2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
53 struct cpuhp_cpu_state
{
54 enum cpuhp_state state
;
55 enum cpuhp_state target
;
56 enum cpuhp_state fail
;
58 struct task_struct
*thread
;
64 struct hlist_node
*node
;
65 struct hlist_node
*last
;
66 enum cpuhp_state cb_state
;
68 struct completion done_up
;
69 struct completion done_down
;
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
74 .fail
= CPUHP_INVALID
,
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map
=
79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
80 static struct lockdep_map cpuhp_state_down_map
=
81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
84 static inline void cpuhp_lock_acquire(bool bringup
)
86 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
89 static inline void cpuhp_lock_release(bool bringup
)
91 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
95 static inline void cpuhp_lock_acquire(bool bringup
) { }
96 static inline void cpuhp_lock_release(bool bringup
) { }
101 * cpuhp_step - Hotplug state machine step
102 * @name: Name of the step
103 * @startup: Startup function of the step
104 * @teardown: Teardown function of the step
105 * @cant_stop: Bringup/teardown can't be stopped at this step
110 int (*single
)(unsigned int cpu
);
111 int (*multi
)(unsigned int cpu
,
112 struct hlist_node
*node
);
115 int (*single
)(unsigned int cpu
);
116 int (*multi
)(unsigned int cpu
,
117 struct hlist_node
*node
);
119 struct hlist_head list
;
124 static DEFINE_MUTEX(cpuhp_state_mutex
);
125 static struct cpuhp_step cpuhp_hp_states
[];
127 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
129 return cpuhp_hp_states
+ state
;
133 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134 * @cpu: The cpu for which the callback should be invoked
135 * @state: The state to do callbacks for
136 * @bringup: True if the bringup callback should be invoked
137 * @node: For multi-instance, do a single entry callback for install/remove
138 * @lastp: For multi-instance rollback, remember how far we got
140 * Called from cpu hotplug and from the state register machinery.
142 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
143 bool bringup
, struct hlist_node
*node
,
144 struct hlist_node
**lastp
)
146 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
147 struct cpuhp_step
*step
= cpuhp_get_step(state
);
148 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
149 int (*cb
)(unsigned int cpu
);
152 if (st
->fail
== state
) {
153 st
->fail
= CPUHP_INVALID
;
155 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
161 if (!step
->multi_instance
) {
162 WARN_ON_ONCE(lastp
&& *lastp
);
163 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
166 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
168 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
171 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
175 /* Single invocation for instance add/remove */
177 WARN_ON_ONCE(lastp
&& *lastp
);
178 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
179 ret
= cbm(cpu
, node
);
180 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
184 /* State transition. Invoke on all instances */
186 hlist_for_each(node
, &step
->list
) {
187 if (lastp
&& node
== *lastp
)
190 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
191 ret
= cbm(cpu
, node
);
192 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
206 /* Rollback the instances if one failed */
207 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
211 hlist_for_each(node
, &step
->list
) {
215 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
216 ret
= cbm(cpu
, node
);
217 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
219 * Rollback must not fail,
227 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
230 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231 * purposes as that state is handled explicitly in cpu_down.
233 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
238 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
239 wait_for_completion(done
);
242 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
244 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
249 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
253 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock
);
258 bool cpuhp_tasks_frozen
;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
262 * The following two APIs (cpu_maps_update_begin/done) must be used when
263 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265 void cpu_maps_update_begin(void)
267 mutex_lock(&cpu_add_remove_lock
);
270 void cpu_maps_update_done(void)
272 mutex_unlock(&cpu_add_remove_lock
);
276 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277 * Should always be manipulated under cpu_add_remove_lock
279 static int cpu_hotplug_disabled
;
281 #ifdef CONFIG_HOTPLUG_CPU
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
285 void cpus_read_lock(void)
287 percpu_down_read(&cpu_hotplug_lock
);
289 EXPORT_SYMBOL_GPL(cpus_read_lock
);
291 int cpus_read_trylock(void)
293 return percpu_down_read_trylock(&cpu_hotplug_lock
);
295 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
297 void cpus_read_unlock(void)
299 percpu_up_read(&cpu_hotplug_lock
);
301 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
303 void cpus_write_lock(void)
305 percpu_down_write(&cpu_hotplug_lock
);
308 void cpus_write_unlock(void)
310 percpu_up_write(&cpu_hotplug_lock
);
313 void lockdep_assert_cpus_held(void)
315 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
318 static void lockdep_acquire_cpus_lock(void)
320 rwsem_acquire(&cpu_hotplug_lock
.rw_sem
.dep_map
, 0, 0, _THIS_IP_
);
323 static void lockdep_release_cpus_lock(void)
325 rwsem_release(&cpu_hotplug_lock
.rw_sem
.dep_map
, 1, _THIS_IP_
);
329 * Wait for currently running CPU hotplug operations to complete (if any) and
330 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
331 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
332 * hotplug path before performing hotplug operations. So acquiring that lock
333 * guarantees mutual exclusion from any currently running hotplug operations.
335 void cpu_hotplug_disable(void)
337 cpu_maps_update_begin();
338 cpu_hotplug_disabled
++;
339 cpu_maps_update_done();
341 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
343 static void __cpu_hotplug_enable(void)
345 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
347 cpu_hotplug_disabled
--;
350 void cpu_hotplug_enable(void)
352 cpu_maps_update_begin();
353 __cpu_hotplug_enable();
354 cpu_maps_update_done();
356 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
360 static void lockdep_acquire_cpus_lock(void)
364 static void lockdep_release_cpus_lock(void)
368 #endif /* CONFIG_HOTPLUG_CPU */
370 #ifdef CONFIG_HOTPLUG_SMT
371 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
372 EXPORT_SYMBOL_GPL(cpu_smt_control
);
374 static bool cpu_smt_available __read_mostly
;
376 void __init
cpu_smt_disable(bool force
)
378 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
||
379 cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
383 pr_info("SMT: Force disabled\n");
384 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
386 pr_info("SMT: disabled\n");
387 cpu_smt_control
= CPU_SMT_DISABLED
;
392 * The decision whether SMT is supported can only be done after the full
393 * CPU identification. Called from architecture code before non boot CPUs
396 void __init
cpu_smt_check_topology_early(void)
398 if (!topology_smt_supported())
399 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
403 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
404 * brought online. This ensures the smt/l1tf sysfs entries are consistent
405 * with reality. cpu_smt_available is set to true during the bringup of non
406 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
407 * cpu_smt_control's previous setting.
409 void __init
cpu_smt_check_topology(void)
411 if (!cpu_smt_available
)
412 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
415 static int __init
smt_cmdline_disable(char *str
)
417 cpu_smt_disable(str
&& !strcmp(str
, "force"));
420 early_param("nosmt", smt_cmdline_disable
);
422 static inline bool cpu_smt_allowed(unsigned int cpu
)
424 if (topology_is_primary_thread(cpu
))
428 * If the CPU is not a 'primary' thread and the booted_once bit is
429 * set then the processor has SMT support. Store this information
430 * for the late check of SMT support in cpu_smt_check_topology().
432 if (per_cpu(cpuhp_state
, cpu
).booted_once
)
433 cpu_smt_available
= true;
435 if (cpu_smt_control
== CPU_SMT_ENABLED
)
439 * On x86 it's required to boot all logical CPUs at least once so
440 * that the init code can get a chance to set CR4.MCE on each
441 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
442 * core will shutdown the machine.
444 return !per_cpu(cpuhp_state
, cpu
).booted_once
;
447 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
450 static inline enum cpuhp_state
451 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
453 enum cpuhp_state prev_state
= st
->state
;
455 st
->rollback
= false;
460 st
->bringup
= st
->state
< target
;
466 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
471 * If we have st->last we need to undo partial multi_instance of this
472 * state first. Otherwise start undo at the previous state.
481 st
->target
= prev_state
;
482 st
->bringup
= !st
->bringup
;
485 /* Regular hotplug invocation of the AP hotplug thread */
486 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
488 if (!st
->single
&& st
->state
== st
->target
)
493 * Make sure the above stores are visible before should_run becomes
494 * true. Paired with the mb() above in cpuhp_thread_fun()
497 st
->should_run
= true;
498 wake_up_process(st
->thread
);
499 wait_for_ap_thread(st
, st
->bringup
);
502 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
504 enum cpuhp_state prev_state
;
507 prev_state
= cpuhp_set_state(st
, target
);
509 if ((ret
= st
->result
)) {
510 cpuhp_reset_state(st
, prev_state
);
517 static int bringup_wait_for_ap(unsigned int cpu
)
519 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
521 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
522 wait_for_ap_thread(st
, true);
523 if (WARN_ON_ONCE((!cpu_online(cpu
))))
526 /* Unpark the stopper thread and the hotplug thread of the target cpu */
527 stop_machine_unpark(cpu
);
528 kthread_unpark(st
->thread
);
531 * SMT soft disabling on X86 requires to bring the CPU out of the
532 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
533 * CPU marked itself as booted_once in cpu_notify_starting() so the
534 * cpu_smt_allowed() check will now return false if this is not the
537 if (!cpu_smt_allowed(cpu
))
540 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
543 return cpuhp_kick_ap(st
, st
->target
);
546 static int bringup_cpu(unsigned int cpu
)
548 struct task_struct
*idle
= idle_thread_get(cpu
);
552 * Some architectures have to walk the irq descriptors to
553 * setup the vector space for the cpu which comes online.
554 * Prevent irq alloc/free across the bringup.
558 /* Arch-specific enabling code. */
559 ret
= __cpu_up(cpu
, idle
);
563 return bringup_wait_for_ap(cpu
);
567 * Hotplug state machine related functions
570 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
572 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
573 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
576 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
577 enum cpuhp_state target
)
579 enum cpuhp_state prev_state
= st
->state
;
582 while (st
->state
< target
) {
584 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
586 st
->target
= prev_state
;
587 undo_cpu_up(cpu
, st
);
595 * The cpu hotplug threads manage the bringup and teardown of the cpus
597 static void cpuhp_create(unsigned int cpu
)
599 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
601 init_completion(&st
->done_up
);
602 init_completion(&st
->done_down
);
605 static int cpuhp_should_run(unsigned int cpu
)
607 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
609 return st
->should_run
;
613 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
614 * callbacks when a state gets [un]installed at runtime.
616 * Each invocation of this function by the smpboot thread does a single AP
619 * It has 3 modes of operation:
620 * - single: runs st->cb_state
621 * - up: runs ++st->state, while st->state < st->target
622 * - down: runs st->state--, while st->state > st->target
624 * When complete or on error, should_run is cleared and the completion is fired.
626 static void cpuhp_thread_fun(unsigned int cpu
)
628 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
629 bool bringup
= st
->bringup
;
630 enum cpuhp_state state
;
632 if (WARN_ON_ONCE(!st
->should_run
))
636 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
637 * that if we see ->should_run we also see the rest of the state.
642 * The BP holds the hotplug lock, but we're now running on the AP,
643 * ensure that anybody asserting the lock is held, will actually find
646 lockdep_acquire_cpus_lock();
647 cpuhp_lock_acquire(bringup
);
650 state
= st
->cb_state
;
651 st
->should_run
= false;
656 st
->should_run
= (st
->state
< st
->target
);
657 WARN_ON_ONCE(st
->state
> st
->target
);
661 st
->should_run
= (st
->state
> st
->target
);
662 WARN_ON_ONCE(st
->state
< st
->target
);
666 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
668 if (cpuhp_is_atomic_state(state
)) {
670 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
674 * STARTING/DYING must not fail!
676 WARN_ON_ONCE(st
->result
);
678 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
683 * If we fail on a rollback, we're up a creek without no
684 * paddle, no way forward, no way back. We loose, thanks for
687 WARN_ON_ONCE(st
->rollback
);
688 st
->should_run
= false;
691 cpuhp_lock_release(bringup
);
692 lockdep_release_cpus_lock();
695 complete_ap_thread(st
, bringup
);
698 /* Invoke a single callback on a remote cpu */
700 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
701 struct hlist_node
*node
)
703 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
706 if (!cpu_online(cpu
))
709 cpuhp_lock_acquire(false);
710 cpuhp_lock_release(false);
712 cpuhp_lock_acquire(true);
713 cpuhp_lock_release(true);
716 * If we are up and running, use the hotplug thread. For early calls
717 * we invoke the thread function directly.
720 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
722 st
->rollback
= false;
726 st
->bringup
= bringup
;
727 st
->cb_state
= state
;
733 * If we failed and did a partial, do a rollback.
735 if ((ret
= st
->result
) && st
->last
) {
737 st
->bringup
= !bringup
;
743 * Clean up the leftovers so the next hotplug operation wont use stale
746 st
->node
= st
->last
= NULL
;
750 static int cpuhp_kick_ap_work(unsigned int cpu
)
752 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
753 enum cpuhp_state prev_state
= st
->state
;
756 cpuhp_lock_acquire(false);
757 cpuhp_lock_release(false);
759 cpuhp_lock_acquire(true);
760 cpuhp_lock_release(true);
762 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
763 ret
= cpuhp_kick_ap(st
, st
->target
);
764 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
769 static struct smp_hotplug_thread cpuhp_threads
= {
770 .store
= &cpuhp_state
.thread
,
771 .create
= &cpuhp_create
,
772 .thread_should_run
= cpuhp_should_run
,
773 .thread_fn
= cpuhp_thread_fun
,
774 .thread_comm
= "cpuhp/%u",
778 void __init
cpuhp_threads_init(void)
780 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
781 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
784 #ifdef CONFIG_HOTPLUG_CPU
786 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
789 * This function walks all processes, finds a valid mm struct for each one and
790 * then clears a corresponding bit in mm's cpumask. While this all sounds
791 * trivial, there are various non-obvious corner cases, which this function
792 * tries to solve in a safe manner.
794 * Also note that the function uses a somewhat relaxed locking scheme, so it may
795 * be called only for an already offlined CPU.
797 void clear_tasks_mm_cpumask(int cpu
)
799 struct task_struct
*p
;
802 * This function is called after the cpu is taken down and marked
803 * offline, so its not like new tasks will ever get this cpu set in
804 * their mm mask. -- Peter Zijlstra
805 * Thus, we may use rcu_read_lock() here, instead of grabbing
806 * full-fledged tasklist_lock.
808 WARN_ON(cpu_online(cpu
));
810 for_each_process(p
) {
811 struct task_struct
*t
;
814 * Main thread might exit, but other threads may still have
815 * a valid mm. Find one.
817 t
= find_lock_task_mm(p
);
820 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
826 /* Take this CPU down. */
827 static int take_cpu_down(void *_param
)
829 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
830 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
831 int err
, cpu
= smp_processor_id();
834 /* Ensure this CPU doesn't handle any more interrupts. */
835 err
= __cpu_disable();
840 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
841 * do this step again.
843 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
845 /* Invoke the former CPU_DYING callbacks */
846 for (; st
->state
> target
; st
->state
--) {
847 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
849 * DYING must not fail!
854 /* Give up timekeeping duties */
855 tick_handover_do_timer();
856 /* Park the stopper thread */
857 stop_machine_park(cpu
);
861 static int takedown_cpu(unsigned int cpu
)
863 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
866 /* Park the smpboot threads */
867 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
870 * Prevent irq alloc/free while the dying cpu reorganizes the
871 * interrupt affinities.
876 * So now all preempt/rcu users must observe !cpu_active().
878 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
880 /* CPU refused to die */
882 /* Unpark the hotplug thread so we can rollback there */
883 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
886 BUG_ON(cpu_online(cpu
));
889 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
890 * all runnable tasks from the CPU, there's only the idle task left now
891 * that the migration thread is done doing the stop_machine thing.
893 * Wait for the stop thread to go away.
895 wait_for_ap_thread(st
, false);
896 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
898 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
901 hotplug_cpu__broadcast_tick_pull(cpu
);
902 /* This actually kills the CPU. */
905 tick_cleanup_dead_cpu(cpu
);
906 rcutree_migrate_callbacks(cpu
);
910 static void cpuhp_complete_idle_dead(void *arg
)
912 struct cpuhp_cpu_state
*st
= arg
;
914 complete_ap_thread(st
, false);
917 void cpuhp_report_idle_dead(void)
919 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
921 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
922 rcu_report_dead(smp_processor_id());
923 st
->state
= CPUHP_AP_IDLE_DEAD
;
925 * We cannot call complete after rcu_report_dead() so we delegate it
928 smp_call_function_single(cpumask_first(cpu_online_mask
),
929 cpuhp_complete_idle_dead
, st
, 0);
932 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
934 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
935 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
938 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
939 enum cpuhp_state target
)
941 enum cpuhp_state prev_state
= st
->state
;
944 for (; st
->state
> target
; st
->state
--) {
945 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
947 st
->target
= prev_state
;
948 if (st
->state
< prev_state
)
949 undo_cpu_down(cpu
, st
);
956 /* Requires cpu_add_remove_lock to be held */
957 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
958 enum cpuhp_state target
)
960 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
961 int prev_state
, ret
= 0;
963 if (num_online_cpus() == 1)
966 if (!cpu_present(cpu
))
971 cpuhp_tasks_frozen
= tasks_frozen
;
973 prev_state
= cpuhp_set_state(st
, target
);
975 * If the current CPU state is in the range of the AP hotplug thread,
976 * then we need to kick the thread.
978 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
979 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
980 ret
= cpuhp_kick_ap_work(cpu
);
982 * The AP side has done the error rollback already. Just
983 * return the error code..
989 * We might have stopped still in the range of the AP hotplug
990 * thread. Nothing to do anymore.
992 if (st
->state
> CPUHP_TEARDOWN_CPU
)
998 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
999 * to do the further cleanups.
1001 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1002 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
1003 cpuhp_reset_state(st
, prev_state
);
1004 __cpuhp_kick_ap(st
);
1008 cpus_write_unlock();
1010 * Do post unplug cleanup. This is still protected against
1011 * concurrent CPU hotplug via cpu_add_remove_lock.
1013 lockup_detector_cleanup();
1017 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1019 if (cpu_hotplug_disabled
)
1021 return _cpu_down(cpu
, 0, target
);
1024 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1028 cpu_maps_update_begin();
1029 err
= cpu_down_maps_locked(cpu
, target
);
1030 cpu_maps_update_done();
1034 int cpu_down(unsigned int cpu
)
1036 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1038 EXPORT_SYMBOL(cpu_down
);
1041 #define takedown_cpu NULL
1042 #endif /*CONFIG_HOTPLUG_CPU*/
1045 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1046 * @cpu: cpu that just started
1048 * It must be called by the arch code on the new cpu, before the new cpu
1049 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1051 void notify_cpu_starting(unsigned int cpu
)
1053 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1054 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1057 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1058 st
->booted_once
= true;
1059 while (st
->state
< target
) {
1061 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1063 * STARTING must not fail!
1070 * Called from the idle task. Wake up the controlling task which brings the
1071 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1072 * the rest of the online bringup to the hotplug thread.
1074 void cpuhp_online_idle(enum cpuhp_state state
)
1076 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1078 /* Happens for the boot cpu */
1079 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1082 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1083 complete_ap_thread(st
, true);
1086 /* Requires cpu_add_remove_lock to be held */
1087 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1089 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1090 struct task_struct
*idle
;
1095 if (!cpu_present(cpu
)) {
1101 * The caller of do_cpu_up might have raced with another
1102 * caller. Ignore it for now.
1104 if (st
->state
>= target
)
1107 if (st
->state
== CPUHP_OFFLINE
) {
1108 /* Let it fail before we try to bring the cpu up */
1109 idle
= idle_thread_get(cpu
);
1111 ret
= PTR_ERR(idle
);
1116 cpuhp_tasks_frozen
= tasks_frozen
;
1118 cpuhp_set_state(st
, target
);
1120 * If the current CPU state is in the range of the AP hotplug thread,
1121 * then we need to kick the thread once more.
1123 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1124 ret
= cpuhp_kick_ap_work(cpu
);
1126 * The AP side has done the error rollback already. Just
1127 * return the error code..
1134 * Try to reach the target state. We max out on the BP at
1135 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1136 * responsible for bringing it up to the target state.
1138 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1139 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1141 cpus_write_unlock();
1145 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1149 if (!cpu_possible(cpu
)) {
1150 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1152 #if defined(CONFIG_IA64)
1153 pr_err("please check additional_cpus= boot parameter\n");
1158 err
= try_online_node(cpu_to_node(cpu
));
1162 cpu_maps_update_begin();
1164 if (cpu_hotplug_disabled
) {
1168 if (!cpu_smt_allowed(cpu
)) {
1173 err
= _cpu_up(cpu
, 0, target
);
1175 cpu_maps_update_done();
1179 int cpu_up(unsigned int cpu
)
1181 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1183 EXPORT_SYMBOL_GPL(cpu_up
);
1185 #ifdef CONFIG_PM_SLEEP_SMP
1186 static cpumask_var_t frozen_cpus
;
1188 int freeze_secondary_cpus(int primary
)
1192 cpu_maps_update_begin();
1193 if (!cpu_online(primary
))
1194 primary
= cpumask_first(cpu_online_mask
);
1196 * We take down all of the non-boot CPUs in one shot to avoid races
1197 * with the userspace trying to use the CPU hotplug at the same time
1199 cpumask_clear(frozen_cpus
);
1201 pr_info("Disabling non-boot CPUs ...\n");
1202 for_each_online_cpu(cpu
) {
1205 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1206 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1207 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1209 cpumask_set_cpu(cpu
, frozen_cpus
);
1211 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1217 BUG_ON(num_online_cpus() > 1);
1219 pr_err("Non-boot CPUs are not disabled\n");
1222 * Make sure the CPUs won't be enabled by someone else. We need to do
1223 * this even in case of failure as all disable_nonboot_cpus() users are
1224 * supposed to do enable_nonboot_cpus() on the failure path.
1226 cpu_hotplug_disabled
++;
1228 cpu_maps_update_done();
1232 void __weak
arch_enable_nonboot_cpus_begin(void)
1236 void __weak
arch_enable_nonboot_cpus_end(void)
1240 void enable_nonboot_cpus(void)
1244 /* Allow everyone to use the CPU hotplug again */
1245 cpu_maps_update_begin();
1246 __cpu_hotplug_enable();
1247 if (cpumask_empty(frozen_cpus
))
1250 pr_info("Enabling non-boot CPUs ...\n");
1252 arch_enable_nonboot_cpus_begin();
1254 for_each_cpu(cpu
, frozen_cpus
) {
1255 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1256 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1257 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1259 pr_info("CPU%d is up\n", cpu
);
1262 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1265 arch_enable_nonboot_cpus_end();
1267 cpumask_clear(frozen_cpus
);
1269 cpu_maps_update_done();
1272 static int __init
alloc_frozen_cpus(void)
1274 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1278 core_initcall(alloc_frozen_cpus
);
1281 * When callbacks for CPU hotplug notifications are being executed, we must
1282 * ensure that the state of the system with respect to the tasks being frozen
1283 * or not, as reported by the notification, remains unchanged *throughout the
1284 * duration* of the execution of the callbacks.
1285 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1287 * This synchronization is implemented by mutually excluding regular CPU
1288 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1289 * Hibernate notifications.
1292 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1293 unsigned long action
, void *ptr
)
1297 case PM_SUSPEND_PREPARE
:
1298 case PM_HIBERNATION_PREPARE
:
1299 cpu_hotplug_disable();
1302 case PM_POST_SUSPEND
:
1303 case PM_POST_HIBERNATION
:
1304 cpu_hotplug_enable();
1315 static int __init
cpu_hotplug_pm_sync_init(void)
1318 * cpu_hotplug_pm_callback has higher priority than x86
1319 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1320 * to disable cpu hotplug to avoid cpu hotplug race.
1322 pm_notifier(cpu_hotplug_pm_callback
, 0);
1325 core_initcall(cpu_hotplug_pm_sync_init
);
1327 #endif /* CONFIG_PM_SLEEP_SMP */
1331 #endif /* CONFIG_SMP */
1333 /* Boot processor state steps */
1334 static struct cpuhp_step cpuhp_hp_states
[] = {
1337 .startup
.single
= NULL
,
1338 .teardown
.single
= NULL
,
1341 [CPUHP_CREATE_THREADS
]= {
1342 .name
= "threads:prepare",
1343 .startup
.single
= smpboot_create_threads
,
1344 .teardown
.single
= NULL
,
1347 [CPUHP_PERF_PREPARE
] = {
1348 .name
= "perf:prepare",
1349 .startup
.single
= perf_event_init_cpu
,
1350 .teardown
.single
= perf_event_exit_cpu
,
1352 [CPUHP_WORKQUEUE_PREP
] = {
1353 .name
= "workqueue:prepare",
1354 .startup
.single
= workqueue_prepare_cpu
,
1355 .teardown
.single
= NULL
,
1357 [CPUHP_HRTIMERS_PREPARE
] = {
1358 .name
= "hrtimers:prepare",
1359 .startup
.single
= hrtimers_prepare_cpu
,
1360 .teardown
.single
= hrtimers_dead_cpu
,
1362 [CPUHP_SMPCFD_PREPARE
] = {
1363 .name
= "smpcfd:prepare",
1364 .startup
.single
= smpcfd_prepare_cpu
,
1365 .teardown
.single
= smpcfd_dead_cpu
,
1367 [CPUHP_RELAY_PREPARE
] = {
1368 .name
= "relay:prepare",
1369 .startup
.single
= relay_prepare_cpu
,
1370 .teardown
.single
= NULL
,
1372 [CPUHP_SLAB_PREPARE
] = {
1373 .name
= "slab:prepare",
1374 .startup
.single
= slab_prepare_cpu
,
1375 .teardown
.single
= slab_dead_cpu
,
1377 [CPUHP_RCUTREE_PREP
] = {
1378 .name
= "RCU/tree:prepare",
1379 .startup
.single
= rcutree_prepare_cpu
,
1380 .teardown
.single
= rcutree_dead_cpu
,
1383 * On the tear-down path, timers_dead_cpu() must be invoked
1384 * before blk_mq_queue_reinit_notify() from notify_dead(),
1385 * otherwise a RCU stall occurs.
1387 [CPUHP_TIMERS_PREPARE
] = {
1388 .name
= "timers:prepare",
1389 .startup
.single
= timers_prepare_cpu
,
1390 .teardown
.single
= timers_dead_cpu
,
1392 /* Kicks the plugged cpu into life */
1393 [CPUHP_BRINGUP_CPU
] = {
1394 .name
= "cpu:bringup",
1395 .startup
.single
= bringup_cpu
,
1396 .teardown
.single
= NULL
,
1399 /* Final state before CPU kills itself */
1400 [CPUHP_AP_IDLE_DEAD
] = {
1401 .name
= "idle:dead",
1404 * Last state before CPU enters the idle loop to die. Transient state
1405 * for synchronization.
1407 [CPUHP_AP_OFFLINE
] = {
1408 .name
= "ap:offline",
1411 /* First state is scheduler control. Interrupts are disabled */
1412 [CPUHP_AP_SCHED_STARTING
] = {
1413 .name
= "sched:starting",
1414 .startup
.single
= sched_cpu_starting
,
1415 .teardown
.single
= sched_cpu_dying
,
1417 [CPUHP_AP_RCUTREE_DYING
] = {
1418 .name
= "RCU/tree:dying",
1419 .startup
.single
= NULL
,
1420 .teardown
.single
= rcutree_dying_cpu
,
1422 [CPUHP_AP_SMPCFD_DYING
] = {
1423 .name
= "smpcfd:dying",
1424 .startup
.single
= NULL
,
1425 .teardown
.single
= smpcfd_dying_cpu
,
1427 /* Entry state on starting. Interrupts enabled from here on. Transient
1428 * state for synchronsization */
1429 [CPUHP_AP_ONLINE
] = {
1430 .name
= "ap:online",
1433 * Handled on controll processor until the plugged processor manages
1436 [CPUHP_TEARDOWN_CPU
] = {
1437 .name
= "cpu:teardown",
1438 .startup
.single
= NULL
,
1439 .teardown
.single
= takedown_cpu
,
1442 /* Handle smpboot threads park/unpark */
1443 [CPUHP_AP_SMPBOOT_THREADS
] = {
1444 .name
= "smpboot/threads:online",
1445 .startup
.single
= smpboot_unpark_threads
,
1446 .teardown
.single
= smpboot_park_threads
,
1448 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1449 .name
= "irq/affinity:online",
1450 .startup
.single
= irq_affinity_online_cpu
,
1451 .teardown
.single
= NULL
,
1453 [CPUHP_AP_PERF_ONLINE
] = {
1454 .name
= "perf:online",
1455 .startup
.single
= perf_event_init_cpu
,
1456 .teardown
.single
= perf_event_exit_cpu
,
1458 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1459 .name
= "lockup_detector:online",
1460 .startup
.single
= lockup_detector_online_cpu
,
1461 .teardown
.single
= lockup_detector_offline_cpu
,
1463 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1464 .name
= "workqueue:online",
1465 .startup
.single
= workqueue_online_cpu
,
1466 .teardown
.single
= workqueue_offline_cpu
,
1468 [CPUHP_AP_RCUTREE_ONLINE
] = {
1469 .name
= "RCU/tree:online",
1470 .startup
.single
= rcutree_online_cpu
,
1471 .teardown
.single
= rcutree_offline_cpu
,
1475 * The dynamically registered state space is here
1479 /* Last state is scheduler control setting the cpu active */
1480 [CPUHP_AP_ACTIVE
] = {
1481 .name
= "sched:active",
1482 .startup
.single
= sched_cpu_activate
,
1483 .teardown
.single
= sched_cpu_deactivate
,
1487 /* CPU is fully up and running. */
1490 .startup
.single
= NULL
,
1491 .teardown
.single
= NULL
,
1495 /* Sanity check for callbacks */
1496 static int cpuhp_cb_check(enum cpuhp_state state
)
1498 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1504 * Returns a free for dynamic slot assignment of the Online state. The states
1505 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1506 * by having no name assigned.
1508 static int cpuhp_reserve_state(enum cpuhp_state state
)
1510 enum cpuhp_state i
, end
;
1511 struct cpuhp_step
*step
;
1514 case CPUHP_AP_ONLINE_DYN
:
1515 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1516 end
= CPUHP_AP_ONLINE_DYN_END
;
1518 case CPUHP_BP_PREPARE_DYN
:
1519 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1520 end
= CPUHP_BP_PREPARE_DYN_END
;
1526 for (i
= state
; i
<= end
; i
++, step
++) {
1530 WARN(1, "No more dynamic states available for CPU hotplug\n");
1534 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1535 int (*startup
)(unsigned int cpu
),
1536 int (*teardown
)(unsigned int cpu
),
1537 bool multi_instance
)
1539 /* (Un)Install the callbacks for further cpu hotplug operations */
1540 struct cpuhp_step
*sp
;
1544 * If name is NULL, then the state gets removed.
1546 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1547 * the first allocation from these dynamic ranges, so the removal
1548 * would trigger a new allocation and clear the wrong (already
1549 * empty) state, leaving the callbacks of the to be cleared state
1550 * dangling, which causes wreckage on the next hotplug operation.
1552 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1553 state
== CPUHP_BP_PREPARE_DYN
)) {
1554 ret
= cpuhp_reserve_state(state
);
1559 sp
= cpuhp_get_step(state
);
1560 if (name
&& sp
->name
)
1563 sp
->startup
.single
= startup
;
1564 sp
->teardown
.single
= teardown
;
1566 sp
->multi_instance
= multi_instance
;
1567 INIT_HLIST_HEAD(&sp
->list
);
1571 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1573 return cpuhp_get_step(state
)->teardown
.single
;
1577 * Call the startup/teardown function for a step either on the AP or
1578 * on the current CPU.
1580 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1581 struct hlist_node
*node
)
1583 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1587 * If there's nothing to do, we done.
1588 * Relies on the union for multi_instance.
1590 if ((bringup
&& !sp
->startup
.single
) ||
1591 (!bringup
&& !sp
->teardown
.single
))
1594 * The non AP bound callbacks can fail on bringup. On teardown
1595 * e.g. module removal we crash for now.
1598 if (cpuhp_is_ap_state(state
))
1599 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1601 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1603 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1605 BUG_ON(ret
&& !bringup
);
1610 * Called from __cpuhp_setup_state on a recoverable failure.
1612 * Note: The teardown callbacks for rollback are not allowed to fail!
1614 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1615 struct hlist_node
*node
)
1619 /* Roll back the already executed steps on the other cpus */
1620 for_each_present_cpu(cpu
) {
1621 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1622 int cpustate
= st
->state
;
1624 if (cpu
>= failedcpu
)
1627 /* Did we invoke the startup call on that cpu ? */
1628 if (cpustate
>= state
)
1629 cpuhp_issue_call(cpu
, state
, false, node
);
1633 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1634 struct hlist_node
*node
,
1637 struct cpuhp_step
*sp
;
1641 lockdep_assert_cpus_held();
1643 sp
= cpuhp_get_step(state
);
1644 if (sp
->multi_instance
== false)
1647 mutex_lock(&cpuhp_state_mutex
);
1649 if (!invoke
|| !sp
->startup
.multi
)
1653 * Try to call the startup callback for each present cpu
1654 * depending on the hotplug state of the cpu.
1656 for_each_present_cpu(cpu
) {
1657 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1658 int cpustate
= st
->state
;
1660 if (cpustate
< state
)
1663 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1665 if (sp
->teardown
.multi
)
1666 cpuhp_rollback_install(cpu
, state
, node
);
1672 hlist_add_head(node
, &sp
->list
);
1674 mutex_unlock(&cpuhp_state_mutex
);
1678 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1684 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1688 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1691 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1692 * @state: The state to setup
1693 * @invoke: If true, the startup function is invoked for cpus where
1694 * cpu state >= @state
1695 * @startup: startup callback function
1696 * @teardown: teardown callback function
1697 * @multi_instance: State is set up for multiple instances which get
1700 * The caller needs to hold cpus read locked while calling this function.
1703 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1704 * 0 for all other states
1705 * On failure: proper (negative) error code
1707 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1708 const char *name
, bool invoke
,
1709 int (*startup
)(unsigned int cpu
),
1710 int (*teardown
)(unsigned int cpu
),
1711 bool multi_instance
)
1716 lockdep_assert_cpus_held();
1718 if (cpuhp_cb_check(state
) || !name
)
1721 mutex_lock(&cpuhp_state_mutex
);
1723 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1726 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1727 if (ret
> 0 && dynstate
) {
1732 if (ret
|| !invoke
|| !startup
)
1736 * Try to call the startup callback for each present cpu
1737 * depending on the hotplug state of the cpu.
1739 for_each_present_cpu(cpu
) {
1740 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1741 int cpustate
= st
->state
;
1743 if (cpustate
< state
)
1746 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1749 cpuhp_rollback_install(cpu
, state
, NULL
);
1750 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1755 mutex_unlock(&cpuhp_state_mutex
);
1757 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1758 * dynamically allocated state in case of success.
1760 if (!ret
&& dynstate
)
1764 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1766 int __cpuhp_setup_state(enum cpuhp_state state
,
1767 const char *name
, bool invoke
,
1768 int (*startup
)(unsigned int cpu
),
1769 int (*teardown
)(unsigned int cpu
),
1770 bool multi_instance
)
1775 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1776 teardown
, multi_instance
);
1780 EXPORT_SYMBOL(__cpuhp_setup_state
);
1782 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1783 struct hlist_node
*node
, bool invoke
)
1785 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1788 BUG_ON(cpuhp_cb_check(state
));
1790 if (!sp
->multi_instance
)
1794 mutex_lock(&cpuhp_state_mutex
);
1796 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1799 * Call the teardown callback for each present cpu depending
1800 * on the hotplug state of the cpu. This function is not
1801 * allowed to fail currently!
1803 for_each_present_cpu(cpu
) {
1804 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1805 int cpustate
= st
->state
;
1807 if (cpustate
>= state
)
1808 cpuhp_issue_call(cpu
, state
, false, node
);
1813 mutex_unlock(&cpuhp_state_mutex
);
1818 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1821 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1822 * @state: The state to remove
1823 * @invoke: If true, the teardown function is invoked for cpus where
1824 * cpu state >= @state
1826 * The caller needs to hold cpus read locked while calling this function.
1827 * The teardown callback is currently not allowed to fail. Think
1828 * about module removal!
1830 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
1832 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1835 BUG_ON(cpuhp_cb_check(state
));
1837 lockdep_assert_cpus_held();
1839 mutex_lock(&cpuhp_state_mutex
);
1840 if (sp
->multi_instance
) {
1841 WARN(!hlist_empty(&sp
->list
),
1842 "Error: Removing state %d which has instances left.\n",
1847 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1851 * Call the teardown callback for each present cpu depending
1852 * on the hotplug state of the cpu. This function is not
1853 * allowed to fail currently!
1855 for_each_present_cpu(cpu
) {
1856 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1857 int cpustate
= st
->state
;
1859 if (cpustate
>= state
)
1860 cpuhp_issue_call(cpu
, state
, false, NULL
);
1863 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1864 mutex_unlock(&cpuhp_state_mutex
);
1866 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
1868 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1871 __cpuhp_remove_state_cpuslocked(state
, invoke
);
1874 EXPORT_SYMBOL(__cpuhp_remove_state
);
1876 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1877 static ssize_t
show_cpuhp_state(struct device
*dev
,
1878 struct device_attribute
*attr
, char *buf
)
1880 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1882 return sprintf(buf
, "%d\n", st
->state
);
1884 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1886 static ssize_t
write_cpuhp_target(struct device
*dev
,
1887 struct device_attribute
*attr
,
1888 const char *buf
, size_t count
)
1890 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1891 struct cpuhp_step
*sp
;
1894 ret
= kstrtoint(buf
, 10, &target
);
1898 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1899 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1902 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1906 ret
= lock_device_hotplug_sysfs();
1910 mutex_lock(&cpuhp_state_mutex
);
1911 sp
= cpuhp_get_step(target
);
1912 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1913 mutex_unlock(&cpuhp_state_mutex
);
1917 if (st
->state
< target
)
1918 ret
= do_cpu_up(dev
->id
, target
);
1920 ret
= do_cpu_down(dev
->id
, target
);
1922 unlock_device_hotplug();
1923 return ret
? ret
: count
;
1926 static ssize_t
show_cpuhp_target(struct device
*dev
,
1927 struct device_attribute
*attr
, char *buf
)
1929 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1931 return sprintf(buf
, "%d\n", st
->target
);
1933 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1936 static ssize_t
write_cpuhp_fail(struct device
*dev
,
1937 struct device_attribute
*attr
,
1938 const char *buf
, size_t count
)
1940 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1941 struct cpuhp_step
*sp
;
1944 ret
= kstrtoint(buf
, 10, &fail
);
1949 * Cannot fail STARTING/DYING callbacks.
1951 if (cpuhp_is_atomic_state(fail
))
1955 * Cannot fail anything that doesn't have callbacks.
1957 mutex_lock(&cpuhp_state_mutex
);
1958 sp
= cpuhp_get_step(fail
);
1959 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
1961 mutex_unlock(&cpuhp_state_mutex
);
1970 static ssize_t
show_cpuhp_fail(struct device
*dev
,
1971 struct device_attribute
*attr
, char *buf
)
1973 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1975 return sprintf(buf
, "%d\n", st
->fail
);
1978 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
1980 static struct attribute
*cpuhp_cpu_attrs
[] = {
1981 &dev_attr_state
.attr
,
1982 &dev_attr_target
.attr
,
1983 &dev_attr_fail
.attr
,
1987 static const struct attribute_group cpuhp_cpu_attr_group
= {
1988 .attrs
= cpuhp_cpu_attrs
,
1993 static ssize_t
show_cpuhp_states(struct device
*dev
,
1994 struct device_attribute
*attr
, char *buf
)
1996 ssize_t cur
, res
= 0;
1999 mutex_lock(&cpuhp_state_mutex
);
2000 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
2001 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
2004 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
2009 mutex_unlock(&cpuhp_state_mutex
);
2012 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
2014 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
2015 &dev_attr_states
.attr
,
2019 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2020 .attrs
= cpuhp_cpu_root_attrs
,
2025 #ifdef CONFIG_HOTPLUG_SMT
2027 static const char *smt_states
[] = {
2028 [CPU_SMT_ENABLED
] = "on",
2029 [CPU_SMT_DISABLED
] = "off",
2030 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2031 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2035 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2037 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", smt_states
[cpu_smt_control
]);
2040 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2042 struct device
*dev
= get_cpu_device(cpu
);
2044 dev
->offline
= true;
2045 /* Tell user space about the state change */
2046 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2049 static void cpuhp_online_cpu_device(unsigned int cpu
)
2051 struct device
*dev
= get_cpu_device(cpu
);
2053 dev
->offline
= false;
2054 /* Tell user space about the state change */
2055 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2059 * Architectures that need SMT-specific errata handling during SMT hotplug
2060 * should override this.
2062 void __weak
arch_smt_update(void) { };
2064 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2068 cpu_maps_update_begin();
2069 for_each_online_cpu(cpu
) {
2070 if (topology_is_primary_thread(cpu
))
2072 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2076 * As this needs to hold the cpu maps lock it's impossible
2077 * to call device_offline() because that ends up calling
2078 * cpu_down() which takes cpu maps lock. cpu maps lock
2079 * needs to be held as this might race against in kernel
2080 * abusers of the hotplug machinery (thermal management).
2082 * So nothing would update device:offline state. That would
2083 * leave the sysfs entry stale and prevent onlining after
2084 * smt control has been changed to 'off' again. This is
2085 * called under the sysfs hotplug lock, so it is properly
2086 * serialized against the regular offline usage.
2088 cpuhp_offline_cpu_device(cpu
);
2091 cpu_smt_control
= ctrlval
;
2094 cpu_maps_update_done();
2098 static int cpuhp_smt_enable(void)
2102 cpu_maps_update_begin();
2103 cpu_smt_control
= CPU_SMT_ENABLED
;
2105 for_each_present_cpu(cpu
) {
2106 /* Skip online CPUs and CPUs on offline nodes */
2107 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2109 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2112 /* See comment in cpuhp_smt_disable() */
2113 cpuhp_online_cpu_device(cpu
);
2115 cpu_maps_update_done();
2120 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2121 const char *buf
, size_t count
)
2125 if (sysfs_streq(buf
, "on"))
2126 ctrlval
= CPU_SMT_ENABLED
;
2127 else if (sysfs_streq(buf
, "off"))
2128 ctrlval
= CPU_SMT_DISABLED
;
2129 else if (sysfs_streq(buf
, "forceoff"))
2130 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2134 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2137 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2140 ret
= lock_device_hotplug_sysfs();
2144 if (ctrlval
!= cpu_smt_control
) {
2146 case CPU_SMT_ENABLED
:
2147 ret
= cpuhp_smt_enable();
2149 case CPU_SMT_DISABLED
:
2150 case CPU_SMT_FORCE_DISABLED
:
2151 ret
= cpuhp_smt_disable(ctrlval
);
2156 unlock_device_hotplug();
2157 return ret
? ret
: count
;
2159 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2162 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2164 bool active
= topology_max_smt_threads() > 1;
2166 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", active
);
2168 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2170 static struct attribute
*cpuhp_smt_attrs
[] = {
2171 &dev_attr_control
.attr
,
2172 &dev_attr_active
.attr
,
2176 static const struct attribute_group cpuhp_smt_attr_group
= {
2177 .attrs
= cpuhp_smt_attrs
,
2182 static int __init
cpu_smt_state_init(void)
2184 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2185 &cpuhp_smt_attr_group
);
2189 static inline int cpu_smt_state_init(void) { return 0; }
2192 static int __init
cpuhp_sysfs_init(void)
2196 ret
= cpu_smt_state_init();
2200 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2201 &cpuhp_cpu_root_attr_group
);
2205 for_each_possible_cpu(cpu
) {
2206 struct device
*dev
= get_cpu_device(cpu
);
2210 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2216 device_initcall(cpuhp_sysfs_init
);
2220 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2221 * represents all NR_CPUS bits binary values of 1<<nr.
2223 * It is used by cpumask_of() to get a constant address to a CPU
2224 * mask value that has a single bit set only.
2227 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2228 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2229 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2230 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2231 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2233 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2235 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2236 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2237 #if BITS_PER_LONG > 32
2238 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2239 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2242 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2244 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2245 EXPORT_SYMBOL(cpu_all_bits
);
2247 #ifdef CONFIG_INIT_ALL_POSSIBLE
2248 struct cpumask __cpu_possible_mask __read_mostly
2251 struct cpumask __cpu_possible_mask __read_mostly
;
2253 EXPORT_SYMBOL(__cpu_possible_mask
);
2255 struct cpumask __cpu_online_mask __read_mostly
;
2256 EXPORT_SYMBOL(__cpu_online_mask
);
2258 struct cpumask __cpu_present_mask __read_mostly
;
2259 EXPORT_SYMBOL(__cpu_present_mask
);
2261 struct cpumask __cpu_active_mask __read_mostly
;
2262 EXPORT_SYMBOL(__cpu_active_mask
);
2264 void init_cpu_present(const struct cpumask
*src
)
2266 cpumask_copy(&__cpu_present_mask
, src
);
2269 void init_cpu_possible(const struct cpumask
*src
)
2271 cpumask_copy(&__cpu_possible_mask
, src
);
2274 void init_cpu_online(const struct cpumask
*src
)
2276 cpumask_copy(&__cpu_online_mask
, src
);
2280 * Activate the first processor.
2282 void __init
boot_cpu_init(void)
2284 int cpu
= smp_processor_id();
2286 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2287 set_cpu_online(cpu
, true);
2288 set_cpu_active(cpu
, true);
2289 set_cpu_present(cpu
, true);
2290 set_cpu_possible(cpu
, true);
2293 __boot_cpu_id
= cpu
;
2298 * Must be called _AFTER_ setting up the per_cpu areas
2300 void __init
boot_cpu_hotplug_init(void)
2303 this_cpu_write(cpuhp_state
.booted_once
, true);
2305 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);