perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blobcd3a2411bc2f57b9a4758e2480acef0ac6fe82fc
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
54 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56 * If cleared, ACPI SCI is only used to wake up the system from suspend
58 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
61 static bool use_acpi_alarm;
62 module_param(use_acpi_alarm, bool, 0444);
64 struct cmos_rtc {
65 struct rtc_device *rtc;
66 struct device *dev;
67 int irq;
68 struct resource *iomem;
69 time64_t alarm_expires;
71 void (*wake_on)(struct device *);
72 void (*wake_off)(struct device *);
74 u8 enabled_wake;
75 u8 suspend_ctrl;
77 /* newer hardware extends the original register set */
78 u8 day_alrm;
79 u8 mon_alrm;
80 u8 century;
82 struct rtc_wkalrm saved_wkalrm;
85 /* both platform and pnp busses use negative numbers for invalid irqs */
86 #define is_valid_irq(n) ((n) > 0)
88 static const char driver_name[] = "rtc_cmos";
90 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
91 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
92 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
94 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
96 static inline int is_intr(u8 rtc_intr)
98 if (!(rtc_intr & RTC_IRQF))
99 return 0;
100 return rtc_intr & RTC_IRQMASK;
103 /*----------------------------------------------------------------*/
105 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
106 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
107 * used in a broken "legacy replacement" mode. The breakage includes
108 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
109 * other (better) use.
111 * When that broken mode is in use, platform glue provides a partial
112 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
113 * want to use HPET for anything except those IRQs though...
115 #ifdef CONFIG_HPET_EMULATE_RTC
116 #include <asm/hpet.h>
117 #else
119 static inline int is_hpet_enabled(void)
121 return 0;
124 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
126 return 0;
129 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
131 return 0;
134 static inline int
135 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
137 return 0;
140 static inline int hpet_set_periodic_freq(unsigned long freq)
142 return 0;
145 static inline int hpet_rtc_dropped_irq(void)
147 return 0;
150 static inline int hpet_rtc_timer_init(void)
152 return 0;
155 extern irq_handler_t hpet_rtc_interrupt;
157 static inline int hpet_register_irq_handler(irq_handler_t handler)
159 return 0;
162 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
164 return 0;
167 #endif
169 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
170 static int use_hpet_alarm(void)
172 return is_hpet_enabled() && !use_acpi_alarm;
175 /*----------------------------------------------------------------*/
177 #ifdef RTC_PORT
179 /* Most newer x86 systems have two register banks, the first used
180 * for RTC and NVRAM and the second only for NVRAM. Caller must
181 * own rtc_lock ... and we won't worry about access during NMI.
183 #define can_bank2 true
185 static inline unsigned char cmos_read_bank2(unsigned char addr)
187 outb(addr, RTC_PORT(2));
188 return inb(RTC_PORT(3));
191 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
193 outb(addr, RTC_PORT(2));
194 outb(val, RTC_PORT(3));
197 #else
199 #define can_bank2 false
201 static inline unsigned char cmos_read_bank2(unsigned char addr)
203 return 0;
206 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
210 #endif
212 /*----------------------------------------------------------------*/
214 static int cmos_read_time(struct device *dev, struct rtc_time *t)
217 * If pm_trace abused the RTC for storage, set the timespec to 0,
218 * which tells the caller that this RTC value is unusable.
220 if (!pm_trace_rtc_valid())
221 return -EIO;
223 /* REVISIT: if the clock has a "century" register, use
224 * that instead of the heuristic in mc146818_get_time().
225 * That'll make Y3K compatility (year > 2070) easy!
227 mc146818_get_time(t);
228 return 0;
231 static int cmos_set_time(struct device *dev, struct rtc_time *t)
233 /* REVISIT: set the "century" register if available
235 * NOTE: this ignores the issue whereby updating the seconds
236 * takes effect exactly 500ms after we write the register.
237 * (Also queueing and other delays before we get this far.)
239 return mc146818_set_time(t);
242 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
244 struct cmos_rtc *cmos = dev_get_drvdata(dev);
245 unsigned char rtc_control;
247 if (!is_valid_irq(cmos->irq))
248 return -EIO;
250 /* Basic alarms only support hour, minute, and seconds fields.
251 * Some also support day and month, for alarms up to a year in
252 * the future.
255 spin_lock_irq(&rtc_lock);
256 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
257 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
258 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
260 if (cmos->day_alrm) {
261 /* ignore upper bits on readback per ACPI spec */
262 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
263 if (!t->time.tm_mday)
264 t->time.tm_mday = -1;
266 if (cmos->mon_alrm) {
267 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
268 if (!t->time.tm_mon)
269 t->time.tm_mon = -1;
273 rtc_control = CMOS_READ(RTC_CONTROL);
274 spin_unlock_irq(&rtc_lock);
276 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
277 if (((unsigned)t->time.tm_sec) < 0x60)
278 t->time.tm_sec = bcd2bin(t->time.tm_sec);
279 else
280 t->time.tm_sec = -1;
281 if (((unsigned)t->time.tm_min) < 0x60)
282 t->time.tm_min = bcd2bin(t->time.tm_min);
283 else
284 t->time.tm_min = -1;
285 if (((unsigned)t->time.tm_hour) < 0x24)
286 t->time.tm_hour = bcd2bin(t->time.tm_hour);
287 else
288 t->time.tm_hour = -1;
290 if (cmos->day_alrm) {
291 if (((unsigned)t->time.tm_mday) <= 0x31)
292 t->time.tm_mday = bcd2bin(t->time.tm_mday);
293 else
294 t->time.tm_mday = -1;
296 if (cmos->mon_alrm) {
297 if (((unsigned)t->time.tm_mon) <= 0x12)
298 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
299 else
300 t->time.tm_mon = -1;
305 t->enabled = !!(rtc_control & RTC_AIE);
306 t->pending = 0;
308 return 0;
311 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
313 unsigned char rtc_intr;
315 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
316 * allegedly some older rtcs need that to handle irqs properly
318 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
320 if (use_hpet_alarm())
321 return;
323 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
324 if (is_intr(rtc_intr))
325 rtc_update_irq(cmos->rtc, 1, rtc_intr);
328 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
330 unsigned char rtc_control;
332 /* flush any pending IRQ status, notably for update irqs,
333 * before we enable new IRQs
335 rtc_control = CMOS_READ(RTC_CONTROL);
336 cmos_checkintr(cmos, rtc_control);
338 rtc_control |= mask;
339 CMOS_WRITE(rtc_control, RTC_CONTROL);
340 if (use_hpet_alarm())
341 hpet_set_rtc_irq_bit(mask);
343 if ((mask & RTC_AIE) && use_acpi_alarm) {
344 if (cmos->wake_on)
345 cmos->wake_on(cmos->dev);
348 cmos_checkintr(cmos, rtc_control);
351 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
353 unsigned char rtc_control;
355 rtc_control = CMOS_READ(RTC_CONTROL);
356 rtc_control &= ~mask;
357 CMOS_WRITE(rtc_control, RTC_CONTROL);
358 if (use_hpet_alarm())
359 hpet_mask_rtc_irq_bit(mask);
361 if ((mask & RTC_AIE) && use_acpi_alarm) {
362 if (cmos->wake_off)
363 cmos->wake_off(cmos->dev);
366 cmos_checkintr(cmos, rtc_control);
369 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
371 struct cmos_rtc *cmos = dev_get_drvdata(dev);
372 struct rtc_time now;
374 cmos_read_time(dev, &now);
376 if (!cmos->day_alrm) {
377 time64_t t_max_date;
378 time64_t t_alrm;
380 t_max_date = rtc_tm_to_time64(&now);
381 t_max_date += 24 * 60 * 60 - 1;
382 t_alrm = rtc_tm_to_time64(&t->time);
383 if (t_alrm > t_max_date) {
384 dev_err(dev,
385 "Alarms can be up to one day in the future\n");
386 return -EINVAL;
388 } else if (!cmos->mon_alrm) {
389 struct rtc_time max_date = now;
390 time64_t t_max_date;
391 time64_t t_alrm;
392 int max_mday;
394 if (max_date.tm_mon == 11) {
395 max_date.tm_mon = 0;
396 max_date.tm_year += 1;
397 } else {
398 max_date.tm_mon += 1;
400 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
401 if (max_date.tm_mday > max_mday)
402 max_date.tm_mday = max_mday;
404 t_max_date = rtc_tm_to_time64(&max_date);
405 t_max_date -= 1;
406 t_alrm = rtc_tm_to_time64(&t->time);
407 if (t_alrm > t_max_date) {
408 dev_err(dev,
409 "Alarms can be up to one month in the future\n");
410 return -EINVAL;
412 } else {
413 struct rtc_time max_date = now;
414 time64_t t_max_date;
415 time64_t t_alrm;
416 int max_mday;
418 max_date.tm_year += 1;
419 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
420 if (max_date.tm_mday > max_mday)
421 max_date.tm_mday = max_mday;
423 t_max_date = rtc_tm_to_time64(&max_date);
424 t_max_date -= 1;
425 t_alrm = rtc_tm_to_time64(&t->time);
426 if (t_alrm > t_max_date) {
427 dev_err(dev,
428 "Alarms can be up to one year in the future\n");
429 return -EINVAL;
433 return 0;
436 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
438 struct cmos_rtc *cmos = dev_get_drvdata(dev);
439 unsigned char mon, mday, hrs, min, sec, rtc_control;
440 int ret;
442 if (!is_valid_irq(cmos->irq))
443 return -EIO;
445 ret = cmos_validate_alarm(dev, t);
446 if (ret < 0)
447 return ret;
449 mon = t->time.tm_mon + 1;
450 mday = t->time.tm_mday;
451 hrs = t->time.tm_hour;
452 min = t->time.tm_min;
453 sec = t->time.tm_sec;
455 rtc_control = CMOS_READ(RTC_CONTROL);
456 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
457 /* Writing 0xff means "don't care" or "match all". */
458 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
459 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
460 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
461 min = (min < 60) ? bin2bcd(min) : 0xff;
462 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
465 spin_lock_irq(&rtc_lock);
467 /* next rtc irq must not be from previous alarm setting */
468 cmos_irq_disable(cmos, RTC_AIE);
470 /* update alarm */
471 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
472 CMOS_WRITE(min, RTC_MINUTES_ALARM);
473 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
475 /* the system may support an "enhanced" alarm */
476 if (cmos->day_alrm) {
477 CMOS_WRITE(mday, cmos->day_alrm);
478 if (cmos->mon_alrm)
479 CMOS_WRITE(mon, cmos->mon_alrm);
482 if (use_hpet_alarm()) {
484 * FIXME the HPET alarm glue currently ignores day_alrm
485 * and mon_alrm ...
487 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
488 t->time.tm_sec);
491 if (t->enabled)
492 cmos_irq_enable(cmos, RTC_AIE);
494 spin_unlock_irq(&rtc_lock);
496 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
498 return 0;
501 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
503 struct cmos_rtc *cmos = dev_get_drvdata(dev);
504 unsigned long flags;
506 if (!is_valid_irq(cmos->irq))
507 return -EINVAL;
509 spin_lock_irqsave(&rtc_lock, flags);
511 if (enabled)
512 cmos_irq_enable(cmos, RTC_AIE);
513 else
514 cmos_irq_disable(cmos, RTC_AIE);
516 spin_unlock_irqrestore(&rtc_lock, flags);
517 return 0;
520 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
522 static int cmos_procfs(struct device *dev, struct seq_file *seq)
524 struct cmos_rtc *cmos = dev_get_drvdata(dev);
525 unsigned char rtc_control, valid;
527 spin_lock_irq(&rtc_lock);
528 rtc_control = CMOS_READ(RTC_CONTROL);
529 valid = CMOS_READ(RTC_VALID);
530 spin_unlock_irq(&rtc_lock);
532 /* NOTE: at least ICH6 reports battery status using a different
533 * (non-RTC) bit; and SQWE is ignored on many current systems.
535 seq_printf(seq,
536 "periodic_IRQ\t: %s\n"
537 "update_IRQ\t: %s\n"
538 "HPET_emulated\t: %s\n"
539 // "square_wave\t: %s\n"
540 "BCD\t\t: %s\n"
541 "DST_enable\t: %s\n"
542 "periodic_freq\t: %d\n"
543 "batt_status\t: %s\n",
544 (rtc_control & RTC_PIE) ? "yes" : "no",
545 (rtc_control & RTC_UIE) ? "yes" : "no",
546 use_hpet_alarm() ? "yes" : "no",
547 // (rtc_control & RTC_SQWE) ? "yes" : "no",
548 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
549 (rtc_control & RTC_DST_EN) ? "yes" : "no",
550 cmos->rtc->irq_freq,
551 (valid & RTC_VRT) ? "okay" : "dead");
553 return 0;
556 #else
557 #define cmos_procfs NULL
558 #endif
560 static const struct rtc_class_ops cmos_rtc_ops = {
561 .read_time = cmos_read_time,
562 .set_time = cmos_set_time,
563 .read_alarm = cmos_read_alarm,
564 .set_alarm = cmos_set_alarm,
565 .proc = cmos_procfs,
566 .alarm_irq_enable = cmos_alarm_irq_enable,
569 /*----------------------------------------------------------------*/
572 * All these chips have at least 64 bytes of address space, shared by
573 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
574 * by boot firmware. Modern chips have 128 or 256 bytes.
577 #define NVRAM_OFFSET (RTC_REG_D + 1)
579 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
580 size_t count)
582 unsigned char *buf = val;
583 int retval;
585 off += NVRAM_OFFSET;
586 spin_lock_irq(&rtc_lock);
587 for (retval = 0; count; count--, off++, retval++) {
588 if (off < 128)
589 *buf++ = CMOS_READ(off);
590 else if (can_bank2)
591 *buf++ = cmos_read_bank2(off);
592 else
593 break;
595 spin_unlock_irq(&rtc_lock);
597 return retval;
600 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
601 size_t count)
603 struct cmos_rtc *cmos = priv;
604 unsigned char *buf = val;
605 int retval;
607 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
608 * checksum on part of the NVRAM data. That's currently ignored
609 * here. If userspace is smart enough to know what fields of
610 * NVRAM to update, updating checksums is also part of its job.
612 off += NVRAM_OFFSET;
613 spin_lock_irq(&rtc_lock);
614 for (retval = 0; count; count--, off++, retval++) {
615 /* don't trash RTC registers */
616 if (off == cmos->day_alrm
617 || off == cmos->mon_alrm
618 || off == cmos->century)
619 buf++;
620 else if (off < 128)
621 CMOS_WRITE(*buf++, off);
622 else if (can_bank2)
623 cmos_write_bank2(*buf++, off);
624 else
625 break;
627 spin_unlock_irq(&rtc_lock);
629 return retval;
632 /*----------------------------------------------------------------*/
634 static struct cmos_rtc cmos_rtc;
636 static irqreturn_t cmos_interrupt(int irq, void *p)
638 u8 irqstat;
639 u8 rtc_control;
641 spin_lock(&rtc_lock);
643 /* When the HPET interrupt handler calls us, the interrupt
644 * status is passed as arg1 instead of the irq number. But
645 * always clear irq status, even when HPET is in the way.
647 * Note that HPET and RTC are almost certainly out of phase,
648 * giving different IRQ status ...
650 irqstat = CMOS_READ(RTC_INTR_FLAGS);
651 rtc_control = CMOS_READ(RTC_CONTROL);
652 if (use_hpet_alarm())
653 irqstat = (unsigned long)irq & 0xF0;
655 /* If we were suspended, RTC_CONTROL may not be accurate since the
656 * bios may have cleared it.
658 if (!cmos_rtc.suspend_ctrl)
659 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
660 else
661 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
663 /* All Linux RTC alarms should be treated as if they were oneshot.
664 * Similar code may be needed in system wakeup paths, in case the
665 * alarm woke the system.
667 if (irqstat & RTC_AIE) {
668 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
669 rtc_control &= ~RTC_AIE;
670 CMOS_WRITE(rtc_control, RTC_CONTROL);
671 if (use_hpet_alarm())
672 hpet_mask_rtc_irq_bit(RTC_AIE);
673 CMOS_READ(RTC_INTR_FLAGS);
675 spin_unlock(&rtc_lock);
677 if (is_intr(irqstat)) {
678 rtc_update_irq(p, 1, irqstat);
679 return IRQ_HANDLED;
680 } else
681 return IRQ_NONE;
684 #ifdef CONFIG_PNP
685 #define INITSECTION
687 #else
688 #define INITSECTION __init
689 #endif
691 static int INITSECTION
692 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
694 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
695 int retval = 0;
696 unsigned char rtc_control;
697 unsigned address_space;
698 u32 flags = 0;
699 struct nvmem_config nvmem_cfg = {
700 .name = "cmos_nvram",
701 .word_size = 1,
702 .stride = 1,
703 .reg_read = cmos_nvram_read,
704 .reg_write = cmos_nvram_write,
705 .priv = &cmos_rtc,
708 /* there can be only one ... */
709 if (cmos_rtc.dev)
710 return -EBUSY;
712 if (!ports)
713 return -ENODEV;
715 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
717 * REVISIT non-x86 systems may instead use memory space resources
718 * (needing ioremap etc), not i/o space resources like this ...
720 if (RTC_IOMAPPED)
721 ports = request_region(ports->start, resource_size(ports),
722 driver_name);
723 else
724 ports = request_mem_region(ports->start, resource_size(ports),
725 driver_name);
726 if (!ports) {
727 dev_dbg(dev, "i/o registers already in use\n");
728 return -EBUSY;
731 cmos_rtc.irq = rtc_irq;
732 cmos_rtc.iomem = ports;
734 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
735 * driver did, but don't reject unknown configs. Old hardware
736 * won't address 128 bytes. Newer chips have multiple banks,
737 * though they may not be listed in one I/O resource.
739 #if defined(CONFIG_ATARI)
740 address_space = 64;
741 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
742 || defined(__sparc__) || defined(__mips__) \
743 || defined(__powerpc__)
744 address_space = 128;
745 #else
746 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
747 address_space = 128;
748 #endif
749 if (can_bank2 && ports->end > (ports->start + 1))
750 address_space = 256;
752 /* For ACPI systems extension info comes from the FADT. On others,
753 * board specific setup provides it as appropriate. Systems where
754 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
755 * some almost-clones) can provide hooks to make that behave.
757 * Note that ACPI doesn't preclude putting these registers into
758 * "extended" areas of the chip, including some that we won't yet
759 * expect CMOS_READ and friends to handle.
761 if (info) {
762 if (info->flags)
763 flags = info->flags;
764 if (info->address_space)
765 address_space = info->address_space;
767 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
768 cmos_rtc.day_alrm = info->rtc_day_alarm;
769 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
770 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
771 if (info->rtc_century && info->rtc_century < 128)
772 cmos_rtc.century = info->rtc_century;
774 if (info->wake_on && info->wake_off) {
775 cmos_rtc.wake_on = info->wake_on;
776 cmos_rtc.wake_off = info->wake_off;
780 cmos_rtc.dev = dev;
781 dev_set_drvdata(dev, &cmos_rtc);
783 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
784 if (IS_ERR(cmos_rtc.rtc)) {
785 retval = PTR_ERR(cmos_rtc.rtc);
786 goto cleanup0;
789 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
791 spin_lock_irq(&rtc_lock);
793 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
794 /* force periodic irq to CMOS reset default of 1024Hz;
796 * REVISIT it's been reported that at least one x86_64 ALI
797 * mobo doesn't use 32KHz here ... for portability we might
798 * need to do something about other clock frequencies.
800 cmos_rtc.rtc->irq_freq = 1024;
801 if (use_hpet_alarm())
802 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
803 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
806 /* disable irqs */
807 if (is_valid_irq(rtc_irq))
808 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
810 rtc_control = CMOS_READ(RTC_CONTROL);
812 spin_unlock_irq(&rtc_lock);
814 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
815 dev_warn(dev, "only 24-hr supported\n");
816 retval = -ENXIO;
817 goto cleanup1;
820 if (use_hpet_alarm())
821 hpet_rtc_timer_init();
823 if (is_valid_irq(rtc_irq)) {
824 irq_handler_t rtc_cmos_int_handler;
826 if (use_hpet_alarm()) {
827 rtc_cmos_int_handler = hpet_rtc_interrupt;
828 retval = hpet_register_irq_handler(cmos_interrupt);
829 if (retval) {
830 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
831 dev_warn(dev, "hpet_register_irq_handler "
832 " failed in rtc_init().");
833 goto cleanup1;
835 } else
836 rtc_cmos_int_handler = cmos_interrupt;
838 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
839 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
840 cmos_rtc.rtc);
841 if (retval < 0) {
842 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
843 goto cleanup1;
847 cmos_rtc.rtc->ops = &cmos_rtc_ops;
848 cmos_rtc.rtc->nvram_old_abi = true;
849 retval = rtc_register_device(cmos_rtc.rtc);
850 if (retval)
851 goto cleanup2;
853 /* export at least the first block of NVRAM */
854 nvmem_cfg.size = address_space - NVRAM_OFFSET;
855 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
856 dev_err(dev, "nvmem registration failed\n");
858 dev_info(dev, "%s%s, %d bytes nvram%s\n",
859 !is_valid_irq(rtc_irq) ? "no alarms" :
860 cmos_rtc.mon_alrm ? "alarms up to one year" :
861 cmos_rtc.day_alrm ? "alarms up to one month" :
862 "alarms up to one day",
863 cmos_rtc.century ? ", y3k" : "",
864 nvmem_cfg.size,
865 use_hpet_alarm() ? ", hpet irqs" : "");
867 return 0;
869 cleanup2:
870 if (is_valid_irq(rtc_irq))
871 free_irq(rtc_irq, cmos_rtc.rtc);
872 cleanup1:
873 cmos_rtc.dev = NULL;
874 cleanup0:
875 if (RTC_IOMAPPED)
876 release_region(ports->start, resource_size(ports));
877 else
878 release_mem_region(ports->start, resource_size(ports));
879 return retval;
882 static void cmos_do_shutdown(int rtc_irq)
884 spin_lock_irq(&rtc_lock);
885 if (is_valid_irq(rtc_irq))
886 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
887 spin_unlock_irq(&rtc_lock);
890 static void cmos_do_remove(struct device *dev)
892 struct cmos_rtc *cmos = dev_get_drvdata(dev);
893 struct resource *ports;
895 cmos_do_shutdown(cmos->irq);
897 if (is_valid_irq(cmos->irq)) {
898 free_irq(cmos->irq, cmos->rtc);
899 if (use_hpet_alarm())
900 hpet_unregister_irq_handler(cmos_interrupt);
903 cmos->rtc = NULL;
905 ports = cmos->iomem;
906 if (RTC_IOMAPPED)
907 release_region(ports->start, resource_size(ports));
908 else
909 release_mem_region(ports->start, resource_size(ports));
910 cmos->iomem = NULL;
912 cmos->dev = NULL;
915 static int cmos_aie_poweroff(struct device *dev)
917 struct cmos_rtc *cmos = dev_get_drvdata(dev);
918 struct rtc_time now;
919 time64_t t_now;
920 int retval = 0;
921 unsigned char rtc_control;
923 if (!cmos->alarm_expires)
924 return -EINVAL;
926 spin_lock_irq(&rtc_lock);
927 rtc_control = CMOS_READ(RTC_CONTROL);
928 spin_unlock_irq(&rtc_lock);
930 /* We only care about the situation where AIE is disabled. */
931 if (rtc_control & RTC_AIE)
932 return -EBUSY;
934 cmos_read_time(dev, &now);
935 t_now = rtc_tm_to_time64(&now);
938 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
939 * automatically right after shutdown on some buggy boxes.
940 * This automatic rebooting issue won't happen when the alarm
941 * time is larger than now+1 seconds.
943 * If the alarm time is equal to now+1 seconds, the issue can be
944 * prevented by cancelling the alarm.
946 if (cmos->alarm_expires == t_now + 1) {
947 struct rtc_wkalrm alarm;
949 /* Cancel the AIE timer by configuring the past time. */
950 rtc_time64_to_tm(t_now - 1, &alarm.time);
951 alarm.enabled = 0;
952 retval = cmos_set_alarm(dev, &alarm);
953 } else if (cmos->alarm_expires > t_now + 1) {
954 retval = -EBUSY;
957 return retval;
960 static int cmos_suspend(struct device *dev)
962 struct cmos_rtc *cmos = dev_get_drvdata(dev);
963 unsigned char tmp;
965 /* only the alarm might be a wakeup event source */
966 spin_lock_irq(&rtc_lock);
967 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
968 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
969 unsigned char mask;
971 if (device_may_wakeup(dev))
972 mask = RTC_IRQMASK & ~RTC_AIE;
973 else
974 mask = RTC_IRQMASK;
975 tmp &= ~mask;
976 CMOS_WRITE(tmp, RTC_CONTROL);
977 if (use_hpet_alarm())
978 hpet_mask_rtc_irq_bit(mask);
979 cmos_checkintr(cmos, tmp);
981 spin_unlock_irq(&rtc_lock);
983 if ((tmp & RTC_AIE) && !use_acpi_alarm) {
984 cmos->enabled_wake = 1;
985 if (cmos->wake_on)
986 cmos->wake_on(dev);
987 else
988 enable_irq_wake(cmos->irq);
991 cmos_read_alarm(dev, &cmos->saved_wkalrm);
993 dev_dbg(dev, "suspend%s, ctrl %02x\n",
994 (tmp & RTC_AIE) ? ", alarm may wake" : "",
995 tmp);
997 return 0;
1000 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1001 * after a detour through G3 "mechanical off", although the ACPI spec
1002 * says wakeup should only work from G1/S4 "hibernate". To most users,
1003 * distinctions between S4 and S5 are pointless. So when the hardware
1004 * allows, don't draw that distinction.
1006 static inline int cmos_poweroff(struct device *dev)
1008 if (!IS_ENABLED(CONFIG_PM))
1009 return -ENOSYS;
1011 return cmos_suspend(dev);
1014 static void cmos_check_wkalrm(struct device *dev)
1016 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1017 struct rtc_wkalrm current_alarm;
1018 time64_t t_now;
1019 time64_t t_current_expires;
1020 time64_t t_saved_expires;
1021 struct rtc_time now;
1023 /* Check if we have RTC Alarm armed */
1024 if (!(cmos->suspend_ctrl & RTC_AIE))
1025 return;
1027 cmos_read_time(dev, &now);
1028 t_now = rtc_tm_to_time64(&now);
1031 * ACPI RTC wake event is cleared after resume from STR,
1032 * ACK the rtc irq here
1034 if (t_now >= cmos->alarm_expires && use_acpi_alarm) {
1035 cmos_interrupt(0, (void *)cmos->rtc);
1036 return;
1039 cmos_read_alarm(dev, &current_alarm);
1040 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1041 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1042 if (t_current_expires != t_saved_expires ||
1043 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1044 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1048 static void cmos_check_acpi_rtc_status(struct device *dev,
1049 unsigned char *rtc_control);
1051 static int __maybe_unused cmos_resume(struct device *dev)
1053 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1054 unsigned char tmp;
1056 if (cmos->enabled_wake && !use_acpi_alarm) {
1057 if (cmos->wake_off)
1058 cmos->wake_off(dev);
1059 else
1060 disable_irq_wake(cmos->irq);
1061 cmos->enabled_wake = 0;
1064 /* The BIOS might have changed the alarm, restore it */
1065 cmos_check_wkalrm(dev);
1067 spin_lock_irq(&rtc_lock);
1068 tmp = cmos->suspend_ctrl;
1069 cmos->suspend_ctrl = 0;
1070 /* re-enable any irqs previously active */
1071 if (tmp & RTC_IRQMASK) {
1072 unsigned char mask;
1074 if (device_may_wakeup(dev) && use_hpet_alarm())
1075 hpet_rtc_timer_init();
1077 do {
1078 CMOS_WRITE(tmp, RTC_CONTROL);
1079 if (use_hpet_alarm())
1080 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1082 mask = CMOS_READ(RTC_INTR_FLAGS);
1083 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1084 if (!use_hpet_alarm() || !is_intr(mask))
1085 break;
1087 /* force one-shot behavior if HPET blocked
1088 * the wake alarm's irq
1090 rtc_update_irq(cmos->rtc, 1, mask);
1091 tmp &= ~RTC_AIE;
1092 hpet_mask_rtc_irq_bit(RTC_AIE);
1093 } while (mask & RTC_AIE);
1095 if (tmp & RTC_AIE)
1096 cmos_check_acpi_rtc_status(dev, &tmp);
1098 spin_unlock_irq(&rtc_lock);
1100 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1102 return 0;
1105 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1107 /*----------------------------------------------------------------*/
1109 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1110 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1111 * probably list them in similar PNPBIOS tables; so PNP is more common.
1113 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1114 * predate even PNPBIOS should set up platform_bus devices.
1117 #ifdef CONFIG_ACPI
1119 #include <linux/acpi.h>
1121 static u32 rtc_handler(void *context)
1123 struct device *dev = context;
1124 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1125 unsigned char rtc_control = 0;
1126 unsigned char rtc_intr;
1127 unsigned long flags;
1131 * Always update rtc irq when ACPI is used as RTC Alarm.
1132 * Or else, ACPI SCI is enabled during suspend/resume only,
1133 * update rtc irq in that case.
1135 if (use_acpi_alarm)
1136 cmos_interrupt(0, (void *)cmos->rtc);
1137 else {
1138 /* Fix me: can we use cmos_interrupt() here as well? */
1139 spin_lock_irqsave(&rtc_lock, flags);
1140 if (cmos_rtc.suspend_ctrl)
1141 rtc_control = CMOS_READ(RTC_CONTROL);
1142 if (rtc_control & RTC_AIE) {
1143 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1144 CMOS_WRITE(rtc_control, RTC_CONTROL);
1145 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1146 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1148 spin_unlock_irqrestore(&rtc_lock, flags);
1151 pm_wakeup_hard_event(dev);
1152 acpi_clear_event(ACPI_EVENT_RTC);
1153 acpi_disable_event(ACPI_EVENT_RTC, 0);
1154 return ACPI_INTERRUPT_HANDLED;
1157 static inline void rtc_wake_setup(struct device *dev)
1159 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1161 * After the RTC handler is installed, the Fixed_RTC event should
1162 * be disabled. Only when the RTC alarm is set will it be enabled.
1164 acpi_clear_event(ACPI_EVENT_RTC);
1165 acpi_disable_event(ACPI_EVENT_RTC, 0);
1168 static void rtc_wake_on(struct device *dev)
1170 acpi_clear_event(ACPI_EVENT_RTC);
1171 acpi_enable_event(ACPI_EVENT_RTC, 0);
1174 static void rtc_wake_off(struct device *dev)
1176 acpi_disable_event(ACPI_EVENT_RTC, 0);
1179 #ifdef CONFIG_X86
1180 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1181 static void use_acpi_alarm_quirks(void)
1183 int year;
1185 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1186 return;
1188 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1189 return;
1191 if (!is_hpet_enabled())
1192 return;
1194 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1195 use_acpi_alarm = true;
1197 #else
1198 static inline void use_acpi_alarm_quirks(void) { }
1199 #endif
1201 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1202 * its device node and pass extra config data. This helps its driver use
1203 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1204 * that this board's RTC is wakeup-capable (per ACPI spec).
1206 static struct cmos_rtc_board_info acpi_rtc_info;
1208 static void cmos_wake_setup(struct device *dev)
1210 if (acpi_disabled)
1211 return;
1213 use_acpi_alarm_quirks();
1215 rtc_wake_setup(dev);
1216 acpi_rtc_info.wake_on = rtc_wake_on;
1217 acpi_rtc_info.wake_off = rtc_wake_off;
1219 /* workaround bug in some ACPI tables */
1220 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1221 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1222 acpi_gbl_FADT.month_alarm);
1223 acpi_gbl_FADT.month_alarm = 0;
1226 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1227 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1228 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1230 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1231 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1232 dev_info(dev, "RTC can wake from S4\n");
1234 dev->platform_data = &acpi_rtc_info;
1236 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1237 device_init_wakeup(dev, 1);
1240 static void cmos_check_acpi_rtc_status(struct device *dev,
1241 unsigned char *rtc_control)
1243 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1244 acpi_event_status rtc_status;
1245 acpi_status status;
1247 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1248 return;
1250 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1251 if (ACPI_FAILURE(status)) {
1252 dev_err(dev, "Could not get RTC status\n");
1253 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1254 unsigned char mask;
1255 *rtc_control &= ~RTC_AIE;
1256 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1257 mask = CMOS_READ(RTC_INTR_FLAGS);
1258 rtc_update_irq(cmos->rtc, 1, mask);
1262 #else
1264 static void cmos_wake_setup(struct device *dev)
1268 static void cmos_check_acpi_rtc_status(struct device *dev,
1269 unsigned char *rtc_control)
1273 #endif
1275 #ifdef CONFIG_PNP
1277 #include <linux/pnp.h>
1279 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1281 cmos_wake_setup(&pnp->dev);
1283 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1284 unsigned int irq = 0;
1285 #ifdef CONFIG_X86
1286 /* Some machines contain a PNP entry for the RTC, but
1287 * don't define the IRQ. It should always be safe to
1288 * hardcode it on systems with a legacy PIC.
1290 if (nr_legacy_irqs())
1291 irq = 8;
1292 #endif
1293 return cmos_do_probe(&pnp->dev,
1294 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1295 } else {
1296 return cmos_do_probe(&pnp->dev,
1297 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1298 pnp_irq(pnp, 0));
1302 static void cmos_pnp_remove(struct pnp_dev *pnp)
1304 cmos_do_remove(&pnp->dev);
1307 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1309 struct device *dev = &pnp->dev;
1310 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1312 if (system_state == SYSTEM_POWER_OFF) {
1313 int retval = cmos_poweroff(dev);
1315 if (cmos_aie_poweroff(dev) < 0 && !retval)
1316 return;
1319 cmos_do_shutdown(cmos->irq);
1322 static const struct pnp_device_id rtc_ids[] = {
1323 { .id = "PNP0b00", },
1324 { .id = "PNP0b01", },
1325 { .id = "PNP0b02", },
1326 { },
1328 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1330 static struct pnp_driver cmos_pnp_driver = {
1331 .name = (char *) driver_name,
1332 .id_table = rtc_ids,
1333 .probe = cmos_pnp_probe,
1334 .remove = cmos_pnp_remove,
1335 .shutdown = cmos_pnp_shutdown,
1337 /* flag ensures resume() gets called, and stops syslog spam */
1338 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1339 .driver = {
1340 .pm = &cmos_pm_ops,
1344 #endif /* CONFIG_PNP */
1346 #ifdef CONFIG_OF
1347 static const struct of_device_id of_cmos_match[] = {
1349 .compatible = "motorola,mc146818",
1351 { },
1353 MODULE_DEVICE_TABLE(of, of_cmos_match);
1355 static __init void cmos_of_init(struct platform_device *pdev)
1357 struct device_node *node = pdev->dev.of_node;
1358 const __be32 *val;
1360 if (!node)
1361 return;
1363 val = of_get_property(node, "ctrl-reg", NULL);
1364 if (val)
1365 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1367 val = of_get_property(node, "freq-reg", NULL);
1368 if (val)
1369 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1371 #else
1372 static inline void cmos_of_init(struct platform_device *pdev) {}
1373 #endif
1374 /*----------------------------------------------------------------*/
1376 /* Platform setup should have set up an RTC device, when PNP is
1377 * unavailable ... this could happen even on (older) PCs.
1380 static int __init cmos_platform_probe(struct platform_device *pdev)
1382 struct resource *resource;
1383 int irq;
1385 cmos_of_init(pdev);
1386 cmos_wake_setup(&pdev->dev);
1388 if (RTC_IOMAPPED)
1389 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1390 else
1391 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1392 irq = platform_get_irq(pdev, 0);
1393 if (irq < 0)
1394 irq = -1;
1396 return cmos_do_probe(&pdev->dev, resource, irq);
1399 static int cmos_platform_remove(struct platform_device *pdev)
1401 cmos_do_remove(&pdev->dev);
1402 return 0;
1405 static void cmos_platform_shutdown(struct platform_device *pdev)
1407 struct device *dev = &pdev->dev;
1408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1410 if (system_state == SYSTEM_POWER_OFF) {
1411 int retval = cmos_poweroff(dev);
1413 if (cmos_aie_poweroff(dev) < 0 && !retval)
1414 return;
1417 cmos_do_shutdown(cmos->irq);
1420 /* work with hotplug and coldplug */
1421 MODULE_ALIAS("platform:rtc_cmos");
1423 static struct platform_driver cmos_platform_driver = {
1424 .remove = cmos_platform_remove,
1425 .shutdown = cmos_platform_shutdown,
1426 .driver = {
1427 .name = driver_name,
1428 .pm = &cmos_pm_ops,
1429 .of_match_table = of_match_ptr(of_cmos_match),
1433 #ifdef CONFIG_PNP
1434 static bool pnp_driver_registered;
1435 #endif
1436 static bool platform_driver_registered;
1438 static int __init cmos_init(void)
1440 int retval = 0;
1442 #ifdef CONFIG_PNP
1443 retval = pnp_register_driver(&cmos_pnp_driver);
1444 if (retval == 0)
1445 pnp_driver_registered = true;
1446 #endif
1448 if (!cmos_rtc.dev) {
1449 retval = platform_driver_probe(&cmos_platform_driver,
1450 cmos_platform_probe);
1451 if (retval == 0)
1452 platform_driver_registered = true;
1455 if (retval == 0)
1456 return 0;
1458 #ifdef CONFIG_PNP
1459 if (pnp_driver_registered)
1460 pnp_unregister_driver(&cmos_pnp_driver);
1461 #endif
1462 return retval;
1464 module_init(cmos_init);
1466 static void __exit cmos_exit(void)
1468 #ifdef CONFIG_PNP
1469 if (pnp_driver_registered)
1470 pnp_unregister_driver(&cmos_pnp_driver);
1471 #endif
1472 if (platform_driver_registered)
1473 platform_driver_unregister(&cmos_platform_driver);
1475 module_exit(cmos_exit);
1478 MODULE_AUTHOR("David Brownell");
1479 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1480 MODULE_LICENSE("GPL");