
);
1445 pnp_driver_registered
= true;
1448 if (!cmos_rtc
.dev
) {
1449 retval
= platform_driver_probe(&cmos_platform_driver
,
1450 cmos_platform_probe
);
1452 platform_driver_registered
= true;
1459 if (pnp_driver_registered
)
1460 pnp_unregister_driver(&cmos_pnp_driver
);
1464 module_init(cmos_init
);
1466 static void __exit
cmos_exit(void)
1469 if (pnp_driver_registered
)
1470 pnp_unregister_driver(&cmos_pnp_driver
);
1472 if (platform_driver_registered
)
1473 platform_driver_unregister(&cmos_platform_driver
);
1475 module_exit(cmos_exit
);
1478 MODULE_AUTHOR("David Brownell");
1479 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1480 MODULE_LICENSE("GPL");