perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / spi / spi-pl022.c
blob6120e6abcd9683f9114b8c12d24fe3431966720c
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
63 #define DRIVE_TX 0
64 #define DO_NOT_DRIVE_TX 1
66 #define DO_NOT_QUEUE_DMA 0
67 #define QUEUE_DMA 1
69 #define RX_TRANSFER 1
70 #define TX_TRANSFER 2
73 * Macros to access SSP Registers with their offsets
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r) (r + 0x080)
87 #define SSP_ITIP(r) (r + 0x084)
88 #define SSP_ITOP(r) (r + 0x088)
89 #define SSP_TDR(r) (r + 0x08C)
91 #define SSP_PID0(r) (r + 0xFE0)
92 #define SSP_PID1(r) (r + 0xFE4)
93 #define SSP_PID2(r) (r + 0xFE8)
94 #define SSP_PID3(r) (r + 0xFEC)
96 #define SSP_CID0(r) (r + 0xFF0)
97 #define SSP_CID1(r) (r + 0xFF4)
98 #define SSP_CID2(r) (r + 0xFF8)
99 #define SSP_CID3(r) (r + 0xFFC)
102 * SSP Control Register 0 - SSP_CR0
104 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF (0x3UL << 4)
106 #define SSP_CR0_MASK_SPO (0x1UL << 6)
107 #define SSP_CR0_MASK_SPH (0x1UL << 7)
108 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
111 * The ST version of this block moves som bits
112 * in SSP_CR0 and extends it to 32 bits
114 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
120 * SSP Control Register 0 - SSP_CR1
122 #define SSP_CR1_MASK_LBM (0x1UL << 0)
123 #define SSP_CR1_MASK_SSE (0x1UL << 1)
124 #define SSP_CR1_MASK_MS (0x1UL << 2)
125 #define SSP_CR1_MASK_SOD (0x1UL << 3)
128 * The ST version of this block adds some bits
129 * in SSP_CR1
131 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
140 * SSP Status Register - SSP_SR
142 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
149 * SSP Clock Prescale Register - SSP_CPSR
151 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
154 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
162 * SSP Raw Interrupt Status Register - SSP_RIS
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
174 * SSP Masked Interrupt Status Register - SSP_MIS
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
186 * SSP Interrupt Clear Register - SSP_ICR
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
194 * SSP DMA Control Register - SSP_DMACR
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
202 * SSP Chip Select Control Register - SSP_CSR
203 * (vendor extension)
205 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
208 * SSP Integration Test control Register - SSP_ITCR
210 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
214 * SSP Integration Test Input Register - SSP_ITIP
216 #define ITIP_MASK_SSPRXD (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
224 * SSP Integration Test output Register - SSP_ITOP
226 #define ITOP_MASK_SSPTXD (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
231 #define ITOP_MASK_RORINTR (0x1UL << 5)
232 #define ITOP_MASK_RTINTR (0x1UL << 6)
233 #define ITOP_MASK_RXINTR (0x1UL << 7)
234 #define ITOP_MASK_TXINTR (0x1UL << 8)
235 #define ITOP_MASK_INTR (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
242 * SSP Test Data Register - SSP_TDR
244 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
247 * Message State
248 * we use the spi_message.state (void *) pointer to
249 * hold a single state value, that's why all this
250 * (void *) casting is done here.
252 #define STATE_START ((void *) 0)
253 #define STATE_RUNNING ((void *) 1)
254 #define STATE_DONE ((void *) 2)
255 #define STATE_ERROR ((void *) -1)
258 * SSP State - Whether Enabled or Disabled
260 #define SSP_DISABLED (0)
261 #define SSP_ENABLED (1)
264 * SSP DMA State - Whether DMA Enabled or Disabled
266 #define SSP_DMA_DISABLED (0)
267 #define SSP_DMA_ENABLED (1)
270 * SSP Clock Defaults
272 #define SSP_DEFAULT_CLKRATE 0x2
273 #define SSP_DEFAULT_PRESCALE 0x40
276 * SSP Clock Parameter ranges
278 #define CPSDVR_MIN 0x02
279 #define CPSDVR_MAX 0xFE
280 #define SCR_MIN 0x00
281 #define SCR_MAX 0xFF
284 * SSP Interrupt related Macros
286 #define DEFAULT_SSP_REG_IMSC 0x0UL
287 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288 #define ENABLE_ALL_INTERRUPTS ( \
289 SSP_IMSC_MASK_RORIM | \
290 SSP_IMSC_MASK_RTIM | \
291 SSP_IMSC_MASK_RXIM | \
292 SSP_IMSC_MASK_TXIM \
295 #define CLEAR_ALL_INTERRUPTS 0x3
297 #define SPI_POLLING_TIMEOUT 1000
300 * The type of reading going on on this chip
302 enum ssp_reading {
303 READING_NULL,
304 READING_U8,
305 READING_U16,
306 READING_U32
310 * The type of writing going on on this chip
312 enum ssp_writing {
313 WRITING_NULL,
314 WRITING_U8,
315 WRITING_U16,
316 WRITING_U32
320 * struct vendor_data - vendor-specific config parameters
321 * for PL022 derivates
322 * @fifodepth: depth of FIFOs (both)
323 * @max_bpw: maximum number of bits per word
324 * @unidir: supports unidirection transfers
325 * @extended_cr: 32 bit wide control register 0 with extra
326 * features and extra features in CR1 as found in the ST variants
327 * @pl023: supports a subset of the ST extensions called "PL023"
328 * @internal_cs_ctrl: supports chip select control register
330 struct vendor_data {
331 int fifodepth;
332 int max_bpw;
333 bool unidir;
334 bool extended_cr;
335 bool pl023;
336 bool loopback;
337 bool internal_cs_ctrl;
341 * struct pl022 - This is the private SSP driver data structure
342 * @adev: AMBA device model hookup
343 * @vendor: vendor data for the IP block
344 * @phybase: the physical memory where the SSP device resides
345 * @virtbase: the virtual memory where the SSP is mapped
346 * @clk: outgoing clock "SPICLK" for the SPI bus
347 * @master: SPI framework hookup
348 * @master_info: controller-specific data from machine setup
349 * @pump_transfers: Tasklet used in Interrupt Transfer mode
350 * @cur_msg: Pointer to current spi_message being processed
351 * @cur_transfer: Pointer to current spi_transfer
352 * @cur_chip: pointer to current clients chip(assigned from controller_state)
353 * @next_msg_cs_active: the next message in the queue has been examined
354 * and it was found that it uses the same chip select as the previous
355 * message, so we left it active after the previous transfer, and it's
356 * active already.
357 * @tx: current position in TX buffer to be read
358 * @tx_end: end position in TX buffer to be read
359 * @rx: current position in RX buffer to be written
360 * @rx_end: end position in RX buffer to be written
361 * @read: the type of read currently going on
362 * @write: the type of write currently going on
363 * @exp_fifo_level: expected FIFO level
364 * @dma_rx_channel: optional channel for RX DMA
365 * @dma_tx_channel: optional channel for TX DMA
366 * @sgt_rx: scattertable for the RX transfer
367 * @sgt_tx: scattertable for the TX transfer
368 * @dummypage: a dummy page used for driving data on the bus with DMA
369 * @cur_cs: current chip select (gpio)
370 * @chipselects: list of chipselects (gpios)
372 struct pl022 {
373 struct amba_device *adev;
374 struct vendor_data *vendor;
375 resource_size_t phybase;
376 void __iomem *virtbase;
377 struct clk *clk;
378 struct spi_master *master;
379 struct pl022_ssp_controller *master_info;
380 /* Message per-transfer pump */
381 struct tasklet_struct pump_transfers;
382 struct spi_message *cur_msg;
383 struct spi_transfer *cur_transfer;
384 struct chip_data *cur_chip;
385 bool next_msg_cs_active;
386 void *tx;
387 void *tx_end;
388 void *rx;
389 void *rx_end;
390 enum ssp_reading read;
391 enum ssp_writing write;
392 u32 exp_fifo_level;
393 enum ssp_rx_level_trig rx_lev_trig;
394 enum ssp_tx_level_trig tx_lev_trig;
395 /* DMA settings */
396 #ifdef CONFIG_DMA_ENGINE
397 struct dma_chan *dma_rx_channel;
398 struct dma_chan *dma_tx_channel;
399 struct sg_table sgt_rx;
400 struct sg_table sgt_tx;
401 char *dummypage;
402 bool dma_running;
403 #endif
404 int cur_cs;
405 int *chipselects;
409 * struct chip_data - To maintain runtime state of SSP for each client chip
410 * @cr0: Value of control register CR0 of SSP - on later ST variants this
411 * register is 32 bits wide rather than just 16
412 * @cr1: Value of control register CR1 of SSP
413 * @dmacr: Value of DMA control Register of SSP
414 * @cpsr: Value of Clock prescale register
415 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
416 * @enable_dma: Whether to enable DMA or not
417 * @read: function ptr to be used to read when doing xfer for this chip
418 * @write: function ptr to be used to write when doing xfer for this chip
419 * @cs_control: chip select callback provided by chip
420 * @xfer_type: polling/interrupt/DMA
422 * Runtime state of the SSP controller, maintained per chip,
423 * This would be set according to the current message that would be served
425 struct chip_data {
426 u32 cr0;
427 u16 cr1;
428 u16 dmacr;
429 u16 cpsr;
430 u8 n_bytes;
431 bool enable_dma;
432 enum ssp_reading read;
433 enum ssp_writing write;
434 void (*cs_control) (u32 command);
435 int xfer_type;
439 * null_cs_control - Dummy chip select function
440 * @command: select/delect the chip
442 * If no chip select function is provided by client this is used as dummy
443 * chip select
445 static void null_cs_control(u32 command)
447 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
451 * internal_cs_control - Control chip select signals via SSP_CSR.
452 * @pl022: SSP driver private data structure
453 * @command: select/delect the chip
455 * Used on controller with internal chip select control via SSP_CSR register
456 * (vendor extension). Each of the 5 LSB in the register controls one chip
457 * select signal.
459 static void internal_cs_control(struct pl022 *pl022, u32 command)
461 u32 tmp;
463 tmp = readw(SSP_CSR(pl022->virtbase));
464 if (command == SSP_CHIP_SELECT)
465 tmp &= ~BIT(pl022->cur_cs);
466 else
467 tmp |= BIT(pl022->cur_cs);
468 writew(tmp, SSP_CSR(pl022->virtbase));
471 static void pl022_cs_control(struct pl022 *pl022, u32 command)
473 if (pl022->vendor->internal_cs_ctrl)
474 internal_cs_control(pl022, command);
475 else if (gpio_is_valid(pl022->cur_cs))
476 gpio_set_value(pl022->cur_cs, command);
477 else
478 pl022->cur_chip->cs_control(command);
482 * giveback - current spi_message is over, schedule next message and call
483 * callback of this message. Assumes that caller already
484 * set message->status; dma and pio irqs are blocked
485 * @pl022: SSP driver private data structure
487 static void giveback(struct pl022 *pl022)
489 struct spi_transfer *last_transfer;
490 pl022->next_msg_cs_active = false;
492 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
493 struct spi_transfer, transfer_list);
495 /* Delay if requested before any change in chip select */
496 if (last_transfer->delay_usecs)
498 * FIXME: This runs in interrupt context.
499 * Is this really smart?
501 udelay(last_transfer->delay_usecs);
503 if (!last_transfer->cs_change) {
504 struct spi_message *next_msg;
507 * cs_change was not set. We can keep the chip select
508 * enabled if there is message in the queue and it is
509 * for the same spi device.
511 * We cannot postpone this until pump_messages, because
512 * after calling msg->complete (below) the driver that
513 * sent the current message could be unloaded, which
514 * could invalidate the cs_control() callback...
516 /* get a pointer to the next message, if any */
517 next_msg = spi_get_next_queued_message(pl022->master);
520 * see if the next and current messages point
521 * to the same spi device.
523 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
524 next_msg = NULL;
525 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
526 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
527 else
528 pl022->next_msg_cs_active = true;
532 pl022->cur_msg = NULL;
533 pl022->cur_transfer = NULL;
534 pl022->cur_chip = NULL;
536 /* disable the SPI/SSP operation */
537 writew((readw(SSP_CR1(pl022->virtbase)) &
538 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
540 spi_finalize_current_message(pl022->master);
544 * flush - flush the FIFO to reach a clean state
545 * @pl022: SSP driver private data structure
547 static int flush(struct pl022 *pl022)
549 unsigned long limit = loops_per_jiffy << 1;
551 dev_dbg(&pl022->adev->dev, "flush\n");
552 do {
553 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
554 readw(SSP_DR(pl022->virtbase));
555 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
557 pl022->exp_fifo_level = 0;
559 return limit;
563 * restore_state - Load configuration of current chip
564 * @pl022: SSP driver private data structure
566 static void restore_state(struct pl022 *pl022)
568 struct chip_data *chip = pl022->cur_chip;
570 if (pl022->vendor->extended_cr)
571 writel(chip->cr0, SSP_CR0(pl022->virtbase));
572 else
573 writew(chip->cr0, SSP_CR0(pl022->virtbase));
574 writew(chip->cr1, SSP_CR1(pl022->virtbase));
575 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
576 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
577 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
578 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
582 * Default SSP Register Values
584 #define DEFAULT_SSP_REG_CR0 ( \
585 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
586 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
592 /* ST versions have slightly different bit layout */
593 #define DEFAULT_SSP_REG_CR0_ST ( \
594 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
595 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
596 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
597 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
598 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
599 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
600 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
603 /* The PL023 version is slightly different again */
604 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
605 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
606 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
607 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
608 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
611 #define DEFAULT_SSP_REG_CR1 ( \
612 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
613 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
614 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
615 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
618 /* ST versions extend this register to use all 16 bits */
619 #define DEFAULT_SSP_REG_CR1_ST ( \
620 DEFAULT_SSP_REG_CR1 | \
621 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
622 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
623 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
624 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
629 * The PL023 variant has further differences: no loopback mode, no microwire
630 * support, and a new clock feedback delay setting.
632 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
633 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
634 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
635 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
636 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
637 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
638 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
639 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
640 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
643 #define DEFAULT_SSP_REG_CPSR ( \
644 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
647 #define DEFAULT_SSP_REG_DMACR (\
648 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
649 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
653 * load_ssp_default_config - Load default configuration for SSP
654 * @pl022: SSP driver private data structure
656 static void load_ssp_default_config(struct pl022 *pl022)
658 if (pl022->vendor->pl023) {
659 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
660 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
661 } else if (pl022->vendor->extended_cr) {
662 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
663 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
664 } else {
665 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
666 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
668 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
669 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
670 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
671 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
675 * This will write to TX and read from RX according to the parameters
676 * set in pl022.
678 static void readwriter(struct pl022 *pl022)
682 * The FIFO depth is different between primecell variants.
683 * I believe filling in too much in the FIFO might cause
684 * errons in 8bit wide transfers on ARM variants (just 8 words
685 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
687 * To prevent this issue, the TX FIFO is only filled to the
688 * unused RX FIFO fill length, regardless of what the TX
689 * FIFO status flag indicates.
691 dev_dbg(&pl022->adev->dev,
692 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
693 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
695 /* Read as much as you can */
696 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
697 && (pl022->rx < pl022->rx_end)) {
698 switch (pl022->read) {
699 case READING_NULL:
700 readw(SSP_DR(pl022->virtbase));
701 break;
702 case READING_U8:
703 *(u8 *) (pl022->rx) =
704 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
705 break;
706 case READING_U16:
707 *(u16 *) (pl022->rx) =
708 (u16) readw(SSP_DR(pl022->virtbase));
709 break;
710 case READING_U32:
711 *(u32 *) (pl022->rx) =
712 readl(SSP_DR(pl022->virtbase));
713 break;
715 pl022->rx += (pl022->cur_chip->n_bytes);
716 pl022->exp_fifo_level--;
719 * Write as much as possible up to the RX FIFO size
721 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
722 && (pl022->tx < pl022->tx_end)) {
723 switch (pl022->write) {
724 case WRITING_NULL:
725 writew(0x0, SSP_DR(pl022->virtbase));
726 break;
727 case WRITING_U8:
728 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
729 break;
730 case WRITING_U16:
731 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
732 break;
733 case WRITING_U32:
734 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
735 break;
737 pl022->tx += (pl022->cur_chip->n_bytes);
738 pl022->exp_fifo_level++;
740 * This inner reader takes care of things appearing in the RX
741 * FIFO as we're transmitting. This will happen a lot since the
742 * clock starts running when you put things into the TX FIFO,
743 * and then things are continuously clocked into the RX FIFO.
745 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
746 && (pl022->rx < pl022->rx_end)) {
747 switch (pl022->read) {
748 case READING_NULL:
749 readw(SSP_DR(pl022->virtbase));
750 break;
751 case READING_U8:
752 *(u8 *) (pl022->rx) =
753 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
754 break;
755 case READING_U16:
756 *(u16 *) (pl022->rx) =
757 (u16) readw(SSP_DR(pl022->virtbase));
758 break;
759 case READING_U32:
760 *(u32 *) (pl022->rx) =
761 readl(SSP_DR(pl022->virtbase));
762 break;
764 pl022->rx += (pl022->cur_chip->n_bytes);
765 pl022->exp_fifo_level--;
769 * When we exit here the TX FIFO should be full and the RX FIFO
770 * should be empty
775 * next_transfer - Move to the Next transfer in the current spi message
776 * @pl022: SSP driver private data structure
778 * This function moves though the linked list of spi transfers in the
779 * current spi message and returns with the state of current spi
780 * message i.e whether its last transfer is done(STATE_DONE) or
781 * Next transfer is ready(STATE_RUNNING)
783 static void *next_transfer(struct pl022 *pl022)
785 struct spi_message *msg = pl022->cur_msg;
786 struct spi_transfer *trans = pl022->cur_transfer;
788 /* Move to next transfer */
789 if (trans->transfer_list.next != &msg->transfers) {
790 pl022->cur_transfer =
791 list_entry(trans->transfer_list.next,
792 struct spi_transfer, transfer_list);
793 return STATE_RUNNING;
795 return STATE_DONE;
799 * This DMA functionality is only compiled in if we have
800 * access to the generic DMA devices/DMA engine.
802 #ifdef CONFIG_DMA_ENGINE
803 static void unmap_free_dma_scatter(struct pl022 *pl022)
805 /* Unmap and free the SG tables */
806 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
807 pl022->sgt_tx.nents, DMA_TO_DEVICE);
808 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
809 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
810 sg_free_table(&pl022->sgt_rx);
811 sg_free_table(&pl022->sgt_tx);
814 static void dma_callback(void *data)
816 struct pl022 *pl022 = data;
817 struct spi_message *msg = pl022->cur_msg;
819 BUG_ON(!pl022->sgt_rx.sgl);
821 #ifdef VERBOSE_DEBUG
823 * Optionally dump out buffers to inspect contents, this is
824 * good if you want to convince yourself that the loopback
825 * read/write contents are the same, when adopting to a new
826 * DMA engine.
829 struct scatterlist *sg;
830 unsigned int i;
832 dma_sync_sg_for_cpu(&pl022->adev->dev,
833 pl022->sgt_rx.sgl,
834 pl022->sgt_rx.nents,
835 DMA_FROM_DEVICE);
837 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
838 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
839 print_hex_dump(KERN_ERR, "SPI RX: ",
840 DUMP_PREFIX_OFFSET,
843 sg_virt(sg),
844 sg_dma_len(sg),
847 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
848 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
849 print_hex_dump(KERN_ERR, "SPI TX: ",
850 DUMP_PREFIX_OFFSET,
853 sg_virt(sg),
854 sg_dma_len(sg),
858 #endif
860 unmap_free_dma_scatter(pl022);
862 /* Update total bytes transferred */
863 msg->actual_length += pl022->cur_transfer->len;
864 if (pl022->cur_transfer->cs_change)
865 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
867 /* Move to next transfer */
868 msg->state = next_transfer(pl022);
869 tasklet_schedule(&pl022->pump_transfers);
872 static void setup_dma_scatter(struct pl022 *pl022,
873 void *buffer,
874 unsigned int length,
875 struct sg_table *sgtab)
877 struct scatterlist *sg;
878 int bytesleft = length;
879 void *bufp = buffer;
880 int mapbytes;
881 int i;
883 if (buffer) {
884 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
886 * If there are less bytes left than what fits
887 * in the current page (plus page alignment offset)
888 * we just feed in this, else we stuff in as much
889 * as we can.
891 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
892 mapbytes = bytesleft;
893 else
894 mapbytes = PAGE_SIZE - offset_in_page(bufp);
895 sg_set_page(sg, virt_to_page(bufp),
896 mapbytes, offset_in_page(bufp));
897 bufp += mapbytes;
898 bytesleft -= mapbytes;
899 dev_dbg(&pl022->adev->dev,
900 "set RX/TX target page @ %p, %d bytes, %d left\n",
901 bufp, mapbytes, bytesleft);
903 } else {
904 /* Map the dummy buffer on every page */
905 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
906 if (bytesleft < PAGE_SIZE)
907 mapbytes = bytesleft;
908 else
909 mapbytes = PAGE_SIZE;
910 sg_set_page(sg, virt_to_page(pl022->dummypage),
911 mapbytes, 0);
912 bytesleft -= mapbytes;
913 dev_dbg(&pl022->adev->dev,
914 "set RX/TX to dummy page %d bytes, %d left\n",
915 mapbytes, bytesleft);
919 BUG_ON(bytesleft);
923 * configure_dma - configures the channels for the next transfer
924 * @pl022: SSP driver's private data structure
926 static int configure_dma(struct pl022 *pl022)
928 struct dma_slave_config rx_conf = {
929 .src_addr = SSP_DR(pl022->phybase),
930 .direction = DMA_DEV_TO_MEM,
931 .device_fc = false,
933 struct dma_slave_config tx_conf = {
934 .dst_addr = SSP_DR(pl022->phybase),
935 .direction = DMA_MEM_TO_DEV,
936 .device_fc = false,
938 unsigned int pages;
939 int ret;
940 int rx_sglen, tx_sglen;
941 struct dma_chan *rxchan = pl022->dma_rx_channel;
942 struct dma_chan *txchan = pl022->dma_tx_channel;
943 struct dma_async_tx_descriptor *rxdesc;
944 struct dma_async_tx_descriptor *txdesc;
946 /* Check that the channels are available */
947 if (!rxchan || !txchan)
948 return -ENODEV;
951 * If supplied, the DMA burstsize should equal the FIFO trigger level.
952 * Notice that the DMA engine uses one-to-one mapping. Since we can
953 * not trigger on 2 elements this needs explicit mapping rather than
954 * calculation.
956 switch (pl022->rx_lev_trig) {
957 case SSP_RX_1_OR_MORE_ELEM:
958 rx_conf.src_maxburst = 1;
959 break;
960 case SSP_RX_4_OR_MORE_ELEM:
961 rx_conf.src_maxburst = 4;
962 break;
963 case SSP_RX_8_OR_MORE_ELEM:
964 rx_conf.src_maxburst = 8;
965 break;
966 case SSP_RX_16_OR_MORE_ELEM:
967 rx_conf.src_maxburst = 16;
968 break;
969 case SSP_RX_32_OR_MORE_ELEM:
970 rx_conf.src_maxburst = 32;
971 break;
972 default:
973 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
974 break;
977 switch (pl022->tx_lev_trig) {
978 case SSP_TX_1_OR_MORE_EMPTY_LOC:
979 tx_conf.dst_maxburst = 1;
980 break;
981 case SSP_TX_4_OR_MORE_EMPTY_LOC:
982 tx_conf.dst_maxburst = 4;
983 break;
984 case SSP_TX_8_OR_MORE_EMPTY_LOC:
985 tx_conf.dst_maxburst = 8;
986 break;
987 case SSP_TX_16_OR_MORE_EMPTY_LOC:
988 tx_conf.dst_maxburst = 16;
989 break;
990 case SSP_TX_32_OR_MORE_EMPTY_LOC:
991 tx_conf.dst_maxburst = 32;
992 break;
993 default:
994 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
995 break;
998 switch (pl022->read) {
999 case READING_NULL:
1000 /* Use the same as for writing */
1001 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1002 break;
1003 case READING_U8:
1004 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005 break;
1006 case READING_U16:
1007 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1008 break;
1009 case READING_U32:
1010 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011 break;
1014 switch (pl022->write) {
1015 case WRITING_NULL:
1016 /* Use the same as for reading */
1017 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1018 break;
1019 case WRITING_U8:
1020 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1021 break;
1022 case WRITING_U16:
1023 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1024 break;
1025 case WRITING_U32:
1026 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1027 break;
1030 /* SPI pecularity: we need to read and write the same width */
1031 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1032 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1033 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1035 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1037 dmaengine_slave_config(rxchan, &rx_conf);
1038 dmaengine_slave_config(txchan, &tx_conf);
1040 /* Create sglists for the transfers */
1041 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1042 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1044 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1045 if (ret)
1046 goto err_alloc_rx_sg;
1048 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1049 if (ret)
1050 goto err_alloc_tx_sg;
1052 /* Fill in the scatterlists for the RX+TX buffers */
1053 setup_dma_scatter(pl022, pl022->rx,
1054 pl022->cur_transfer->len, &pl022->sgt_rx);
1055 setup_dma_scatter(pl022, pl022->tx,
1056 pl022->cur_transfer->len, &pl022->sgt_tx);
1058 /* Map DMA buffers */
1059 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1060 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1061 if (!rx_sglen)
1062 goto err_rx_sgmap;
1064 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1065 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1066 if (!tx_sglen)
1067 goto err_tx_sgmap;
1069 /* Send both scatterlists */
1070 rxdesc = dmaengine_prep_slave_sg(rxchan,
1071 pl022->sgt_rx.sgl,
1072 rx_sglen,
1073 DMA_DEV_TO_MEM,
1074 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1075 if (!rxdesc)
1076 goto err_rxdesc;
1078 txdesc = dmaengine_prep_slave_sg(txchan,
1079 pl022->sgt_tx.sgl,
1080 tx_sglen,
1081 DMA_MEM_TO_DEV,
1082 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1083 if (!txdesc)
1084 goto err_txdesc;
1086 /* Put the callback on the RX transfer only, that should finish last */
1087 rxdesc->callback = dma_callback;
1088 rxdesc->callback_param = pl022;
1090 /* Submit and fire RX and TX with TX last so we're ready to read! */
1091 dmaengine_submit(rxdesc);
1092 dmaengine_submit(txdesc);
1093 dma_async_issue_pending(rxchan);
1094 dma_async_issue_pending(txchan);
1095 pl022->dma_running = true;
1097 return 0;
1099 err_txdesc:
1100 dmaengine_terminate_all(txchan);
1101 err_rxdesc:
1102 dmaengine_terminate_all(rxchan);
1103 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1104 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1105 err_tx_sgmap:
1106 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1107 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1108 err_rx_sgmap:
1109 sg_free_table(&pl022->sgt_tx);
1110 err_alloc_tx_sg:
1111 sg_free_table(&pl022->sgt_rx);
1112 err_alloc_rx_sg:
1113 return -ENOMEM;
1116 static int pl022_dma_probe(struct pl022 *pl022)
1118 dma_cap_mask_t mask;
1120 /* Try to acquire a generic DMA engine slave channel */
1121 dma_cap_zero(mask);
1122 dma_cap_set(DMA_SLAVE, mask);
1124 * We need both RX and TX channels to do DMA, else do none
1125 * of them.
1127 pl022->dma_rx_channel = dma_request_channel(mask,
1128 pl022->master_info->dma_filter,
1129 pl022->master_info->dma_rx_param);
1130 if (!pl022->dma_rx_channel) {
1131 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1132 goto err_no_rxchan;
1135 pl022->dma_tx_channel = dma_request_channel(mask,
1136 pl022->master_info->dma_filter,
1137 pl022->master_info->dma_tx_param);
1138 if (!pl022->dma_tx_channel) {
1139 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1140 goto err_no_txchan;
1143 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1144 if (!pl022->dummypage)
1145 goto err_no_dummypage;
1147 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1148 dma_chan_name(pl022->dma_rx_channel),
1149 dma_chan_name(pl022->dma_tx_channel));
1151 return 0;
1153 err_no_dummypage:
1154 dma_release_channel(pl022->dma_tx_channel);
1155 err_no_txchan:
1156 dma_release_channel(pl022->dma_rx_channel);
1157 pl022->dma_rx_channel = NULL;
1158 err_no_rxchan:
1159 dev_err(&pl022->adev->dev,
1160 "Failed to work in dma mode, work without dma!\n");
1161 return -ENODEV;
1164 static int pl022_dma_autoprobe(struct pl022 *pl022)
1166 struct device *dev = &pl022->adev->dev;
1167 struct dma_chan *chan;
1168 int err;
1170 /* automatically configure DMA channels from platform, normally using DT */
1171 chan = dma_request_slave_channel_reason(dev, "rx");
1172 if (IS_ERR(chan)) {
1173 err = PTR_ERR(chan);
1174 goto err_no_rxchan;
1177 pl022->dma_rx_channel = chan;
1179 chan = dma_request_slave_channel_reason(dev, "tx");
1180 if (IS_ERR(chan)) {
1181 err = PTR_ERR(chan);
1182 goto err_no_txchan;
1185 pl022->dma_tx_channel = chan;
1187 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1188 if (!pl022->dummypage) {
1189 err = -ENOMEM;
1190 goto err_no_dummypage;
1193 return 0;
1195 err_no_dummypage:
1196 dma_release_channel(pl022->dma_tx_channel);
1197 pl022->dma_tx_channel = NULL;
1198 err_no_txchan:
1199 dma_release_channel(pl022->dma_rx_channel);
1200 pl022->dma_rx_channel = NULL;
1201 err_no_rxchan:
1202 return err;
1205 static void terminate_dma(struct pl022 *pl022)
1207 struct dma_chan *rxchan = pl022->dma_rx_channel;
1208 struct dma_chan *txchan = pl022->dma_tx_channel;
1210 dmaengine_terminate_all(rxchan);
1211 dmaengine_terminate_all(txchan);
1212 unmap_free_dma_scatter(pl022);
1213 pl022->dma_running = false;
1216 static void pl022_dma_remove(struct pl022 *pl022)
1218 if (pl022->dma_running)
1219 terminate_dma(pl022);
1220 if (pl022->dma_tx_channel)
1221 dma_release_channel(pl022->dma_tx_channel);
1222 if (pl022->dma_rx_channel)
1223 dma_release_channel(pl022->dma_rx_channel);
1224 kfree(pl022->dummypage);
1227 #else
1228 static inline int configure_dma(struct pl022 *pl022)
1230 return -ENODEV;
1233 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1235 return 0;
1238 static inline int pl022_dma_probe(struct pl022 *pl022)
1240 return 0;
1243 static inline void pl022_dma_remove(struct pl022 *pl022)
1246 #endif
1249 * pl022_interrupt_handler - Interrupt handler for SSP controller
1251 * This function handles interrupts generated for an interrupt based transfer.
1252 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1253 * current message's state as STATE_ERROR and schedule the tasklet
1254 * pump_transfers which will do the postprocessing of the current message by
1255 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1256 * more data, and writes data in TX FIFO till it is not full. If we complete
1257 * the transfer we move to the next transfer and schedule the tasklet.
1259 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1261 struct pl022 *pl022 = dev_id;
1262 struct spi_message *msg = pl022->cur_msg;
1263 u16 irq_status = 0;
1265 if (unlikely(!msg)) {
1266 dev_err(&pl022->adev->dev,
1267 "bad message state in interrupt handler");
1268 /* Never fail */
1269 return IRQ_HANDLED;
1272 /* Read the Interrupt Status Register */
1273 irq_status = readw(SSP_MIS(pl022->virtbase));
1275 if (unlikely(!irq_status))
1276 return IRQ_NONE;
1279 * This handles the FIFO interrupts, the timeout
1280 * interrupts are flatly ignored, they cannot be
1281 * trusted.
1283 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1285 * Overrun interrupt - bail out since our Data has been
1286 * corrupted
1288 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1289 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1290 dev_err(&pl022->adev->dev,
1291 "RXFIFO is full\n");
1294 * Disable and clear interrupts, disable SSP,
1295 * mark message with bad status so it can be
1296 * retried.
1298 writew(DISABLE_ALL_INTERRUPTS,
1299 SSP_IMSC(pl022->virtbase));
1300 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1301 writew((readw(SSP_CR1(pl022->virtbase)) &
1302 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1303 msg->state = STATE_ERROR;
1305 /* Schedule message queue handler */
1306 tasklet_schedule(&pl022->pump_transfers);
1307 return IRQ_HANDLED;
1310 readwriter(pl022);
1312 if (pl022->tx == pl022->tx_end) {
1313 /* Disable Transmit interrupt, enable receive interrupt */
1314 writew((readw(SSP_IMSC(pl022->virtbase)) &
1315 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1316 SSP_IMSC(pl022->virtbase));
1320 * Since all transactions must write as much as shall be read,
1321 * we can conclude the entire transaction once RX is complete.
1322 * At this point, all TX will always be finished.
1324 if (pl022->rx >= pl022->rx_end) {
1325 writew(DISABLE_ALL_INTERRUPTS,
1326 SSP_IMSC(pl022->virtbase));
1327 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1328 if (unlikely(pl022->rx > pl022->rx_end)) {
1329 dev_warn(&pl022->adev->dev, "read %u surplus "
1330 "bytes (did you request an odd "
1331 "number of bytes on a 16bit bus?)\n",
1332 (u32) (pl022->rx - pl022->rx_end));
1334 /* Update total bytes transferred */
1335 msg->actual_length += pl022->cur_transfer->len;
1336 if (pl022->cur_transfer->cs_change)
1337 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1338 /* Move to next transfer */
1339 msg->state = next_transfer(pl022);
1340 tasklet_schedule(&pl022->pump_transfers);
1341 return IRQ_HANDLED;
1344 return IRQ_HANDLED;
1348 * This sets up the pointers to memory for the next message to
1349 * send out on the SPI bus.
1351 static int set_up_next_transfer(struct pl022 *pl022,
1352 struct spi_transfer *transfer)
1354 int residue;
1356 /* Sanity check the message for this bus width */
1357 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1358 if (unlikely(residue != 0)) {
1359 dev_err(&pl022->adev->dev,
1360 "message of %u bytes to transmit but the current "
1361 "chip bus has a data width of %u bytes!\n",
1362 pl022->cur_transfer->len,
1363 pl022->cur_chip->n_bytes);
1364 dev_err(&pl022->adev->dev, "skipping this message\n");
1365 return -EIO;
1367 pl022->tx = (void *)transfer->tx_buf;
1368 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1369 pl022->rx = (void *)transfer->rx_buf;
1370 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1371 pl022->write =
1372 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1373 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1374 return 0;
1378 * pump_transfers - Tasklet function which schedules next transfer
1379 * when running in interrupt or DMA transfer mode.
1380 * @data: SSP driver private data structure
1383 static void pump_transfers(unsigned long data)
1385 struct pl022 *pl022 = (struct pl022 *) data;
1386 struct spi_message *message = NULL;
1387 struct spi_transfer *transfer = NULL;
1388 struct spi_transfer *previous = NULL;
1390 /* Get current state information */
1391 message = pl022->cur_msg;
1392 transfer = pl022->cur_transfer;
1394 /* Handle for abort */
1395 if (message->state == STATE_ERROR) {
1396 message->status = -EIO;
1397 giveback(pl022);
1398 return;
1401 /* Handle end of message */
1402 if (message->state == STATE_DONE) {
1403 message->status = 0;
1404 giveback(pl022);
1405 return;
1408 /* Delay if requested at end of transfer before CS change */
1409 if (message->state == STATE_RUNNING) {
1410 previous = list_entry(transfer->transfer_list.prev,
1411 struct spi_transfer,
1412 transfer_list);
1413 if (previous->delay_usecs)
1415 * FIXME: This runs in interrupt context.
1416 * Is this really smart?
1418 udelay(previous->delay_usecs);
1420 /* Reselect chip select only if cs_change was requested */
1421 if (previous->cs_change)
1422 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1423 } else {
1424 /* STATE_START */
1425 message->state = STATE_RUNNING;
1428 if (set_up_next_transfer(pl022, transfer)) {
1429 message->state = STATE_ERROR;
1430 message->status = -EIO;
1431 giveback(pl022);
1432 return;
1434 /* Flush the FIFOs and let's go! */
1435 flush(pl022);
1437 if (pl022->cur_chip->enable_dma) {
1438 if (configure_dma(pl022)) {
1439 dev_dbg(&pl022->adev->dev,
1440 "configuration of DMA failed, fall back to interrupt mode\n");
1441 goto err_config_dma;
1443 return;
1446 err_config_dma:
1447 /* enable all interrupts except RX */
1448 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1451 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1454 * Default is to enable all interrupts except RX -
1455 * this will be enabled once TX is complete
1457 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1459 /* Enable target chip, if not already active */
1460 if (!pl022->next_msg_cs_active)
1461 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1463 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1464 /* Error path */
1465 pl022->cur_msg->state = STATE_ERROR;
1466 pl022->cur_msg->status = -EIO;
1467 giveback(pl022);
1468 return;
1470 /* If we're using DMA, set up DMA here */
1471 if (pl022->cur_chip->enable_dma) {
1472 /* Configure DMA transfer */
1473 if (configure_dma(pl022)) {
1474 dev_dbg(&pl022->adev->dev,
1475 "configuration of DMA failed, fall back to interrupt mode\n");
1476 goto err_config_dma;
1478 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1479 irqflags = DISABLE_ALL_INTERRUPTS;
1481 err_config_dma:
1482 /* Enable SSP, turn on interrupts */
1483 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1484 SSP_CR1(pl022->virtbase));
1485 writew(irqflags, SSP_IMSC(pl022->virtbase));
1488 static void do_polling_transfer(struct pl022 *pl022)
1490 struct spi_message *message = NULL;
1491 struct spi_transfer *transfer = NULL;
1492 struct spi_transfer *previous = NULL;
1493 unsigned long time, timeout;
1495 message = pl022->cur_msg;
1497 while (message->state != STATE_DONE) {
1498 /* Handle for abort */
1499 if (message->state == STATE_ERROR)
1500 break;
1501 transfer = pl022->cur_transfer;
1503 /* Delay if requested at end of transfer */
1504 if (message->state == STATE_RUNNING) {
1505 previous =
1506 list_entry(transfer->transfer_list.prev,
1507 struct spi_transfer, transfer_list);
1508 if (previous->delay_usecs)
1509 udelay(previous->delay_usecs);
1510 if (previous->cs_change)
1511 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1512 } else {
1513 /* STATE_START */
1514 message->state = STATE_RUNNING;
1515 if (!pl022->next_msg_cs_active)
1516 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1519 /* Configuration Changing Per Transfer */
1520 if (set_up_next_transfer(pl022, transfer)) {
1521 /* Error path */
1522 message->state = STATE_ERROR;
1523 break;
1525 /* Flush FIFOs and enable SSP */
1526 flush(pl022);
1527 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1528 SSP_CR1(pl022->virtbase));
1530 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1532 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1533 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1534 time = jiffies;
1535 readwriter(pl022);
1536 if (time_after(time, timeout)) {
1537 dev_warn(&pl022->adev->dev,
1538 "%s: timeout!\n", __func__);
1539 message->state = STATE_ERROR;
1540 goto out;
1542 cpu_relax();
1545 /* Update total byte transferred */
1546 message->actual_length += pl022->cur_transfer->len;
1547 if (pl022->cur_transfer->cs_change)
1548 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1549 /* Move to next transfer */
1550 message->state = next_transfer(pl022);
1552 out:
1553 /* Handle end of message */
1554 if (message->state == STATE_DONE)
1555 message->status = 0;
1556 else
1557 message->status = -EIO;
1559 giveback(pl022);
1560 return;
1563 static int pl022_transfer_one_message(struct spi_master *master,
1564 struct spi_message *msg)
1566 struct pl022 *pl022 = spi_master_get_devdata(master);
1568 /* Initial message state */
1569 pl022->cur_msg = msg;
1570 msg->state = STATE_START;
1572 pl022->cur_transfer = list_entry(msg->transfers.next,
1573 struct spi_transfer, transfer_list);
1575 /* Setup the SPI using the per chip configuration */
1576 pl022->cur_chip = spi_get_ctldata(msg->spi);
1577 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1579 restore_state(pl022);
1580 flush(pl022);
1582 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1583 do_polling_transfer(pl022);
1584 else
1585 do_interrupt_dma_transfer(pl022);
1587 return 0;
1590 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1592 struct pl022 *pl022 = spi_master_get_devdata(master);
1594 /* nothing more to do - disable spi/ssp and power off */
1595 writew((readw(SSP_CR1(pl022->virtbase)) &
1596 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1598 return 0;
1601 static int verify_controller_parameters(struct pl022 *pl022,
1602 struct pl022_config_chip const *chip_info)
1604 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1605 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1606 dev_err(&pl022->adev->dev,
1607 "interface is configured incorrectly\n");
1608 return -EINVAL;
1610 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1611 (!pl022->vendor->unidir)) {
1612 dev_err(&pl022->adev->dev,
1613 "unidirectional mode not supported in this "
1614 "hardware version\n");
1615 return -EINVAL;
1617 if ((chip_info->hierarchy != SSP_MASTER)
1618 && (chip_info->hierarchy != SSP_SLAVE)) {
1619 dev_err(&pl022->adev->dev,
1620 "hierarchy is configured incorrectly\n");
1621 return -EINVAL;
1623 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1624 && (chip_info->com_mode != DMA_TRANSFER)
1625 && (chip_info->com_mode != POLLING_TRANSFER)) {
1626 dev_err(&pl022->adev->dev,
1627 "Communication mode is configured incorrectly\n");
1628 return -EINVAL;
1630 switch (chip_info->rx_lev_trig) {
1631 case SSP_RX_1_OR_MORE_ELEM:
1632 case SSP_RX_4_OR_MORE_ELEM:
1633 case SSP_RX_8_OR_MORE_ELEM:
1634 /* These are always OK, all variants can handle this */
1635 break;
1636 case SSP_RX_16_OR_MORE_ELEM:
1637 if (pl022->vendor->fifodepth < 16) {
1638 dev_err(&pl022->adev->dev,
1639 "RX FIFO Trigger Level is configured incorrectly\n");
1640 return -EINVAL;
1642 break;
1643 case SSP_RX_32_OR_MORE_ELEM:
1644 if (pl022->vendor->fifodepth < 32) {
1645 dev_err(&pl022->adev->dev,
1646 "RX FIFO Trigger Level is configured incorrectly\n");
1647 return -EINVAL;
1649 break;
1650 default:
1651 dev_err(&pl022->adev->dev,
1652 "RX FIFO Trigger Level is configured incorrectly\n");
1653 return -EINVAL;
1655 switch (chip_info->tx_lev_trig) {
1656 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1657 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1658 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1659 /* These are always OK, all variants can handle this */
1660 break;
1661 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1662 if (pl022->vendor->fifodepth < 16) {
1663 dev_err(&pl022->adev->dev,
1664 "TX FIFO Trigger Level is configured incorrectly\n");
1665 return -EINVAL;
1667 break;
1668 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1669 if (pl022->vendor->fifodepth < 32) {
1670 dev_err(&pl022->adev->dev,
1671 "TX FIFO Trigger Level is configured incorrectly\n");
1672 return -EINVAL;
1674 break;
1675 default:
1676 dev_err(&pl022->adev->dev,
1677 "TX FIFO Trigger Level is configured incorrectly\n");
1678 return -EINVAL;
1680 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1681 if ((chip_info->ctrl_len < SSP_BITS_4)
1682 || (chip_info->ctrl_len > SSP_BITS_32)) {
1683 dev_err(&pl022->adev->dev,
1684 "CTRL LEN is configured incorrectly\n");
1685 return -EINVAL;
1687 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1688 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1689 dev_err(&pl022->adev->dev,
1690 "Wait State is configured incorrectly\n");
1691 return -EINVAL;
1693 /* Half duplex is only available in the ST Micro version */
1694 if (pl022->vendor->extended_cr) {
1695 if ((chip_info->duplex !=
1696 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1697 && (chip_info->duplex !=
1698 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1699 dev_err(&pl022->adev->dev,
1700 "Microwire duplex mode is configured incorrectly\n");
1701 return -EINVAL;
1703 } else {
1704 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1705 dev_err(&pl022->adev->dev,
1706 "Microwire half duplex mode requested,"
1707 " but this is only available in the"
1708 " ST version of PL022\n");
1709 return -EINVAL;
1712 return 0;
1715 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1717 return rate / (cpsdvsr * (1 + scr));
1720 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1721 ssp_clock_params * clk_freq)
1723 /* Lets calculate the frequency parameters */
1724 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1725 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1726 best_scr = 0, tmp, found = 0;
1728 rate = clk_get_rate(pl022->clk);
1729 /* cpsdvscr = 2 & scr 0 */
1730 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1731 /* cpsdvsr = 254 & scr = 255 */
1732 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1734 if (freq > max_tclk)
1735 dev_warn(&pl022->adev->dev,
1736 "Max speed that can be programmed is %d Hz, you requested %d\n",
1737 max_tclk, freq);
1739 if (freq < min_tclk) {
1740 dev_err(&pl022->adev->dev,
1741 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1742 freq, min_tclk);
1743 return -EINVAL;
1747 * best_freq will give closest possible available rate (<= requested
1748 * freq) for all values of scr & cpsdvsr.
1750 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1751 while (scr <= SCR_MAX) {
1752 tmp = spi_rate(rate, cpsdvsr, scr);
1754 if (tmp > freq) {
1755 /* we need lower freq */
1756 scr++;
1757 continue;
1761 * If found exact value, mark found and break.
1762 * If found more closer value, update and break.
1764 if (tmp > best_freq) {
1765 best_freq = tmp;
1766 best_cpsdvsr = cpsdvsr;
1767 best_scr = scr;
1769 if (tmp == freq)
1770 found = 1;
1773 * increased scr will give lower rates, which are not
1774 * required
1776 break;
1778 cpsdvsr += 2;
1779 scr = SCR_MIN;
1782 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1783 freq);
1785 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1786 clk_freq->scr = (u8) (best_scr & 0xFF);
1787 dev_dbg(&pl022->adev->dev,
1788 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1789 freq, best_freq);
1790 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1791 clk_freq->cpsdvsr, clk_freq->scr);
1793 return 0;
1797 * A piece of default chip info unless the platform
1798 * supplies it.
1800 static const struct pl022_config_chip pl022_default_chip_info = {
1801 .com_mode = POLLING_TRANSFER,
1802 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1803 .hierarchy = SSP_SLAVE,
1804 .slave_tx_disable = DO_NOT_DRIVE_TX,
1805 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1806 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1807 .ctrl_len = SSP_BITS_8,
1808 .wait_state = SSP_MWIRE_WAIT_ZERO,
1809 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1810 .cs_control = null_cs_control,
1814 * pl022_setup - setup function registered to SPI master framework
1815 * @spi: spi device which is requesting setup
1817 * This function is registered to the SPI framework for this SPI master
1818 * controller. If it is the first time when setup is called by this device,
1819 * this function will initialize the runtime state for this chip and save
1820 * the same in the device structure. Else it will update the runtime info
1821 * with the updated chip info. Nothing is really being written to the
1822 * controller hardware here, that is not done until the actual transfer
1823 * commence.
1825 static int pl022_setup(struct spi_device *spi)
1827 struct pl022_config_chip const *chip_info;
1828 struct pl022_config_chip chip_info_dt;
1829 struct chip_data *chip;
1830 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1831 int status = 0;
1832 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1833 unsigned int bits = spi->bits_per_word;
1834 u32 tmp;
1835 struct device_node *np = spi->dev.of_node;
1837 if (!spi->max_speed_hz)
1838 return -EINVAL;
1840 /* Get controller_state if one is supplied */
1841 chip = spi_get_ctldata(spi);
1843 if (chip == NULL) {
1844 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1845 if (!chip)
1846 return -ENOMEM;
1847 dev_dbg(&spi->dev,
1848 "allocated memory for controller's runtime state\n");
1851 /* Get controller data if one is supplied */
1852 chip_info = spi->controller_data;
1854 if (chip_info == NULL) {
1855 if (np) {
1856 chip_info_dt = pl022_default_chip_info;
1858 chip_info_dt.hierarchy = SSP_MASTER;
1859 of_property_read_u32(np, "pl022,interface",
1860 &chip_info_dt.iface);
1861 of_property_read_u32(np, "pl022,com-mode",
1862 &chip_info_dt.com_mode);
1863 of_property_read_u32(np, "pl022,rx-level-trig",
1864 &chip_info_dt.rx_lev_trig);
1865 of_property_read_u32(np, "pl022,tx-level-trig",
1866 &chip_info_dt.tx_lev_trig);
1867 of_property_read_u32(np, "pl022,ctrl-len",
1868 &chip_info_dt.ctrl_len);
1869 of_property_read_u32(np, "pl022,wait-state",
1870 &chip_info_dt.wait_state);
1871 of_property_read_u32(np, "pl022,duplex",
1872 &chip_info_dt.duplex);
1874 chip_info = &chip_info_dt;
1875 } else {
1876 chip_info = &pl022_default_chip_info;
1877 /* spi_board_info.controller_data not is supplied */
1878 dev_dbg(&spi->dev,
1879 "using default controller_data settings\n");
1881 } else
1882 dev_dbg(&spi->dev,
1883 "using user supplied controller_data settings\n");
1886 * We can override with custom divisors, else we use the board
1887 * frequency setting
1889 if ((0 == chip_info->clk_freq.cpsdvsr)
1890 && (0 == chip_info->clk_freq.scr)) {
1891 status = calculate_effective_freq(pl022,
1892 spi->max_speed_hz,
1893 &clk_freq);
1894 if (status < 0)
1895 goto err_config_params;
1896 } else {
1897 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1898 if ((clk_freq.cpsdvsr % 2) != 0)
1899 clk_freq.cpsdvsr =
1900 clk_freq.cpsdvsr - 1;
1902 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1903 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1904 status = -EINVAL;
1905 dev_err(&spi->dev,
1906 "cpsdvsr is configured incorrectly\n");
1907 goto err_config_params;
1910 status = verify_controller_parameters(pl022, chip_info);
1911 if (status) {
1912 dev_err(&spi->dev, "controller data is incorrect");
1913 goto err_config_params;
1916 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1917 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1919 /* Now set controller state based on controller data */
1920 chip->xfer_type = chip_info->com_mode;
1921 if (!chip_info->cs_control) {
1922 chip->cs_control = null_cs_control;
1923 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1924 dev_warn(&spi->dev,
1925 "invalid chip select\n");
1926 } else
1927 chip->cs_control = chip_info->cs_control;
1929 /* Check bits per word with vendor specific range */
1930 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1931 status = -ENOTSUPP;
1932 dev_err(&spi->dev, "illegal data size for this controller!\n");
1933 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1934 pl022->vendor->max_bpw);
1935 goto err_config_params;
1936 } else if (bits <= 8) {
1937 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1938 chip->n_bytes = 1;
1939 chip->read = READING_U8;
1940 chip->write = WRITING_U8;
1941 } else if (bits <= 16) {
1942 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1943 chip->n_bytes = 2;
1944 chip->read = READING_U16;
1945 chip->write = WRITING_U16;
1946 } else {
1947 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1948 chip->n_bytes = 4;
1949 chip->read = READING_U32;
1950 chip->write = WRITING_U32;
1953 /* Now Initialize all register settings required for this chip */
1954 chip->cr0 = 0;
1955 chip->cr1 = 0;
1956 chip->dmacr = 0;
1957 chip->cpsr = 0;
1958 if ((chip_info->com_mode == DMA_TRANSFER)
1959 && ((pl022->master_info)->enable_dma)) {
1960 chip->enable_dma = true;
1961 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1962 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1963 SSP_DMACR_MASK_RXDMAE, 0);
1964 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1965 SSP_DMACR_MASK_TXDMAE, 1);
1966 } else {
1967 chip->enable_dma = false;
1968 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1969 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1970 SSP_DMACR_MASK_RXDMAE, 0);
1971 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1972 SSP_DMACR_MASK_TXDMAE, 1);
1975 chip->cpsr = clk_freq.cpsdvsr;
1977 /* Special setup for the ST micro extended control registers */
1978 if (pl022->vendor->extended_cr) {
1979 u32 etx;
1981 if (pl022->vendor->pl023) {
1982 /* These bits are only in the PL023 */
1983 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1984 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1985 } else {
1986 /* These bits are in the PL022 but not PL023 */
1987 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1988 SSP_CR0_MASK_HALFDUP_ST, 5);
1989 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1990 SSP_CR0_MASK_CSS_ST, 16);
1991 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1992 SSP_CR0_MASK_FRF_ST, 21);
1993 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1994 SSP_CR1_MASK_MWAIT_ST, 6);
1996 SSP_WRITE_BITS(chip->cr0, bits - 1,
1997 SSP_CR0_MASK_DSS_ST, 0);
1999 if (spi->mode & SPI_LSB_FIRST) {
2000 tmp = SSP_RX_LSB;
2001 etx = SSP_TX_LSB;
2002 } else {
2003 tmp = SSP_RX_MSB;
2004 etx = SSP_TX_MSB;
2006 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2007 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2008 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2009 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2010 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2011 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2012 } else {
2013 SSP_WRITE_BITS(chip->cr0, bits - 1,
2014 SSP_CR0_MASK_DSS, 0);
2015 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2016 SSP_CR0_MASK_FRF, 4);
2019 /* Stuff that is common for all versions */
2020 if (spi->mode & SPI_CPOL)
2021 tmp = SSP_CLK_POL_IDLE_HIGH;
2022 else
2023 tmp = SSP_CLK_POL_IDLE_LOW;
2024 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2026 if (spi->mode & SPI_CPHA)
2027 tmp = SSP_CLK_SECOND_EDGE;
2028 else
2029 tmp = SSP_CLK_FIRST_EDGE;
2030 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2032 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2033 /* Loopback is available on all versions except PL023 */
2034 if (pl022->vendor->loopback) {
2035 if (spi->mode & SPI_LOOP)
2036 tmp = LOOPBACK_ENABLED;
2037 else
2038 tmp = LOOPBACK_DISABLED;
2039 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2041 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2042 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2043 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2046 /* Save controller_state */
2047 spi_set_ctldata(spi, chip);
2048 return status;
2049 err_config_params:
2050 spi_set_ctldata(spi, NULL);
2051 kfree(chip);
2052 return status;
2056 * pl022_cleanup - cleanup function registered to SPI master framework
2057 * @spi: spi device which is requesting cleanup
2059 * This function is registered to the SPI framework for this SPI master
2060 * controller. It will free the runtime state of chip.
2062 static void pl022_cleanup(struct spi_device *spi)
2064 struct chip_data *chip = spi_get_ctldata(spi);
2066 spi_set_ctldata(spi, NULL);
2067 kfree(chip);
2070 static struct pl022_ssp_controller *
2071 pl022_platform_data_dt_get(struct device *dev)
2073 struct device_node *np = dev->of_node;
2074 struct pl022_ssp_controller *pd;
2075 u32 tmp = 0;
2077 if (!np) {
2078 dev_err(dev, "no dt node defined\n");
2079 return NULL;
2082 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2083 if (!pd)
2084 return NULL;
2086 pd->bus_id = -1;
2087 pd->enable_dma = 1;
2088 of_property_read_u32(np, "num-cs", &tmp);
2089 pd->num_chipselect = tmp;
2090 of_property_read_u32(np, "pl022,autosuspend-delay",
2091 &pd->autosuspend_delay);
2092 pd->rt = of_property_read_bool(np, "pl022,rt");
2094 return pd;
2097 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2099 struct device *dev = &adev->dev;
2100 struct pl022_ssp_controller *platform_info =
2101 dev_get_platdata(&adev->dev);
2102 struct spi_master *master;
2103 struct pl022 *pl022 = NULL; /*Data for this driver */
2104 struct device_node *np = adev->dev.of_node;
2105 int status = 0, i, num_cs;
2107 dev_info(&adev->dev,
2108 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2109 if (!platform_info && IS_ENABLED(CONFIG_OF))
2110 platform_info = pl022_platform_data_dt_get(dev);
2112 if (!platform_info) {
2113 dev_err(dev, "probe: no platform data defined\n");
2114 return -ENODEV;
2117 if (platform_info->num_chipselect) {
2118 num_cs = platform_info->num_chipselect;
2119 } else {
2120 dev_err(dev, "probe: no chip select defined\n");
2121 return -ENODEV;
2124 /* Allocate master with space for data */
2125 master = spi_alloc_master(dev, sizeof(struct pl022));
2126 if (master == NULL) {
2127 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2128 return -ENOMEM;
2131 pl022 = spi_master_get_devdata(master);
2132 pl022->master = master;
2133 pl022->master_info = platform_info;
2134 pl022->adev = adev;
2135 pl022->vendor = id->data;
2136 pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2137 GFP_KERNEL);
2138 if (!pl022->chipselects) {
2139 status = -ENOMEM;
2140 goto err_no_mem;
2144 * Bus Number Which has been Assigned to this SSP controller
2145 * on this board
2147 master->bus_num = platform_info->bus_id;
2148 master->num_chipselect = num_cs;
2149 master->cleanup = pl022_cleanup;
2150 master->setup = pl022_setup;
2151 master->auto_runtime_pm = true;
2152 master->transfer_one_message = pl022_transfer_one_message;
2153 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2154 master->rt = platform_info->rt;
2155 master->dev.of_node = dev->of_node;
2157 if (platform_info->num_chipselect && platform_info->chipselects) {
2158 for (i = 0; i < num_cs; i++)
2159 pl022->chipselects[i] = platform_info->chipselects[i];
2160 } else if (pl022->vendor->internal_cs_ctrl) {
2161 for (i = 0; i < num_cs; i++)
2162 pl022->chipselects[i] = i;
2163 } else if (IS_ENABLED(CONFIG_OF)) {
2164 for (i = 0; i < num_cs; i++) {
2165 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2167 if (cs_gpio == -EPROBE_DEFER) {
2168 status = -EPROBE_DEFER;
2169 goto err_no_gpio;
2172 pl022->chipselects[i] = cs_gpio;
2174 if (gpio_is_valid(cs_gpio)) {
2175 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2176 dev_err(&adev->dev,
2177 "could not request %d gpio\n",
2178 cs_gpio);
2179 else if (gpio_direction_output(cs_gpio, 1))
2180 dev_err(&adev->dev,
2181 "could not set gpio %d as output\n",
2182 cs_gpio);
2188 * Supports mode 0-3, loopback, and active low CS. Transfers are
2189 * always MS bit first on the original pl022.
2191 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2192 if (pl022->vendor->extended_cr)
2193 master->mode_bits |= SPI_LSB_FIRST;
2195 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2197 status = amba_request_regions(adev, NULL);
2198 if (status)
2199 goto err_no_ioregion;
2201 pl022->phybase = adev->res.start;
2202 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2203 resource_size(&adev->res));
2204 if (pl022->virtbase == NULL) {
2205 status = -ENOMEM;
2206 goto err_no_ioremap;
2208 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2209 &adev->res.start, pl022->virtbase);
2211 pl022->clk = devm_clk_get(&adev->dev, NULL);
2212 if (IS_ERR(pl022->clk)) {
2213 status = PTR_ERR(pl022->clk);
2214 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2215 goto err_no_clk;
2218 status = clk_prepare_enable(pl022->clk);
2219 if (status) {
2220 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2221 goto err_no_clk_en;
2224 /* Initialize transfer pump */
2225 tasklet_init(&pl022->pump_transfers, pump_transfers,
2226 (unsigned long)pl022);
2228 /* Disable SSP */
2229 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2230 SSP_CR1(pl022->virtbase));
2231 load_ssp_default_config(pl022);
2233 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2234 0, "pl022", pl022);
2235 if (status < 0) {
2236 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2237 goto err_no_irq;
2240 /* Get DMA channels, try autoconfiguration first */
2241 status = pl022_dma_autoprobe(pl022);
2242 if (status == -EPROBE_DEFER) {
2243 dev_dbg(dev, "deferring probe to get DMA channel\n");
2244 goto err_no_irq;
2247 /* If that failed, use channels from platform_info */
2248 if (status == 0)
2249 platform_info->enable_dma = 1;
2250 else if (platform_info->enable_dma) {
2251 status = pl022_dma_probe(pl022);
2252 if (status != 0)
2253 platform_info->enable_dma = 0;
2256 /* Register with the SPI framework */
2257 amba_set_drvdata(adev, pl022);
2258 status = devm_spi_register_master(&adev->dev, master);
2259 if (status != 0) {
2260 dev_err(&adev->dev,
2261 "probe - problem registering spi master\n");
2262 goto err_spi_register;
2264 dev_dbg(dev, "probe succeeded\n");
2266 /* let runtime pm put suspend */
2267 if (platform_info->autosuspend_delay > 0) {
2268 dev_info(&adev->dev,
2269 "will use autosuspend for runtime pm, delay %dms\n",
2270 platform_info->autosuspend_delay);
2271 pm_runtime_set_autosuspend_delay(dev,
2272 platform_info->autosuspend_delay);
2273 pm_runtime_use_autosuspend(dev);
2275 pm_runtime_put(dev);
2277 return 0;
2279 err_spi_register:
2280 if (platform_info->enable_dma)
2281 pl022_dma_remove(pl022);
2282 err_no_irq:
2283 clk_disable_unprepare(pl022->clk);
2284 err_no_clk_en:
2285 err_no_clk:
2286 err_no_ioremap:
2287 amba_release_regions(adev);
2288 err_no_ioregion:
2289 err_no_gpio:
2290 err_no_mem:
2291 spi_master_put(master);
2292 return status;
2295 static int
2296 pl022_remove(struct amba_device *adev)
2298 struct pl022 *pl022 = amba_get_drvdata(adev);
2300 if (!pl022)
2301 return 0;
2304 * undo pm_runtime_put() in probe. I assume that we're not
2305 * accessing the primecell here.
2307 pm_runtime_get_noresume(&adev->dev);
2309 load_ssp_default_config(pl022);
2310 if (pl022->master_info->enable_dma)
2311 pl022_dma_remove(pl022);
2313 clk_disable_unprepare(pl022->clk);
2314 amba_release_regions(adev);
2315 tasklet_disable(&pl022->pump_transfers);
2316 return 0;
2319 #ifdef CONFIG_PM_SLEEP
2320 static int pl022_suspend(struct device *dev)
2322 struct pl022 *pl022 = dev_get_drvdata(dev);
2323 int ret;
2325 ret = spi_master_suspend(pl022->master);
2326 if (ret)
2327 return ret;
2329 ret = pm_runtime_force_suspend(dev);
2330 if (ret) {
2331 spi_master_resume(pl022->master);
2332 return ret;
2335 pinctrl_pm_select_sleep_state(dev);
2337 dev_dbg(dev, "suspended\n");
2338 return 0;
2341 static int pl022_resume(struct device *dev)
2343 struct pl022 *pl022 = dev_get_drvdata(dev);
2344 int ret;
2346 ret = pm_runtime_force_resume(dev);
2347 if (ret)
2348 dev_err(dev, "problem resuming\n");
2350 /* Start the queue running */
2351 ret = spi_master_resume(pl022->master);
2352 if (!ret)
2353 dev_dbg(dev, "resumed\n");
2355 return ret;
2357 #endif
2359 #ifdef CONFIG_PM
2360 static int pl022_runtime_suspend(struct device *dev)
2362 struct pl022 *pl022 = dev_get_drvdata(dev);
2364 clk_disable_unprepare(pl022->clk);
2365 pinctrl_pm_select_idle_state(dev);
2367 return 0;
2370 static int pl022_runtime_resume(struct device *dev)
2372 struct pl022 *pl022 = dev_get_drvdata(dev);
2374 pinctrl_pm_select_default_state(dev);
2375 clk_prepare_enable(pl022->clk);
2377 return 0;
2379 #endif
2381 static const struct dev_pm_ops pl022_dev_pm_ops = {
2382 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2383 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2386 static struct vendor_data vendor_arm = {
2387 .fifodepth = 8,
2388 .max_bpw = 16,
2389 .unidir = false,
2390 .extended_cr = false,
2391 .pl023 = false,
2392 .loopback = true,
2393 .internal_cs_ctrl = false,
2396 static struct vendor_data vendor_st = {
2397 .fifodepth = 32,
2398 .max_bpw = 32,
2399 .unidir = false,
2400 .extended_cr = true,
2401 .pl023 = false,
2402 .loopback = true,
2403 .internal_cs_ctrl = false,
2406 static struct vendor_data vendor_st_pl023 = {
2407 .fifodepth = 32,
2408 .max_bpw = 32,
2409 .unidir = false,
2410 .extended_cr = true,
2411 .pl023 = true,
2412 .loopback = false,
2413 .internal_cs_ctrl = false,
2416 static struct vendor_data vendor_lsi = {
2417 .fifodepth = 8,
2418 .max_bpw = 16,
2419 .unidir = false,
2420 .extended_cr = false,
2421 .pl023 = false,
2422 .loopback = true,
2423 .internal_cs_ctrl = true,
2426 static const struct amba_id pl022_ids[] = {
2429 * ARM PL022 variant, this has a 16bit wide
2430 * and 8 locations deep TX/RX FIFO
2432 .id = 0x00041022,
2433 .mask = 0x000fffff,
2434 .data = &vendor_arm,
2438 * ST Micro derivative, this has 32bit wide
2439 * and 32 locations deep TX/RX FIFO
2441 .id = 0x01080022,
2442 .mask = 0xffffffff,
2443 .data = &vendor_st,
2447 * ST-Ericsson derivative "PL023" (this is not
2448 * an official ARM number), this is a PL022 SSP block
2449 * stripped to SPI mode only, it has 32bit wide
2450 * and 32 locations deep TX/RX FIFO but no extended
2451 * CR0/CR1 register
2453 .id = 0x00080023,
2454 .mask = 0xffffffff,
2455 .data = &vendor_st_pl023,
2459 * PL022 variant that has a chip select control register whih
2460 * allows control of 5 output signals nCS[0:4].
2462 .id = 0x000b6022,
2463 .mask = 0x000fffff,
2464 .data = &vendor_lsi,
2466 { 0, 0 },
2469 MODULE_DEVICE_TABLE(amba, pl022_ids);
2471 static struct amba_driver pl022_driver = {
2472 .drv = {
2473 .name = "ssp-pl022",
2474 .pm = &pl022_dev_pm_ops,
2476 .id_table = pl022_ids,
2477 .probe = pl022_probe,
2478 .remove = pl022_remove,
2481 static int __init pl022_init(void)
2483 return amba_driver_register(&pl022_driver);
2485 subsys_initcall(pl022_init);
2487 static void __exit pl022_exit(void)
2489 amba_driver_unregister(&pl022_driver);
2491 module_exit(pl022_exit);
2493 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2494 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2495 MODULE_LICENSE("GPL");